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Abstract

.

Any tour of a travelling s<: :an onucmw is an assignment (I~
the sense of the assignment problcu~> bt~ ar assignment is not

necessarily a tour. If the a-sigrmen.s of a travelling s. ! .an

problem are ranked in increas.ng order of the objective f. .on,

starting with the optimal assignme. ., then t.: first assignment

which is a tour will be the ep imal tour.

A procedure is given for finding the sequence of ranked assign-
ments., Then a modified pYocedure is developed which fimds
subsequen;e which also leads bto the optimal tour bubt wefkh muwck
greater computational efficiency, This . applied to aw
asymmetric 10 city pvoule; having vandomly .nosen cost eic . .3,
Afte. adding a modification to take adventoge of symmetry, Croes'

20 city problem is solved.
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Definitions and Notation

Considér any point X = (xij) satisfving - relations
n .
' J%l xij =1 1=1l,seeyn
- :
;:i Xi4 =1 j = lyeesy N
xij = xij i, J =1, veey n
Thus X may be thought of a. n Xnms < with elements
either 0 or 1. The word,  .signment will be us o
mean the set of xij's which equal unity at the po 5

Hence the statement "a particular assiy 0t contadins

X,g' means that x,g = 1 at the point represented by the

assignment,

The objective fiL...tion is the linear form

where C = (cij) is the cost matrix,
Sometimes (i,j) will be used to derm = %13 and ¢ (i,]

Y denotes the set of all possible assignments for t

e Cs
note i

~roblem

concerned, y denotes any e zent of Y, z[y] is the s lue of

the objective function at vy

j.
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Y (r), where r is any index, is used to denote subsets of Y.

Y(r,s), where s is another index, denotes a subset of Y(r), etc.

y(r), y(r,s) etc, denote the minimal assignments, i.e, the one which

minimises the objective function, in the sets Y(r), Y(r,s) etc.

.

respectively,

Assignment problem means the problaz~ of finding the minimal (optimal)

assignment. This may be done, for example, by using Flood's

technique (the Hungarian method).

Flood's techni~ue involves ¢ o modi:ication of the cost matrix

by adding constants to its rows and columns, until a Tenmix with
all nonnegative elements and containing at leaét snos 2ern in each
row and column is obtained, This n~dified matrix vhe ¢nd of the

working By Flood's .:hlgorithm will - called the reduced cost

matrix., The optimal assignment contains cells, one in each row
L ]

and column, all of which correspond to zero cost values in the

reduced cost matrix.

In reference to any assignment problem and an optimal assignment for
it obtained by Flood's technique, Bi. -4 B.j denot. "ne minimal
elements in the i th row and j th column respectively of the

reduced cost matrix after excluding the cells contained in the
optimal assignment, Define

e(ij) = Bi’ + B;j

Let y = [(il’jl)""°'(in’jn)] be .ny assignment for a problem

of size n, Then [(J1,i1)ye000, (j,,in)j, which is a's. ur
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assignment,/)ill be called the transpose of y and denoted by R(y).

When the cost matrix is symmetric both the assignment and its

.transpose yield the same value of z., Let Y(s) be any set of

assignments, R i?(si} will denote the set of all assignuents whieh

are Eransposes of those in Y(s).

A(0), A(l), .... denote the finite sequ. .. of al. ussigni....s
in Y arranged in increasing order of the objective function.
While arranging the-elements of Y in the form of this sequence,
if at any stage several y have the same value of z. Tiey should
all be numbered serially in some ordar oefore counting the

assignment with the next higher va..: ¢ z,

Thus the equation
,A (8) = minimal ass gnme.: amoggi'gk- g}(O),..., A(s-l;%;-(l)
is true for s = 1, 2, .....

Let & stand for any arbitrarily chosen very large positive number.

