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ABSTRACT The world has recently undergone the most ambitious mitigation effort in a century, consisting
of wide-spread quarantines aimed at preventing the spread of COVID-19. The use of influential epidemi-
ological models of COVID-19 helped to encourage decision makers to take drastic non-pharmaceutical
interventions. Yet, inherent in these models are often assumptions that the active interventions are static, e.g.,
that social distancing is enforced until infections are minimized, which can lead to inaccurate predictions
that are ever evolving as new data is assimilated. We present a methodology to dynamically guide the
active intervention by shifting the focus from viewing epidemiological models as systems that evolve in
autonomous fashion to control systems with an ““input” that can be varied in time in order to change the
evolution of the system. We show that a safety-critical control approach to COVID-19 mitigation gives active
intervention policies that formally guarantee the safe evolution of compartmental epidemiological models.
This perspective is applied to current US data on cases while taking into account reduction of mobility, and we
find that it accurately describes the current trends when time delays associated with incubation and testing are
incorporated. Optimal active intervention policies are synthesized to determine future mitigations necessary
to bound infections, hospitalizations, and death, both at national and state levels. We therefore provide means
in which to model and modulate active interventions with a view toward the phased reopenings that are cur-
rently beginning across the US and the world in a decentralized fashion. This framework can be converted into
public policies, accounting for the fractured landscape of COVID-19 mitigation in a safety-critical fashion.

INDEX TERMS Safety-critical control, epidemiology, non-pharmaceutical intervention, COVID-19.

I. INTRODUCTION

As COVID-19 spreads throughout the world [9]-[11], due to
the novelty of the virus and the resulting lack of pharmaceu-
tical options necessary to suppress infection [12], unprece-
dented mitigation steps to slow its progression were taken [1]
in the form of non-pharmaceutical interventions [3], [13],
e.g., social distancing, mask-wearing, quarantining, and stay-
at-home orders. It is largely agreed upon that these slowed
the spread of the virus [2], [14], thereby saving lives. Yet
studies have shown that if these active interventions had been
enforced even a week earlier [15], the result would have been
a substantial reduction in deaths. As a means of mitigating the
spread of COVID-19, the question therefore becomes: when,
where, and how does one decide to take non-pharmaceutical
interventions? This question is especially relevant [16] as

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott

188454

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

restrictions are being relaxed in a decentralized fashion across
the US and throughout the world.
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FIGURE 1. lllustration of the safety-critical active intervention policies
developed in this paper applied at the state level (for states with
sufficient data) in the US. The states are colored according to whether it is
safe to open further (green), slowly open (yellow) hold the current
mitigation efforts steady (orange), or increase mitigation (red). This is
determined based upon an active intervention policy that formally
guarantees bounded hospitalizations and deaths.
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TABLE 1. Policy summary.

Background

Main Findings

Policy Implications

Epidemiological models provide a powerful
tool to guide the mitigation of COVID-19. Yet
these models are dynamical systems that must
be constantly updated as new data is assim-
ilated. Policy decisions, therefore, fail to ac-
count for future active interventions, e.g., social
distancing and stay-at-home orders, that can
change the evolution of these models.

Viewing epidemiological models as control sys-
tems allows for the design of active interven-
tion policies that can mitigate COVID-19 while
modulating these mitigation efforts as func-
tion of time. With this viewpoint, safety-critical
policies are synthesized that guarantee safety of
the system by bounding the infected, hospital-
ized, and deceased populations.

The safety-critical active interventions synthe-
sized can be used to formulate and inform
public and governmental policy on lifting or
increasing mitigation efforts in a centralized
and decentralized fashion. These policies may,
therefore, guide mitigation efforts at local or
national levels to ensure hospitals do not reach
capacity, and overall deaths are limited.

Due to the pressing need to understand past and future
mitigation efforts [4], and the corresponding role of active
interventions, there has been a surge of recent papers on
the modeling of COVID-19 [5], [17]-[20]. Epidemiological
models for predicting the spread of COVID-19 often utilize
dynamical systems obtained from so-called ‘“‘compartmen-
tal” models wherein the compartments reflect different pop-
ulations of interest [21]-[23], e.g., susceptible (S), infected
(I), recovered (R), etc. More compartments can be added
allowing for higher fidelity models, although one must be
careful of overfitting the largely increased number of param-
eters in more complex models. The most fundamental (and
elementary) of these compartmental models is the SIR model,
which has recently been used in modeling of COVID-19
[24], [25]. More complex models applied for COVID-19
include the SEIR [26], [27] and SIRT [28] models, which
involve exposed (E) and threatened (7") populations, and the
SIXRD [29] and SIDARTHE models [5] which add even
more compartments. While compartmental models have been
found to be useful when modeling the spread of COVID-19
and the corresponding mitigation procedures, e.g., stay-at-
home orders, the approaches are fundamentally based on
autonomous dynamics [30], [31] as they do not have a
time-varying control input that can dynamically change the
evolution of the system. We propose a different approach:
applying safety-critical control methods to guide active non-
pharmaceutical interventions wherein we can actively predict
the interventions needed to maintain safety by viewing com-
partmental models as control systems.

The main results of this paper are safety-critical “‘reopen-
ing” policies to guide active interventions — formally guar-
anteeing safety constraint satisfaction — both at the national
and state level in the US. This concept is illustrated in Fig. 1.
To obtain these results, in Section II we begin by motivat-
ing these ideas with the SIR model, viewed as a control
system, that accurately describes national level US data
on cases when taking into account reduction of mobility.
Safety-critical policies, based upon control barrier functions,
are motivated for the SIR model in Section III. Section IV
introduces the higher fidelity STHRD model which includes
populations for hospitalized and deceased. This model is
utilized for both national and state level data, wherein safety-
critical active interventions bounding hospitalizations and
deaths are synthesized in both cases. Section V concludes
the paper, while giving policy implications (as summarized
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in Table 1). The mathematical formalisms and detailed
derivations that underlie the results presented are given in the
Appendix.

Il. THE SIR MODEL AS A CONTROL SYSTEM

At the core of our approach is a fundamental shift in per-
spective on epidemiological models: from viewing them as
dynamical systems that evolve in an autonomous fashion,
to that of control systems for which the evolution can be
dynamically modified. In many ways, this is the de facto
manner in which these models are implemented, if only in
an implicit fashion, as they are constantly updated as new
data is assimilated, e.g., as changes in social distancing are
observed [32]. We, therefore, will formalize this perspective
by making the control aspect of epidemiological models
explicit. Note that viewing compartmental epidemiological
models as control systems is not unique [33], [34], but has
found only limited application to COVID-19 [35] and has yet
to enjoy formal guarantees on safety. Additionally, there are
examples of control-theoretic concepts being applied, namely
in the the context of time-varying [28], [36], [37] and state-
varying [6], [38] choices of the transmission rate; these can be
viewed as time- and state-varying inputs to a control system.
Our approach differs in that we wish to synthesize active
intervention policies (i.e., feedback control laws) that will
determine future actions to take based upon past observations
of the states of the systems.

To motivate the methodology utilized throughout this
paper, we will begin by considering the fundamental epidemi-
ological compartmental model: the SIR model [21], [23].
Importantly, the approach introduced herein can be applied to
any compartmental model, and will subsequently be applied
to a more descriptive model. The SIR model consists of a
susceptible population S, infected population I, and recovered
population R. We can view the evolution of these populations
as a control system where active interventions, expressed by
the control input u(f), modulate the rate of change of the
infected population:

S() = —%(1— utr) )S(t)l(t),

Control Input

. Bo
i0 =5 (1= ww) )so10) - 1),
Control Input
R(t) = yI@). ¢))
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FIGURE 2. Paradigm shift wherein compartmental models are viewed as
control systems rather than dynamical systems. This is illustrated on the
populations /(t) and R(t) of the SIR model (top panels) wherein the
control input u(t) is modulated based upon the intervention policies
estimated from mobility data (bottom panel). The time delay = = 10 days
is highlighted to emphasize that the observed data (shown through

May 30, 2020) corresponds to the delayed counterparts of the
populations, and this delay also appears in the active intervention policy:
u(t) = A(S(t — 7), I(t — 7)), given in Eq. (2).

