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Degeneracy ©heQkin8 in linear progremmJn8 18 NP.¢omplete. So is the problem of cheekin$ whether there exists a basic 
feasible solution with a 8pa~ifled obje:tive value. 

Degeneracy testin8, linear prouaminina, NP.complete, linear dependence 

1. Degenera~ testing 

Consider the general linear program in stan- 
dard form, with integer data 

minimize Z(x)  - cx, 
subject to Ax - b, (1) 

x ~ , 0  

where A is a matrix of order m × n and rank m. 
This problem is said to be degenerate, if there 
exists a basis B for (1) satisfying the property that 
at least one component in the vector B-~b is zero. 
See [I-10,13]. Degeneracy in linear programming 
was studied extensively, because of the problem og 
cycling that it can introduce in the simplex algo- 
rithm, thereby preventing the simplex algorithm 
from terminating in a finite number of steps unless 
special measures are taken to resolve degeneracy 
[1-10,13]. If (1) is degenerate, the point b must be 
in a subspace of R m spanned by some subset of 
( m -  I) column vectors of A. Therefore, when A, 
b, ¢ are allowed to be real or rational, in a statisti- 
cal sense, (1) will be nondegenerate almost always. 
Also, even if (1) is degenerate, when b is modified 
to b (e )=b+(e ,  e2,...,e") T, there exists an e l>0  
such that whenever 0 < e < e t, the modified prob- 
lem is nondegenerate. Thus, a minor perturbation 
will make (1) nondegenerate, and methods for 
resolving degeneracy in the simplex and other 
pivotal algorithms have been developed based on 
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such perturbations [2,3,7,10,13]. In spite of all 
these statistical arguments, it has been observed 
that most linear programming models constructed 
in practical applications tend to be degenerste [3]. 

Here we study the computational complexity of 
checking whether a 8i.ven instance of (!) is degen- 
erate. We will first discuss a combinatorial optimi- 
zation problem. Let a - { a l , . . . , a m } ,  b =  
(bl,...,bn) be two given finite sets of positive 
integers. The term equal partial sums denotes the 
combinatorial optimization problem: given the sets 
a, b, find whether there exist subsets L J satisfying 
g,~ I c {I,...,m}, ff,#,J c {I,...,n}, such that 
• , . , a ,  = Z . bj. 

Lemma. The problem equal partial sums is NP.com. 
plete. 

Proof. Clearly, the problem equal partial sums is 
in NP. Consider the subset sum problem: given 
positive integers dt,...,dp; do, check whether there 
exists a subset I c ( l , . . . ,p ) satisfying Zl~idl = do. 
Here, is Zr=ldl=do, l = ( l , . . . , p )  provides an 
answer to the subset sum problem in the affirma- 
tive, so without any loss of generality we can 
assume that ~-r= idl > do. Let a = I + Z/'= idl. In 
this case, the subset sum problem is equivalent to 
the equal partial sums problem with a = 
(dl,...,dp.), b=(d0 ,  a). Thus, the subset sum 
problem as a special case of the equal partial sums 
problem. Since ~he subset sum problem is NP- 
complete [11,12], these facts imply that so is the 
equal partial sums problem. 
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Degeneracy testing is NP-eomplete. 

Fleet. If a basis B for (!) exists exhibiting degen- 
m'a~, a nondeterministic algorithm can select this 
b ~  one ~ 1 ~  at a time in at most m steps. 
Thus, degeneracy testing is in NP. 

Consider the special case of (1), known as the 
transportation problem, in. which the constraints 
are of the form 

~ xs j=a a, t = l t o m ,  
/=I 

m 

Jq j •O for all i , j  (2) 

where at,...,am; bl,...,b, are given positive in- 
tegers satisfyin8 ]~7'=la,=[]=lb J. It is known 
[8,9,13] that (2) is degenerate iff there exists proper 
subsets f f~  1 c (l,.. . ,m}, ~ J  C {1,...,n) satis- 

fying ~-,Gaa, = Zjejb~. Thus checking whether (2) 
is degenerate is equivalent to the equal partial 
sums problem with a - { a l , . . . , a m } ,  b =  
{bt,...,b,). By lemma, these facts clearly in/ply 
that degeneracy testing is NP-complete. 

A degenerate feasible basis for (I) is a basis B 
for (!) satisfying B- 'b  • 0, and at least one com- 
ponent of B-tb  is zero. It is possible for (1) to be 
degenerate, and yet there may not exist a degener- 
ate feasible basis for (I). For the special case of the 
transportation problem (2), it can be shown that a 
degenerate feasible basis exists iff the equal partial 
sums problem with a ffi (at,...,a,,}, b = (bt,.. . ,b,} 
has a solution. This leads to the followin& 

C ~  I. The problem of checking whether there 
exists a degenerate feasible basis for (I). is NP.com. " 
flete. 