AT BRI LI v ARG AU C Rl A VR i £ g M L A i
e " AL ] N R RE




S I S 2 L - YT

2

-0

T A Procedure for ranking a.s. aments in increasing orcer of the

objc.otive function

The general idea is as follows:

Consider stage s. A(0), ..., A(s-1) are known and A(s)

*

is to be found. At this stage Y is expresSednds a disjoint union of
$aC0), ..., CA(s=1)%, Y(1), v.v, Y(N)
- where for r = 1, ..., N each of Y(r) has the property that y(r)
can be found by the soiving of a single assignment problem,
Then

¢, < 27
A(s) = minimal assignment among ly-é}(o), vees A(s—l)rs

H]

)
minimal assignment among E;(l), eeey y(H):

Now suppose this is done and A(s) = y(t). Then Y(t) is partitioned
into disj9int subsets, say,
Sy} = as), v(t,1), .., sl
such that for r = 1, ...; M each of y(t,r) can be found by suiving
a single assignment proble... Then Y is the disjoint union of
{}(Oig. ceey €A<s>%, Y(1), cesy Y(t=1), Y(t+l),...Y(N),
Y(t,1), ...y Y(E,M),
This disjoint decomposition of Y is of the same form as that at the

beginning of stage s, except that it is advanced to s + 1,
To start the procedure A(0), the minimal assignment in Y, is found.

The details of the disjoint partitioning are now presented. Let
the minimal assignment, (ov any one of the minimal assignments if

there is a tie), be
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A0) = [(ip, 50y eey (s 303

let

ék(oi% |

Y(1) = géll y suc:. That (il, jl) éjx}

Y(r) 4=€all y such that (i, J1), «eey (14, :}p_l)QYE
and (i, jr)ézy

r =3, *:*, n-l.

Y(0)

It is seen that the Y(r) are mutually disjoint,

In an n X n problem no two assignments can contain more than
n-2 common elements, Hence the only assignment containing
(i1, 3709 eees gy, 3pog) is AC0).
n-l ‘
Y = Y(r)
r=0
Now

A(l) = minimal assignment among g} - gA(OZ§S

]

minimal assignment among zy(l), cees y(n—lig (2)

y(1) is the solution of an assignment problem with a cost matrix

(Kij) in which K(ll,Jl) =¢% and all other Kij = C,., since it is

ig
the minimal assignment not containing (i;, jl).
¥(2) contains (i,, jl). The remaining elements of y(2) are got
by solving the assignment problem of order n-l with a cost

matrix which is obtained by changing C(i,, j2) toA and then

striking off the ijth row and j;th column from C.

Continuing, for r = 3, ..., n=1 y(r) is obtained siwilarly as the
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solution of a single assignment problem of order n - r + 1, Hence
A(1) can be obtained from (2). The :ompututions required are the
solving of n-1 different assignment problems in all, of which

there ip one af opdep p for » % 2, ..., K,

Note that if Y contains other minimal assignments besides A(0), A(1)
will be one of them because A(1l) is obtained from equation (2).

In general, for s =1, 2, .....v.... since the procedure obtains
A(s) from equation (l)‘it will enumerate all the éssignments

having a given value of the objective function before going on

to the next higher value.

To find A(2), suppose A(1) = y(t) = [(i}, 3;)y weey (i 7, Feop)s
(mgy peleeelm y pp)l where (i3, 3;), oueny (ip_ys Jy_p) are
contained‘in all y€Y(t), and (mg, ps) x (it, jp) for s = t, ..y 0

by the definition of Y(t).

Now Y(t) will be expressed as a disjoint union of é&(ti} and several
other subsets, the minimal assignment in each of which is

obtained as the solution of a single assignment problem.

Let
Y(t,0) = §y(t)
Y(t,1) = ggll y€Y(t) such that (mg, pt)¥y
Y(t,2) = ééll yEY(t) such that (my, pt)Ey, (Mmey1s pt+l)¢y
Y(t, n-t) = é%ll yEY(t) such that(my, puly .oey (mn-Z’Pn-2)£éz;

TS, Rt el
»
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Then

n-t
Y(t) = U Y(t,s)
s=0

- n-t
' gY(t) - gy(t?% = UUJ  Y(t,s)
: s=1

and the required disjoint partition of Y(t) has been achieved,

n-1 n-t
QZY - Sac), A(1;§ = U v U (8.
o r=1 s=1

#t

A(2)

(/
minimal assignment among {Y - 7A(0), A(li?}

As before, it is evident that each of y(t,s) for s =1, ...,
n-t is obtained as the solution of a single assignment problem,
Hence A(2) is easily obtained from (3). The computations
required are the solving of n-t different assignment problems,

of which there is one each of orders r = 2, .,., n-t+l,

Repeated application of this procedure gives the sequence A(s) to

any desired extent.

