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Abstract

We discuss improvments in a descent algorithm discussed in [9, 10]
for solving a linear program (LP) without matrix inversions, and discuss
techniques for implementing it.
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1 Introduction

In [9, 10] a new predictor-corrector type interior point method (IPM) for linear
programming (LP) has been dicsussed. It has the advantage of being a descent
algorithm able to solve LPs without using matrix inversion operations. In this
paper we discuss some improvements in that algorithm, and some techniques
useful in implementing it. First we provide a summary of that algorithm. It
considers LP in the form

minimize z(x) = cx (1)

subject to Ax ≥ b

where A is an m×n data matrix, with a known initial interior feasible solution
x0 (i.e., Ax0 > b). The rows of A, denoted by Ai. for i = 1 to m, have been
normalized, so ||Ai.|| = 1 (||.|| denotes the Euclidean norm) for all i = 1 to m;
also ||c|| = 1. We will use the following notation:

1



K = Set of feasible solutions of (1). We assume it is bounded.
K0 = {x : Ax > b} = interior of K.
δ(x) = Min{Ai.x− bi : i = 1 to m}, defined for x ∈ K0, it is the

radius of the largest ball inside K with x as its center.
B(x, δ(x)) = Defined for x ∈ K0, it is the largest ball inside K with x

as its center.
T (x) = Defined for x ∈ K0, it is the index set {i : index i ties for

the minimum in the definition of δ(x)}. The hyperplane
{x : Ai.x = bi} is a tangent plane to B(x, δ(x)) for each i ∈
T (x), therefore T (x) is called the index set of touching
constraints in (1) at x ∈ K0. See Figure 1.

tmin, tmax = Minimum, maximum values of z(x) over K respectively.
δ[t] = It is the Maximum{δ(x) : x ∈ {x : cx = t}}, i.e., the maxi-

mum radius of the ball that can be inscribed inside K with
its center restricted to {x : cx = t}. Notice the difference
between δ(x) defined over K0; and this δ[t] defined over
the interval [tmin, tmax] of the real line.

t∗ = Value of t ∈ [tmin, tmax] that maximizes δ[t].
Γ1 = {ATi. ,−ATi. : i = 1 to m}. This is set of directions normal

to facetal hyperplanes of K.
Γ2 = {P.1, ..., P.m,−P.1, ..., P.m}, where P.i = (I − cT c)ATi. , the

orthogonal projection Ai. (the direction normal to the facet
of K defined by the i-th constraint in (1)) on the hyper-
plane {x : cx = 0}, for i = 1 to m

profitable direction to move at x ∈ K0: = A direction y satisfying the
property that δ(x + αy) strictly increases as α increases from 0. It has been
shown in [9] that y is a profitable direction to move at x ∈ K0 iff Ai.y ≥ 0 for
all i ∈ T (x).

K
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Figure 1: x0 ∈ K0, and the ball shown is the largest ball inside K with x0

as center. Facetal hyperplanes of K corresponding to indices 1, 2 are tangent
planes to this ball, so T (x0) = {1, 2}.
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Each iteration of the algorithm consists of only two steps, a centering step
and a descent step. The centering step is a corrector step, it tries to move the
current interior feasible solution into another one with higher value for δ(x)
without sacrificing objective quality. The descent step is a predictor step, that
results in a strict decrease in objective value.

2 The Centre of a Polytope

In [9], when the LP (2) given below has alternate optima, the definition of the
center used in the algorithm is left imprecise. Here we complete the definition
and make it ‘precise’.
The definition of the center of a polytope used in our algorithm is very

different from that used in earlier IPMs [1 to 7; 12 to 15]. To distinguish, we
therefore use the word centre (this is the common British spelling for the word
“center”) for the center that we use.
A polytope of dimension 1 is a line segment, its centre is its unique midpoint.

See Figure 2.

