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Abstract Simulation based inference for partially observed
stochastic dynamic models is currently receiving much at-
tention due to the fact that direct computation of the like-
lihood is not possible in many practical situations. Iterated
filtering methodologies have been developed to enable infer-
ence using simulation-based sequential Monte Carlo filters.
An iterated smoothing algorithm was proposed by Doucet
et al. (2013) and was found to have favorable theoretical
properties. We develop a new iterated smoothing algorithm
for which we establish both theoretical results and compet-
itive practical performance. On benchmark computational
challenges, our method beats the first-order iterated filter-
ing algorithm. Our method’s performance is comparable to
a recently developed iterated filtering algorithm based on an
iterated Bayes map. Our iterated smoothing algorithm, and
its theoretical justification, provide new directions for fu-
ture developments in simulation-based inference for latent
variable models such as partially observed Markov process
models.

Keywords iterated smoothing · sequential Monte Carlo ·
state space model · hidden Markov model · parameter
estimation

1 Introduction

During the past three decades, partially observed Markov
process (POMP) models (also known as state space mod-
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els) have become ubiquitous tools for modeling and time
series data analysis of time series data in many disciplines,
including econometrics, ecology and engineering. However,
it can be difficult to make inferences about non-linear or
non-Gaussian POMP models owing to the fact that there is
no closed form expression for the likelihood function. Lin-
ear Gaussian models enable exact likelihood computation,
via the Kalman filter, but can lead to unsatisfactory results
when the assumptions are violated. In many situations, the
transition probability density is intractable or too expensive
to evaluate, but easy to sample from (Bretó et al., 2009).
Therefore, there has been a surge of interest in simulation-
based inference for POMP models (Ionides et al., 2006; Toni
et al., 2009; Andrieu et al., 2010; Wood, 2010; Chopin et al.,
2013; Ionides et al., 2015). Simulation-based methods have
also been called plug-and-play (Bretó et al., 2009; He et al.,
2010), likelihood-free (Sisson et al., 2007) or equation-free
(Kevrekidis et al., 2004). These methodologies can be cate-
gorized into either Bayesian or frequentist approaches, and
further categorized into full information or partial informa-
tion approaches. Full information approaches are those which
are based on the full likelihood of the data; partial infor-
mation approaches are those based on summary statistics
or quasi-likelihoods, such as approximate Bayesian comput-
ing (Toni et al., 2009) or synthetic likelihood Wood (2010).
Here, we are concerned with full information, frequentist,
simulation-based inference. The first algorithm developed
to carry out such inference was the iterated filtering algo-
rithm of Ionides et al. (2006), which we will call IF1. The
theoretical properties of IF1 were studied by Ionides et al.
(2011). Doucet et al. (2013) proposed some improvements
to this algorithm by further exploiting both the score vec-
tor and the observed information matrix to increase con-
vergence rate. The algorithm of Doucet et al. (2013) in-
volves using sequential Monte Carlo methods to carry out
iterated smoothing, and we call their algorithm IS1. Doucet
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et al. (2013) showed that IS1 has second order convergence
properties. However, in practical problems, IS1 has failed to
show practical performance living up to its favorable asymp-
totic theory. This paper develops a modification of the the-
ory of Doucet et al. (2013) giving rise to a new algorithm,
that we call IS2, which empirically shows clearly enhanced
performance over IF1 and IS1 on our benchmarks in Sec-
tion 5. Recently, a new iterated filtering algorithm, which
we call IF2, has been developed with a different theoretical
justification based on iterated perturbed Bayes maps (Ion-
ides et al., 2015). IS2 shows comparable performance to IF2
on our benchmarks. The substantial differences—both in the
theory foundations and the resulting algorithms—between
IF2 and IS2 indicate that IS2 provides a promising alterna-
tive approach to IF2 for future theoretical and methodologi-
cal developments.

The key contributions of this paper are three-fold. First,
we demonstrate theoretically that random walk parameter
perturbations can be used in place of the white noise per-
turbations of IS1 while preserving the theoretical support
provided by Doucet et al. (2013). Thus, IS2 inherits second-
order convergence properties from IS1. Second, we discover
that the approximation of the observed information matrix
using random walk noise is simpler than that using inde-
pendent white noise. Consequently, IS2 enjoys a computa-
tionally cheap estimate of the observed information matrix.
Third, IS2 is not only attractive in theory, but we show it also
has good numerical performance in practice.

The paper is organized as follows. In Section 2, we in-
troduce some notation and discuss some background to the
computational challenge we investigate. In Section 3, we
develop the required theory in the context of latent vari-
able models, which are later extended to the case of par-
tially observed stochastic dynamic systems. In Section 4, we
state our theorems and present the IS2 algorithm, postpon-
ing proofs of our results to the appendix. Section 5 presents
a toy problem and a challenging inference problem of fitting
a malaria transmission model to time series data, showing
empirical results in which IS2 beats IF1 and IS1 while per-
forming comparably to IF2. Section 6 is a concluding dis-
cussion.

2 Notation and problem definition

We use capital letters to denote random variables and lower
case letters denote their values. Let {X(t), t ∈T} be a Markov
process with X(t) taking values in a measurable space X .
The time index set, T ⊂ R, may be an interval or a discrete
set and contains a finite subset t1 < t2 < · · · < tN at which
X(t) is observed, together with some initial time t0 < t1. We
write X0:N = (X0, . . . , XN) = (X(t0), . . . , X(tN)). Hereafter
for any generic sequence {Xn}, we shall use Xi: j to denote
(Xi, Xi+1, . . . , X j). The distribution of X0:N is characterized

by the initial density X0∼ µ(x0;θ) and the condition density
of Xn given Xn−1, written as fn(xn|xn−1;θ) for 1 ≤ n ≤ N.
Here, θ is an unknown parameter in Rd . The process {Xn}
is only observed through another process {Yn,n = 1, . . . ,N}
taking values in a measurable space Y . The observations are
assumed to be conditionally independent given {Xn}, and
their probability density is of the form

pYn|Y1:n−1, X0:n(yn|y1:n−1, x0:n;θ) = gn(yn|xn;θ)

for 1 ≤ n ≤ N. We assume that X0:N and Y1:N have a joint
density pX0:N , Y1:N (x0:N , y1:N ;θ) on X N+1×Y N . The data
are a sequence of observations by y∗1:N = (y∗1, . . . , y∗N)∈Y N ,
considered as fixed. We write the log likelihood function of
the data for POMP model as `(θ), given by

`(θ) = log
∫

µ(x0;θ)
N

∏
n=1

fn(xn|xn−1;θ) gn(y∗n|xn;θ) dx0:N .

