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Abstract. We discuss a variety of clustering problems arising in combinatorial applications and in
classifying objects into homogenous groups. For each problem we discuss solution strategies that
work well in practice. We also discuss the importance of careful modelling in clustering problems.

1. Introduction

The input for a clustering problem is a set ofobjects, each object usually comprising
data measuring r (greater than or equal to one) of its relevant characteristics. The
desired output is a partition of the set of objects into disjoint clusters (also called
classes or groups) satisfying certain constraints on their cardinalities that either
minimize an objective function (for clustering in optimization problems), or to
make each cluster as homogeneous as possible (for clustering in classification
problems).

Clustering is an extremely important part of quantitative methods in many
applied sciences. Indeed we show here that clustering is the main component
of many combinatorial optimization problems. We then discuss some important
clustering problems and algorithms that solve them with practical efficiency. Finally
we show a clustering problem that yields strange results to help demonstrate the
importance of careful modeling for getting results that make sense.

2. Clustering problems in combinatorial optimization models

Many combinatorial optimization problems involve finding a partition of a set
into nonempty subsets satisfying certain conditions. Such problems can usually be
interpreted as clustering problems. We illustrate with several examples.

* Part of this work was carried out while the author was visiting the IOE Department, University
of Michigan on a CNR fellowship. Author for correspondence
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2.1. A TASK ALLOCATION PROBLEM

A task allocation problem arises in determining a minimum cost design for the
microcomputer architecture in an automobile design of the future [1, 5]. For this
vehicle, many tasks, such as the monitoring of the integrated chasis and the active
suspension, will be performed by microcomputers linked by high- and/or low-speed
communication lines. The system cost is the sum of the costs of the processors
(microcomputers) and the data links that provide the inter-processor communi
cation bandwidth. Each task processes data coming from sensors, actuators, and
signal processors, digital filters and has a throughput requirement in KOS (kilo
operations/second). Several types of processors are available. For each, we are
given its cost, the maximum number of tasks it can handle, and its throughput
capacity in terms of KOS. All the tasks must be processed within one time cycle,
and the load on any processor cannot exceed its capacity.

The tasks are inter-dependent. To complete one task, we may need data from
another. So tasks allocated to different processors may need communication links,
while tasks executing in the same processor do not need this communication
overhead. The problem is to partition the set of tasks into groups (or clusters),
with each group assigned to a processor, so as to satisfy all the constraints with
minimum system cost. This problem is a clustering problem.

The number of tasks, n, typically varies between 50 and 100. The number
of processors, m (the number of clusters to be formed), is around 6. Integer
programming formulations of this problem involve rn (n2 + 1) binary variables
[1, 5] and are difficult to solve with currently available software. Problems having
ri = 20 tasks and m = 7 processors can run for a week or more on today’s fastest
workstations and need not lead to satisfactory solutions. On the other hand the
specially designed genetic algorithm in [1, 5] produces a very satisfactory solution
to this problem in a reasonable time.

2.2. TRAINING CENTER LOCATION PROBLEMS

Telephone companies and national and multi-national food chains (e.g. McDon
aid’s) have a steady demand for training new employees for different locations.
Suppose a company has offices in n locations in need of trained employees and
that it has decided to set up at most p training centers. Once the training centers are
established, new employees from each location will be sent to one for training. In
typical applications n is usually 500, and p is of the order of 3 or 4. The problem
is to partition the set of n locations into p groups or clusters, each cluster to be
handled by a single training center, and to find the site where the training center
for each cluster should be set up. The objective function typically is to minimize
the sum of the annual operating costs of the training centers and the total annual
travel costs for the trainers. Such problems can also be interpreted as clustering
problems.
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The zero-one integer programming formulation of this problem leads to a P
median type location model [3]. In practice, large scale models of this type can be
solved quite easy using commercial integer programming software. Local search
methods, such as exchange or interchange heuristics, can also produce excellent
solutions for such problems [3].