Transmission rate, 3

Here the total population N = S(¢) + I(¢) + R(¢) is constant,
Bo > 0 is the transmission rate (when no intervention is
present) and y > 0is the recovery rate, yielding the reproduc-
tion number: Ry = Bop/y . This model relates to the traditional
SIR model via the time-varying transmission rate B(f) =
Bo(1l —u(t)). Time-varying B(¢) has been considered [20]; for
example, we can utilize the policy u(t) = —A cos(wt) in the
SIR model [39] to recover models of seasonal variations in
infection [40]. In the setting considered here, taking u(z) = 0
corresponds to no intervention, yielding the traditional SIR
model with B(¢) = Bo, whereas u(t) = 1 can be viewed as
maximum intervention, full and complete quarantine of the
population. In the latter case the infected population decays
to zero exponentially, /() = e~ 7'I(0), since the susceptible
population is isolated. These effects can be seen, for example,
in the Chinese response to COVID-19 and the corresponding
drop in Ry [19].

An illustration of the SIR model as a control system is
shown in Fig. 2 where the interactions between the compart-
ments are denoted by arrows with appropriate rate constants
indicated. The blue arrow represents the time dependent
modulation of the transmission rate §(¢). The control input
u(t) is estimated from mobility data [41] in the US between
March 2 and May 20, 2020 by assuming # = 0 at the begin-
ning this period when no non-pharmaceutical interventions
were present. Furthermore, the parameters Sy, y and N of the
SIR model were fitted to the recorded number of confirmed
cases: I(t — 1) + R(t — t) with t the time delay.
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Fitting for the time delay 7, in the corresponding trans-
mission rate S(t — t), reveals that the COVID-19 data [42]
depicted publicly [43] are delayed by T ~ 10 days. This time
delay originates from the incubation time of the virus (i.e.,
people are being infectious before being symptomatic) and
the time needed for testing [35], [44]-[46]. That is, the data
corresponds to the number of confirmed cases T days ago
while the real current number could be much higher. For
example, in mid-March, when interventions were introduced
inthe US, I(# — 7)+R(t — t) was reported to be in the range of
a few thousand, while the real number /() + R(¢) is estimated
to be more than a hundred thousand. This delay also appears
in the active intervention policies which depend on the state
of the system, i.e., u(t) = A(S(t—1), [(t—1)), and it therefore
must be compensated for in order to ensure the safety of these
policies. Finally, we remark that when fitting the model (1)
to the aforementioned data one may obtain good fits while
setting N in the range from 7.5 million up to 330 million (see
Appendix G for additional details). Smaller values encode
the fact that not everyone susceptible is necessarily exposed
when the total number of infected is small relative to the
total population, as well as the fact that the total number of
infections is underreported [47]. In Fig. 2 we used the lowest
value N = 7.5 million; the consequences of this choice will
be discussed in the context of active interventions.

Ill. SAFETY-CRITICAL CONTROL FOR ACTIVE
INTERVENTION

Utilizing the paradigm of epidemiological models as con-
trol systems, we can synthesize active intervention policies,
i.e., inputs to Eq. (1) expressed as functions of the populations
of the compartmental model. A special case of this is referred
to as shield immunity [6], wherein the policy u(t) = Nilz(l?(t)
with « > 0 was chosen. Our goal is to synthesize active
intervention policies so as to achieve desired safety-critical
behaviors, that is, to guarantee that the system, with the
policy applied, evolves in a safe fashion. Concretely, we may
quantify safety in the context of the SIR model as limiting
the total number of infected persons: () < Inax. To achieve
such goal, we leverage the framework of control barrier func-
tions [7] which gives necessary and sufficient conditions on
the safety, along with tools to generate active intervention
policies that ensure safety.

While there may exist multiple safe policies, it is ben-
eficial to chose one which minimizes the active interven-
tion u(t), since more aggressive interventions potentially
result in the lose of jobs and other economic and physi-
ological effects [48], [49]. The active intervention policy,
i.e., feedback control law, that gives the minimal possible
(pointwise optimal) interventions so as to ensure the safety
of the system can be explicitly calculated (as described
in Appendix B):

Y
Bo S(1) 1(1)
= 1(t) < Inax- @

N Imax
u(t) = A(S(t),1(t)) := max {0, 1-— " }
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FIGURE 3. Application of the safety-critical active intervention policy in
Eq. (2) that keeps the number of infected people under a given limit /max,
to the SIR model in Eq. (1) with the parameters that yielded Fig. 2. The
safety-critical policy is compared against a reference policy where the
control input is reduced linearly. Data are depicted through May 30 and
August 31, 2020, by different colors. The epidemic ends relatively early
due to the reduced population N, used in the model.

Notice the activation function or rectified linear unit [50]
ReLU(x) = max{0, x} can be used to express the policy;
notably, this is also used in neural networks in the context of
machine learning [51]. This highlights that interventions only
become “active” when safety is in danger of being violated.
However, if one simply uses the obtained feedback control
law in the SIR model with time delay t, i.e., substitutes
u(t) = A(S(t — 1), I(t — 1)) into Eq. (1), safety cannot be
ensured due to the delay. In order to compensate for this delay
we construct predictors [52] (as described in Appendix F)
and use the predicted states Sy(7) and I,(¢) in the active inter-
vention policy: u(t) = A(Sy(¢), I(¢)). If the predictions are
accurate, i.e., Sp(f) = S(¢) and I,(t) = I(z), then the delay-
free control design can ensure safety. Such predictors play
an essential role in making the active intervention policies,
synthesized from control barrier functions, implementable in
the presence of time delay [8].

Figure 3 depicts the results of applying the safety-critical
active intervention policy in Eq. (2) to the SIR model in
Eq. (1) while compensating for the 10 days delay using
predictors. The control barrier function is able to keep the
infected population under Imax = 200, 000 while gradually
driving the control input (active intervention) to zero, i.e., mit-
igation methods can eventually be removed. Notice that this
opening strategy decreases the control input very slowly at
the beginning followed by a faster opening toward the end.
As a reference we also show the results of another opening
strategy where the control input is reduced to zero linearly in
time. In this case the number of infections peaks at a much
higher value putting a large burden on the health system.

The peak predicted by the reference opening strategy cap-
tures what the US experienced during the summer of 2020
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(cf. the data in light blue), although the peak had been pre-
dicted before the summer when the second wave of infections
had not yet emerged (i.e., only the gray shaded data had been
used for model fitting and prediction). The mobility data,
on the other hand, do not reflect that the mitigation efforts
(control input) were reduced over the summer. The mobility
data provide an efficient metric to quantify the level of active
interventions during the early stages of the pandemic when
stay-at-home orders came into action. Later on, however,
as society adapted to the presence of the virus, other means
of human action such as social distancing and mask-wearing
practices also started to play a key role and they allowed
mitigation even when people did not stay at home.

While Fig. 3 vividly illustrates the use of safety-critical
active intervention, and the benefits thereof, it also predicts
that all restrictions can be lifted by mid-July. This is due to
the use of the simplified SIR model that was considered to
illustrate the concepts presented and, more specifically, due
to the fact that the model heavily depends on the N (chosen
to be 7.5 million when fitting the data). Selecting a larger N
would yield a longer mitigation period: the time period where
active intervention is necessary, i.e., where Eq. (2) is non-
zero, can be calculated as T & ﬁ(%f\,—o — 1), where Sy
is the size of the susceptible population when the controller
in Eq. (2) is initiated. Increasing N increases the period for
which active intervention is necessary i.e., when the safety
critical intervention policy is applied to the overly simplistic
SIR model. In order to make predictions more reliable it
is necessary to use a higher fidelity compartmental model.
Moreover, doing so allows for additional safety-critical con-
straints to be considered, including hospitalization and death.

