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Abstract: The present work investigates the dynamics of a guided control situation when
an automated vehicle is traveling in front of a human-driven vehicle, while the control of
the automated vehicle contains the combination of a cruise control term and a backward
looking term. The plant and string stability conditions of the underlying dynamical system are
determined. The relevant time delays are taken into account and stability charts are presented
for various delay combinations. A simple approximation of the string stable domain is proposed.
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1. INTRODUCTION

With the increasing number of vehicles on roads, traffic
congestions are formed more and more often, and the
number of potential safety critical situations also increases.
Autonomous driving systems may help in both cases
(Caveney (2010); Chan et al. (2012)); there are several
studies about platoons of connected vehicles, which pro-
vide fast and safe transport (Lidstrém et al. (2012); Mi-
lanés et al. (2013); Ploeg et al. (2013a); Oncii et al. (2014)).
Although, the human-driven vehicles remain present in
the near future, some of these may be connected to a
few automated vehicles, which can benefit the automated
vehicles and also provide certain levels of traffic control.
In case of connected cruise control (CCC), the automated
vehicle is connected to some human-driven vehicles ahead
(Qin et al. (2016); Orosz (2016)). In case of adaptive traffic
control (ATC), the automated vehicle is connected to some
human-driven vehicles behind (Molnar et al. (2023)). Fi-
nally, in case of connected traffic control (CTC) or leading
cruise control (LCC), the automated vehicle is connected
to vehicles both behind and ahead (Molndr et al. (2023);
Wang et al. (2021)).

The traffic dynamics can be described in a vehicle-based,
also called Lagrangian coordinate system (Cic¢i¢ and Jo-
hansson (2018); Yu et al. (2018); Laval and Leclercq
(2013); Molndr et al. (2021)), which is nowadays more
popular than the location-based Eulerian approaches
(Bekiaris-Liberis and Delis (2020); Yu et al. (2018)). The
corresponding dynamics presents intricate phenomena due
to the relevant time delays in the control; this was first

introduced by Bando et al. (1998) and it is still a relevant
research topic (Orosz and Stépan (2006); Wang et al.
(2018); Loizou et al. (2021)).

The present paper investigates the simplest traffic control,
when an automated vehicle (AV) runs in front of a human-
driven vehicle (HV). The AV aims to travel according to
a reference velocity but it senses also the velocity of the
HYV and so provides a guided control for the human driver.
After introducing the model, the stability of the system is
analyzed for various control parameters. Then the effects
of the relevant time delays are taken into account in
the control of both the HV and the AV. Finally, simple
suggestions are provided to guide the tuning process of
the control gains of the AV.

2. MODELING

Fig. 1. Single-lane guided car following.

The investigated guided car following model is visualized
in Fig. 1: an AV of velocity v aims to cruise according to a
possibly time-dependent reference velocity vyer while a HV
follows it with velocity v_1; the headway between the two
vehicles is denoted by h_;. The dynamics of the simplified
model assumes the form:
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hoy=v—v_q, (1)
oy =a(V(ho1) —voa) £ B(W(v) —v-),  (2)
o = B(ret — 0) 4+ B1(W(v_1) —v), (3)
where
W (v) = min(v, vmax), (4)
is the velocity saturation function and
V(h) = min(max(0, F'(h), Vmax)), (5)

is the range policy. Thus, the gains 3 and B_; determine
the control law of the AV. The gains « and § describe the
assumed control strategy of the human driver, who also
takes into account the headway h_; and aims to drive
according to the function F'(h) (see Bando et al. (1998))
if the headway is within the range hg < h—1 < hgo. If the
distance between the two vehicles is below hg then the
driver tries to stop, while if it is larger than hg, then the
vehicle ahead is far enough to travel with a predefined
maximum velocity vmax (see Molndr et al. (2020, 2023)).