2.3. RELATED PROBLEM IN DRILLING FOR OIL OFFSHORE

Clustering problems are also relevant to the development of offshore oil fields.
Here, exploratory wells are drilled to help discover new fields. Then step-out-
wells, drilled from mobile drilling rigs are used to determine the size and other
characteristics of the field. The data obtained from this activity are used to decide
the location of production wells, or targets. A typical 3 x 3 mile offshore field
would have between 25 and 300 production wells. The drilling of production wells
is carried out from fixed platforms that are placed on the ocean floor. The cost of
drilling a production well depends on the length and the angle of the hole drilled
from the fixed platform to the target. Exact data on these costs are very hard to
obtain; they have to be approximated using information from past drilling jobs.

Setting up fixed platforms is very expensive. The cost of a fixed platform
depends on the water depth and bottom conditions at its location and on its size,
which is measured by the number of production wells to be drilled from it. Size
can vary from 6 to 25. The problem is to partition the set of production wells into
clusters or groups of size 6 to 25, each group to be drilled from a single fixed
platform to be set up. Also, the best location for each such platform has to be
determined. The objective is to minimize the sum of the costs for setting up the
fixed platforms for drilling the production wells. This is again a clustering problem.

This important practical problem involves large sums of money, but the cost
data can only be estimated. It can be viewed as a two stage problem: in stage 1
the locations for the fixed platforms are selected; in stage 2 the production wells
are allocated to fixed platforms where locations have been determined. Solution
approaches for this problem usually iterate between stages, using integer program
ming and network flow models, until a good plan is obtained.

2.4. THE ARMY’S M-CCTr LOCATION AND ROUTING PROBLEM

This next problem involves clustering in two hierarchical stages. It arises training
the Reserve Component of the US Army (RC) on Combat Vehicle simulators,
called Mobile-Close Combat Tactical Trainers (M-CCTT). RC units are widely
distributed in many villages, towns, and cities throughout the U.S. The RC hold
regular jobs outside the army. As part of their Army Reserve Commitment, they
agree to several weekends training each year to keep their skills sharpened.

To prevent occupying too much of the weekend in travel, the Army provides
training to each RC unit at a training station that is to be no farther than a Maximum
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Travel Distance (MTD), (Currently 100 miles) from where they live. The word
armory refers to a place (village, town, or city) where RC units to be trained are
residing. There are about n = 400 armories geographically dispersed across the
U.S. The word site refers to a place suitable for being a home base (HB) for an
M-CCTT. The Army has identified about 30 such M-CCTT sites but plans to set up
at most p = 20 of them. Each M-CCTT costs several million dollars to establish,
so it is important to find the minimum number to do the job.

At the top level, the problem is to partition the n armories into at mostp clusters,
each cluster to be trained at an M-CCTT. And for each cluster, one must find the
best site to be the HB for the M-CCTT that will train the RC residing at an armory
in the cluster. Once the clusters are formed and the HB to service each cluster is
determined, all the RC at armories within each cluster which are within the MTD
of their HB go to it for training. However, a cluster may contain armories that are
farther than the MTD from their HB.

At the second level, it is necessary to form the armories into subclusters and
to select a Secondary Training Site (STS) within each subcluster to tram that
subcluster. Each armory in a subcluster should be within the MTD of its STS. The
M-CCTT stationed at the HB for the cluster will then travel to each of the STS
to give training to RC units within its subcluster. As an example, we show below
in Figure 1 the HB for an M-CCTT by a star (it is Camp Bowie in Texas), three
STS that this HB travels to by square nodes, and armories that are serviced by
one of these four places by circle nodes, from the solution developed in [6] to this
problem.

There are several objective functions. The one of highest importance is to min
imize the number of M-CCTT to be stationed. The next most important objective

Figure 1. Army’s M-CCIT location and routing problem. The location of a HB for an M
CCTT is shown using the star-node. This M-CCTT travels to three different STS indicated
by square nodes. RC-armories who get training at these various places are indicated by small
circle nodes.
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function is to minimize the total mileage of the M-CCTT’ fleet in traveling to their
STS’s, since the cost per mile of moving a M-CCTr is very high. Finally, the third
objective is to minimize the total bus mileage of all the RC units to. get to their
assigned training places. The whole problem was solved in [6], using P-median,
set covering, and multi-depot vehicle routing models. It leads to a nice solution
saving the Army several millions of dollars.