IV. SAFETY-CRITICAL ACTIVE INTERVENTIONS
FOR THE SIHRD MODEL
The safety-critical approach to active intervention can be
applied to more complex compartmental models, viewed as
control systems. To better capture other salient populations
for which safety is critical, we consider the STHRD model
(shown in Fig. 4 detailed in Appendix C) which includes
the S, I and R populations of the SIR model together with
hospitalized and deceased populations denoted by H and D,
respectively [20], [23]. The equations governing this model
are, therefore, similar to those in Eq. (1) with the addition of
dynamics governing the evolution of populations associated
with hospitalization and deaths. Correspondingly, the control
input again appears via the time varying transmission rate
B(t) = Bo(1 — u(t)), while y still denotes the recovery rate
of the infected population. The additional parameters A > 0,
v > 0 and u > 0 represent the hospitalization rate, recovery
rate in hospitals and death rate, respectively. These rates are
obtained by fitting the model to the data together with the
effective population N that becomes 13.2 million for this
model (as discussed in Appendix G).

The evolution of the SIHRD model is shown in Fig. 4
relative to US data, including mobility data, where the fits
accurately capture the data for the infected, hospitalized and
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forward for 25 days until May 30, 2020 (yellow). These are compared to a
fit where the data was used until May 30 (light blue).

deceased populations to present day. Safety-critical active
intervention policies can be synthesized for the SIHRD
model, wherein the additional compartments allow for the
consideration of safety constraints aimed at limiting hospital-
ization and death. In particular, we will consider two active
interventions policies: one policy analogous to Eq. (2) aimed
at limiting the infected population, and another policy aimed
at simultaneously limiting both the number of hospitalized
and dead. The results of applying these two policies are
shown in Fig. 5, with the specific controllers detailed in
Appendix D. Additional policies could be considered, bound-
ing the populations in any compartment or any combination
thereof.

The first safety critical policy considered aims to limit
the number of infected, ie., I(f) < Inax, With results
qualitatively similar to those of the SIR model in Fig. 3.
Again mitigation measures are enforced over the same dura-
tion as a linear “opening up” policy while the optimality
of the safety-critical policy results in substantially fewer
infections at the peak. The second safety critical policy aims
to limit hospitalizations (H(¢#) < Hmax) based upon hospi-
tal capacity, while simultaneously limiting deaths (D(t) <
Dpax). Achieving these objectives, as indicated in Fig. 5,
requires maintaining a non-zero input for a longer dura-
tion, i.e., some form of mitigation must be practiced for
an extended period to limit overall death. This reflects the
practices of countries that successfully mitigated the first
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FIGURE 5. Two safety-critical active intervention policies applied to the
SIHRD model that was fit to data through May 30, 2020. The red policy
keeps the number of infected under Imax as in Fig. 3 while the dark
orange policy keeps the number of hospitalized under Hnax and also
keeps the number of deaths under Dmax. The reference policy, that is
linear in time, fails to maintain safety and results in a spike in infections
and hospitalizations.

wave of the epidemic [53]. Importantly, both of the syn-
thesized safety-critical active intervention policies guaran-
tee the safety constraints while simultaneously minimizing
mitigation—compared against the naive linear reference pol-
icy which would drive the number of hospitalized above the
limit Hpax, and result in large number of deceased persons.
This indicates the important role that active intervention poli-
cies can play in guaranteeing safety, encoded by limiting
hospitalizations and deaths.

The safety-critical policies synthesized above can also
be applied to smaller geographical areas. This is especially
relevant from a practical perspective, as specific mitigation
efforts are determined at a state level in the US. In Fig. 6,
the results are shown for four different states with safety-
critical active intervention policies simultaneously bounding
hospitalization and death; the safety bounds Hp,x and Dpax
were chosen as outlined in Appendix D, and different bounds
can be used based upon state-level public policy. Different
states require different levels of mitigation as highlighted by
the color of each state. The gating criterion for state level
mitigation was, as a proof of concept, determined by the value
of the safety-critical control input 30 days after the start of
active intervention; other criterion could be used based upon
public policy.
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is compared against the naive linear opening up reference policy which violates the safety bounds—resulting in over twice the deaths in
the at risks states: California and Texas. This illustrates that the way in which states open up has important ramifications.

For the safety-critical public policy considered, Michi-
gan may open up, i.e., relax its mitigation efforts relatively
quickly, reducing the control input to less than 50% of its
current value in 30 days, yet mitigation efforts must be kept in
place throughout the year. Qualitatively similar behavior can
be seen in the case of New York, though active interventions
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cannot be reduced as quickly—if relaxed too quickly the
result is a second spike in infections equal to the first already
experienced. By comparison, California needs to very slowly
relax its mitigation efforts and settle into a steady state miti-
gation at 80% of its current value, or the result is an outbreak
with very high number of hospitalized and substantially more
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death. Texas should increase its current mitigation efforts
to avoid a sudden and significant rise of infections, hos-
pitalizations and death. In the case of both California and
Texas, the way in which they open has a profound effect on
the total hospitalizations and deaths, with deaths more than
doubling if a naive opening up policy is implemented. There-
fore, the safety-critical approach can determine the optimal
way in which states should open—assuming good data at the
state level—thereby informing policy that has the potential to
dramatically reduce hospitalizations and deaths.

V. CONCLUSION AND POLICY IMPLICATIONS

The approach taken in this paper revolves around a new
paradigm: viewing compartmental epidemiological models
as control systems, viz. Eq. (1). Importantly, this perspective
allows one to view these models not as systems that evolve
independent of human behavior, but rather as systems where
human behavior is an input that can actively modify their
evolution (cf. Fig. 2). In this setting, we are able to syn-
thesize active intervention policies that can serve to guide
future mitigation efforts. We specifically synthesized safety-
critical policies that formally guarantee that the evolution of
compartmental models—the SIR and SIHRD—stay within
“safe sets”. These safe sets encode bounds on the number
of infected, hospitalized, and deceased populations. Closed
form expressions for optimal active intervention policies were
synthesized, as in Eq. (2), that ensure safety. To demonstrate
this approach, US COVID-19 data on cases, hospitalizations
and deaths were utilized to fit the static parameters of the
SIR and SIHRD models. The active component of the con-
trol system, i.e., the control input, was synthesized utilizing
mobility data; the result was models with predictive power
(Fig. 4). Projecting into the future while compensating for
the incubation and testing delays, the active intervention
policies were applied and compared against ‘“‘naive opening
up”’ policies. It was shown that the safety-critical policies that
limit hospitalizations and deaths greatly outperformed these
reference policies (Fig. 3), and this was demonstrated at both
the national (Fig. 5) and the state level (Fig. 6).

We remark that safety-critical active intervention is not
limited to our specific choices of models, nor to the datasets
we used. The SIR and SIHRD models were chosen for
their simplicity, which allowed us to synthesize control poli-
cies in closed form such as the one in Eq. (2). In this
study, these models were sufficiently accurate to capture the
confirmed cases, hospitalization, death and mobility data,
however, we do not claim that these models could be applied
universally for all kinds of infection, for all stages of a pan-
demic or for all geographical regions. Yet, for any other—
potentially more descriptive—choices of models, the pro-
posed safety-critical control approach can still be utilized
(and its general formulation is given in Appendix A). The
approach was demonstrated for the case of the USA to high-
light the differences in safety-critical policies needed for
different geographical locations (states) during the course
of phased reopenings. Indeed, the lessons learnt from these
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analyses can be applied to models describing other states (see
27 examples in Appendix H) or other countries [20] as well,
despite the fact that they may have significantly different
characteristics (such as reproduction number, recovery rate,
hospitalization rate, death rate, and other features).

The safety-critical approach to active intervention can
directly inform public policy. To wit, the results presented
demonstrate that epidemiological models (viewed as control
systems) can capture the role of human action in mitigating
COVID-19; both to describe observed data, and to actively
modulate future behavior. Active intervention policies (feed-
back control laws) can, therefore, be used to guide non-
pharmaceutical actions that should be taken to achieve a
desired outcome with regard to the COVID-19 pandemic—
or unforeseen future pandemics. Of particular concern are
mitigation efforts devoted to ensuring safety; this encodes
the desire to limit the infected, hospitalized and deceased
population. The safety-critical active intervention policy pre-
sented herein results in concrete guidance on future mit-
igation efforts needed to achieve these guarantees. These
actions can be at a local, state, national or international level
depending on the ability to guide active interventions among
these populations. The end result can be codified in tangible
and specific public policies on “opening up”, i.e., on lifting
or increasing mitigation efforts. As demonstrated throughout
this paper on COVID-19 data and the corresponding epi-
demiological models, safety-critical active interventions—if
properly encoded as public policy—have the ability to ensure
available hospital capacity and save lives.