∗x

Figure 2: The centre of a 1-dimensional polytope (a line segment) is its mid-
point x∗.

Now consider the polytope K of dimension n represented by (1). Its centre
x∗ is a point in K0 which is the center of a lrgest radius ball inscribed inside
K. Letting δ∗ = δ(x∗), (x∗, δ∗) is therefore an optimum solution of the LP

Maximize δ

subject to δ − Ai.x ≤ −bi, = 1 to m (2)

If the optimum solution of this LP is unique, it will be (x∗, δ∗), and x∗ is
the centre of K. See Figure 3.
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Figure 3: When the largest inscribed ball in K is unique, its center x∗ is the
centre of K.

If the optimum solution of (2) is not unique, all optimum solutions are of the
form (x, δ∗) for x ∈ S, where S is the optimum face of (2) in the x-space. In this
case the centre of K is defined recursively by dimension to be the centre of the
lower dimensional polytope S. This definition guarantees that every polytope
has a unique centre. See Figure 4 for an illustration.

∗x

Figure 4: A 2-dimensional polytope K for which the largest inscribed ball is not
unique. S, the set of centers of all such balls, the optimum face of (2) in the
x-space, is the dashed line segment in this polytope. So here the centre of K is
the centre of S, which is its mid-point x∗.

3 Centre for (1), On the Objective Plane {x :
cx = t} for Given t

Each iteration of our algorithm begins with the current point, which is the
interior feasible solution obtained at the end of the previous iteration. Consider
Iteration r + 1, suppose it begins with the current point xr. Let cxr = t be
the current objective value in (1). The centering step in this iteration tries to
find the point x ∈ K0 ∩ {x : cx = t} which maximizes δ(x), it is an optimum
solution of the LP
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Maximize δ

subject to δ − Ai.x ≤ −bi, i = 1 to m (3)

cx = t

If the optimum solution x for (3) is unique, denote it by x(t), it is called the
centre for (1) on the current objective plane {x : cx = t}. In this case,
the unique optimum solution of (3) is (x(t), δ[t] = δ(x(t))). See Figure 5.
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Figure 5: When the optimum solution for (3) is unique, the largest ball inside
K with center on the current objective plane {x : cx = t} is unique (like here, it
is the large ball in the figure), its center is x(t), the centre for (1) corresponding
to the present objective value t.

In general, even though the optimum δ in (3) is always unique, there may
be alternate x which are optimal. So, let S(t) denote the optimum face of (3) in
the x-space. In this case, the centre for (1) on the objective plane {x : cx = t}
is defined to be the centre of the polytope S(t) as defined in Section 2.
This definition guarantees that for each t ∈ (tmin, tmax), the centre for (1)

on the objective plane {x : cx = t} is unique.

4 The Concept of the Algorithm

Iteration 1 begins with the initial interior feasible solution x0 that is available.
We will discuss the steps in the genral iteration r + 1 coceptually.

Iteration r + 1: It begins with xr, the current point, the interior feasible
solution obtained at the end of the previous iteration. Let cxr = t be the current
objective value in (1). Go to the centering step.
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Centering step: Starting with the current point xr, find the centre for (1)
on the current objective plane {x : cx = t}, which we will denote by x̄r. So,
(x̄r, δ(x̄r)) is an optimum solution of the LP (3).

Descent step: Consider only two descent directions, −cT , x̄r− x̄r−1 (where
x̄r−1 is the centre obtained in the previous iteration). Take maximum step
lengths from x̄r in each of these directions to within a tolerance 6 of the boundary
of K, and take the best of these two resulting points as xr+1, the initial interior
feasible solution for the next iteration. Go to the next iteration.

Comments: What is the reason to get a ball with the maximum possible
radius with center on the current objective plane in the centering step? From
the center of a ball with radius δ, we can move a step length of at least δ in any
direction. Maximizing δ helps to make longer steps towards optimality in each
iteration.

