
14.1

Algorithms for NLP with nonlinear
constraints

Katta G. Murty, IOE 611 Lecture slides

Penalty Function Methods

Consider : min θ(x) s. to hi(x) = 0 i = 1 to m;

gj(x) ≥ 0 j = 1 to `.

Penalty function for equality constraints: p(h(x)) =

∑m
i=1 |hi(x)|s typically, where s = 1 or 2. If s = 2, this function is

continuously differentiable.

Penalty function for inequality constraints: q(g(x)) =

∑`
j=1[max{0,−gj(x)}]r, where r = 1 to 4. It is cont. diff. if r = 2,

and twice cont. diff. if r = 3.

The overall penalty function for our NLP is: α(x) = p(h(x))+

q(g(x)).

127

The Exterior Penalty Method solves the NLP by finding

the unconstrained min of auxiliary function fµ(x) = θ(x) +

µα(x) where µ > 0 is the Penalty parameter.

Example: min x1 s. to x1 − 2 ≥ 0

Example: min x2
1 + x2

2 s. to x1 + x2 − 1 = 0.

The Penalty Problem: min fµ(x) s. to x ∈ X . Here

X may be Rn or the set of feasible sols. of other constraints not

included in penalty function α(x) (usually these may be simple

constraints like bounds on vars.).

Theorem: X 6= ∅, and suppose x(µ), the minimizer of the

penalty problem exists ∀µ > 0, and ψ(µ) = fµ(x(µ)). Then:

(i) Min obj value in original NLP ≥ supµ>0 ψ(µ).

(ii) θ(x(µ)) ↑, ψ(µ) ↑, α(x(µ)) ↓ over µ > 0.

Theorem: Under hypothesis of above theorem, and also if

{x(µ) : µ > 0} is contained in a compact subset of X , we have:

(i) min obj. value in original NLP = supµ>0 ψ(µ) = limµ→∞ ψ(µ).

(ii) µα(x(µ)) → 0 as µ→ ∞, and the limit of any convergent

128

subsequence of {x(µ)} is opt. to original NLP.

SUMT: Take an increasing sequence {µ1, µ2, . . .} diverging to

∞. Find x(µt+1) using x(µt) as initial pt. by some unconstrained

min algo. All x(µ) may be infeasible to original NLP, but as

µ → ∞, x(µ) → opt. of original NLP assuming it exists, hence

method called exterior penalty method.

Lagrange Multiplier Estimates: Suppose X = Rn. Since

x(µ) is unconstrained min of fµ(x), we have ∇xfµ(x(µ)) = 0

∀µ. From the coefficients in this eq. when µ is large, we can

estimate the opt. Lagrange multiplier vector for original NLP.

Computational Difficulties: When µ very large computa-

tional difficulties are caused by ill-conditioning.

Also, when there are nonlinear equalities, movement along a

direction d from a feasible pt. x̄ leads to infeasible pts., so when

µ is large, even if θ(x) decreases fµ(x̄ + λd) may be larger than

fµ(x̄) except when λ is very small. So, step lengths tend to be

small resulting in slow convergence & premature termination.

129

Also, Hessian of auxiliary function tends to be highly ill-conditioned

when µ is large.

For 2nd example above, Hessian of auxiliary func. is


2(1 + µ) 2µ

2µ 2(1 + µ)



.

It has eigenvalues 2 and 2(1 + µ), so its cond. no. tends to ∞.

That’s why sequential implementations are used.

130

Exact Penalty Functions

Exact penalty functions are penalty functions for which min of

auxiliary func. is also opt. for original problem for finite positive

values of penalty parameter. The absolute value (L1) is an exact

penalty function for : min θ(x) s. to

gi(x)





= 0 i = 1 to m

≥ 0 i = 1 to m + `

The L1 auxiliary function is:

f (x) = θ(x) + µ[
m∑

i=1
|gi(x)| +

m+`∑

i=m+1
max{0,−gi(x)}]

Theorem: Suppose θ(x) convex, gi(x) affine for i = 1 to m,

and concave for i = m + 1 to m + `. Let (x̄, π̄) be a KKT pair

for original NLP. Then for µ ≥ max{|π̄i|}, x̄ also minimizes the

auxiliary func. with the L1 penalty function.