APPENDIX

This appendix formulates the safety-critical control approach
to active intervention for compartmental models. We begin
with a general overview of safety-critical methods. These
are applied to both the SIR model and the STHRD model.
We then consider the case of multiple safety constraints in the
case of the SIHRD model wherein we formulate controllers
that simultaneously enforce these constraints. A detailed
discussion of our approach to handling time delays is pre-
sented and applied to both the SIR and SIHRD models.
Finally, the method for fitting model parameters is described.
We conclude with the details on the application of the afore-
mentioned methods to state-level data and the synthesis of
safety-critical active interventions for COVID-19 mitigation.

A. SAFETY-CRITICAL CONTROL FOR

GUARANTEED SAFETY

Safety can be framed as set invariance [54]-[56] in the context
of control systems and controller synthesis. Let R" be the
state space of the compartmental model of interest, consisting
of n-dimensional Euclidean space, with n the number of
compartments, i.e., for the SIR model n = 3 and for the
SIHRD model n = 5. A state x € R” consists of values of the
populations, e.g., x =[S, [, R]—r for the SIR model. A safety
constraint is a function # : R" — 'R that encodes the safe
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behavior of the system through:

Safe set : C:={xeR": hx) >0}, 3)

wherein the goal is for the system to evolve in this safe set. For
example, for the SIR model A(S, I, R) = Inax — I, with the set
C containing the states for which I < I,5x. The goal is to give
(necessary and sufficient) conditions for control systems, and
synthesize corresponding policies, that render this set forward
invariant, i.e., that keep the system safe.

A control system (in control affine form) is a first order
nonlinear differential equation with a control input:

X(1) = f(x(1)) + g(x(2)) u(?), 4
—

Control Input

where x € R" and u € R is the scalar valued control
input (note that all of the methods presented also hold for
vector valued control inputs). All compartmental models can
be expressed in the general form of Eq. (4); which becomes
an autonomous dynamical system (as they are typically mod-
eled) for u(r) = 0, i.e., the system evolves according to
Xx(t) = f(x(¢)). The addition of the control input u(t), as was
done in Eq. (1), allows one to modify the evolution of the
system to achieve desired behaviors. This modification is
done via control laws or policies: u(t) = K(x(t)). The
result is a closed loop dynamical system: x(¢) = f(x(1)) +
g(x(1))K (x(1)), wherein x(¢) is a solution to this system with
initial condition x(0) = xq.

We are interested in guarantees of safety framed as set
invariance per Eq. (3). Thus, we say that the control system
in Eq. (4) is safe with the policy u(t) = K(x(¢)) if xo € C
implies that x(z) € C for all + > 0, where x(7) is a solution
to the closed loop system with the policy applied. By the
definition of the safe set in Eq. (3), safety is thus equivalent
to satisfying the safety constraint for all time: A(x(¢)) > 0.
Safety-critical control addresses the fundamental question:
how does one synthesize control policies that render the
set C safe, i.e., control policies such that safety constraint
h(x(#)) > 0 is satisfied for the closed loop system?

To achieve safe behavior for the control system in Eq. (4)
representing an abstract compartmental model, we leverage
the framework of control barrier functions [7]. This is a
new methodology for controller synthesis, first introduced
in [57], which has its bases in a long and rich history of
set invariance for dynamical systems and control (cf. [54]
for a review): from dynamical systems [58]-[61], to control
systems [55], [56], [62] with application and experimen-
tal validation on robotic systems [63]. Within the frame-
work of control barrier functions, we consider the function
h(x) that defines the safe set C, wherein we find conditions
on the rate of change of this function that guarantee for-
ward set invariance; conditions that can be checked over the
entire set C and thereby used to synthesize control policies.
It is this key observation—conditions that can be checked
over the entire set—that yields the safety-critical control
paradigm.
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It was discovered [7] that necessary1 and sufficient condi-
tions for forward set invariance are given by lower bounding
the rate of change of 4 when differentiated along x(¢) with
respect to time:

%h(x(t)) > —ah(x(1)) <= h(x(1)) = 0,
<—x(t)eC vVt >0,
< C is safe, 5)

for o > 0 and all #+ > 0. The importance of the derivative
condition is that it can be checked at every point of time with
respect to the input u. Thus, & is a control barrier function
(CBF) [7] if there exits a u(t) such that:

%h(x(t)) = ]’l(X(t), u(t))

oh oh
= 3 ®O) + gD u(t) = —ah(x(1)).  (6)
@ &

=Leh(x(1)  =Lgh(x(1)

As aresult, for a control barrier function, one can synthesize
a policy that ensures safety by choosing a controller u(¢) that
satisfies Eq. (6). For example, if L,h(x) # O then A is a control
barrier function as u(¢) satisfying Eq. (6) can be explicitly
solved for through the pseudoinverse. We seek to do this
in an optimal way so as to minimize the amount of active
intervention.

With the goal of achieving safety while minimizing the
input—as is the case with compartmental epidemiological
models where we wish to minimize the active intervention—
the control law synthesis problem can be framed as an opti-
mization problem (as has been done in the context of real-time
control for robotic systems [64]); specifically, a quadratic
program (QP):

u(t) = K(x(1))

= arg min u
uel0,1]

s.t. Leh(x(1)) + Leh(x()u > —ah(x(t)). (7)

2

Note that here we limit # € [0, 1] since this corresponds to
the interval of active interventions with # = 0 denoting no
intervention and u = 1 denoting complete intervention, e.g.,
fully isolating the infected population. Importantly, one can
explicitly solve the optimization problem in Eq. (7) to get a
closed form expression:

u(t) = K(x(1))
B Ly h(x(t))+oah(x(1))
= Loh(x(1))
0 if Leh(x(t)) > —ah(x(1)).
(3)
For this choice of control law, the closed loop system is safe

and, additionally, the minimal input is optimally chosen. This
is represented by the conditional statement, wherein u = 0 if

if Leh(x(1)) < —ah(x(1))

]Technically, for necessity, « must be chosen to be an extended class /C
function [7] not a constant. We utilize a constant for simplicity of exposition
and without loss of generality.
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the natural dynamics of the system satisfy the control barrier
function condition in Eq. (6).
If Leh(x(2)) > 0, Eq. (8) simplifies to:

Lrh(x(1)) + ath(x(1)) }
= K = 0, -
u(t) (x(1)) = max { Lgh(X(l))
— ReLU (_th(x(t)) + ah(x(t)))’ ©)
Loh(x(1))

wherein the max becomes the min when Lgh(x(¢)) < O.
It is this formulation that leads to the active intervention
policies that we will synthesize for both the SIR and STHRD
compartmental models, viewed as control systems.

B. APPLICATION OF SAFETY-CRITICAL METHODS

TO THE SIR MODEL

Consider the SIR model, viewed as a control system, as given
in Eq. (1). This is clearly of the form of the general control
system given in Eq. (4) wherein x = [S, I, R]T € R? and:

—%S(t)[ (1)

J&x(0) = %S(t)l(t)—)/l(t) ’
i vI(t)
%S(t)l(t)
gx(1)) = —%S(r)l(t) ' {10
0

As a result, x(#) = f(x(¢)) is just the standard SIR model—
viewed as an autonomous dynamical system. As indicated
above, the safety constraint 7(¢) < Iyax leads to the function

h(I) = Imax — I defining the safe set:
C={S.I,RI" € R’ : I <Iax}, (11)

as in Eq. (3). For the safety function h(I) = Ipax — 1
calculating Eq. (6) yields:

S, 1)) = —1(t)

_ _%smm) I+ %S(m(r) u(t)
S —
Leh(S(1),1(1)) Lgh(S(t).1(1))
> —at(lax — 1(1). (12)

It follows that /4 is a control barrier function since I # 0 and
S # 0 corresponds to having nonzero infected or susceptible
populations, and therefore, Lyh(S(¢), 1(t)) # 0. The explicit
solution in Eq. (9) to the optimization-based controller in
Eq. (7) becomes:

u(t) = A(S(), 1(1))

=ReLU|(1— o(Imax — 1)) + y1(1)
Bsi)
U
I(t) < Imax V>0, (13)
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if 1(0) < Iax, since in the domain of interest:

§>0, I>0=Lh(S(®),11)) > 0. (14)

By picking o = y, the control law in Eq. (13) yields Eq. (2)
which was used in Fig. 3.