The centering problem (3) is itself another LP of the same size as the original
LP (1). But it is an LP with a very special structure. For example, it is a
parametric right hand side LP with the parameter t, and it can be shown that
the optimum objective value function in it has only O(m) slope changes, as
opposed to the worst case behavior of an exponential number of slope changes
[8]. Also, to implement this algorithm for solving (1), an exact solution of (3)
is not essential, and we show that the special structure of (3) can be exploited
to get a good approximate solution for it fast.

5 Summary of Theoretical Results

Let x(t) be the centre for (1) computed in the centering step when the current
objective value is t. So, δ[t] = δ(x(t)).

Define J(t) = T (x(t)) called essential touching constraint index set at
objective value t, it is ∩{T (x) : x in the optimum face for (3)}; i.e., J(t) = {i :
Ai.x = bi + δ[t] for every optimum solution (δ, x) of (3)}.

Proofs for the Results 2 to 7 listed below can be seen from [9, 11]. For some
of these results, we provide figures that suggest an intutive justification for the
result.

1. Every polytope has a unique centre. For each t ∈ (tmin, tmax), x(t) is
unique.

2. δ[t] is piecewise linear concave. So it increases monotonically as t de-
creases from tmax to t

∗; and decreases monotonically as t continues to decrease
from t∗ to tmin. See Figures 6, 7.
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Figure 6: δ[t] is a PL concave function.
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Figure 7: In this figure the current objective value t decreases as you move from
top to bottom. For one value of t, the objective plane {x : cx = t}, x(t), and
the largest ball inside K with x(t) as center are shown.

3. If J(t) remains the same for all t2 ≤ t ≤ t1, then both δ[t] and x(t) are
linear in this interval. See Figure 8.

4. If t1 is a value of t where the slope of δ[t] changes, then J(t) changes as
t decreases through t1.
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Figure 8: In this figure, the essential touching constraint index set, J(t) remains
the same for t1 ≥ t ≥ t2. In this objective value interval, the centre for (1),
x(t), traces the dashed line segment; also δ[t] is linear.

5. For t∗ ≤ t ≤ tmax, x(t) is an optimum solution for the perturbed LP:
maximize cx, subject to Ax ≥ b + eδ[t], where e is a column vector of all 1s
in Rm. For tmin ≤ t ≤ t∗, x(t) is an optimum solution for the perturbed LP:
minimize cx, subject to Ax ≥ b+ eδ[t]. See Figures 9 (a), (b).

6. If t1 > t2 are two consecutive values of t where the slope of δ[t] changes,
and if the algorithm is implemented by finding the exact centre in every iteration,
then it needs no more than 3 iterations to descend from objective value t1 to t2.

7. When the algorithm is carried out by finding the exact centre in every
iteration, once a constraint, say the i-th, leaves the touching constraint index
set J(t) as the current objective value t is decreasing in the algorithm; it cannot
reenter the set J(t) as t decreases further.
Therefore, the touching constraint index set J(t) changes at most 2m times

during the algorithm. Consequently, the number of slope changes in δ[t], the
optimum objective value function in the parametric RHS LP (3) is at most 2m;
and the algorithm terminates after at most 6m iterations.
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Figure 9: (a) (left), (b) (right) show the same polytope K in solid lines; and
the current objective value t decreases as you move from top to bottom. (a)
illustrates the case when t > t∗, and (b) the situation t < t∗. In each, the sphere
is the largest inscribed sphere in K with x(t) as center; and the polytope in
dashed lines is the perturbed polytope {x : Ax ≥ eδ[t]}. In (a), x(t) maximizes
(and in (b) it minimizes) cx on the perturbed polytope.