131

Augmented Lagrangian Penalty Function (ALAG),

or Multiplier Penalty Function.

For siplicity consider eq. constraints only first. min θ(x) s.

to hi(x) = 0, i = 1 to m.

Let π = (π1, . . . , πm) be the Lagrange multiplier vector. The

ALAG leads to the auxiliary function:

Fµ(x, π) = θ(x) +
m∑

i=1
πihi(x) + µ

m∑

i=1
(hi(x))2

The ALAG is another exact penalty func. If (x̄, π̄) satisfy 1st

order opt. conds. for original NLP, then ∇xFµ(x̄, π̄) = 0 ∀µ > 0.

Theorem: If (x̄, π̄) satisfies 2nd order suff. opt. conds., there

exists a µ̄ > 0 s. th. ∀µ ≥ µ̄, Fµ(x, π̄) has a strict local min at

x̄.

Method of Multipliers:

1 Initialization: Select (x0, π0) the initial pair, and µ = (µ1, . . . , µm)

the penalty parameter values for different constraints. w(x0)

= max {|hi(x
0)|: i = 1 to m} is initial infeasibility measure.

132

2 Penalty func. min.: Let (xr, πr, µr) be current vectors. Find

min of Fµr(x, πr) = θ(x)+πrh(x)+
∑m

i=1 µ
r
i (hi(x))2. Suppose

it is xr+1.

If w(xr+1) ≤ ε1, stop with xr+1 as (xr+1, πr) satisfy

1st order opt. conds.

If ε1 < w(xr+1) ≤ 1
4
w(xr), define (πr+1

i) = (πr
i +

2µihi(x
r+1)), µr+1 = µr. With (xr+1, πr+1, µr+1) re-

peat this step.

If w(xr+1) > 1
4
w(xr), for each i for which |hi(x

r+1)| >
1
4
w(xr), define µr+1

i = 10µr
i , and µr+1

i = µr
i for all

other i. Define πr+1 = πr. With (xr+1, πr+1, µr+1)

repeat this step.

To handle inequalities: Write the constraint gi(x) ≥ 0 as

gi(x) − s2
i = 0 and apply the above method.

133

Barrier function methods

For inequality constraints only. If equality constraints exist

you can include them in objective func. using penalty func. for

equality constraints. So consider: min θ(x) s. to gj(x) ≥ 0,

j = 1 to `.

Barrier function for these inequalities is continuous in {x :

g(x) > 0}, and it → ∞ as point tends to the boundary from

interior.

Frisch’s Log Barrier Function: B(x) =
∑`

j=1 loge(gj(x)).

Other barrier functions used are:
∑`

j=1
1

gj(x),
∑`

j=1 log[min{1, gj(x)}].

The auxiliary func. is: fµ(x) = θ(x) + µB(x). Let ψ(µ) =

min fµ(x) s. to g(x) > 0, and let x(µ) be the minimizing point.

Theorem: Inf {θ(x) : g(x) ≥ 0} ≤ inf {ψ(µ) : µ > 0}. Also,

for µ > 0, θ(x(µ)) ↑ ψ(µ) ↑ and B(x(µ)) ↓.

Theorem: Suppose original problem has opt. at x̄. Then

134

min{θ(x) : g(x) ≥ 0} = lim
µ→0+

ψ(µ) = inf{ψ(µ) : µ > 0}

And the limit of any convergent subsequence of {x(µ)} is opt.

sol. of original NLP, and µB(x(µ)) → 0 as µ → 0.

The Barrier Algo.

Initialization: Start with x0 satisfying g(x0) > 0, µ0 > 0 and

β ∈ (0, 1).