3. CONTROL DESIGN

In case of the steady state motion, both vehicles travel with
velocity vper and the corresponding headway is determined
by the inverse of the range policy: h*; = V! (v.ef). The
state vector x = [h_y ©_1 9|7 is defined by
71—1 =h_1— h*_p V_1 = V_1 — Uref, U =V — Uref , (6)
which leads to the linearized governing equations:
X = Ax + By, (7)
y=Cx. (8)
Here, the output y is the velocity of the HV and the
coefficient matrices are

0 -1 1 0
A= |ak —(a+B) B ,B=10|, C=[010],
0 B —(B+B-1) 8

where « is the slope of the range policy function V(h) at
the equilibrium, and so, it is approximately the inverse of
the time headway.

Since the reference velocity can be a function of time,
the above system is non-autonomous and its stability can
be investigated in two aspects: the system is called plant
stable if it is stable for constant v,ef, and it is called string
stable if it is plant stable and the perturbations in v..¢ do
not lead to increased oscillations in the output y (Besselink
and Johansson (2017); Swaroop and Hedrick (1996); Ploeg
et al. (2013Db)).

3.1 Plant stability

The characteristic function assumes the form:
D(s) :==det(sI— A) = s>+ (a4 S+ + B_1)s*
+ (aB +aB 1+ BB+ ak)s + arf.
If all its zeros have negative real part, the system is plant
stable. Substituting s = 0 into the characteristic equation

D(s) =0, and assuming « > 0 and k > 0, the static stabil-
ity (possible saddle-node bifurcation) boundary is located

at
(11)

(10)

B=0.

Substitution of s =jQ in (10), leads to the parametric
form of the dynamic stability (possible Hopf bifurcation)
boundary

_Q4 + (a4 B)? — 2ak)2? + o®K?

B-1(Q) = B2 + a2k ’ (12)
v U ala+ 8- k)O3
By = B2+ otk (13)

where the parameter 2 is the angular frequency with which
the system looses its stability. Substituting €2 = 0, the
curve starts from the point _; = —x, 3 = 0 and its slope
tends to —1 for large values of Q (see Fig. 2).

A typical stability chart can be seen in the upper left panel
of Fig. 2. The stability boundary curves are given in (11)-
(13), the stable region can be identified with the Routh-
Hurwitz criterion; both the light and dark gray regions are
plant stable, which implies that not only the whole positive
quadrant of the g_1, ,5’ plane is stable but the backward

looking gain 5_; can take even negative values if B is large
enough. The smaller panels in the first and third rows show
the characteristic roots at six distinct parameter points.

8.2 String stability

To investigate the string stability, the transfer function
should be determined between the reference velocity and
the velocity of the HV:

-1 CN(s)
T(s)=C(sI—A)""'B=: D(s)
Here, the denominator D(s) is identical to the character-
istic function (10), and the numerator assumes the form

N(s) = sBB + arf3. (15)

By definition, the system is string stable if it is plant stable
and

(14)

|T(jw)] <1, for all w > 0. (16)
Let us introduce
1 . .
P)= 25 (NG - IDG)P) . (17)
with which the definition (16) can be rewritten as
P(w) <0, for allw >0, (18)

where
P(w) = —w' = ((@+8)? + (B+5-1)° - 20 + 286, )w?

— a(2B8+8-1) (B—r) + a((B+58-1)* + 2681 + #2) ).

(19)

The critical parameter combinations at which the system
may loose string stability are the cases when

P(0) =0, (20)

dP(w)
dw

=0 forw*>0.

w=w*

(21)

Expressing the w = 0 string stability boundary for B yields

5 a+pf—kK
B=-B 25 ox
\/531(04+5—l€)2—a(a+25—2,{)(571+,{)z
* a+28 -2k ’

(22)
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Fig. 2. The upper left panel presents a stability chart in the plane of the control gains of the AV (for HV parameters
a=0.151/s, k=0.81/s, §=0.6 1/s). The light and dark gray regions are both plant stable, while only the
dark gray area is string stable. The small panels present the characteristic roots and the norms of the transfer
function for various control gain combinations selected from the stability chart. Point A is a plant and string stable
configuration, B and C are only plant stable, while the points D, E and F are all unstable in both senses even
though in case of F, the norm of the transfer function remains below 1.
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Fig. 3. Stability charts for various values of k (the inverse of the time headway) with human gains « = 0.15 1/s,
B =0.6 1/s. The light and dark gray regions are both plant stable, while only the dark gray area is string stable.

which forms two parabolas (see the blue dashed curves in

Fig. 2).