While computing for A(s) if several (say r+l) assignm:nts show up

having the same value of z, call them A(8), ..., A(s+r) and in
order to continue the search for A(s+r+l), partition each of
the r subsets from which these assignments came, in the manner

described above,

BAA R coaa-t s ottt Loau i

minimal assignment among g}dl), eeey y(t=1), y(t+l), ...,

y(n-l)’ m/ Y(t,l), se ey y(t’n"t\)}

(3)
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At each stage the maximum amount of computations that may
be required for getting the next A(s) are the solving of at

most n-1 different assignment problems, one each of size 2, ..., N.
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The Travelling Salesman Problem

" This famous problem may be stated as follows.

A salesman wishes to visit n given cities in a single town.
Starting from any one of them and visiting each of the

others once and only once in some order, and returning to the-
starting point in the end, The costs of travelling from each
city to each other are given., Obviously the total cost of

the tour depends on the sequence in which the cities are
visited, The problem is to develop an efficient algorithm for

finding out the sequence associated with the minimal total

tour cost.

Hela and Karp [10] say "while no completely acceptable computational
method exists for solving the travelling salesman problem, several
procedures have been devéloped for obtaining optimum or near

optimum solutions, These procedures, however, are usually some-
what tedious, intuitive, and difficult to program for a computer.

A "state of the art" discussion of the travelling salesman

problem may be found in [1]".

A dynamic programming formulation by Held and Karp yields a
direct solution of problems of moderate size (13 or fewer cities)
on an IBM 7090, Larger problems are treated by means of a
"succeésive apprqximation technique" which may not always

converge to the optimal tour,
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Formulation of .the Travelling Salesman Problen

Let Cij be the cost of travelling from city i to ci+y j. The

fact that the salesman has to proceed to another city every

time will be expressed by setting

Ci‘ = 4 i=l, seey N,

i

Let (i,j) = 1 if salesman proceeds from city i to city j

0 otherwise

Let DH be the set of all possible permutations of the integers

)

1, «vsy N. Any elementd € Dn is an ordered vector (tl’ Ths sees T,
which is a permutation of the integers 1, ..., n. To each
elementCi = (tl, ceny tn) éiDn there can be associated an assignment:

[lty, ty)y (ty, tg)y weeny (t_ 4, t ), (¢ t1)]

n?'

Such an assignment will be called a tour. Let T be the set

of all hours. For any fixed n it is easily seen that TCY.

Any assignment which is
(1) not a tour and
(2)  does not include any of the elements of the
principal diagonal, i.e., (i,i) i =1, ..., n.

will be called a nontour.

Let U, = totalnumber of tours and non tours for the n city problem,
Since r out of the n cells along the principal diagonal can be

selected in (ﬁ) ways
r

n 1
n-r
{o) U
gives the number of assignments which contain exactly r cells

among the principal diagonal.
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Thus U, is givey by
n see [ ar J (ﬂ = !
(o) gn ¥ * Kr“ -r’; l + ‘,41) n
with the boundary conditions dl = v, Up = .

Hnneegun -(ﬁ-l)l}giVﬁﬂ the number of pessible nontoura in the

‘n-city problem.

An assignment which can be arranged in the form
Lety, t2)y (tg, t3)y eon (g, t1), oeell
with m < n is said to contain a subtour of length m and rust

be a non tour,

Let T(0) be the optimal tour, i.e. the minimal assignment

among T,

A
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Solving the Travelling Salesman Problem

Since It:Y, the procedure of ranking assignments in increasing
order of the objeetive funetion ean be uwsed to find the
optimal tour. Using the cost matrix C develop the sequence
A(s) until an assignment is found wnich is also a tour. This

will be the optimal tour.

However, the computations reguired can be greatly reduced by
omitting on the way several assignments which cannot possibly
be tours. A sequence B(s) would thus be obtained, whicn is

a subsequence of A(s), leading to the optimal tour.