6 How to Solve the Centering Step?

First consider (2), the problem of computing the centre of the polytope K itself
beginning with an initial interior feasible solution, say xr. [9, 10] proposes
to solve this approximately using a line search algorithm. Beginning with the
initial xr,0 = xr, it generates a sequence of points xr,k, k = 1, 2, ... along which
the radius of the ball δ is strictly increasing.
At the current point xr,k, a direction y is called a profitable direction, if

δ(xr,k+αy) strictly increases as α increases from 0. [9] has the following result,
which makes it easy to check whether any given direction y is profitable at the
current point.

Result: A given direction y ∈ Rn is a profitable direction at the current
interior feasible solution xr,k iff Ai.y ≥ 0 for all i ∈ T (xr,k). Also, xr,k is an
optimum solution for (2) iff there is no profitable direction at it, i.e., iff the
system: Ai.y ≥ 0 for all i ∈ T (xr,k) has no nonzero solution y.

Since the goal in this centering step is to increase the minimum distance
of x from each facetal hyperplane of K, the procedure uses only the directions
normal to the facetal hyperplanes of K for the line searches, i.e., directions in
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Γ1. The procedure continues as long as profitable directions for line search are
found in Γ1, and terminates with the final point as an approximate centre of K,
which is also denoted by x̄r.
Once a profitable direction y at the current point in the sequence being

generated by this procedure, xr,k, has been found, the optimum step length α
in this direction that maximizes δ(xr,k+αy) over α ≥ 0 is ᾱ, where (δ̄, ᾱ) is the
optimum solution of the 2-variable LP

Maximize δ

subject to δ − αAi.y ≤ Ai.x
r,k − bi i = 1, . . . ,m (4)

δ,α ≥ 0

and δ̄ is the optimum objective value δ(xr,k + ᾱy). So, the line search for the
maximum value of δ in the direction y involves solving this 2-variable LP, which
can be carried out efficiently (e.g., by the simplex algorithm) as discussed in [9,
10].
To solve (3), finding the centre for (1) on the current objective plane {x :

cx = t = cxr}, it uses the same procedure with profitable directions selected
from the set Γ2. See Figure 10.

rx
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Normal
Direction

Figure 10: Moving from the current point xr, in the direction which is the
orthogonal projection of the normal to the facet of K on the right, on the
objective plane {x : cx = t}, leads to x(t).

We are investigating additional directions for line search to include in the
sets Γ1,Γ2, to accelerate the convergence of this procedure, and to improve the
quality of the approximation to the optimum centre.
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7 How to Get An Initial Interior Feasible Solu-
tion for (1)?

The standard Phase I procedure adds a nonnegative artificial variable x0 and
modifies (1) into

minimize z(x) = cx+Mx0

subject to Ax+ ex0 ≥ b (5)

x0 ≥ 0

where e is the column vector of all 1s in Rm, and M is a large positive penalty
parameter. (x0 = 0, x00) where x

0
0 is a sufficiently large positive number, gives

an initial interior feasiblew solution to (5). (5) is in the same form as (1), we
solve it instead.

8 Implementation of the Algorithm to Solve (1)
With an Initial Point x0 ∈ K0

We will discuss the general iteration r + 1. Let xr be current interior feasible
solution obtained at the end of the previous iteration.
We will discuss how the centre is approximated by the line search procedure

in this iteration beginning with the initial point xr,0 = xr. In a general stage of
this procedure let xr,k be the current point in the sequence of points obtained
in this procedure. Now we look for a line search direction in 2 stages.

Stage 1: Look for a direction to increase the ball radius and decrease the
objective value simultaneously. So, look for y ∈ Γ1 satisfying cy < 0 and
Ai.y ≥ 0 for all i ∈ T (xr,k). If such y is found, carry out line search by finding
the optimum step length as discussed in Section 6. If there is no such y go to
Stage 2.

Stage 2: Look for profitable direction y ∈ Γ2 and carry out line search
as discussed in Section 6. If no such y is found, terminate the procedure with
xr,k as an approximate centre, which is also denoted by x̄r. Now carry out the
descent step at x̄r as discussed in Section 4 and continue.