In case of human drivers, k ~ a+/ (see Ge et al. (2018)). If
they are exactly equal then (22) simplifies to the expression

of two straight lines:

b

=x(B1+a+p).

- 0
B-1 [1/8]

(23)

(C)2 x =0.75 1/s
7
p
1 v
7
O =« =< _ - _ _
~
~
=1, L - \\
~
ISR |
-2 ail 0 1
B-1 [1/s]

The w > 0 string stability boundary can also be deter-
mined in a lengthy closed form that is not presented here;
the corresponding boundary curves are plotted with blue
solid lines in the stability chart of Fig. 2. As w increases
from zero, these blue curves detach from the dashed blue
curves; the detachment points are marked with purple
crosses. There, in addition to (20),
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d?P(w)
dw? w=0
also fulfils leading to further lengthy expressions. For
k = a + 3, these simplify to
f=—a-B A=0mdB=-5 f=atl ()
which is presented in panel (c) of Fig. 3.

=0 (24)

In Fig. 2, the string stable region is colored dark gray.
The smaller panels in the second and fourth rows show
the norm of the transfer function (14) for six different
parameter combinations.

Figure 3 shows stability charts for various, practically
relevant k values. Increasing x, that is, considering more
and more aggressive human drivers, the plant stable region
changes just slightly, but the string stable area shrinks
significantly. Furthermore, panel (c) presents the special
configuration kK = o + 3, where the w = 0 string stability
curves become straight lines.

4. EFFECTS OF TIME DELAYS

In real scenarios, both the control of the HV and the con-
trol of the AV are subjected to time delay originating from
the human reaction time, processing time and actuation
delay. Denoting these delays by 7 and ¢ corresponding to
the HV and to the AV, respectively, the equation of motion
assumes the form

x(t) = Aox(t) + Arx(t—7) + Agx(t—0) + Buger, (26)

where

0-11 0 0 0
Ao:[OOO], A= |ax —(a+p) B8],
000 0 0 0
0 0 0 (27)
A, =0 0 0
0 B —(B+B-1)

4.1 Plant stability

The corresponding characteristic function is a quasi-
polynomial:

D(s) :=det(sI — Ag— Ae™* — A,e™%)
=5+ (a+ B)s?e™ + (B + B_1)s%e ™
+ (BB + af + af_1)se*F9) L akse™*"
+ akrfe*(T19),

(28)

and the stability analysis can be done with the help of the
D-subdivision method (Stépan (1989)). Assuming o > 0
and k > 0, the saddle-node boundary is the same as before:

(29)

B=0.

Substituting s = j) into the characteristic equation (28),
the Hopf boundary curves can be given as a function of :

B_1(0) = cos(ch)Z((g)), B(Q) = igg;

(30)

where

a(Q) = —Q* + 20%(a + B) sin(Qr)
— Q*((a+ B)? + 2ak cos(Q7)) — kK2,
b(Q) = Q* cos(wo) + Q% (a? + af) cos(Qo)
— (a+ B)VPsin(Q(r—0)) — aQ3sin(Q(r+0)) (32)
— a2 cos(Qr—0)) + kN sin(Qo),
c(Q) = BO? cos(Q1) — arQsin(Q7) + k.

(31)

(33)

For w = 0, the curve starts from 8_; = —k, B = 0, and it
is singular at the roots of the ¢(Q2) function (see Fig. 4).

4.2 String stability

For the investigation of the string stability, let us again
determine the transfer function T'(s) = N(s)/D(s), the
numerator of which is

N(s) = (sB6 + arB)e ™7, (34)
while the denominator D(s) takes the same form of the
characteristic function (28).