C. SAFETY-CRITICAL CONTROL APPLIED TO
THE SIHRD MODEL
The SIHRD model is a compartmental epidemiological
model that extends the SIR model to include two additional
compartments related to hospitalized and deceased popula-
tions. These additional compartments will be important in the
synthesis of safety-critical controllers that bound these popu-
lations. The STHRD model—viewed as a control system—is
illustrated in Fig. 4, where S, I and R are the same populations
as in the SIR model, H denotes the population that is currently
hospitalized due to the virus (and assumed not to transmit to
the susceptible population as a result), and D is the deceased
population. The rate constants are indicated along the arrows
linking the compartments: S is the transmission rate while y
and v are the recovery rates of the infected and hospitalized
populations, respectively. Additionally, A represents the hos-
pitalization rate and p is the mortality rate. These parameters
are coupled via 1/(y +A+p) which is the characteristic infec-
tious period of the virus, accounting for hospitalizations and
deaths, after which there is assumed to be no transmission.
When casting the model in the form of Eq. (4), we use
x=1[S5,1,H,R, D]T € R3 and obtain the following control
system:

S(I) —%S(t)l(t)
1{1 ((ft)) _ %S(r)](r) — (v + A+ wI()
R() M(t) — vH(t)
b yI(t) + vH ()
(1)
— | wl i
X(t
® _f(X(t)) _
@S(t)l(t)
%o
+ | TSI as)
0 ~—~—
0 Control Input
- 0 -
—_—

gx(®)

As indicated in Fig. 4, one may design active intervention
policies2 for the control input u(¢) that modulates the trans-
mission rate: B(r) = Bo(l — u(¢)). In particular, we are
interested in synthesizing safety-critical active intervention
policies that bound infections, hospitalization and death for

2Note that the delayed values of the different populations appear in
the corresponding feedback laws which will be compensated using pre-
dictors based on the fitted model. This will be described in detail later
in Appendix E.

VOLUME 8, 2020



A. D. Ames et al.: Safety-Critical Control of Active Interventions for COVID-19 Mitigation

IEEE Access

the STHRD model. The corresponding safety functions are:

h[([) = Imax -1,
]’lH(H) = Hmax —H,
hp(D) := Dmax — D, (16)
with corresponding safe sets:
Cr:={[S.1,H,R.D]" € R® : I <Ina),
Cy :={[S,I,H,R,D]" € R’ : H < Hpu),
Cp :={[S,I,H,R,D]" € R° : D <Dma}, (17)
as defined as in Eq. (3). In the case of Ay, a similar calcula-

tion to that in Eq. (12) yields the active intervention policy
(analogous to Eq. (13)):

u(t) = Ar(S@), 1(1))
— ReLU (1 _ @ Umax — 1(2) +(y + A+ /L)I(r))
FS®I()
= 1(t) < Inax, (18)

assuming 7(0) < Inax, wherein we selected oy = (y + A +
©)/10 in Fig. 5.

For the safety functions, &; for i € {H, D}, associated with
hospitalization and death, additional steps are needed to syn-
thesize the active intervention policy. In particular, the input
u(t) does not appear when differentiating these functions as
was the case in Eq. (6). Yet, we know by Eq. (5) that sufficient
conditions for the sets C; to be safe are given by hi +aih; >0
for i € {H, D}, where now hi does not depend on the input
u(t) as Lgh;i(x) = 0. As aresult, define the following extended
safety functions [54], [65]:

RE(x(1)) := hi(x(1)) + ihi(x(1))
oh;
= S SO +auhi(x(n), (19)
R

hi(x(6))=Lg hi(x(1))

with associated safe sets: C{ = {x € RS : hf(x) > 0}.
Importantly, 4 are now themselves control barrier functions,
wherein the condition in Eq. (6) becomes:

RS (x(t), u(t))

oh; oh; .
= 8—f (x(1) + —gx(1)) u(t) + a;hi(x(1))
X ox
N e’

———

=L} hix(t))  =LeLrhi(x(0)

> —ahi (x(1)), (20)
with i € {H, D}.

This allows us to synthesize optimal active intervention
policies as in Eq. (7) via:

u(t) = Ai(x(1))

= argmin u’
uel0,1]
s.t. LF hi(x(t)) + LgLy hi(x(t)u
> —afhf(x(1) — aihi(x(1)), 1)
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which can be converted into a conditional statement in the
form of Eq. (8). Applying these constructions to the SIHRD
model results in the optimal active intervention policies:

u(t) = Ag(SQ), (1), H(1))

OlHai[(Hmax —H()+ (y + A+ wAI(t)
PENONG)

v —an — )OI @0) ~ vH(r)))

PENOG)
= H(t) < Hpax, (22)

=RelLU [1—-

assuming the initial condition satisfies’ H(0) < Hpmax and
hi;(x(0)) > 0, and
u(t) = Ap(S@), I(t), D(1))
aDaeD(Dmax — D(2))
pBRSOI®)
Hrtp—ap— af))ul(t))

nRes@iI)
= D(t) < Dimax, (23)

ReLU (1 —

assuming D(0) < Dpax and Af(x(0)) > 0. We selected
ag =y +Ar+w)/10, af; =v/10 and ap = af, = (y +
A+ w1)/10 to generate Figs. 5 and 6 as described in the next
section.

D. ENFORCING MULTIPLE SAFETY CONSTRAINTS
ENCODED AS CONTROL BARRIER FUNCTIONS

In addition to enforcing safety constraints via individual bar-
rier functions, we can simultaneously enforce multiple safety
constraints. We will demonstrate this in the context of enforc-
ing both the safety constraints associated with hospitalization
and death, hy > 0 and hp > 0 as given in Eq. (16), for
the SIHRD model. Note that the same concepts apply if we
wanted to simultaneously enforce #; > 0 or any combination
of the constraints #; > 0, hg > 0 and hp > 0. Similarly,
these ideas can be applied to multiple safety constraints for
more complex compartmental models, e.g., the SIDARTHE
model [5].

In order to limit the number of hospitalized and deceased
populations in the SIHRD model, encoded by hy(H) =
Hyxx—H > 0 and hp(D) = Dpax—D > 0, while mini-
mizing the active intervention u, we consider the quadratic
program (QP):

u(t) = App(x(2))

= argmin u?
uel0,1]

s.t. LF hg(X(1)) + LgLyhy (x()u
> —ajhfy (x(1) — ahy (X(1)),
L7 hp(x(1)) + LgLy hp(x(t))u
> —aph(x(1) —aphp(x(t).  (24)

3For the extended control barrier functions [54], [65], x(0) € C NC®
implies that x(r) € CN C¢ forall t > 0.
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Here, we simultaneously enforce the (extended) barrier func-
tion condition in Eq. (20) for the functions h;, and h{, that
imply satisfaction of hy > —ayhy and hp > —aphp
as desired. In general, it is not guaranteed that a QP with
multiple constraints is feasible without a relaxation term [7]
but in this case due to the special structure of the control
barrier functions considered, a solution can be guaranteed and
stated in closed form.