Maximization of the likelihood function using first order
stochastic approximation (Kushner and Clark, 1978) involves
a Monte Carlo approximation to a difference equation,

θm = θm−1 + γm∇`(θm−1),

where θ0 ∈Θ is an arbitrary initial estimate and {γm}m≥1 is a
sequence of step sizes with ∑m≥1 γm = ∞ and ∑m≥1 γ2

m < ∞.
Under appropriate regularity conditions, the algorithm con-
verges to a local maximum of `(θ). The term ∇`(θ) is short-
hand for the Rd-valued vector of partial derivatives,

∇`(θ) =
∂`(θ)

∂θ
,

which is also called the score vector. Stochastic approxi-
mation methods can sometimes be improved by exploiting
the observed information matrix as in a Newton-Raphson
approaches (Spall, 2003). In these second-order methods,
the convergence rate is improved by using −{∇2`(θ)}−1 in
place of the step size γm, where −∇2`(θ) is a d × d ma-
trix whose (r,s)th component −∇2`r,s(θ) are given for r,s =
1, . . . ,d and θ r, θ s as rth, sth component of θ by

−∇
2`r,s(θ) =− ∂

2`(θ)
∂θ

r
∂θ

s ,

which is also known as the observed information matrix.
Carrying out this approach via a simulation-based algorithm
boils down to simulation-based estimation of the score and
observed information matrix.

Sequential Monte Carlo (SMC) approaches have previ-
ously been developed to estimate the score and observed in-
formation (Poyiadjis et al., 2011; Nemeth et al., 2013; Dahlin
et al., 2015). However these methods require the ability to
evaluate transition densities, and sometimes also their deriva-
tives, and so do not have the plug-and-play property of Bretó
et al. (2009). As a plug-and-play alternative, Doucet et al.
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(2013) used an artificial dynamics approach to estimate the
observed information matrix using sequential Monte Carlo
smoothing. However, Doucet et al.’s approach can be com-
putationally intensive, reducing its practical advantage over
the first order method of Ionides et al. (2011). We propose a
computationally less demanding approximation to the score
and observed information. Theoretical properties of these
approximation are shown in theorems 1 and 2, and more nu-
merically stable approximations of these quantities are in-
vestigated in Theorems 3 and 4. Following the approach of
Ionides et al. (2011) and Doucet et al. (2013), we first de-
velop our theory (in Section 3) in the context of a latent
variable model. Then, in Section 4, we extend this to the
POMP framework.

3 Perturbed parameters and a latent variable model

Consider a parametric model consisting of a density pY (y;θ)
with the likelihood of the data y∗ ∈ Y given by `(θ) =
fY (y∗;θ). We define a stochastically perturbed model cor-
responding to a pair of random variables (Θ̆ ,Y̆ ) having a
joint probability density on Rd×Y given by

p
Θ̆ ,Y̆ (ϑ̆ , y;θ , τ) = τ

−d
κ
{

τ
−1(ϑ̆ −θ)

}
pY (y; ϑ̆).

Using a Taylor expansion up to the second order, Ionides
et al. (2011) approximated the score function ∇`(θ) in terms
of moments of the conditional distribution of Θ̆ given Y =
y∗. Doucet et al. (2013) developed a Taylor expansion to
the fourth order and approximated both the score function
∇`(θ) and the observed information matrix ∇2`(θ). The fol-
lowing lemmas for stochastically perturbed models are re-
stated from Doucet et al.’s Theorems 2 and 3, since they are
foundations for our proofs. We suppose the following reg-
ularity conditions, identical to the assumptions of Doucet
et al. (2013):

Assumption 1 There exists C < ∞ such that for any integer
k ≥ 1,1≤ i1, . . . , ik ≤ d and β1, . . . , βk ≥ 1,∫ ∣∣∣uβ1

i1
uβ2

i2
· · ·uβk

ik

∣∣∣κ(u) du≤C,

where κ is a symmetric probability density on Rd with re-
spect to Lebesgue measure and Σ = (σi, j)d

i, j=1 is the non-
singular covariance matrix associated to κ .

Assumption 2 There exist γ, δ , M > 0, such that for all
u ∈ Rd ,

|u|> M⇒ κ(u) < e−γ|u|δ .

Assumption 3 For all θ ∈Rd , there exists 0 < η < δ , ε, D >

0, such that for all u ∈ Rd ,

L (θ +u)≤ Deε|u|η ,

where L : Rd → R is the likelihood function, ` = logL
is four times continuously differentiable and δ defined as in
Assumption 2.

Assumption 4 κ satisfies
∫

u4
i κ(u)du = 3σ4

i .

These conditions could be relaxed but at the cost of substan-
tially more complex proofs (Whiteley et al., 2013), so we do
not pursue them here.

Lemma 1 (Doucet et al. Theorem 2) Suppose assumption
1, 2, 3, there exists a constant C such that:∣∣Ĕ(Θ̆ −θ

∣∣Y̆ = y
)
− τ

2
Σ∇`(θ)

∣∣< Cτ
4. (1)

In order to prove the approximation of observed informa-
tion matrix, Doucet et al. (2013) further assumed regular-
ity of the perturbation kernel. Specifically, a non-singular
symmetric kernel was assumed, which is consistent with the
practical choice of Gaussian perturbations.

Lemma 2 (Doucet et al. Theorem 3) Suppose assumption
1, 2, 3 and 4, there exists a constant C such that:∣∣∣Ĕ[(Θ̆ −θ

)(
Θ̆ −θ

)> ∣∣Y̆ = y
]
− τ

2
Σ − τ

4
Σ
(
∇

2`(θ)
)

Σ

∣∣∣
< Cτ

6. (2)

These approximations are useful for latent variable models,
where the log likelihood of the model consists of marginal-
izing over a latent variable, X ,

`(θ) = log
∫

pX ,Y (x,y∗;θ)dx.

In this case, the expectations in Lemmas 1 and 2 can be ap-
proximated by Monte Carlo importance sampling, as pro-
posed by Ionides et al. (2011) and Doucet et al. (2013).
The latent variable setup we consider is identical to that of
Doucet et al. (2013), which is also similar to that of Ionides
et al. (2011). The three approaches become more distinct
in their consequences for the extension from latent variable
models to POMP models.

4 An iterated smoothing algorithm

The POMP model is a specific latent variable model with
X = X0:N and Y = Y1:N . We define a perturbed POMP model
having a similar construction to our perturbed latent variable
model with X̆ = X̆0:N , Y̆ = Y̆1:N and Θ̆ = Θ̆0:N . Ionides et al.
(2011) perturbed the parameters by setting Θ̆0:N to be a ran-
dom walk starting at θ , whereas Doucet et al. (2013) took
Θ̆0:N to be independent additive white noise perturbations
of θ . Our goal is to take advantage of the asymptotic de-
velopments of Doucet et al. (2013) while maintaining some
practical advantages of random walk perturbations for finite
computations. Specifically, we construct Θ̆0:N as follows.
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Let Z0, . . . , ZN be N +1 independent draws from a den-
sity ψ . We introduce N + 2 perturbation parameters, τ and
τ0, . . . ,τN , and construct a process Θ̆0:N by setting

Θ̆n = θ + τ

n

∑
i=0

τiZi

for 0 ≤ n ≤ N. We will later consider a limit where τ0:N as
fixed and the scale factor τ decreases toward zero, and sub-
sequently another a limit where τ0 is fixed but τ1:N decrease
toward zero together with τ . Let p

Θ̆0:N
(ϑ̆0:N ;θ , τ, τ0:N) be

the probability density of Θ̆0:N . We define the artificial ran-
dom variables Θ̆0:N via their density,

ψ̆(ϑ̆0:N ;θ ,τ, τ0:N) = (ττ0)−d
ψ
{
(ττ0)−1(ϑ̆0−θ)

}
×

N

∏
n=1

(ττn)−d
ψ
{
(ττn)−1(ϑ̆t − ϑ̆t−1)

}
.