9 Another Way to Implement the Algorithm to
Solve (1)

For any given value, t, of the objective function cx, the set of feasible solutions
of (1) with this objective value is K ∩ {x : cx = t}, represented by
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Ax ≥ b (6)

cx = t

c = (c1, ..., cn) is the vector of cost coefficients in (1). Take any nonzero
entry in c, say cn. Then in (6), we can use the equality constraint to express the
variable xn as (t − c1x1 − ... − cn−1xn−1)/cn in terms of the objective value t
and the other variables. Substituting this expression for xn in all the inequality
constraints in (6), we get a representation of K ∩ {x : cx = t} in terms of the
remaining variables X = (x1, ..., xn−1)T in the form

DX ≥ d+ td∗ (7)

say. We will denote the set of feasible solutions of (6) for given t byK(t) in theX-
space. Each point X ∈ K(t) corresponds to a unique point x in K∩{x : cx = t}
through the expression given above for xn.
Let X(t) denote the centre for the polytope K(t) as defined in Section 2.

X(t) may correspond to a different point in K ∩ {x : cx = t} than x(t) = the
centre for (1) on the objective plane {x : cx = t} defined in Section 3. We
can apply the algorithm to solve (1) discussed in Section 4 using the point in
K ∩ {x : cx = t} corresponding to X(t) as the centre corresponding to objective
value t, instead of x(t).
In the implementation of the algorithm to solve (1) discussed in Section 8, in

Iteration r+1 in which the initial interior feasible solution is xr, the approximate
centre x̄r for (1) is computed in the centering step by the Stage 1, 2 procedure
discussed there, and then carry out the descent step at x̄r as discussed in Section
4 and continue.
In the new implementation, in this iteration we define t = cxr, and compute

the approximate centre of the polytope K(t) defined by (7), as discussed in
Section 6, and take the point corresponding to it in K ∩ {x : cx = t} as the
result x̄r of the centering step in this iteration, carry out the descent step at x̄r

as discussed in Section 4 and continue.

10 How to Implement the Algorithm for Solving
a General LP ?

The most popular IPM for software implementations is the primal-dual IPM [1
to 7, 12 to 15], because: (i) it gives optimum solutions to both the primal and
the dual when both have feasible solutions; and (ii) it provides a lower bound
that serves as an indicator to check how far left to go to reach the optimum.
Also, in Sections 8, 9, we did not discuss a good termination condition for the
algorithm. The lower bound in the primal-dual format provides an automatic
practical termination condition.
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We will show how to convert our algorithm into a primal-dual algorithm
for LPs in general form. Consider an LP in general form in which there may
be equality constraints on the variables, inequality constraints, and bounds on
individual variables. By combining the bounds on individual variables with the
inequality constraints the problem is in the form

Minimize fξ

subject to F ξ = h (8)

Gξ ≥ g

where F is a matrix of order p×q, say. Let π, µ be dual vectors corresponding to
the constraints in the two lines in (8). Solving (8), and its dual involves finding
a feasible solution to the following system

F ξ = h (9)

πF + µG = f

(Gξ, µ,−fξ + πh+ µg) ≥ (g, 0, 0)

.
Solving (9) is the same as solving the LP

Minimize

p

i=1

(Fi.ξ − hi) +
q

j=1

(πF.j + µG.j − fj)

subject to (F ξ, Gξ,πF + µG, µ,−fξ + πh+ µg) ≥ (h, g, f, 0, 0) (10)

(10) is in same form as (1). Also, since we are applying the algorithm
without matrix inversions, having all these additional constraints over those in
the original LP (8) in the model does not make it numerically difficult to handle.
If both (8) and its dual have feasible solutions, at the optimum, the objective
value in (10) will be 0, so this provides a convenient lower bound to judge how
far is left to go.

Acknowledgements: I thank Huang Chia-Hui for the nice figures.
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