To see this, we begin by noting that for 4;, i € {I, H, D},
defined as in Eq. (16):

1 1
XLgthH(x(t)) = ;LgthD(x(t)) = Loy (x(1)).  (25)
Therefore, defining

Oi(x(1)) 1= L} hi(x(1) + af S (x(0) + e (x(1)).  (26)

the conditions in Eq. (24) can be restated as a single inequality
constraint:

1 1
min { 3 Oy (x(1)), ;CDD(X(I))} +Lgh(x(1)u(r)=0.  (27)

Thus, we can explicitly solve for the QP with this single con-
straint, yielding the same general form as Eq. (8) which leads
to Eq. (9). In particular, when Lgh;(x(¢)) > 0, the result is
the explicit form for a controller that simultaneously enforces
hyg(x(t)) > 0 and hp(x(t)) > O for ¢t > O:

u(t) = Aup(x(t))

min { 10 (x(1), Lop(x(1)}
Lehi(x(1))

max {Ag (x(1), Ap(x(1))}, (28)

assuming #;(x(0)) > 0 and A{(x(0)) > O for i € {H, D}.
Therefore, the combined conditions on bounding hospital-
izations and death can be achieved via taking the maximum
of the controllers Ay and Ap, as given in (22) and (23),
respectively. This controller is applied in Fig. 5 using US
data and in Fig. 6 using state-level data (as described later
in Appendix H). Figure 7 further demonstrates the range
of safety-critical behaviors one can achieve with the active
intervention policy in Eq. (28), wherein a range of maximum
hospitalizations and deaths are considered leading to a range
of active interventions.

= RelLU | —

E. TIME DELAYS AND CONTROLLER SYNTHESIS
WITH PREDICTORS
While delays have been considered in the past in epi-
demic models [66]-[68], they were only used to modify the
autonomous dynamics of the forecasting models and thus
were not considered in the context of control systems and
active interventions. Here we discuss how delays affect the
active intervention policies designed for the delay-free sys-
tem and how to utilize predictors to compensate for the delay.
If there exists a measurement delay T in a control system,
cf. Eq. (4), then at time ¢ only the delayed state x(t — 1)
is available via measurements, while the instantaneous state
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FIGURE 7. Application via the active intervention policy in Eq. (28)
utilizing multiple barrier functions, where a range of bounds are
considered for hospitalization from Hmax to Hmax, and death from Dmax
to Dmax. These bounds lead to safety-critical policies Ayp and Ayp,
respectively. These policies, and their corresponding range of
interventions, are compared against the nominal safety-critical policy
App used in Fig. 5 with data through May 30, 2020. Observe that the
higher bounds on hospitalization and death, Hmax and Dmax, lead to the
control input going to zero, while lower (and hence more stringent)
bounds require sustained active intervention.

x(#) of the system is unknown. Therefore, the controller must
rely on the delayed state, which modifies the control law
from u(t) = K(x(¢)) tou(t) = K(x(t — 1)), yielding the time-
delayed closed loop system:

X(1) = f(x(1)) + gXO)K (x(r —7)). (29)
~—
Delay

Therefore, since measurement delays affect the dynamics of
the closed loop system via time delays, they are typically
undesirable—especially since they are often source of insta-
bility or reduced performance [69]. In the context of safety-
critical control, as considered herein, time delays may lead
to violation of the safety condition if one designs a controller
by assuming no delays. If the delay is large, the measured
delayed state may be significantly different from the instan-
taneous state due to the evolution of the system over the delay
interval. This prevents the delay-free control design from
guaranteeing safety.

A possible solution to overcome the poor performance
caused by delays is the application of predictor feedback con-
trol [52], [70]-[73]. Predictor feedback utilizes an internal
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model in order to predict the current instantaneous state of
the system from delayed measurements. Prediction is made
over the delay interval based on the delayed state x(+ — 1)
resulting in a predicted state X,(t) that is an estimation of
the instantaneous state X(?), i.e., X,(f) ~ x(¢). Then, one can
utilize the predicted state in the controller designed for the
delay-free system. This leads to u(z) = K(x,(?)) yielding:

X(1) = f(x(1)) + g(x(1)K (x,(1)). (30)

If the prediction is accurate, i.e., X,(¢) = X(?), it eliminates
the delays from the system.

To provide the predicted state x,(¢) to the controller, one
needs to anticipate how the closed loop system evolves under
the predictor feedback controller over the delay interval [r —
7, t]. This can be achieved by introducing 6 € [r — 7, ¢] and
substituting t = 6 and x(6) = x,(6) into Eq. (30):

Xp(0) = f(xp(0)) + 8(xp(6)K (x,(6)). (3D

This equation is the internal model used for prediction.
To obtain the predicted state x,(¢) required at time ¢ by
the controller u(t) = K(x,(t)), Eq. (31) can be numer-
ically integrated over 6 € [t — 7, t] with initial condition
X,(t — T) = X(¢ — 7) consisting of the most recent available
measurement. Assuming a reasonable model, x(0) ~ x,(6)
forall & € [t—7, t] wherein x() ~ x,(t), and so the predictor
eliminates the time delay from the closed loop system in
Eq. (30).

Figure 3 was generated by directly utilizing Eq. (31)
as internal model. Prediction can be further improved
by noticing that during the initial time 6 € [t — T, fo]
(if t € [1y, o + T]), the system is not yet affected by an active
intervention starting at fy. Thus, one can apply the nomi-
nal (fitted) model with the corresponding fitted control input
(see the yellow curve in Fig. 3) to calculate the predicted
state during this initial interval, and Eq. (31) can be used
afterwards. In Figs. 5 and 6, this more accurate prediction
algorithm was utilized, although using Eq. (31) only could
already compensate the effects of the time delay and managed
to maintain safety in Fig. 3.

F. PREDICTORS FOR COMPARTMENTAL MODELS

In the control of COVID-19, the measurement delay origi-
nates from the incubation period and testing, and it can go
up to about two weeks (t =~ 14). Over these two weeks,
the number of infected population may have increased sig-
nificantly. As a result, the infected, hospitalized and deceased
populations may be much closer to the safety limit than what
the data shows. Thus, active intervention policies should be
applied earlier than suggested by the delay-free controller,
otherwise the populations of interest may overshoot and
increase above the safe limit. The predictor feedback control
technique accounts for the two-weeks measurement delay
by predicting what could be the true number of infected
population currently. Then, the delay-free control law can be
applied utilizing the predictor, and it will therefore maintain
safety if the prediction is accurate enough.
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Accurate prediction requires knowing the delay. As shown
in Fig. 2, the delay can be identified by model fitting to com-
partmental data and by utilizing mobility data. Furthermore,
prediction requires an accurate internal model. For the SIR
model, one can utilize the closed loop system:

. B
5,0) —ﬁos,,(e)lp(e)
®) | =1 Pog 16— y1,6)
R,(0) N
Ll y1,(0)
%,(60)
f(xp(0))
%sp(e)zp(e)
0
8(xp(0))

(32)

which can be integrated over the interval 0 € [t — t, ¢] with
initial conditions S,(t — 1) = S(t — 7), [,(t — 1) =1(t — 7)
and R,(t — ) = R(t — 7) to get the predicted states S, (¢) and
I,(t) required by the controller at time ¢. Similarly, for the
SIHRD model prediction can be made using:

- fo -

5,0) — S SHON)
g)((%)) _ %sp(e)l,,(e) — (v + A+ w0
RII:(G) )Jp(g) — VHp(G)
D(6) y1,(6) + vH,(6)
N I’LI[?(G) .
X,(0)
F(0))
%sp(e)lp(e)
Bo
| TN ORO T o),
0
0
L 0 -
8(xp(0))
(33)

for i € {I,H, D, HD} depending on which active interven-
tion policy is being utilized, i.e., whether we wish to bound
infections, hospitalizations, deaths, or a combination thereof.
According to Fig. 4, a short term (i.e., two-week) prediction
can be made accurately with such model. Therefore, the result
is safety of the system even in the presence of the time delay.

G. PARAMETER IDENTIFICATION FOR

COMPARTMENTAL MODELS

As mentioned previously, a wide variety of model parameters
can be used to fit COVID-19 data, yielding drastically differ-
ent predictions for the evolution of the different populations.
In order to provide a model with high predictive ability,
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the parameters must be determined in a way that reflects their
physical meaning while the model reproduces the available
data. Since the model is being treated as a control system,
the sequence of inputs that reflect the intervention applied
thus far can be estimated. To ensure that the estimated inputs
are realistic, they are initialized using mobility data from
SafeGraph [41], a data company that aggregates anonymized
location data from numerous applications in order to provide
insights about physical places. Such data allow us to quantify
the increased time people stay at home to increase social
distancing. To enhance privacy, SafeGraph excludes census
block group information if fewer than five devices visited an
establishment in a month from a given census block group.