We define the stochastically perturbed model with a Markov
process {(X̆n,Θ̆n), 0≤ n≤N}, observation process Y̆1:N and
parameter (θ , τ, τ0:N) by the factorization of their joint
probability density

pX̆0:N ,Y̆1:N ,Θ̆0:N
(x0:N ,y1:N , ϑ̆0:N ;θ , τ, τ0:N)

= p
Θ̆0:N

(ϑ̆0:N ;θ , τ, τ0:N)pX̆0:N ,Y̆1:N |Θ̆0:N
(x0:N , y1:N |ϑ̆0:N),

where

pX̆0:N ,Y̆1:N |Θ̆0:N
(x0:N ,y1:N |ϑ̆0:N ;θ ,τ, τ0:N)

= µ(x0; ϑ̆0)
N

∏
n=1

fn(xn|xn−1; ϑ̆n)
N

∏
n=1

gn(yn|xn; ϑ̆n)

and

p
Θ̆0:N

(ϑ̆0:N ;θ , τ, τ0:N) = ψ̆(ϑ̆0:N ;θ ,τ, τ0:N)

This extended model can be used to define a perturbed pa-
rameter likelihood function, defined as

˘̀(ϑ̆0:N) = log pY̆1:N |Θ̆0:N
(y∗1:N |ϑ̆0:N ;θ ,τ,τ0:N). (3)

Here, we are treating the data as fixed and note that the right
hand side does not depend on θ , τ or τ0:N . We have designed
(3) so that, setting

ϑ̆
[N+1] = (θ ,θ , . . . ,θ) ∈ Rd(N+1),

we can write the likelihood of the unperturbed model as

`(θ) = ˘̀(ϑ̆ [N+1]).

In our POMP framework, ψ̆ is analogous to κ in the general
latent variable model. However, to formally match these two
frameworks we must bear in mind that ψ̆ carries out pertur-
bations in Θ (N+1)d , so Lemmas 1 and 2 must be applied in
that extended parameter space.

For our perturbed likelihood, we need an extended ver-
sion of assumption 3, identical to assumption 5 of Doucet
et al. (2013).

Assumption 5 ˘̀ = logL̆ is four times continuously differ-
entiable. For all θ ∈ Rd , there exist ε > 0, D > 0 and δ

defined as in Assumption 2, such that for all 0 < η < δ and
u0:N ∈ Rd(N+1),

L̆ (ϑ̆ [N+1] +u0:N)≤ Deε ∑
N
n=1 |un|η ,

where L̆ (ϑ̆0:N) = exp{ ˘̀(ϑ̆0:N)} is the perturbed likelihood.

Let Ĕθ ,τ,τ0:N , C̆ovθ ,τ,τ0:N , V̆arθ ,τ,τ0:N denote as the expecta-
tion, covariance and variance with respect to the associated
posterior

p
Θ̆0:N |Y̆1:N

(ϑ̆0:N |y∗1:N ;θ , τ,τ0:N).

To simplify the heavy notation, hereafter, we will use Ĕ,
C̆ov, V̆ar instead of Ĕθ ,τ,τ0:N , C̆ovθ ,τ,τ0:N , V̆arθ ,τ,τ0:N respec-
tively. The following theorems 1 and 2 are our main re-
sults, they are similar to theorem 4 and 6 of Doucet et al.
(2013) but for random walk noise instead of independent
white noise and are much simpler.

Theorem 1 Suppose assumption 1, 2 and 5, there exists a
constant C such that,∣∣∇`(θ)− τ

−2
Ψ
−1{

τ
−2
0 Ĕ

(
Θ̆0−θ |Y̆1:N = y∗1:N

)}∣∣< Cτ
2,

where Ψ is the non-singular covariance matrix associated
to ψ .

Proof See appendix A.1.

We propose to use random walk noise to explore the like-
lihood surface. Intuitively, at each time point the random
walk can take a small step in an appropriate direction on
the likelihood surface. This may be more computationally
efficient than perturbing one set of parameters at each time
point, as in the independent white noise perturbations ana-
lyzed by Doucet et al. (2013). We show that random walk
perturbations enjoy some of the theoretical support devel-
oped by Doucet et al. (2013), while being more computa-
tionally efficient empirically. We first state our theorems,
leaving proofs to the appendix.

Theorem 2 Suppose assumptions 1, 2, 4 and 5, the follow-
ing hold true for random walk noise,

−∇
2`(θ) = Iτ(θ)+O(τ2),

where

Iτ(θ)=−τ
−4

Ψ
−1{

τ
−4
0
(
V̆ar

(
Θ̆0|Y̆1:N = y∗1:N

)
− τ

2
0Ψ
)}

Ψ
−1.

Proof See appendix A.2.
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Theorem 1 and 2 formally allow approximation of ∇`(θ),
−∇2`(θ). However, they rely heavily on the computation of
the conditional distribution of Θ̆0 given Y1:N , which is a com-
putationally challenging smoothing problem. We therefore
present some alternative variations on these results which
lead to more stable Monte Carlo estimation. Our Theorems 3
and 4 consider a limit where τn is of order τ2 for each 1 ≤
n ≤ N, as τ → 0. This limit is similar to a limit studied
in the context of IF1 by Ionides et al. (2011). This is not
an ideal theoretical framework, since it approaches another
limit which involves numerically difficult smoothing calcu-
lations. However, the theorems can still carry out the useful
purpose of motivating new algorithms whose finite sample
properties are assessed empirically. We state two additional
theorems as follows.

Theorem 3 Suppose assumption 1, 2 and 5 hold. In addi-
tion, assume that τn is O(τ2) for every n = 1 . . .N, the fol-
lowing hold true,∣∣∣∣∣∇`(θ)− 1

N +1
τ
−2

τ
−2
0 Ψ

−1
N

∑
n=0

{
Ĕ
(
Θ̆n−θ |Y̆1:N = y∗1:N

)}∣∣∣∣∣
= O(τ2). (4)

Proof See appendix A.3.

Theorem 4 Suppose assumptions 1, 2, 4 and 5 hold. In ad-
dition, assume that τn is O(τ2) for every n = 1 . . .N, the fol-
lowing hold true for random walk noise,

−∇
2`(θ) = Iτ(θ)+O(τ2),

where

Iτ(θ) =− 1
N +1

τ
−4

τ
−4
0

Ψ
−1

{
N

∑
n=0

(
V̆ar

(
Θ̆n|Y̆1:N = y∗1:N

)
−

n

∑
k=0

τ
2
kΨ

)}
Ψ
−1.