General step: Given xr, µr use an unconstrained min algo to

solve to min θ(x) + µrB(x) s. to g(x) > 0.

The constraints g(x) > 0 can be ignored as B(x) → ∞ as x

tends to satisfy gj(x) = 0 for any j.

Let xr+1 be opt sol. If µrB(xr+1) < ε, terminate with xr+1.

Otherwise let µr+1 = βµr. With (xr+1, µr+1) go to next step.

135

Recursive QP, or Merit Function Sequential QP (MSQP)

Algorithms

Consider: min θ(x) s. to gi(x)





= 0 i = 1 to m

≥ 0 i = m + 1 to m + p

All functions assumed twice cont. differentiable.

Lagrangian L(x, π) = θ(x) − ∑m+p
i=1 πigi(x).

A merit function S(x), an absolute value penalty function

(the L1 penalty function) balancing the competing goals of de-

creasing θ(x), and reducing constraint violation, is used.

S(x) = θ(x) +
m∑

i=1
µ̂i|gi(x)| +

m+p∑

i=m+1
µ̂i|min{0, gi(x)}|

where the µ̂i are positive penalty parameters satisfying certain

lower bound restrictions discussed later.

A QP employing a 2nd order approx to the Lagrangian mini-

mized over a linear approx. to constraints, is solved in each step.

Output of QP provides a descent direction for the merit func.,

and a line search is carried out in this direction.

Let x̄ be current pt., & d = x − x̄, and π̄ satisfy π̄ ≥ 0∀i ∈

{m + 1, . . . ,m + p}. 2nd order Taylor approx. to Lagrangian

136

obtained using a PD symmetric approx. to Hessian updated by

BFGS QN update formula. It is L(x̄, π̄)+∇xL(x̄, π̄)d +1
2
dTBd

where B is the current approx to the Hessian of the Lagrangian.

Using the constraints, it can be seen that minimizing this s. to

linearized constraints leads to QP:

min ∇θ(x̄)d +
1

2
dTBd

s. to gi(x̄) + ∇gi(x̄)d





= 0 i = 1 to m

≥ 0 i = m + 1 to m + p

Let (d̃, π̃) be the opt. pair for this QP.

If d̃ = 0, (x̄, π̃) is a KKT pair for original NLP. Termi-

nate.

If d̃ 6= 0, it is a descent direction for merit func.

S(x) = θ(x) +
m∑

i=1
µ̃i|gi(x)| +

m+p∑

i=m+1
µ̃i|min{0, gi(x)}|

where weights µ̃i satisfy µ̃i > |π̃i|∀i. These weights are

usually choosen from:

µ̃i = max{|π̃i|,
1

2
(µ̄i + |π̃i|)} ∀i

137

where µ̄i are weights used in previous step.

Do a line search for min S(x̄ + λd̃) : λ ≥ 0. If λ̄

is opt. step length, next pair is: (x̃ = x̄ + λ̄d̃, π̃). If it

satisfies KKT conds. for original NLP reasonably closely,

terminate with it. Otherwise go to next step with it.

Theorem: d̃ is a descent direction at x̄ for the merit function

S(x).

A Difficulty: Even if original NLP feasible, the QP may be

infeasible. For this replace QP by:

min ∇θ(x̄)d +
1

2
dTBd + ρ(

∑
ui +

∑
vi)

s. to gi(x̄) + ∇gi(x̄)d + ui − vi = 0, i ∈ {1, . . . ,m}

gi(x̄) + ∇gi(x̄)d + ui ≥ 0, i ∈ {m + 1, . . . ,m + p}

ui, vi ≥ 0,∀i

where ρ is a positive penalty parameter. This QP model always

feasible since d = 0 is feasible for it. If d̃ 6= 0 is opt for it, it will

also be a descent direction for S(x).

138

Example: min θ(x) = x3
1 + x2

2, s. to x2
1 + x2

2 − 10 = 0,

x1 − 1 ≥ 0, x2 − 1 ≥ 0.