The procedure is as follows, Consider stage s, At the end
of the previous stage Y has been partitioned into dizjoint
subsets
ol .
{ﬁ(O)j, eeey 3B(s-1)7, Y(1), ..., Y(N) and some
discarded subsets which have been ascertained to consist

entirely of non-tours.

y(4 ) has either been obtained in the previous stages of the
procedure, or may be obtained as the solution of a single

assignment problem,é‘=l,2,...,N.

Set

B(s)

H

minimal assignment among Ey(l), vesy y(N);

y(r), say.

&C&_‘?:fi?m_ e
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In general Y(r) will be of the form
) C o~ » () . .
Y(r) =7all y€Yf such that (ll,]l)..o(le,]e)é:y and

(ie+l’je+l)’ s00 <ie+k’ie+k)§fx?

and y(r) will be of the form

; y(P) = [(il’jl)'..(ie’:je); (ml.pl)otc(mw’pw)--u(mn_e’pn_e)]

Further partitioning of Y at this stage, if requi-ed, is
performed according to the fcllowing steps.
Step 1: If B(s) = y(r) is a tour, it is the optimal tour,

and the procedure has been ccmpleted,

Otherwise find the subtour in 3(s) = y(r) which contains the
smallest number of elements of the type (m,p), i.e. elements
not already forced into y(r) by the definition of Y(r). Let
w be the number of (m,p) elements in such a subtour.
Step 2: V\If there is more than one subtour in B(s) containing
w of (m,p) elements, choose that subtour among them which
maximises

minimum for (m,p) in subtour [8(m,p)]
" where the ¢ values are calculated from the reduced cost matrix
which gave y(r) = B(s).
Step 3: Having selected tne subtc.r index the (m,p) elements
in it in order of decreasing e so tnat (ml,pl) has the highest
6 value and (m,,p,), the smallest.
Step u: Partitioning Y(r) let

: S
"Y(r,1,0) = g;ll y Y(r) such that (ml,pl)%fy§

2 g 2
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¥(r,2,0) = ({all y€ Y(r) such that (ml’pl)€y2

(mz,p2)¢y and also )

i (pl.ml)éF y
Y(r,3,0) =(zall y: Y(r) such that (mlgpl) (m2,p2)€:y,

}
(m3,p3)§:y and also

(pysmy) (Pg,mg)é{;y -

e o & @

Y(r,w,0) = %;ll ye Y(r) such that (ml’pl)"‘(mw-l’pw—l)é:y

(mw,pw)é:y and also
(pl’ml).‘.(pw-l’mw—l)¢y o

Step S: the retained subsets in the partition of Y are the

disjoint sets

‘25(022....55(8—123,gé(si;, Y(1)eooY(r=-1), Y(r+l)...Y(N),
Y(r,1,0)¢e...Y(r,w,0),
and the procedure is now returned to the beginning to

commence stage s + 1,

Proof that no tours are discarded from Y in step 4, 5:

Let
Y(r,1) = Y(r,1,0)
Y(r,2) = {an y€ Y(r) such that (ml,pl)€y>
(m2,p2)¢ y~>
¥(r,3) = §all yE€¥(r) such that (my,p;), (mp,p,)"y
(m3,p3)a€ s

;(r,w) =§jall y€Y¥(r) such that (ml’Pl)"‘(mw-l’pw-l)éy;>

(mw.pw)¢ y\j’

sype A s bt oA el 0 Mk sl MR BV RIS U0 MUt Sl it 560 i b i O A A A I ik St < Lot e



If

yégY(r) - gy(rﬁjul Y(r,g)}

then (ml,pl)....(mw,pw) are alléjy and hence y contains a

subtour and so is a nontour,

Further, for & =2,3, ..., W , it is obvious from tuae
definition of Y(r,§,0) that

Y(r,§,0) C ¥(r,8)
and that any assignment in gY(r,S) - Y(r,&,Oi} contains
within it, at least one subtour of the form (mu,pu) (pu, mu),

and is therefore a nontour,

: . ,
Thus %?(r) - EY(PSQ }v} Y(r,§,0)

; T g =1
consists entirely of nontours and may therefore be completely

discarded’ from further computations in searching for the

optimal tour, This justifies step 5.