Proof See appendix A.4.

To the best of our knowledge, the approach of Doucet
et al. (2013) has not previously been used for data analy-
sis. In part, this could be due to the computational expense
of its estimation of the covariance matrix estimation for the
perturbed parameters. The computational cost of the full co-
variance estimation in the method of Doucet et al. (2013),
between all pairs of time points, is O(N2) at each time point
and so O(N3) for an entire smoothing computation. As pro-
posed by Doucet et al. (2013), one can omit covariances
larger than some lag L, and one can use this same lag L
for a fixed-lag particle smoothing algorithm using J par-
ticles. Doucet et al. (2013) studied the properties of such
an algorithm, under strong mixing assumptions, to derive
an algorithm with computational cost O(NL2J). Here, we

write equivalent results for our algorithm, based on the re-
sults proved by Doucet et al. (2013). These result study the
approximation properties of the score function and informa-
tion matrix estimators for specific values of θ and τ . Full
analysis of Algorithm 1 using stochastic approximation the-
ory, as in Ionides et al. (2011), would require some unifor-
mity of this approximation when τ is small and θ is in a
neighborhood of the maximum of the likelihood function.
Specifically, we make the following assumptions:

Assumption 6 (Assumption 6 of Doucet et al.). Define

S(φ ,φ ′,τ) =
[
(φ ,φ ′) ∈ Rd×2 : κ

{
(φ −φ

′)/τ
}

> 0
]
.

1. S(φ ,φ ′,τ) is compact.
2. for all n ∈ {1, ..,N},

αn(φ
′) = inf

(φ ,φ ′,x,x′)∈S(φ ,φ ′,τ)×X ×X
fn(x′|x;φ

′) > 0,

αn(φ ′) = sup
(φ ,φ ′,x,x′)∈S(φ ,φ ′,τ)×X ×X

fn(x′|x;φ
′) < ∞,

ρn(φ ′) = 1−αn(φ
′)/αn(φ ′) > 0.

Let ρ(θ) = maxn∈{1,..,N}ρn(φ ′).
3. There exists a probability measure λ (dx) on X such

that, for all y ∈ Y and for all n ∈ {2, ..,N},

gn(y;φ
′) = sup

(φ ,φ ′,x)∈S(φ ,φ ′,τ)×X
gn(y|x;φ

′) < ∞,

gn(y;φ
′)=

∫
gn(y|x;φ)τ−d

κ
{
(φ −φ

′)/τ
}

dφλ (dx)> 0

g1(y;φ
′) = sup

(φ ,φ ′,x)∈S(φ ,φ ′,τ)×X
g1(y|x;φ

′) < ∞,

g1(y;θ)=
∫

g1(y|x;φ)τ−d
κ {(φ −θ)/τ}dφ µ(x;θ)λ (dx)> 0.

Theorem 5 Suppose assumption 6, the following hold true
for random walk noise:

τ
2
ΨSτ,N(θ) = τ

2
ΨSτ,L,N(θ)+O(ρ(θ)L),

τ
4
Ψ
{

Iτ,N(θ)
}

Ψ = τ
4
Ψ Iτ,L,N(θ)Ψ +O(ρ(θ)L),

where

Sτ,N(θ)=
1

N +1
τ
−2

τ
−2
0 Ψ

−1

{
N

∑
n=0

(
Ĕ(Θ̆n|Y̆1:N = y∗1:N)−θ

)}
,

Sτ,L,N(θ) =
1

N +1
τ
−2

τ
−2
0 Ψ

−1{
N

∑
n=0

(
Ĕ(Θ̆n|Y̆1:(n+L)∧N = y∗1:(n+L)∧N)−θ

)}
,

Iτ,N(θ) =− 1
N +1

τ
−4

τ
−4
0 Ψ

−1{
N

∑
n=0

(
V̆ar

(
Θ̆n|Y̆1:N = y∗1:N

)
−

n

∑
k=0

τ
2
kΨ

)}
Ψ
−1,
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Iτ,L,N(θ) =− 1
N +1

τ
−4

τ
−4
0 Ψ

−1{
N

∑
n=0

(
V̆ar

(
Θ̆n|Y̆1:(n+L)∧N = y∗1:(n+L)∧N

)
−

n

∑
k=0

τ
2
kΨ

)}
Ψ
−1.

Proof It follows directly from Olsson et al. (2008), as in the
proof of proposition 7 of Doucet et al. (2013).

For completeness, we also state a Monte Carlo approxima-
tion result which is essentially identical to a theorem of Doucet
et al. (2013).

Theorem 6 (Doucet et al., Proposition 8). Suppose assump-
tion 6, then for all integers N ≥ 1,0≤ L≤ N−1, J ≥ 1 and
for any p≥ 2, there exist constants C and Cp, not depending
on J, such that:

τ
2 ∣∣E[Ψ {SJ

τ,L,N(θ)−Sτ,N(θ)
}]∣∣≤ C

J
,

τ
4 ∣∣E[Ψ {IJ

τ,L,N(θ)− Iτ,L,N(θ)
}

Ψ
]∣∣≤ C

J
,

and

τ
2E1/p

[∣∣Ψ {SJ
τ,L,N(θ)−Sτ,L,N(θ)

}∣∣p]≤ Cp√
J
,

τ
4E1/p

[∣∣Ψ {IJ
τ,L,N(θ)− Iτ,L,N(θ)

}
Ψ
∣∣p]≤ Cp√

J
.

Pseudo-code for second order iterated smoothing (IS2) is
given in Algorithm 1. The initial value parameters (IVPs) in
Algorithm 1 are defined as parameters which are perturbed
only at time zero (Bretó et al., 2009). The perturbations in
lines 2 and 5 are taken to follow the normal distribution,
though alternative densities with matching mean and vari-
ance could be chosen. Pseudo-code for the IS1 algorithm
of Doucet et al. (2013) is given in the supplement (Algo-
rithm S-1). Since IS1 is too computational expensive to ap-
ply in real problems, we propose a reduced second order
iterated smoothing (RIS1) approach. The RIS1 algorithm is
the same as Algorithm 1 except that we use white noise to
update filter at each time point, in steps 2 and 5.

The IS2 algorithm, together with IS1 and RIS1 algo-
rithms based on (Doucet et al., 2013), were implemented in
an open-source R package is2 (Nguyen and Ionides, 2015),
which is built based on pomp package (King et al., 2015b).