Theorem: Assume initial pt. x0 sufficiently close to a KKT

pt. x̄ for NLP, and the pair (x̄, π̄) satisfies: {∇gi(x̄) : i s. th.

gi(x̄) = 0} is l.i., and π̄i > 0 ∀i s. th. i ∈ {m + 1, . . . ,m +

p} ∩ {i : gi(x̄) = 0}; and yT∇2
xxL(x̄, π̄)y > 0 for all y 6= 0 in

{y : ∇gi(x̄)y = 0,∀i s. th. gi(x̄) = 0}. Then the sequence of

pairs generated by algo. converges to (x̄, π̄) superlinearly.

139

Successive (or Recursive, or Sequential) LP Approaches:

Penalty SLP (PSLP)

Consider: min θ(x)

s. to gi(x)





= 0, i = 1 to m

≥ 0, i = m + 1 to m + p

x ∈ X = {x : Ax ≤ b}

The L1 exact penalty function for this problem is: Fµ(x) =

θ(x) + µ[
∑m

i=1 |gi(x)| +
∑m+p

i=m+1 max{0, gi(x)}].

The Penalty Problem is: min Fµ(x), s. to x ∈ X . This

has a nonlinear obj. func., but linear constraints.

Given any x ∈ X , define (yi), (z
+
i , z

−
i) associated with it by

z+
i = max{0, gi(x)}, z−i = max{0,−gi(x)},∀i ∈ {1, . . . ,m}

yi = max{0, gi(x)} ∀i ∈ {m + 1, . . . ,m+ p}

So, for i = 1 to m, z+
i + z−i = |gi(x)|.

140

PSLP attempts to solve the penalty problem using 1st order

approx. & a trust region strategy. The 1st order approx. of Fµ(x)

around current pt. x̄, denoted by FLµ(d) where d = x− x̄ is:

FLµ(d) = θ(x̄) + ∇θ(x̄)d + µ[
m∑

i=1
|gi(x̄) + ∇gi(x̄)d|

+
m+p∑

i=m+1
max{0, gi(x̄) + ∇gi(x̄)d}]

PLSP attemps to find d to min FLµ(d) s. to A(x̄ + d) ≤ b

and −α ≤ dj ≤ α ∀j = 1 to n, for some selected positive trust

region tolerance α. This leads to following LP:

141

min∇θ(x̄)d + µ[
m∑

i=1
(z+

i + z−i) +
m+p∑

i=m+1
yi]

s. to yi ≥ gi(x̄) + ∇gi(x̄)d, i ∈ {m + 1, . . . ,m + p}

z+
i − z−i = gi(x̄) + ∇gi(x̄)d, i ∈ {1, . . . ,m}

A(x̄+ d) ≤ b

−α ≤ dj ≤ α, j ∈ {1, . . . , n}

yi, z
+
i , z

−
i ≥ 0, ∀i

If x̄ ∈ X , then 0 is a feasible sol. to this LP. If d̄ is an opt. sol.

of this LP, define:

Actual change in exact penalty func. = Fµ(x̄) − Fµ(x̄+ d̄)

Predicted Change by the linearized version = FLµ(x̄) −

FLµ(x̄ + d̄)

Theorem: d = 0 is an opt sol. for above LP iff x̄ is a KKT

sol. for penalty problem.

142

Also, since d = 0 is feasible to LP, the predicted change by

linearized version is ≤ 0, and is 0 iff d̄ = 0 is opt. to LP.

The model PSLP Algorithm

Start with an x̄ ∈ X as current point. Select trust region

tolerance α, penalty parameter µ, and scalars 0 < ρ0 < ρ1 <

ρ2 < 1 and tolerance adjustment factor β ∈ (0, 1). Typically,

ρ0 = 10−6, ρ1 = 0.25, ρ2 = 0.75, β = 0.5.