The data fitting problem of identifying the parameters of
the SIR model in Eq. (1) can be formulated as an uncon-
strained, nonlinear optimization problem:

(TR~ P IIﬂ—QII)
. 34
ﬂ,ioffiéfbl,r< P el G4

The first term in the objective function seeks to minimize
the difference between the total cases (I + R) given by the
model and the number of positive test cases from the data P.
The second term seeks to minimize the difference between
the transmission rate 8 and some function Q that models the
expected transmission rate based on mobility data. To obtain
(I + R) at different time moments, we integrate Eq. (1) and
this integration results in the nonlinearity in the objective
function.

The optimization problem in Eq. (34) is used to find
the parameters of the SIR model in Eq. (1) as fol-
lows. The first decision variable is the vector B € ]Rk,
k = floor(T /K), representing the time-varying transmission
rate B; = Bo(1 — u(#)),j € {1,2, ..., k}. This corresponds to
a control input u(#;) that is updated every K days over the time
span T. The value K = 5 days was used in order to prevent
overfitting and account for the inability to define new policies
on a daily basis. The decision variable ip = 1(055-—01){(0) e [0, 1]
signifies the initial values of different populations, while
decision variables «g, vy, T are used to scale and delay the
mobility data according to:

0(1) = ag+ (1 = Tt = 7)),
To(1) = Ty(t) — Tnm(Th(l))’ (35)
1 — min(Ty(t))

where Tj is the median percentage time spent at home.
Recall that the delay 7 exists due to the testing delay and the
incubation period of the virus [46], and it is bounded to be
between 5 to 16 days. Finally, the parameter Sy is extracted
from B and Q as By = maXje(1,...x}, refo,71{Bj» Q()}. When
fitting the SIR model to the US national data we obtain By =
0.51 1/day and T = 10 days, while we set the parameter y =
0.2 1/day to correspond to the average characteristic recovery
time observed in the data. The fit for the SIR model is shown
in Fig. 2 where the prediction along the 10 day period of the
delay t is highlighted. These predictions are used in Fig. 3
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when applying the safety-critical active intervention policy
in Eq. (2).

It is important to note that for the SIR model, and the
corresponding optimization problem in Eq. (34), N is fixed
at a value below the total population. This is necessary due
to the underreporting of infections [47], along with the fact
that many people will never have any contact with infected
individuals. Additionally, setting N to be the entire population
of the US in the SIR model would require many years for
the virus to die out even with strict social distancing. Since
our goal with the SIR model was to demonstrate the concepts
of safety-critical active interventions, rather than to predict
the size of the populations accurately, we decided to fix N
to be 7.5 million. Alternatively, one can make N a decision
variable—this did not improve results for the SIR model,
but will prove useful for the higher-fidelity STHRD model as
explained below.

Analogous to the optimization problem for the SIR model,
the optimization problem to estimate the parameters of the
SIHRD model in Eq. (15) can be framed as:

. (||(I+H+R+D)—P||
min
N,B,io, Y, A, v, 1,000,001, T ||P||
— H—-H D—D
1B Q||+h|| dll dll d||)‘ (36)
10l [1Hqall [1Dgl|

This formula accounts for the number of hospitalizations
H; and the number of deaths D, in the data. The weights
h > 1 and d > 1 are set to reflect that the data for
hospitalizations and deaths are inherently less uncertain than
the data on total positive test cases. In order to obtain the
populations I + H + R+ D, H, and D as function of time
we integrate the model in Eq. (15) which contains the new
decision variables N, y, A, v, u. Due to the increased com-
plexity of the model, the parameter y is no longer fixed, as it
was in the SIR model. Instead, the value of 1/(y + A + w)
is implicitly constrained to be roughly within 2.5-7.5 days
through individual bounds on the decision variables. Lastly,
the characteristic time at which someone recovers from the
hospital 1/v is bounded between 2.5 and 4 days. Finally,
differing from the SIR model optimization, the population N
is now a decision variable with a lower bound of 4% and an
upper bound of 10% of the total population of the nation or
state of interest. We note that the value of N does not change
the qualitative conclusions regarding safety-critical active
interventions.

These optimization problems were solved using the
pagmo [74] C++ library, and the solutions were verified
using a variety of its solvers including CMA-ES, differential
evolution, NSGA-II, and several solvers in the NLOPT suite.
Table 2 provides the obtained parameters as computed by
CMA-ES with a population size of 400 and a generation
number of 400. The predictive power of the SITHRD model
is illustrated by the fit in Fig. 4 over a 25 day horizon which
provides accurate predictions for both the hospitalized H
and the deceased D populations. This tight fit on H and D
comes at the cost of a worse fit on the infected populace 1,

+
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TABLE 2. Parameter estimates for the SIHRD model in different states, including the national level, obtained by solving the optimization problem in

Eq. (36). Rough agreement between the states can be seen, but parameters vary due to differing exposure levels, social distancing protocols, population
dynamics, and testing capacity. Note that the five states with a significantly smaller = have values shifted by roughly one week from the average, due to
the cyclical nature of the data.

[ Parameters |
[ N(%) Bo 0 A 14 v [e75) [e51 T |

USA 4.01 057 0.07 0.4 001 039 016 039 14
CA 4.00 057 007 025 001 026 031 026 15
MI 571 044 0.07 025 004 025 034 010 16
NY 428 0.60 0.07 0.08 001 027 012 046 14
X 4.00 037 020 0.04 001 009 023 015 15
AR 9.18 044 020 0.5 001 040 034 0.10 16
CcO 4.00 061 0.07 021 002 037 023 038 13
CT 4.00 063 0.07 025 003 040 038 025 15
DE 4.00 050 012 023 001 040 040 0.10 14
1A 4.00 054 020 0.17 001 040 039 0.14 16
IL 4.68 045 0.07 025 002 031 035 010 16
KY 10.00 050 0.14 025 0.02 026 040 010 8
LA 4.00 048 0.07 025 002 033 034 014 15
MA 8.32 060 0.07 025 002 038 033 027 13
MN 4.00 056 015 022 003 040 040 0.16 16
MO 4.00 042 007 025 002 020 032 010 12
MT 4.03 033 007 023 002 034 023 010 8
NC 4.00 0.63 0.17 0.18 001 040 032 031 16
ND 4.00 038 020 0.07 001 040 028 010 5
NJ 7.43 071 0.07 0.19 002 037 028 043 16
NM 4.00 058 020 0.19 002 040 039 0.19 16
PA 4.00 057 0.07 025 002 038 033 023 16

Region

RI 8.79 060 020 0.14 001 040 036 024 16
VA 4.00 077 017 025 002 026 040 037 16
VT 10.00 054 020 023 0.03 026 040 0.14 14

WA 10.00 057 0.16 025 003 034 040 0.17 8
WI 10.00 050 0.14 025 002 031 040 0.10 5
WV 4.00 058 014 025 002 023 035 022 16

as reflected in the graph on total confirmed cases. However,
as noted previously, the uncertainty in the total case number
data is much higher than that of the H and D compartments,
so this mismatch is not surprising. In fact, it could be argued
that the actual number of infected persons is higher than
reported and this model, as a result of its utilization of hospi-
talizations and deaths, actually captures this higher number.
For example, in Fig. 4 the SIHRD model predicts a higher
peak in the number of cases per day in the first half of April—
this better describes the hospitalization and death data, and
could provide a more accurate picture of cases per day due to
the lack of testing at that time.