5 Numerical examples

5.1 Toy example: A linear, Gaussian model

In this section, we evaluate our algorithm, comparing it to
existing simulation-based approaches in term of statistical
performance and computational efficiency. We consider a bi-
variate discrete time Gaussian autoregressive process, with

Algorithm 1 Iterating smoothing (IS2)

Input:
starting parameter, θ0
simulator for µ(x0;θ)
simulator for fn(xn|xn−1;θ)
evaluator for gn(yn|xn;θ)
I ⊂ {1, ..,d} for initial value parameters
data, y∗1:N
number of iteration, M
number of particles, J
perturbation scales, σ1:d , defining a matrix Ψ = diag(σ2

1:d)
cooling rate, 0 < c < 1,
lag, L

Output:
Monte Carlo maximum likelihood estimate, θM

1: for m in 1 : M do
2:

[
Θ F

0, j
]

i ∼N
([

θm−1
]

i,(c
m−1σi)2

)
for j in 1 : J, i in 1 : d

3: initialize states: simulate XF
0, j ∼ µ

(
x0;Θ F

0, j
)

for j in 1 : J
4: for n in 1 : N do
5:

[
Θ P

n, j
]

i ∼N
([

Θ F
n−1, j

]
i,(c

m−1σi)2
)

for i /∈ I, j in 1 : J
6: simulate particles: XP

n, j ∼ fn
(
xn|XF

n−1, j;Θ
P
n, j
)

for j in 1 : J
7: evaluate weights: w(n, j) = gn(y∗n|XP

n, j;Θ
P
n, j) for j in 1 : J

8: normalize weights: w̆(n, j) = w(n, j)/∑
J
u=1 w(n,u)

9: re-sample to select indices k1:J with P{ku = j}= w̆(n, j)
10: re-sample: XF

n, j = XP
n,k j

and Θ F
n, j = Θ P

n,k j
for j in 1 : J

11: let a1(n,k j) = j, al+1(n, j) = a1(n− l,al(n, j)) for j in
1 : J, l in 0 : L−1

12: smoothed mean: θ̄ L
n−L = ∑

J
j=1 w̆(n, j)Θ P

n−L,aL(n, j) if n > L

13: variance:V m
n−L,n−L = ∑ j w̆(n, j)

(
Θ P

n−L,aL(n, j)− θ̄ L
n−L
)(

Θ P
n−L,aL(n, j)− θ̄ L

n−L
)> if n > L

14: end for
15: mean: θ̄ L

n+l−L = ∑
J
j=1 w̆(N, j)Θ P

n+l−L,aL−l (N, j) for l in 1 : L

16: variance:V m
n+l−L,n+l−L = ∑l w̆(N, l)

(
Θ P

n+l−L,aL−l (N,l)− θ̄ L
n+l−L

)(
Θ P

n+l−L,aL−l (N,l)− θ̄ L
n+l−L

)> for l in 1 : L

17: update: Sm = c−2(m−1)Ψ−1
∑

N
n=1
[(

θ̄ L
n −θm−1

)]
18: Im =−c−4(m−1)Ψ−1

[
∑

N
n=1

(
V m

n,n/(N +1)− c2(m−1)Ψ
)]

Ψ−1

19: update parameters: θm = θm−1 + I−1
m Sm

20: update IVP parameters:
[
θm
]

i = 1
J ∑

J
j=1
[
Θ F

L, j
]

i for i ∈ I
21: end for

Gaussian measurement error. This model is chosen so that
the Monte Carlo calculations can be verified using a Kalman
filter. The model is given by the state space forms:

Xn|Xn−1 = xn−1 ∼ N (αxn−1,σ
>

σ),

Yn|Xn = xn ∼ N (xn, I2).

where α , σ are 2×2 matrices and I2 is 2×2 identity matrix.
Note that the optimal distribution can be derived in closed
form. We simulate the data set with the following parame-
ters:

α =
[

α1 α2
α3 α4

]
=
[

0.8 −0.5
0.3 0.9

]
, σ =

[
3 0
−0.5 2

]
.

We set the number of time points N = 100 and initial start-
ing point X0 = (−3,4). For this model, we try to estimate
parameters α2 and α3. We run our experiment with 25 it-
erations (M = 25) and with 1000 particles (J = 1000) on a
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Table 1 Computation times, in seconds, for the toy example.

J = 100 J = 1000 J = 10000
IF1 2.206 7.744 71.538
IF2 1.749 6.666 59.450
IS2 4.072 12.971 106.678
IS1 630.120 7516.568
RIS1 5.358 15.186 102.980

Linux personal computer with a 3.0GHz processor. Our ap-
proach, second order iterated smoothing (IS2) is compared
against the iterated filtering (IF1) of Ionides et al. (2011), the
perturbed Bayes map iterated filtering (IF2) of Ionides et al.
(2015), the second-order iterated smoothing (IS1) of Doucet
et al. (2013) and the reduced second-order iterated smooth-
ing approach (RIS1)(see supplement S-2). As can be seen
from Fig. 1, while MLEs of all approaches touch the true
MLE at vertical broken line, the distribution of the estimated
MLEs using IS2 have higher mean and smaller variance,
implying higher empirical convergence rate in this case. In
addition, the proposed approach gives results that are rea-
sonably robust to the starting guesses, since we start at ran-
dom values uniformly in a large rectangle. We note that, in
this example RIS1 approach climbs up the likelihood surface
more efficiently than IF1 approach, similar to IS1 approach
but less efficiently than IF2 and IS2 approaches (Fig. 1). Al-
gorithmically, IS2 has similar computational costs with the
first order approaches IF1 & IF2 and with the second-order
RIS1 approach while the original IS1 of Doucet et al. (2013)
takes longer time than any other approaches because of ex-
tensive computing covariance between time points. Addi-
tional results demonstrating the performance of IS2 com-
pared to other approaches can be found in the supplement
(Section S-1).

Average computational time of ten independent runs of
each approach is given in Table1. Additional overheads for
fixed lag smoothing and estimating score and observed in-
formation matrix for this simple model make the computa-
tion time of IS2 and RIS1 quite large compared to computa-
tional time of IF1 and IF2. However, with complex models
and large enough number of particles, these overheads be-
come negligible and computational time of IF1, IF2, IS2 and
RIS1 are similar. The much longer time of IS1 arise because
our implementation of this algorithm computes covariances
between all pairs of time points. Algorithms between IS1
and RIS1 that compute covariances only up to some fixed
lag would be expected to have computational time and per-
formance intermediate between these extremes.

−486 −484 −482 −480 −478

0.
0

0.
2

0.
4

0.
6

0.
8

−486 −484 −482 −480 −478

log likelihood

IF1
IF2
IS2
RIS1
IS1

Fig. 1 Comparison of estimators for the linear, Gaussian toy exam-
ple, showing the densities of the MLEs estimated by the IF1, IF2, IS1,
RIS1, and IS2 methods. The parameters α2 and α3 were estimated,
started from 200 randomly uniform initial values over a large rectan-
gular region [−1,1]× [−1,1].