3. Clustering problems in classification

The problem of classifying objects into homogeneous clusters appears commonly
in all sciences. In such studies, one also often needs simple but reliable criteria for
classifying objects that may arrive in future. One technique for developing such
criteria is presented in section 3.2.

3.1. BREAST CANCER DIAGNOSIS USING BREAST CYTOLOGY

A commonly used technique for checking for breast cancer analyzes breast masses
from fine needle aspirates (FNA). For each breast FNA, specific features are mea
sured for each nucleus. These are: size (area, radius, perimeter), symmetry, number
and sizes of cavities, fractal dimension of the boundary, smoothness (local varia
tion of radial segments), texture (variance of gray levels inside the boundaries). In
using these data, it is required to classify breast FNA into three classes:

• malignant;
• suspicious (need to be tested again in six months);
• non malignant.

The percent of misclassification should be as small as possible.
Mangasarian and his associates [4] develop criteria for this classification based

on a piecewise linear function developed using a neural network approach. This
technique is being used successfully for breast cancer diagnosis at the General
Hospital, University of Wisconsin at Madison.

3.2. DEVELOPING A SIMPLE CLASSIFICATION RULE BASED ON A LINEAR FUNCTION

Suppose we have data for k different characteristics measured on n objects reliably
known to belong to a specific cluster or group or population. Let xJ = (xi, .. . , x )T

be the vector of measurements of characteristics 1,.. . , k on objects j, for j = 1 to
n.

Normally people use classification criteria only if they are simple. For this
reason, suppose it is desired to find a linear function of the k characteristics that
best characterizes this group to use for on-line classification of objects appearing
in the future. This requires finding two parallel hyperplanes H1 and H2 j R,k

separated by the smallest distance possible, that together contain all the n points
z’. See Figure 2 for an illustrative example involving measurement on



234 SANTOSH KAB AOl ET AL.

xl

‘C

x2

Figure 2. Pairs of hyperplanes containing the set of data. Two pairs of hyperplanes (the dashed
pair, the solid pair) containing all the points representing a population between them. The solid
pair has the smallest distance separating them, so best characterizes the population.

k = 2 characteristics on a group of objects represented by points plotted on the
two-dimensional Cartesian plane.

Suppose such an optimal pair of hyperplanes in R,c has been found, and these
hyperplanes are represented by the linear equations aixi + + akxk = d1
and aixi + + akxk = d2, respectively, where, without loss of generality,
we assume d2 d1. The distance between these hyperplanes is iS. = (d2 —

di)//a -i-... + a. If i is reasonably small, we can use the following criteria to

classify whether an object with measurements (xl, . .
. z’ belongs to the group:

thus (xl,...,xk)T

belongs to the group if —* d1 aixl +“ + akzk d

does not belong to the group —, otherwise.

If is large, it would not seem reliable to characterize this group using simple
bounds on a linear function of the k characteristic measurements.

The problem of finding an optimal pair of hyperplanes leads to the following
nonlinear program: find ai,... , aj, d1,d2 to

minimize f (d — di)//a + + a

subject to d2 d1, (1)

d1 (al,...,ak)x’ d, j 1 tori (2)

(al,...,ak)O. (3)

This is a nonconvex, nonlinear program; in particular the constraint (3) makes it
difficult.

One approach for solving this problem eliminates constraint (3) and solves k
separate problems. For t = 1 to k, the t-th problem is to minimize f subject to
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only (1) and (2) fixing at = 1, but leaving the other variables free. We take the best
of the solutions to these k problems. While each of these k problems is a linearly
constrained nonconvex, nonlinear program, we find that very satisfactory results
can be obtained using commercial nonlinear programming software.