Motivation for steps 1, 2, 3:

By these steps the procedure attempts to make
z[B(s+1)] - z[B(s)]
as large as possible, while keeping the number of assignment

problems to be solved at each stage as low as possible.

Suppose the optimal assignment with respect to any cost matrix L—,
contains the cell (i,j) and yields a value of z, for the
corresponding objective function. Then from the definition

of 0(i,j) it is obvious that

minimal assignment not containing] ~ g s
z [ (i,j) for cost matrix L = 2 = 8(5,3)
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Due to this, step 2 assures that the sequence z[B(s)] would
jump at least by the indicated max min [6(m,p)], thus

achieving the purpose of securing the largest possible jump.,

The indexing in step 3 is an attempt to secure the highest
value of z for the minimal assignments among the subsets

containing the largest number of assignments, This has an
effect of reducing the sizes of assignment problems tc be

solved in succeeding stages.

Above all, step 1, by choosing the subtour in B(s) containing
the smallest number of elements of the type (m,p); keeps the
number of assignment problems to be solved for obtaining

B(s + 1) as low as possible,

Commencing the procedure, Stage l:

The proceedure is started by finding the minimal assignment

in Y, which is = A(0) = B(0),.
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A 10 City Asymmetric example

A cost matrix obtained by taking c(i,j) from a table of

random numbers is:

50 @ O 64 8 53 0 46 73 72 |
30 77 a 21 25 51 47 16 O 60

65 0 6 o 2 9 17 5 26 42

79 65 0 0 15 a 17 u7 32 43

76 96 48 27 34 0 o 0 25 0

56 7 45 39 0 93 67 79 a 38

30 0 u2 56 u8 77 72 49 23 a
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CQmmencing stage 1, it was found that the optimal assignment is
B(0) = A(0) = [(10,2) (7,10) (2,7), (1,9) (9,5) (5,6)
(6,4) (4,3) (3,8) (8,1)]
giving
)] = 2

€ommencing stage 2, it is found from B(0) that w = 3, Defining

Y(1) = {all yEY such that (10,2)6&;:}
Y(2) = (éll y€Y such that (10,2)€y, (7,10) (2,10)&;:}
Y(3) = gall yEY such that (10,2) (7.10)€y, (2,7) (2,10)
(10,7)(%'!)2
Then
B(1l) = minimal assignment améng %iy(l), y(2), Y(a;g ;

y(2) = [(10,2); (9,5) (3,9) (5,3), (2,7) (7,6)
(6,4) (4,8) (8,1) (1,10)] '

with z[B(1)] = 28

Commencing stage 3, define

Y(4) = gall y€Y(2) such that (9,5)ky!
Y(5) == {all yE€¥(2) such that (9,5 ¥y, (3,9) (5,9)@}
Y(6) = {all y€Y(2) such that (9,5) (3,9€y, (5,3)
(5,9) (3,30 y)
and B(2) = mininal assignment among { y(1), y(i), y(¥), y(5),

y(68 = y(6)
[(10,2) (9,5) (3,9); (6,4) (4,3) (5,6),

(2,7) (7,8) (8.1) (1,10)].

with z[B(2)] = 29,

SRR ey 2 g g
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Commencing stage 4, let
Y(7)‘k = Zall yE Y(6) such that (G,l&)l%:y}

Eall y€ Y(6) such that (6,4)Ey, (4,3) (4,6)& y}

Y(8) =
Y(9) = é;; yE Y(6) aueh that (6,4) (&,3)€y, (5,6)
: | (4,6) (3,0 €]
and B(3) = minimal assignment among {y(l), y(3), y(4), y(5),

y(7), y(8), y(2)

y(7)

=[(10,2) (9,5) (3,9); (5,4) (4,8) (8,1) (1,10)
(2,7) (7,6) (6,3)]
which is a tour and hence the optimal tour with

z[B(3)] = 33.