5.2 Application to a malaria transmission model

Many real world dynamic systems are highly nonlinear and
partially observed. Further, some combinations of parame-
ters may be weakly identifiable from the available data. To
demonstrate the capabilities of iterated smoothing (IS2) for
such situations, we consider a model for vivax malaria, a
strain of malaria characterized by relapse following initial
recovery from symptoms. Malaria transmission is challeng-
ing real world system to analyze, and therefore provides a
rigorous performance benchmark. Mathematical modeling
of malaria has been a foundation for developing malaria
control strategies since the work of Ross (1910) and Mac-
donald (1957). We consider the SEIH3QS model of Roy
et al. (2013) which splits up the study population of size
P(t) into seven classes: susceptible individuals, S(t), expo-
sure E(t), infected individuals, I(t), dormant classes H1(t),
H2(t), H3(t) and recovered individuals, Q(t). Data are a se-
quence of monthly reported malaria morbidity, denoted by
y∗1:N . The latent force of infection λ (t) passes through a de-
lay stage, κ(t), and the contributes to the current force of
infection, µSE(t), with mean latency time τD. The state pro-
cess is(
S(t),E(t), I(t),Q(t),H1(t),H2(t),H3(t),κ(t),µSE(t)

)
,

where the birth rate for the S class ensures that S(t)+E(t)+
I(t)+ Q(t)+ ∑i Hi(t) = P(t) while P(t) is assumed known
from the census data. The transition rates from stage H1
to H2, H2 to H3 and H3 to Q are specified to be 3µHI . In
this model, infected population enters dormancy via I− to−
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H transition at rate µIH , and the treated humans join non-
relapsing infected in moving to the Q class. We suppose that
{X(t), t ≥ t0} follows a stochastic differential equation in
which the human stage of the malaria pathogen lifecycle is
modeled by

dS/dt = δP+dP/dt + µISI + µQSQ

+aµIH I +bµEIE−µSE(t)S−δS,

dE/dt = µSE(t)S−µEIE−δE,

dI/dt = (1−b)µEIE +3µHIHn− (µIH + µIS + µIQ)I−δ I,

dH1/dt = (1−a)µIH I−nµHIH1−δH1,

dHi/dt = 3µHIHi−1−3µHIHi−δHi for i ∈ {2,3},
dQ/dt = µIQI−µQSQ−δQ,

and a simple representation of the malaria pathogen repro-
duction within the mosquito vector is given by

dκ/dt = [λ (t)−κ(t)]/τD,

dµSE/dt = [κ(t)−µSE(t)]/τD.

The Gamma-distributed delay imposed on λ (t) by κ(t) and
µSE(t) can also be written as

µSE(t) =
∫ t

−∞

γ(t− s)λ (s)ds, (5)

with γ(s) = (2/τD)2s2−1

(2−1)! exp(−2s/τD), a gamma distribution
with shape parameter 2. The latent force of infection con-
tains a rainfall covariate R(t), as described by Roy et al.
(2013), and a Gamma white noise term,

λ (t) =
(

I +qQ
P

)
× exp

{
Ns

∑
i=1

bisi(t)+brR(t)

}
×
[

dΓ (t)
dt

]
,

where q denotes a reduced infection risk from humans in the
Q class and {si(t), i = 1, . . . ,Ns} is a periodic cubic B-spline
basis, with Ns = 6. Let the number of new cases in the nth
interval be Mn = ρ

∫ tn
tn−1

[µEIE(s)+ 3µHIH3(s)]ds where the
times of the N observations are t1 < t2 < · · ·< tN and the sys-
tem is initialized at a time t0 = t1−1/12. The measurement
model for Yn given Mn is a negative binomial distribution
with mean Mn and variance Mn + M2

n σ2
obs. A table of pa-

rameter definitions and units is provided in the supplement
(Section S-3).

We carried out inference for this model on data obtained
from National Institutes of Malaria Research by Roy et al.
(2013) using IF1, IF2, IS2 and RIS1. We ran our experi-
ment on a Linux cluster, with M = 50 iterations and J = 103

particles. Unlike the toy example, the second order iterated
smoothing with white noise (IS1) was left out as it is too
computational demanding for this problem. Our approach is
comparable to the recently developed algorithm IF2 (Ionides
et al., 2015) for this example. Ionides et al. (2015) compared
IF2 against IF1 on a benchmark problem in epidemiological
dynamics, and we use this approach to test IS2 and RIS1. In
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Fig. 2 The density of the maximized log likelihood approximations
estimated by IF1, IF2, IS2 and RIS1 for the malaria model when using
J = 1000 and M = 50. The log likelihood at a previously computed
MLE is shown as a dashed vertical line.

the presence of possible multi-modality, weak identifiability,
and considerable Monte Carlo error of this model, we start
200 random searches in a large hyperrectangle (see supple-
ment S-3). The random walk standard deviation is initially
set to 0.1 for estimated parameters while the cooling rate c is
set to 0.10.02 ≈ 0.95. These corresponding quantities for ini-
tial value parameter perturbations are 2 and 0.10.02, respec-
tively, but they are applied only at time zero. The standard
deviation of independent perturbation for RIS1 is five times
as that of other methods. Figure 2 shows the distribution of
the MLEs estimated by IF1, IF2, IS2 and RIS1. All distribu-
tions touch the global maximum as expected and the higher
mean and smaller variance of IF2, IS2 estimation clearly
demonstrate that they are considerably more effective than
IF1 and IS1. Experimentation with more extensive compu-
tation (M = 100 and J = 104) in Figure 3 suggests that the
performance improvement of IS2 over IF2 occurs primar-
ily in simpler models, such as the toy example, or during
earlier stages of optimization on complex models. We have
had similar experiences with other complex models (results
not shown). Our interpretation is that the averaging involved
in the parameter update rule for IS2 can be inefficient when
the likelihood surface contains nonlinear ridges, whereas the
IF2 algorithm does not carry out any averaging in param-
eter space. The computational times for IF1, IF2 and IS2
were 12.70, 12.34 and 14.56 hours respectively, confirming
that the computational complexities are similar for all three
methods. In this computational challenge, we see that both
IS2 and IF2 offer substantial improvement over IF1.
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Fig. 3 The density of the maximized log likelihood approximations
estimated by IF1, IF2 and IS2 for the malaria model when using J =
10000 and M = 100

6 Conclusion

In this paper, we presented a novel approach for param-
eter estimation applicable to a general class of nonlinear,
non-Gaussian POMP models. We used artificial dynamics
to estimate simultaneously the parameters and the states of
the latent process of the POMP model. We were also able
to approximate the score vector and the observed informa-
tion matrix to accelerate the convergence rate of the infer-
ence. Previous approaches for POMP models involving an
estimated information matrix have either excluded the plug-
and-play property or experienced heavy computational costs
that made practical implementation for real world problems
infeasible.

When the length of the time series goes to infinity, the
parameter updating rule in our Algorithm 1 (IS2) approaches
the time average of the smoothed perturbed parameters. It
may be surprising that this simple updating rule has second
order convergence properties, at least in some asymptotic
sense.

We have shown that the iterated smoothing theory of
Doucet et al. (2013) can be adapted to apply with random
walk perturbations. In other words, we have analyzed sepa-
rately the two ways in which Doucet et al. (2013) modified
Ionides et al. (2011): smoothing versus filtering, and white
noise perturbations versus random walk perturbations. Our
theoretical results are similar to Doucet et al. (2013). How-
ever, we have not been able to develop analogous results
to the convergence analysis in their Section 2.4. Neverthe-
less, our empirical results are stronger. In principle, differ-
ent simulation-based inference methods can readily be hy-
bridized to build on the strongest features of multiple algo-

rithms. Our results could also be applied to develop other
plug-and-play methodologies which can take advantage of
estimators of the derivatives of the likelihood. For example,
it may be possible to use our approach to help design effi-
cient proposal distributions for particle Markov chain Monte
Carlo algorithms, taking into account the local geometry of
the target distribution.