In practical applications, one may have data on n objects, but may not be
absolutely sure that they all belong to the group, i.e., there may be some outliers.
In this case one can select a target fraction A(A = .95 or .99 is typical) and find the
optimal parallel hyperplane pair that includes at least the fraction A of data points
between them. To model this problem, we introduce the binary variables, for j = 1
ton,

= f 1 if the j-th object is in between the two parallel hyperplanes
1.. 0 otherwise.

Then for t I to k, the t-th problem discussed above, modified to ensure that
at least a fraction A of data points lies between the parallel hyperplanes is: find
al,...,ak,dl,d2to

minimize f = (d2 — di)/./a +... + a2

subject to d2 d1,

dly—cr(l—y)<(aj,...ak)x3<d2+cE(1--y), j—1,...,ri

at = 1,

y2=O,I, forj=lton,

where a is a large positive number. This is a nonlinear integer program. Even though
software for solving nonlinear integer programs is not available commercially, we
found that satisfactory solutions can be obtained using research software if n is
not large. Of course we take the best solution from among those obtained for the
k problems. Examining solutions based on different values for the fraction A may
lead to useful information.

4. Importance of a careful modeling

For developing criteria for classifying objects into homogeneous clusters, one
often uses models that try to minimize measures of within-cluster variation. These
measures and associated constraints must be chosen carefully if the results are to
make sense. We illustrate this with a model that leads to strange results.

4.1. A CLUSTERING MODEL BASED ON MEASUREMENTS OF A SINGLE
CHARACTERISTIC

Suppose we have data on the measurements of a single important characteristic
of ri objects. From practical considerations, suppose we know that these objects
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belong to k distinct groups (here n >> k). To develop classification criteria for
these groups based on the data, one is faced with the problem of partitioning the set
of n objects into k nonempty disjoint clusters that are as homogeneous as possible.

Let at, . . . , a, be the measurements on the n objects arranged in increasing
order (i.e., aj a a,j. Given a subset S of these objects, a commonly
used measure of nonhomogeneity is

f(S) = (Iai — aji : over pairs of objects i,j S).

So, if S1, .. . , S,, is a partition of objects 1,.. . , n into k nonempty disjoint clusters,
we could use f(S1) + ... + f(S) as a measure of nonhomogeneity of the set of
clusters.

Now consider the problem of forming objects 1,. . . , n into k nonempty disjoint
clusters to minimize this measure. This leads to a 0—1 integer programming model
with the following decision variables:

11 if object i is in cluster t
for i = I to n, t = 1 to S, yj. =

0 otherwise,

11 ifobjecti,j in some clusterfor 1< .2 < n,x=
— —

— 1 0 otherwise.

Then the model is:

minimize =l (a, — a)zj
subjectto z= Vit = 1, fori = 1 ton

i Yit> I, for t = 1 to k
Yzt+Yjt—Xijl, fort=ltok,1ijn
all variables are 0 or 1.

We found that this model is quite easy to solve, even for large values of n, with
available integer programming software. We discuss the results with two examples.

4.2. PARTITIONED OPTIMAL CLUSTER

Example 1. Suppose k = 2, n = 8, and the measurements are 98, 100, 103, 105,
150, 151, 155, 160. The optimal clusters are {98, 100, 103, 105} and {150, 151,
155, 160} shown in Figure 3. The intervals spanned by the clusters are disjoint.
This agrees with out intuitive judgement of what the clusters should be. As a
classification rule for other objects that arrive in future, we can define a criterion

Criterion
value.

151

100 1O3, 15155 160

Figure 3. The optimal clusters.
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10 12o 21 30

Figure 4. The optimal clusters.

value of 127.5 and put objects having measurement 127.5 in the lower group
and those having measurement> 127.5 in the higher group.

4.3. NOT PARTITIONED OPTIMAL CLUSTER

Example 2. Suppose k = 2, n = 5, and the measurements are 10, 19, 20, 21, 30.
The optimal clusters are { 10, 30} and { 19, 20, 21 }, see Figure 4. The intervals
spanned by the clusters are not disjoint, but they are nested (i.e., one is a subset of
the other). This is very counterintuitive, and does not lead to a rule for classifying
future objects.