Corollary 2. Degeneracy testing is NP, complete even 
for tie special case of the transportation problem. 

a, ~ ~ with a ~ objective value 
Given the LP (1) with integer data, and a 

rational number O expressed as a ratio in smallest 
tmns, this problem is to check whether there exists 
a basic feasible solution of (!) at which the objec- 
five funclion assumes the value of 8. Clearly this 

problem is in NP and it can be shown to be 
NP-complete by showing the problem of testing 
for a degenerate feasible basis in (1) to be a special 
case of it. We now show that extreme point with a 
specified objective value problem is NP-complete 
even for the special case of Assignment problem: 

Consider the subset sum problem with data 
• dl,...,dp; d o discussed above. Let C - ( ¢ i j )  be a 
2p × 2p matrix: 

dldl ...dl * 
dad2...d 2 0 

C= d,d,...d, " 

0 0 

The last p columns of C are zero. The first p 
columns of C are all equal to (d,, d2,.. . ,  
dp, 0, 0,...,0) T ~ R 2p. Clearly, the answer to the 
subset sum problem is in the affirmative iff there 
exists an assisnment of order 2p for which the 
objective value, with C as the cost matrix is do. 
Since the assignments.are the extreme points asso- 
ciated with the assisnment problem, this shows 
that the subset sum problem is a speciaI case of the 
extreme point with a specified objective value 
problem. So the extreme point with a specified 
objective value problem is NP-complete, even when 
restricted to the assignment problem. 

& Singular prineipal subma~x problem 

Given a square, nonsinsular, integer matrix, A, 
consider the problem of checking whether there 
exists a singular principal submatrix of A. This 
problem is clearly in NP. To show that it is 
NP-complete, consider asain the subset sum prob. 
lem with data dr, da,...dp; do, as discussed before. 
If d o •  ]~=ldt, the problem becomes trivial. So, 
without loss of generality, let d o < ~=  ida. 

Now let us define a square, non-singular ms- 
trix, A, as follows: 

I 
do d, d2 ... dpl 

A =  1 1 0 ... 0 
I 0 1 . . .  0 " 

I 0 0 . . .  1 

Clearly, the answer to the subset sum problem is 
affirmative iff there exists a principal submatrix of 
A, which is singular. This leads to the following: 
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Corollary: Given two square, nonsingular, integer 
matrices A, B of order n, let A. j, B. j denote the jth 
column vectors of A, B resp. Then, checking whether 
there exists a set of columns { D. 1,..., D. n), which is 
linearly dependent, with D.j  E {A.j ,  B.j},  is NP. 
complete. 

4. Bilinear problem 

The problem, considered, is 

minimize yTDz +pry + qTz, 

subject to By -- d, (3) 
E z = # ,  
y ; , 0 ,  z ; ' 0 .  

We show below that degeneracy testing in (1) can 
be posed as a bilinear problem of the type (3). 

Define 0-1 variables 

{10 if xj > O in a solution for (1), 

"~= i f x j = 0 .  

Then the standard trick of transforming (I), using 
0 - I  variables yj to count the number of positive 
variables, xT, in a solution in (1) is well known. 
This leads to a system, say (4) of linear constraints 
in x, y, including 0 ~.~ ~ 1 for all j. To make sure 
that all y7 are either 0 or 1, make the objective 
function equal to a ~ f l y j ( l - y  j), where a is a 
suitably large positive penalty parameter. 

Now, put two sets of system (4) together. In one 
call the variables as x', y. In the other, call them 
x", z. Call this combined system as (5). 

The quesiion: Does (1) have a feasible solution 
with number of positive xl '~ m - 1 is equivalent to 
the following: 

Does (5) have a feasible solution in which all yj, 
zj are integer and y = z? 

This problem is the same as that of minimizing 

/E n 

yj + • Z yj(  
j = l  j = l  

R n 

1= I ./= I 

subject to (5). 
On simplification, (6) becomes 

- 2 a  ~ z j + a  ~ (yj+z#) 
j - i  j - I  

(6) 

n 

+ Z (7) 
J=i 

Which is clearly a bilinear objective function. So, 
the bilinear problem (1) is NP-hard. 

S. Some open problems 

Here is a problem related to the Hirsch Conjec- 
ture whose status is unknown. Given a convex 
polyhedron specified by linear inequalities with ,, 
integer data 

A x ~ b  

and two extreme points x I, x 2 on it and a positive 
integer a, the problem is to check whether there 
exists an edge path in the polyhedron between x t, 
x 2, containing a or less edges. The computational 
complexity of this problem is still unknown. 

A second problem of interest is the following: 
Suppose we are given an integer matrix A of order 
m × n. The problem of finding a maximum cardi- 
nality linearly independent subset of column vec- 
tors of A can of course be solved efficiently, using 
pivot step in at most O(n 3) time. The complemen. 
tary problem of finding a minimum cardinality 
linearly dependent subset of column vectors of A 
seems to be hard in general. A specific problem of 
interest is, given that rank of A is m, checking 
whether there exists a subset of m columns of A, 
which is linearly dependent. The problem is simple 
when A is unimodular. But its computational com- 
plexity is not known in general. 
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