Continuing the procedure in similar manner, a stage further,

it was found that the optimal tour is unique.
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Special case of a symmetric cost matrix:

When the cost matrix is symmetric any assignment and its
transpose yield the same value for the objective function,
Thus‘tha tranaposa of tha optimal tour would be anothar

optimal tour, This fact, when used in the computational
procedure for the travelling salesman problem, permits at

any stage, the discarding of not only the partitions

containing all nontours, but also those whose transposes

form subsets of some of the other partitions which are retained
for the next stage of the algorithm, This modification to

the procedure can usually be expected to effect considerable

computational savings.

In a symmetric problem the first few assignments in the

sequence’ B(0), B(l), susse... will usually contain several

two element subtours, Suppose that

B(0) = A(0) = [(i,3) (3,i) vuu..]
and that the subtour (i,j) (j,i) is the one selected to
be used for partitioning Y. Then the subsets to be
retained for the next stage would normally be

Y(1) ={all y€ Y such that (i,j)&:y;}

g - .
Y(0,2) = agll y< Y such that (i,3)€y, (j,i)ﬁ;y

But

RZY(O,28 =Eall y¢& Y such that (j,i)€ vy, (i,j);{y)>

and therefore

R gy(o,gg C .
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Thus it suffices to consider only Y(1l) for the succeding
stages, since even if Y(0,2) were to contain the optimal
tour, its transpose, which is also optimal, would be
contained in Y(1). Thus

' B(1) = y(1).

Some additional gain can be made at the second stape if a

subtour of two elements appears in B(1l) also. Suppose
B(1) = y(1) = [(m,p) (p,m), «v..]

The normal partition of Y(1) would be

Y(1,1) = Eall y€ Y such that (i,j) (m,p)é‘g y}

Y(1,2) = g}ll yEY such that (m,p)c y; (i,3) L@,m)¢izf

and one would usually retain only these two subsets for the

third stage, However let
*Y(1,2,0) = géll yEY such that (§,i) (m,p)Ey
(5,9) (pmiy

Y(1,2,1) =gall y&Y such that (m,p)Ey (i,j) (p,m) (j,i)c)il;y

Then Y(1,2) = Y(1,2,0) U ¥(1,2,1)

and R Y(1,2,1) C Y(1,1).

Thus it suffices to consider only the subsets Y(1,1) and

Y(1,2,0) for the third stage.

Application of this principle beyond the second stage, even
if two element subtours persist among the B(s) in the

sequence, does not appear to be very fruitful,
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A 20 City Symmetric Example:

The algorithm together with the simplyications applicable
under the special case of symmetric cost matric, has been

uned to solve tha 20 city problem Jue to Crels [7].

The optimal assignment for the problem is
B(0) = A(0) = [(16,8) (8,16), (1,12) (12,1) (2,14)
(14,2) (3,20) (20,3) (4,13) (13,4)
(5,9) (9,5) (6,19) (13,6) (7,15) (15,7)
(10,18) (18,10) (11,17) (17,11)]
with z[B(0)] = 218,
where (16,8) (8,16) form a subtour of two elements within:

B(0), both corresponding to the maximum value of 6 = 17,

Commencing stage 2, let
Y(1) = Eall yEY such that (16,8)<1F’y3
and according to the alg;rithm
B(1) = y(1) = [(9,5) (5,3), (1,12) (12,1) (2,14) (1u4,2)
(3,20) (20,3) (4,13) (13,4) (10,18) (18,10)
(11,17) (17,11) (6,19) (19,7) (7,15) (15,8)
(8,16) (16,6)]

with - z[B(1)] = 235.

Commencing stage 3, let

gall y&Y(1) such that (9,5);%}

Z}ll y&EY(1) such that (8,16) (9,5)C vy, (3,9)¢5y

Y(2)

Y(3)

and define

B(2)

minimal assignment among {;(2), y(ag
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It was found that Y(2) has two optimal assignments and that
both these and y(3) yield the same value of z, However all
these are nontours and it is necessary to continue the

algorithm further,

As has been noted under the procedure for developing the
sequence of ranked assignments, any one of the optimal
assignments may be considered first, and the other one would
automatically turn up in the sqcceeding stage of computation.
Thus let

B(2)

one of the optimal assignments in Y(2)

[(1, 12) (12,1), (11,17) (17,11) (13,4) (4,13)
(2,8) (8,16) (16,15) (15,7) (7,19) (19,6) (6,5)

(5,9) (9,3) (3,20) (20,18) (18,10) (10,14) (14,2)]

B(3)

"

y(3) = [(1,16) (8,5); (19,7) (7,19), (16,15)
(15,8) (1,4) (4,13) (13,2) (2,14) (14,10)
(10,18) (18,20) (20,3) (3,9) (5,6) |

(6,17) (17,11) (11,12) (12,1)].

with 2[B(2)] = z[B(3)] = 2u5.