Indeed Boros and Hammer [2] prove that for an optimal clustering in this
problem, the intervals spanned by the clusters are nested (i.e., one is a subset of the
other). They also prove that if the intervals spanned by the cluster are not nested,
then they are disjointed. When the intervals spanned by the clusters arenested, the
optimal clustering obtained does not lead to a simple rule for classifying future
objects.

4.4. A MODIFICATION OF THE CLUSTERING MODEL DISCUSSED IN SECTION 4.3

We have seen that when the clustering model discussed in section 4.1 produces
clusters with intervals that are not disjoint, the results are not useful for developing
rules for classifying future objects, see the example in section 4.3. A way around
this difficulty is to constrain the intervals spanned by the constraints to be disjoint.
This leads to the following problem:
Input: objects { 1, .. . , n} with measurements aI, . . . , a in increasing order; k =

number of clusterd desired, k < n.
Output needed: form the n objects into k nonempty clusters, S1,... , S,, mini
mizing f(S1)+ . . + f(S,) while satisfying the property that the intervals spanned
by them are disjoint.

This model leads to an optimum set of clusters useful for developing rules for
classifying future objects. We show that this problem can be posed as a shortest
chain problem and solved efficiently.

4.5. THE SHORTEST CHAIN FORMULATION

To derive the shortest chain formulation of the cluster problem in section 4.2, we
construct the relative network g(V,E), in the following way:
a) Define the set V.
V is partitioned into k +2 disjointed sets V Vo U V1 U. . . UV,1+1,each representing
a layer. V0 and Vk+ 1’ being, respectively, the first and the last layer, have only one
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Layer 0 Layer I Layer 2 Layer 3

34/ \
/i;9 -\

39)

20 07
FigureS. Network constructed on the example 2.

node. The other layers may have at most n nodes, being n the number of objects.
n°0 e V0 is the source node; n’ E Vk+I is the destination node. The notation
for the nodes has a superscript and a subscript. The first indicates to which layer it
belongs, the second the number of elements in the partitioned cluster.
b) Define the set E.
E is the set of the arcs in the network. Arcs are directed and defined as E

x —* fl,j 0,... ,k. The network is (k + 2)-partite, and the weights
of the arcs represent the contribution given to the objective function by a possible
partition. To compute these weights, indicated as w(P1 ), j = 1,. . . , n, we may
use the following recursive formula:

w(P131) = (j — l)( max a3 — mm a) + w(PIj_21)
aEP11 aEP1,1

w(P111) = 0

a.>a3

where is the partition having lii consecutive elements.
The network based on the data of the example 2 in section 4.3 is drawn in

Figure 5. Arcs from layer 2 to layer 3 (generally from layer k to layer (k + 1))
have weights equal to zero. Arcs from layer 0 to layer I represent the cost of the
first partition having, respectively, (from the top to the bottom of Figure 5) 4, 3, 2,
1 elements; arcs from layer 1 to layer 2 represent the cost of the second partition
having, respectively, 1, 2, 3, 4 elements.

No further arcs occur for the network in Figure 5 because no other partitions are
allowed. In fact, if we add an arc from node n to n, and if the optimal shortest
chain solution includes this arc, we exceed the number of elements in our data set.
If we add an arc from node n to ri and, if the optimal shortest chain solution
includes this arc, an element is left out of the two clusters. Therefore it is clear
that the shortest chain from the source node to the destination node determines
the optimal partition. Again we point out that this may not be the optimal cluster.
Being the network acyclic from the operation research literature, see [7], we know
that the optimal shortest chain can be computed with time complexity O(IEI) by a
specialised algorithm. The algorithm takes the name of “reaching”.
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5. Summary

We discuss a variety of clustering models that arise in applications of combinatorial
optimization and in classifying objects into homogeneous groups. Most of these
models lead to NP-hard problems. We also discuss solution strategies that work
well in practice, based on integer programming software, local search heuristics
such as the interchange heuristic, or specially designed genetic-algorithm or neural-
network methods. We emphatize the importance of a careful modeling.
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