H. STATE-LEVEL SAFETY-CRITICAL ACTIVE
INTERVENTIONS

To provide a case study in using the safety-critical control
framework to determine public policy, we apply the approach
described in the main body of the paper, and detailed in
the Appendix, to all states of the US that have sufficient
data. A state is considered to have sufficient data if it has
recorded values of positive cases, hospitalizations, and deaths
for 50 consecutive days. While the model parameters can
be estimated over shorter time periods, a sufficient window
of data to verify the prediction accuracy was also required.
To obtain the STHRD model parameters at the state level,
the optimization problem in Eq. (36) was solved using the
CMA-ES algorithm with 7 = 2 and d = 4 to reflect
the relative certainty of the data on hospitalizations and
deaths, and thus, the desire to fit the former two popula-
tions more accurately. The parameters are identified per the
methods described above, with the values shown in Table 2.
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Utilizing the fitted models, we develop a proof-of-concept
reopening policy.

To develop a template policy on whether a state should
reopen, and if so how aggressively, we apply the safety-
critical framework to the STHRD model for each state. Specif-
ically, we utilize the safety-critical active intervention policy
u(t) = App(x(t)) given in Eq. (28). In this policy, there
are two constants to be chosen: the maximum number of
hospitalizations Hp,yx, and the maximum number of deceased
Dpax. The value of Hy,ax for each state was chosen to be the
last fitted hospitalization value (i.e., the last point of the blue
curves in Figs. 6 and 10) to prevent hospitalizations from get-
ting worse than the most recent recorded data. To guarantee
safety, per Eq. (22), the initial condition must satisfy:

hi; (x(0)) = —H(0) + ey (Hmax — H(0)) = 0. (37)

If Hmax did not satisfy this (which is the case for
states where the most recent value of hospitalizations is
the largest), Hmax is increased to the smallest feasible
value: Hpax = H (0)/ay + H(O) to ensure the feasibility of
safety-critical active intervention. The value of Dpyax was
chosen to be three times the value at the start time of the
active intervention (i.e., the start point of dark orange curves
in Figs. 6 and 11). Although this choice is arbitrary, it satisfies
the condition:

h(x(0)) = —D(0) + ap(Dmax — D(0)) =0, (38)

for all states and allows us to keep consistency throughout the
states.

The proof-of-concept reopening framework is based upon
the behavior of the control input u(#). Since this safety-critical
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FIGURE 8. State level active intervention policies, along with the control input fit to US mobility data (grey) through May 22, 2020. Based
upon the optimal safety-critical control policy (dark orange), state level mitigation efforts are recommended, i.e., a 30 day gating criterion
is utilized where if at this time the safety-critical policy is increasing the state should close (red), if it has decreased by less than 25% it
should hold mitigation efforts steady (orange), by less than 50% it should slowly reopen (yellow), and more than 50% it can open at a
faster pace (green). This is compared against the naive linear reopening policy serving as a reference (green tube); this reference will be
used in subsequent figures to demonstrate the consequences of a naive opening.

policy is (pointwise) optimal, i.e., solves the optimization
problem in Eq. (24) at each ¢, there is no better instantaneous
mitigation approach. Therefore, if this policy says to increase
mitigations then a state should close down and if this policy
rapidly reduces interventions the state can continue to open.
To translate the control input into an applicable policy we
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utilize a “‘gating criterion” that is based on the value of the
control input 30 days after the beginning of the active inter-
vention period; see the colored vertical lines in Figs. 6 and 8
that determine the colors of states on the map. If the value of
the control input after 30 days is greater than its initial value,
the state should close down (states in red). If the input has
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FIGURE 9. State level prediction for the cases per day over a year time span. The vertical axis measured in 1000’s of people, and state level
data (grey) is shown through May 30, 2020 along with the fit from the SIHRD model (blue). The effects of different active intervention
policies are shown: the optimal safety-critical active intervention policy (dark orange) and the linear naive reopening policy (green). Both
of these policies, at the state level, are shown in Fig. 8. In almost all states, the result is a second spike in cases—often larger than the

original spike—if a naive reopening policy is used.

reduced by less than 25%, mitigation efforts should be kept
steady (states in orange). If the control input has decreased
by more than 25% but less than 50%, the state can slowly
reopen (states in yellow). Finally, a state where the input has
decreased more than 50% in this 30 day period can reopen
at a more rapid rate (states in green). While this is a very
simplistic policy, created to provide uniformity across states,
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it demonstrates one way to utilize safety-critical methods
to inform public policy. Indeed, using the entirety of the
control input can result in more informed state level policy
decisions.

The criterion outlined above was applied to state level
SIHRD models, with the results shown in Figs. 8-11. The
safety-critical control inputs, that determine the state by state
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FIGURE 10. State level predictions for the number of persons hospitalized, with the vertical axis measured in 1000’s of people. State level
data through May 30, 2020 (grey), along with the corresponding fit of the SIHRD model (blue) for hospitalizations; note the accurate fit of
this data. The optimal safety-critical active intervention (dark orange) is compared against the naive reopening reference policy (green),
with both policies shown in Fig. 8. Of particular note, for the safety-critical policy the number of hospitalizations is guaranteed to be
bounded above by Hmax (horizontal dashed dark orange line), and it can be seen that this safety constraint is satisfied for all states. This
can be compared against the reference policy where Hmax is exceeded for all states colored yellow, orange and red and even some states
colored green. This indicates that without careful mitigation policies, hospital capacity constraints can be easily violated.

recommendations, are shown in Fig. 8. Also shown in that
figure is the reference naive reopening policy that decays
linearly in time, reaching zero on September 1 (the start of
the school year). Fig. 9 shows the cases per day for the safety-
critical and reference intervention policies; a second spike in
cases can be seen for states that are yellow, orange and red for

the reference policy. This spike is also seen in Fig. 10 in the
context of hospitalizations, where Hp,x is exceeded for the
reference policy for all states while the safety-critical policy
does not exceed Hpax as the theory implies. Finally, Fig. 11
shows the total deaths, wherein large death rates are seen—
especially in states in red—for the reference policy while the
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FIGURE 11. State level predictions for the total number of deaths, with the vertical axis measured in 1000’s of persons. The data for the
number of deceased persons as recorded through May 30, 2020 (grey) is shown along with the fit of the SIHRD model (blue); as with the
hospitalization data in Fig. 10, the fit of the data is remarkable. The results of applying the safety-critical active intervention policy (dark
orange) and the naive reference policy (green), where these policies are shown for each state in Fig. 8. The safety-critical policy guarantees
that the total number of deaths stays under the upper bound Dmax, indicated by a horizontal dashed dark orange line. Note that for states
that should close down as determined by the the algorithm illustrated in Fig. 8, i.e., the states indicated in red, there is a dramatic
difference in the total number of deaths between the safety-critical and reference policies indicating the essential role of proper

mitigation.

safety-critical policy does not exceed Dnax. These figures,
therefore, show that safety-critical control of active interven-
tion can be used to synthesize state level reopening policies
and, if followed, can limit hospitalizations and deaths.

It is important to note that the safety-critical policy synthe-
sized here is just one example of the type of public policies
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that can be synthesized from safety-critical active interven-
tions. In particular, the gating criteria chosen was based upon
a 30 day prediction window—this could be shortened if one is
less confident in the data, and made longer if one is more con-
fident. Additionally, as was noted before, we made a choice
for Hpax and Dpyax based upon past data. These upper bounds,
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which dictate the active intervention policy and hence the
observed behavior relative to the gating criteria, could be
chosen by policy makers based upon local considerations. For
example, Hpax may be chosen based upon desired hospital or
ICU bed capacity.

We conclude the appendix by noting that, as with all data-
driven methods, the predictions and corresponding policy
recommendations are only as good as the data. To utilize
the methods presented in this paper to make public policy
decisions, it is recommended that new data is always assim-
ilated and, importantly, higher fidelity data is sought. It is
remarkable that this approach, which did not look at data
past May 30, foresaw the spike in cases currently being seen
throughout the US (cf. the reference policy in Fig. 5) and,
more specifically, in the states we identified as orange and
red in Fig. 1. With better data, these predictions will be more
accurate and, as a result, can better inform policy. Finally, it is
important to remember that at the core of the proposed safety-
critical approach is the idea that the human is the control
input to the system. Thus, we have the ability to change the
evolution of the system through our actions going forward.
The hope is that the approach presented can provide guidance
for these actions.
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