Iterated filtering methodology has been applied to study
epidemiological dynamics in various situations (King et al.,
2008; Laneri et al., 2010; He et al., 2010; Bhadra et al.,
2011; Camacho et al., 2011; Shrestha et al., 2011; Earn et al.,
2012; Lavine and Rohani, 2012; Lavine et al., 2013; He
et al., 2013; Roy et al., 2013; Blackwood et al., 2013a,b;
Shrestha et al., 2013; Blake et al., 2014; King et al., 2015a;
Laneri et al., 2015; Martinez-Bakker et al., 2015; Romero-
Severson et al., 2015). However, simulation-based inference
for POMP models has potential applicability for statistical
inference on nonlinear POMP models arising throughout the
biogical, physical and social sciences and in engineering.
The theoretical and algorithmic innovations of this paper
help to build a new direction for future developments on this
frontier.

Acknowledgements This research was funded in part by National
Science Foundation grant DMS-1308919 and National Institutes of
Health grants 1-U54-GM111274 and 1-U01-GM110712.

A Proofs

A.1 Proof of Theorem 1

Let

R =


τ0Id×d 0d×d · · · 0d×d

τ0Id×d τ1Id×d
. . .

...
...

...
. . .

...
τ0Id×d τ1Id×d · · · τN Id×d

 , (6)

where Id×d is identity matrix of dimension d and 0d×d is zero matrix of
dimension d, then a random walk noise will be RτZ0:N . Apply Lemma
1 with Σ = Cov(RZ0:N) = Ψ̆N , there exist η and C such that for 0 <
τ < η ,∣∣∣Ĕ(Θ̆0:N −θ

[N+1] ∣∣Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N∇ ˘̀

(
θ

[N+1]
)∣∣∣< Cτ

4,

where

Ψ̆N =


τ2

0Ψ τ2
0Ψ · · · τ2

0Ψ

τ2
0Ψ τ2

0 + τ2
1Ψ

. . . τ2
0 + τ2

1Ψ

...
...

. . .
...

τ2
0Ψ τ2

0 + τ2
1Ψ · · · ∑

N
i=1 τ2

i Ψ

 .

Note that all assumptions 1-3 are automatically satisfied for the mul-
tivariate normal like distribution ψ̆N of random variable RZ0:N . As a
result, for a random walk noise we have∣∣∣∇ ˘̀
(

θ
[N+1]

)
− τ
−2

Ψ̆
−1

N Ĕ
(

Θ̆0:N −θ
[N+1] ∣∣Y̆1:N = y∗1:N

)∣∣∣< Cτ
2.
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An application of the Gaussian-Jordan inverse method gives,

Ψ̆
−1

N =

(τ−2
0 + τ

−2
1 )Ψ−1 −τ

−2
1 Ψ−1 · · · 0

−τ
−2
1 Ψ−1 (τ−2

1 + τ
−2
2 )Ψ−1 · · ·

...

0 −τ
−2
2 Ψ−1 · · ·

...
...

...
...

...
0 0 (τ−2

N−1 + τ
−2
N )Ψ−1 −τ

−2
N Ψ−1

0 0 −τ
−2
N Ψ−1 τ

−2
N Ψ−1


.

We write ∇n ˘̀(θ [N+1]) for the d-dimensional vector of partial deriva-
tives of ˘̀(θ [N+1]) with respect to each of the d components of θn. An
application of the chain rule gives the identity

∇`(θ) =
N

∑
n=0

∇n ˘̀
(

θ
[N+1]

)
,

giving rise to an inequality,∣∣∣∣∣ N

∑
n=0

∇n ˘̀
(

θ
[N+1]

)
− τ
−2

N

∑
n=0

{
Ψ̆
−1

N Ĕ
(

Θ̆0:N −θ
[N+1]|Y̆1:N = y∗1:N

)}
n

∣∣∣∣∣
< Cτ

2,

where {s}n is the entries {dt +1, ...,d(n+1)} of a vector s ∈ Rd(N+1).
Decomposing the matrix multiplication by Ψ̆

−1
N into d×d blocks, we

have

τ
−2

N

∑
n=0

{
Ψ̆
−1

N Ĕ
(

Θ̆0:N −θ
[N+1]|Y̆1:N = y∗1:N

)}
n

= τ
−2

N

∑
n=0

SumColn(Ψ̆−1
N )Ĕ

(
Θ̆n−θ |Y̆1:N = y∗1:N

)
, (7)

where SumColn is the sum of the nth column in the d× d block con-
struction of Ψ̆

−1
N . Every column of Ψ̆

−1
N except the first sums to 0, and

this special structure of Ψ̃
−1

N gives a simple form,∣∣∣∣∣ N

∑
n=0

∇n ˘̀
(

θ
[N+1]

)
− τ
−2

Ψ
−1

τ
−2
0 Ĕ

(
Θ̆0−θ |Y̆1:N = y∗1:N

)∣∣∣∣∣< Cτ
2.

This can be written as∣∣∇`(θ)− τ
−2

Ψ
−1

τ
−2
0 Ĕ

(
Θ̆0−θ |Y̆1:N = y∗1:N

)∣∣< Cτ
2.

A.2 Proof of Theorem 2

Using similar set up as above, let the random walk noise be RτZ0:N
with R defined as in equation (6). Assumptions 4 is also satisfied as it
is kurtosis property of the multivariate normal like distribution ψ̆N of
random variable RZ0:N . From Lemma 2, there exist η and C such that
for 0 < τ < η ,∣∣∣∇2 ˘̀

(
θ

[N+1]
)
− τ
−4[

Ψ̆
−1

N

(
C̆ov

θ [N+1],τ

(
Θ̆0:N |Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N

)
Ψ̆
−1

N

]∣∣∣< Cτ
2. (8)

Define ∇2
s,n

˘̀
(

θ [N+1]
)

as

∇
2
s,n

˘̀
(

θ
[N+1]

)
=

∂
2 ˘̀
(

θ [N+1]
)

∂θ s∂θ n
.

Applying the chain rule, we have

∇
2`(θ) =

N

∑
s=0

N

∑
n=0

∇
2
s,n

˘̀(θ [N+1]).

Adding up term in equation (8) we get

∣∣∣∣∣ N

∑
s=0

N

∑
n=0

∇
2
s,n

˘̀(θ [N+1])− τ
−4

N

∑
s=0

N

∑
n=0

[
Ψ̆
−1

N

(
C̆ov

θ [N+1],τ

(
Θ̆0:N |Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N

)
Ψ̆
−1

N

]
s,n

∣∣∣∣∣<Cτ
2,

where {A}s,n is the entries of rows {ds+1, ...,d(s+1)} and of columns
{dn+1, ...,d(n+1)} of a matrix A ∈ Rd(N+1)×d(N+1). Therefore,

∣∣∣∣∣∇2`(θ)− τ
−4

N

∑
s=0

N

∑
n=0

[
Ψ̆
−1

N

(
C̆ov

θ [N+1],τ

(
Θ̆0:N |Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N

)
Ψ̆
−1

N

]
s,n

∣∣∣∣∣<Cτ
2.