The corresponding w = 0 string stability boundary is

—B_1(a+ B — k) +ar’o
a+28 -2k
V(B-1(a+B—k)—ar?o)2—ala+ 26— 2k)(B_1+k)2
a+28 -2k ’
(35)
which does not depend on the reaction time of the human
driver.

B =

+

Assuming « + 8 = k, the above expression simplifies to
B=—r20+/(20)2+(B_1+K)?. (36)

The w > 0 string stability boundary can be determined
in closed algebraic form, but it leads again to a lengthy
expression that is not presented here.

Figure 4 presents stability charts for various delay combi-
nations in the plane of the control parameters _1, 3. The
plant stable domain is bounded while its left boundary
corresponding to low Q frequencies is similar to the one
generated without delays. The stable area shrinks signif-
icantly if the time delay of the AV increases, while the
increase of the reaction time of the human driver has only
a small effect, and it may even help in case of large B
values (see panels (g) and (h)). The string stable region
is primarily bounded by the w = 0 boundary from above,
and an w > 0 boundary from the right, while around
B_1 = —kK, B =0, there is a similar structure as it was
showed for the delay-free case in Fig. 2.

5. DISCUSSION

An interesting question is how the automated vehicle
behaves if a vehicle is driving behind it with constant
velocity, in which case the steady state velocity of the
automated vehicle is

vt = ﬁvref + ﬁflvfl

- 37
B+ pB-1 87)
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Fig. 4. Stability charts for various time delay combinations (for HV parameters o« = 0.15 1/s, 8 = 0.6 1/s, K = 0.8 1/s).
The light and dark gray regions are both plant stable, while the dark gray area is string stable as well.

Introducing v = v — v*, the linearized equation of motion
assumes the form of the Hayes equation (Stépédn (1989)):

0(t) = —(B+ B-1)d(t — o). (38)
The corresponding saddle-node boundary is at
B + B—l = Oa (39)
while the Hopf boundary curves take the form
. 2k+1
f=—PB-1 +%(—1)k, k=0,1,2.... (40)
Thus, the system is plant stable if
- 7r
—B- —P1+ —. 41
B <B<—port o (41)

Figure 5 shows various stability charts for different delay
combinations, where the upper limit of the plant stability
region can be approximated well with the result of the
Hayes equation. This is because the dynamic D-curve (30),

intersects the 3 axis always when cos(Qo) = 0, and for the
corresponding 2 = (2k + 1)7/(20) value, one gets back the
simple expression (40).

Based on Fig. 4, the right boundary of the string stable
domain is close to the corresponding Hopf boundary and so
it can also be approximated with the results of the Hayes
equation (41). This provides a simple approximation for
tuning the control parameters of the autonomous vehicle.

6. CONCLUSION

The paper investigated the guided control of a human-
driven vehicle, ahead of which the automated vehicle is
not only equipped with cruise control but it is sensing the

(a) 7 =065 0=02s (b).

) 7=08s,0=02s
10

Fig. 5. Comparison of the stability chart of the original
system (red) and stability chart when the HV travels
with constant velocity (green).

distance and the relative velocity between the two cars and
changes the applied actuation accordingly.

Neglecting the time delays, the stability charts showed
that not only the whole positive quadrant of the 5_, B
plane is plant stable but the backward looking gain 8_;
can be tuned even to negative values if the cruise control
gain f is large enough. Furthermore, the string stable
domains were determined as well, and stability charts are
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presented for various values of the inverse k of the time
headway.

In Section 4, the relevant time delays were taken into
account both for the HV and for the AV, which resulted
bounded stable domains. Finally, the control of the AV
was analyzed when the HV is traveling with constant
speed behind it; the corresponding dynamics is described
by the Hayes equation, which provides a quite good
approximation of the upper stability boundary of the
original system.

As a future work, we plan to analyze the nonlinear nature
of the system and carry out experiments to verify the
theoretical results.
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