In stage 4 it is necessary to partition both Y(2) and Y(3) in

order to get the next element in the sequence B(s), Let

v(4) = $all yEv(2) such that (1,12)(@}

¥(5) = §fall y€Y(2) such that (1,12)€y, (12, l)¢x)>
Y(6) = {all yEY(3) such that (19,7)& yj |
Y(7) = {;11 yEY(3) such that (19,7)€y, (7,19)$Z¥))

RIS
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It was found that Y(2) has two optimal assignments and that
both these and y(3) yield the same value of z, However all

these are nontours and it is necessary to continue the

algorithm furthar,

As has been noted under the procedure for developing the
Sequence of ranked assignmernts, any one of the optimal
assignments may be considered first, and the other one would
éutomatically turn up in the succeeding stage of computation,
Thus let

B(2)

one of the optimal assignments in Y(2)

(€1, 12) (12,1), (11,17) (17,11) (13,4) (&,13)
(2,8) (8,16) (16,15) (15,7) (7,19) (19,6) (6,5)

(5,9) (9,3) (3,20) (20,18) (18,10) (10,14) (14,2)]

B(3)

y(3) = [(1,16) (9,5); (19,7) (7,19), (16,15)
kls,s) (1,4) (4,13) (13,2) (2,14) (14,10)
(10,18) (18,20) (20,3) (3,9) (5,6)
(6,17) (17,11) (11,12) (12,1)].

with z[B(2)] = z[B(3)] = 2u5,

In stage 4 it is necessary to partition both Y(2) and Y(3) in

order to get the next element in the sequence B(s), Let

Y(4) = gall Y€ Y(2) such that (l,l2)¢y]

Y(5) = iall y€Y(2) such that (1,12)¢ vy, (12, “ﬂi)}

Y(6) = {all yE€Y(3) such that (19,7)¢ y)>

Y(7) = {all yEY(3) such that (19,7)€y, (7,19)¢J
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And then
B(4) = minimal assignment amongg;y(u), y(5), y(8), y(VEj? .
= y(5) = [(1,12); (19,7) (7,19), (8,15) (16,15) (15,8)
(12,11) (11,17) (17,6) (6,5) (5,9) (9,3)
(3,20) (20,18) (18,10) (10,14) (14,2) (2,13)
(13,4) (u4,1)]
with z[B(4)] = 2us,

It may be noted that B(4) = y(5) is the other optimal

assignment in Y(2).

Going over to stage 5, let
Y(8) = E?ll yEY(5) such that (19,7)43Xj

Y(9)

£a11 y €Y(5) such that (19,7€y, (7,19)q€yj)
and then

"B(5) = minimal assignment among gy(u), y(6), y(7), y(8), y(9ji

It was found that Y(7) has two optimal assignments and that
both these and y(4) yield the same value for z, However only
one of the optimal assignments of Y(7) is of interest to the

problem since it happens to be a tour., Hence that is the

~optimal tour,

B(5) = the tour which is one of the minimal assignments in Y(7)

the optimal tour

[(8,16) (9,5) (19,7); (1,4) (4,13)
(13,2) (2,14) (14,10) (10,18) (18,20)
(20,3) (3,9) (5,19) (7,15) (15,8)
(16,1) (6,17) (17,11) (11,12) (12,1)].

with z[B(5)] = 2us6,

The transpose of B(S5), which is another optimal tour, is the

solution obtained by Croes.
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Computational Time:

The 10~-city problem has been solved by hand, and the time
takan was abeut hdalf am heur,

The 20-city problem involved the solving of 10 different

assignment problems of sizes ranging from 16 to 20, On

_the Burroughs 220 computer, at the Computing Centre, Case

Institute of Technology, this took about 10 minutes in all,
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