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S1 Comparison of methods on the toy example

We continue with the toy example in the main text, a bivariate, linear, Gaussian discrete-time
process. Fig. S-1 shows the results of 40 Monte Carlo replications so that we can see the clustering
of the MLE estimates around the true MLE, corresponding to Fig. 1 in the main text. The
computations in Fig. S-1 match the setup in the main text. For IS2, most of the replications
clustered near the true MLE while none of them stays in a lower likelihood region. Fig. 1, in the
main text, can be viewed as a statistical summary of Fig. S-1, with 200 Monte Carlo replications.
These results indicate that IS2 is clearly the best of the investigated methods for this test.

We also checked how the methods compared when given additional computational resources,
setting M = 100 iterations and J = 10000 particles, with the random walk standard deviation
decreasing geometrically from 0.23 down to 0.0207 for RIS1 and from 0.02 down to 0.0018 for other
methods. In this situation, IS2 is better than both IF2 and RIS1, and IF1 performed substantially
worse than the other methods (Fig. S-2). All four of these methods have comparable computational
demands for given M and J . IS1 requires substantially more computational resources, and we did
not compute it for this comparison.

S2 Algorithms IS1 and RIS1

The pseudo-code in Algorithm S2 corresponds to the iterated smoothing algorithm of [1]. The
computational complexity of approach in [1] is O(LN), the algorithm is expected to be slow,
especially when computing covariance of every pair of time points with distance smaller than
L. We also propose a variant of IS1 using a computationally convenient approximation to this
covariance; we call this method reduced IS1 (RIS1). reduced iterated smoothing algorithm of [1],
called RIS1. RIS1 avoids the computational expense of computing covariances at different lags
by simply ignoring these terms. This makes pseudo-code for RIS1 look more like IS2, but with
white noise parameter perturbations in place of random walk perturbations. Specifically, RIS1 is
a modification of IS2 for which, at line 5 in Algorithm 1, we do not update ΘF

t−1,n. For IS2, these
covariance terms cancel in the theoretical analysis. However, there is no theorem to support RIS1
and it is only justified heuristically based on the observation that covariance between different time
points may be small in practice. RIS1 is not presented for its theoretical interest, but for empirical
interest in providing a computationally efficient benchmark for comparing between white noise and
random walk noise.
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Figure S-1: Comparison of different estimators. The likelihood surface for the linear, Gaussian
model, with likelihood within 2 log units of the maximum shown in red, within 4 log units in
orange, within 10 log units in yellow, and lower in light yellow. The location of the MLE is marked
with a green cross. The black crosses show final points from 40 Monte Carlo replications of the
estimators: (A) IF1 method; (B) IF2 method; (C) IS2 method; (D) RIS1 method. Each method,
except RIS1, was started uniformly over the rectangle shown, with M = 25 iterations, N = 1000
particles, and a random walk standard deviation decreasing from 0.02 geometrically to 0.011 for
both α2 and α3. We use bigger random walk standard deviations for RIS1. Specifically random
walk standard deviations decrease from 0.23 geometrically to 0.125 for both α2 and α3.
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Algorithm S1 Iterating smoothing using white noise perturbations (IS1)

Input:
starting parameter, θ0 simulator for µ(x0; θ)
simulator for fn(xn|xn−1; θ) evaluator for gn(yn|xn; θ)
initial value parameters, I ⊂ {1, .., d} data, y∗1:N

number of iteration, M number of particles, J
perturbation scales, σ1:d, Ψ = diag(σ2

1:d) cooling rate, 0 < c < 1, lag, L
Output:

Monte Carlo maximum likelihood estimate, θM

for m in 1 : M do
2: initialize parameters:

[
ΘF

0,j

]
i
∼ N

([
θm−1

]
i
, (cm−1σi)2

)
for j in 1 : J , i in 1 : d

initialize states: simulate XF
0,j ∼ µ

(
x0; ΘF

0,j

)
for j in 1 : J

4: for n in 1 : N do
perturb at time n:

[
ΘP

n,j

]
i
∼ N

([
ΘF

n−1,j

]
i
, (cm−1σi)2

)
for i /∈ I, j in 1 : J

6: simulate prediction particles: XP
n,j ∼ fn

(
xn|XF

n−1,j ; ΘP
n,j

)
for j in 1 : J

evaluate weights: w(n, j) = gn(y∗n|XP
n,j ; ΘP

n,j) for j in 1 : J
8: normalize weights: w̆(n, j) = w(n, j)/

∑J
u=1w(n, u)

apply re-sampling to select indices k1:J with P {ku = j} = w̆ (n, j)
10: re-sample particles: XF

n,j = XP
n,kj

and ΘF
n,j = ΘP

n,kj
for j in 1 : J

let a1(n, kj) = j, al+1(n, j) = a1(n− l, al(n, j)) for j in 1 : J , l in 0 : L− 1
12: end for

for n in 1 : N do
14: smoothed mean: θ̄L

n−L =
∑J

j=1 w̆(n, j)ΘP
n−L,aL(n,j) if n > L

for l in n : min(n+ L,N) do
16: Covariance: Cm

n−L,l−L =
∑

j w̆(n, j)
(
ΘP

n−L,aL(n,j) − θ̄
L
n−L

)(
ΘP

l−L,aL(n,j) − θ̄
L
l−L

)> if n > L
end for

18: end for
for j in 0 : L do

20: smoothed mean: θ̄L
N+j−L =

∑J
j=1 w̆(N, j)ΘP

N+j−L,aL−j(N,j)

for l in N + j − L : N do
22: Covariance: Cm

N+j−L,l =
∑

j w̆(N, j)
(
ΘP

N+j−L,aL−j(N,j) − θ̄
L
N+j−L

)(
ΘP

l,aN−l(N,j) − θ̄
L
l

)>
end for

24: end for
update: Sm = c−2(m−1)Ψ−1

∑N
n=1

[ (
θ̄L
n − θm−1

) ]
26: Im = −c−4(m−1)Ψ−1

[∑N
n=1

(
Cm

n,n − c2(m−1)Ψ + 2
∑(s+L)∧N

s=n+1 Cm
s,n

)]
Ψ−1

update parameters: θm = θm−1 + I−1
m Sm

28: end for
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Figure S-2: The distributions of likelihoods corresponding to Monte Carlo MLE approximations
estimated by IF1, IF2, RIS1 and IS2 methods for toy model. The MLE is shown as a dashed
vertical line (dark blue in electronic version). The optimizations were started from 200 randomly
uniform initial values over a rectangle.
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S3 Parameters definitions and starting ranges for the malaria
model

Table S-4. Parameters for the malaria SEIH3Q model.

Symbol Definition Units θlow θhigh

µEI (∗) E → I transition rate yr−1 24 24
µIH I → H transition rate yr−1 1.00 5.00
µHI H → I transition rate yr−1 1.00 5.00
µIS I → S transition rate yr−1 0.5 2.00
µIQ I → Q transition rate yr−1 1.00 2.00
µQS Q → S transition rate yr−1 10.00 20.00
q (∗) relative infectivity of Q class − 0.001 0.001
τ mean lag for mosquitoes month 0.10 0.50
ρ case reporting fraction − 0.001 0.01
σpro s.d. of dynamic noise yr0.5 0.1 0.5
σobs s.d. of measurement noise − 0.1 0.5
br coefficient of rainfall covariate − 0.5 0.9
S0 initial fraction in S class − 0 1
E0 initial fraction in E class − 0 1
I0 initial fraction in I class − 0 1
Hi,0 initial fraction in Hi class − 0 1
Q0 initial fraction in Q class − 0 1
κ0 initial value, κ(t0) − 0.1 0.5
µSE,0 initial value, µSE(t0) − 0.1 0.5
b1 1st spline coefficient − -5 5
b2 2nd spline coefficient − -5 5
b3 3rd spline coefficient − -5 5
b4 4th spline coefficient − -5 5
b5 5th spline coefficient − -5 5
b6 6th spline coefficient − -5 5
1/δ (∗) mean human life span yr 0.02 0.02

We follow definitions as in [2]. θlow and θhigh are the lower and upper bounds for
a hyper-rectangle used to generate starting points for the search. Parameters la-
beled with (∗) were set at fixed values. Non-negative parameters were logarithmically
transformed for optimization.
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