Defining SumColn as in equation (7), we have

N

∑
s=0

N

∑
n=0

[
Ψ̆
−1

N

(
C̆ov

θ [N+1],τ

(
Θ̆0:N |Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N

)
Ψ̆
−1

N

]
s,n

=
N

∑
s=0

N

∑
n=0

SumCols(Ψ̆−1
N )SumColn(Ψ̆−1

N )

×

(
C̆ov

θ [N+1],τ

(
Θ̆s,Θ̆n|Y̆1:N = y∗1:N

)
−

s∧n

∑
k=0

τ
2
kΨ

)
Ψ
−1

=
(

V̆ar
θ [N+1],τ

(
Θ̆0|Y̆1:N = y∗1:N

)
− τ

2
0Ψ

)
.

The last equality follows since Ψ̆
−1

N is symmetric matrix with block of
d×d for which each colum except the first sums to 0. Thus, we obtain∣∣∣∇2`(θ)− τ

−4
Ψ
−1
(

V̆ar
θ [N+1],τ

(
Θ̆0|Y̆1:N = y∗1:N

)
− τ

2
0Ψ

)
Ψ
−1
∣∣∣<Cτ

2.

A.3 Proof of Theorem 3

From Lemma 1, we have∣∣∣∇ ˘̀
(

θ
[N+1]

)
− τ
−2

Ψ̆
−1

N Ĕ
(

Θ̆0:N −θ
[N+1] ∣∣Y̆1:N = y∗1:N

)∣∣∣< Cτ
2. (9)

For compactness of notation, we write En = Ĕ
(
Θ̆n−θ

∣∣Y̆1:N = y∗1:N
)

and Dn = ∇n ˘̀
(

θ [N+1]
)

. Writing out terms of the vector equation in
(9) gives

(τ−2
0 + τ

−2
1 )E0− τ

−2
1 E1 = τ

2D0 +O(τ4), (10)

−τ
−2
1 E0 +(τ−2

1 + τ
−2
2 )E1− τ

−2
2 E2 = τ

2D1 +O(τ4), (11)

... (12)

−τ
−2
N−1EN−2 +(τ−2

N−1 + τ
−2
N )EN−1− τ

−2
N EN = τ

2DN−1 +O(τ4), (13)

−τ
−2
N EN−1 + τ

−2
N EN = τ

2DN +O(τ4). (14)

Summing up (10) through (14) gives τ
−2
0 E0 = τ2∇̆` + O(τ4), as in

Theorem 1. Substituting back into each row of (10) through (14), we
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get a set of equations,

τ
−2
0 E0 = τ

2
∑

N
n=0 Dn +O(τ4),

τ
−2
1 (E1−E0)) = τ

2
∑

N
n=1 Dn +O(τ4),

...

τ
−2
N−1 (EN−1−EN−2) = τ

2
∑

N
n=N−1 Dn +O(τ4),

τ
−2
N (EN −EN−1) = τ

2DN +O(τ4).

Solving for En we get

E0 = τ
2
τ

2
0 ∑

N
n=0 Dn +O(τ4),

E1 = τ
2 (

τ
2
0 ∑

N
n=0 Dn + τ2

1 ∑
N
n=1 Dn

)
+O(τ4),

...

EN−1 = τ
2 (

τ
2
0 ∑

N
n=0 Dn + τ2

1 ∑
N
n=1 Dn + . . .+ τ2

N−1 ∑
N
n=N−1 Dn

)
+O(τ4),

EN = τ
2 (

τ
2
0 ∑

N
n=0 Dn + τ2

1 ∑
N
n=1 Dn + . . .+ τ2

NDN
)
+O(τ4).

Using our assumption that τn = O(τ2) for all n = 1 . . .N, we get that
En = E0 +O(τ4), from which we can conclude that

1
N +1

N

∑
n=0

En = E0 +O(τ4).

Application of Theorem 1 then completes the proof.

A.4 Proof of Theorem 4

From Lemma 2, we have∣∣∣∇2 ˘̀
(

θ
[N+1]

)
−τ
−4
[
Ψ̆
−1

N

(
C̆ov

θ [N+1],τ

(
Θ̆0:N |Y̆1:N = y∗1:N

)
− τ

2
Ψ̆N

)
Ψ̆
−1

N

]∣∣∣<Cτ
2.

For compact notation, we write

C̆ovs,n = C̆ov
(
Θ̆s,Θ̆n|Y̆1:N = y∗1:N

)
− τsτnτ

2
Ψ

and

∇
2
s,n = ∇

2
s,n

˘̀
(

θ
[N+1]

)
.

From the diagonal terms of the above matrix norm inequality, we derive
N +1 equations,

C̆ov0,0 = τ
4
[
Ψ̆N∇

2 ˘̀
(

θ
[N+1]

)
Ψ̆N

]
0,0

+O(τ6), (15)

C̆ov1,1 = τ
4
[
Ψ̆N∇

2 ˘̀
(

θ
[N+1]

)
Ψ̆N

]
1,1

+O(τ6), (16)

... (17)

C̆ovN−1,N−1 = τ
4
[
Ψ̆N∇

2 ˘̀
(

θ
[N+1]

)
Ψ̆N

]
N−1,N−1

+O(τ6), (18)

C̆ovN,N = τ
4
[
Ψ̆N∇

2 ˘̀
(

θ
[N+1]

)
Ψ̆N

]
N,N

+O(τ6). (19)

Using (15) through (19), and expanding out a matrix multiplication, we
get[

Ψ̆N∇
2 ˘̀
(

θ
[N+1]

)
Ψ̆N

]
n,n

=

Ψ
2

n

∑
j=0

(
i

∑
k=0

τ
2
k

)[
n

∑
i=0

(
i

∑
k=0

τ
2
k

)
∇

2
i, j

˘̀+
N

∑
i=n+1

(
n

∑
k=0

τ
2
k

)
∇

2
i, j

˘̀
]

+

Ψ
2

N

∑
j=n+1

(
n

∑
k=0

τ
2
k

)[
n

∑
i=0

(
i

∑
k=0

τ
2
k

)
∇

2
i, j

˘̀+
N

∑
i=n+1

(
n

∑
k=0

τ
2
k

)
∇

2
i, j

˘̀
]

.

Using our assumption that τn = O(τ2) for all n = 1 . . .N, we get that

C̆ovn,n = C̆ov0,0 +O(τ6),

from which we can conclude that

1
N +1

N

∑
n=0

C̆ovn,n = C̆ov0,0 +O(τ6).

An application of Theorem 2 then completes the proof.

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov
chain Monte Carlo methods. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 72(3):269–342.

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., and
Dhiman, R. C. (2011). Malaria in Northwest India: Data analysis
via partially observed stochastic differential equation models driven
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