Solve LP corresponding to point x̄. If d̄ = 0 is opt to LP, x̄

satisfies necessary opt. conds. for penalty problem. In this case

if x̄ is close enough to being feasible to original NLP, it is a KKT

point for it, terminate. If x̄ is infeasible to original NLP, increase

penalty parameter µ and repeat.

If opt. to LP, d̄ 6= 0, compute the actual and predicted

changes. By theorem, predicted change > 0, compute R =

Actual Change
Predicted change.

If R < ρ0, penalty function either worsened or improvement in

it is insufficient; keep x̄ as current sol., shrink α to βα and go to

next step. After several such reductions if needed, a new pt. will

143

be choosen.

If R > ρ0, accept x̄+ d̄ as the new current sol. If R < ρ1 shrink

α to βα as the penalty function has not improved sufficiently. If

ρ1 ≤ R ≤ ρ2 retain α at its present value. If R > ρ2 amplify

trust region by setting α to α/β. Go to next step.

144

The Generalized Reduced Gradient (GRG) Method

Write the constraints as eqs. by introducing squared slack vari-

ables for inequality constraints, if any.

Consider problem in form: min θ(x) s. to h(x) = 0,

` ≤ x ≤ u where h(x) = (h1(x), . . . , hm(x))T .

Start with a feasible sol. If none available, let x0 be a good pt.

Modify problem to: min θ(x)+αxn+1, s. to h(x)−xn+1h(x0) =

0, ` ≤ x ≤ u, 0 ≤ xn+1 ≤ 1. where xn+1 is an artificial variable

with a large positive cost coeff of α in obj. func.

Clearly, for modified system (x0, xn+1 = 1)T is a feasible sol.

And modified system in same form as the original.

We continue to discuss the original problem. Let x̄ be current

feasible sol.

Assume ∇h(x̄) of order m × n has rank m. Partition the

variables into (xB, xD) where xB is a vector of m basic variables

satifying: ∇xB
(h(x̄)) of order m×m is nonsingular; and xD

is the vector of remaining n−m nonbasic variables.

The reduced gradient at x̄ in the space of nonbasic vari-

145

ables xD is:

c̄D = (c̄j) =
∂θ(x̄)

∂xD
−
∂θ(x̄)

∂xB
(
∂h(x̄)

∂xB
)−1∂h(x̄)

∂xD

In the space of nonbasic variables xD define the search direction

yD = (yj) by:

ȳj =





−c̄j if either c̄j < 0 & x̄j < uj; or c̄j > 0 & x̄j > `j

0 if above conds. not met

If ȳD = 0, x̄ is a KKT pt., terminate.

If ȳD 6= 0, c̄DȳD < 0, so ȳD is a descent direction at x̄D in the

space of nonbasic variables, it is the negative reduced gradient

direction.

Take a positive step length, λ say, from x̄D in the space of

nonbasic variables to the pt. x̄D + λyD.

The corresponding values of basic variables xB(λ) are to be

determined uniquely from the square system of nonlinear eqs.

h(xB(λ), x̄D + λyD) = 0

Newton’s method is used to find xB(λ). Denote the vector

xB by ξ to avoid confusion. Beginning with ξ0 = x̄B, Newton’s

146

method generates the sequence of iterates {ξs} by the iteration

ξr+1 = ξr − (∇ξh(ξr, x̄D + λyD))−1h(ξr, x̄D + λyD)

For some r if (i) ||h(ξr, x̄D+λyD)|| < ε = tolerance, and (ii)

`B ≤ ξr ≤ uB, and (iii) θ(ξr, x̄D + λyD) < θ(x̄B, x̄D), then

fix (xB = ξr, xD = x̄D + λyD) as the new feasible sol. and go

to next iteration.

If (i) holds, but not (ii) or (iii) , go to Step length reduction.

If a preselected upper bound on Newton steps is reached and

still (i) is not satisfied, go to Step length reduction.

Step length reduction: Replace λ by λ/2 and do the Newton

iterations again from the beginning.

147

