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Abstract

Consider the linear program (LP): minimize z= cx, subject to Ax≥ b, where A is an m×n matrix. Sphere methods
(SMs) for solving this LP were introduced in Murty [5, 6], even though this name was not used there. Theorems in
those papers claimed that a version of this method needs at most O(m) iterations to solve this LP, however Mirzaian
[2] pointed out an error in the proofs of these theorems there. Here we prove the claim using the geometry of inspheres.
Also the results in this paper provide a solution to the special case of the open problem 2 in page 441 of the book Murty
[7] dealing only with inspheres encountered in the SM.
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1. Introduction

Consider an LP in the form:

Minimize z= cx (1)

subject to Ax≥ b

whereA is anm×n data matrix. We use the Euclidean
distance inRn. We assume thatc, and each row vectorAi.

of A for i = 1 tom is normalized so that||c||= ||Ai.||= 1
for all i.

Sphere methods (SMs) for LP were introduced in
Murty [5, 6], and developed further in Murty [7, 8],
Murty and Kabadi [9], and Murty and Oskoorouchi [10,
11, 12].

2. Notation

The following notation and concepts are used in SMs.

1. < ∆ > For any set∆ ⊂ Rn, < ∆ > denotes the
convex hull of∆.

2. K = Set of feasible solutions of (1). We assume
thatK is bounded and is of full dimension inRn.

3. tmax, tmin the maximum and minimum values of
z overK with tmax> tmin

4. Ai.,A. j the i-th row vector,j-th column vector of
the matrix A.
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5. δ (x) = minimum{Ai.x− bi : i = 1 to m}. For
eachx ∈ K, δ (x) is the radius of the largest
ball that can be inscribed inK (i.e., insphere of
K) with x as center.δ (x) = 0 for all boundary
pointsx of K, and> 0 for all interior points of
K.

6. B(x),T(x) defined forx∈ K, B(x) is the sphere
with x as center andδ (x) as radius, it is the
largest sphere withx as center that can be in-
scribed insideK. T(x) is the index set of alli
attaining the minimum in the definition ofδ (x)
given above, it is the index set of facetal hyper-
planes ofK which are tangent planes ofB(x).

7. H(t) = the objective plane{x : cx= t}
8. FHi = {x : Ai.x= bi}, theith facetal hyperplane

of K, for i = 1 to m
9. Fi = FHi ∩K, is the facet ofK corresponding

to i
10. δ [t] the radius of a largest ball inscribedK with

its center restricted toH(t)∩K
11. x[t] is the center of a largest ball inscribed inside

K with center restricted toH(t)
12. B[t] = {x : ||x−x[t]|| ≤ δ [t]}, the inscribed ball

with centerx[t] and radiusδ [t] = δ (x[t]). B[t] =
B(x[t]).

13. T[t] = the index set{i : i ties for the minimum in
(3)}. See below for equation (3).T[t] = T(x[t])
is the index set of facetal hyperplanes ofK
which are tangent planes ofB[t].
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14. xi(t) defined fori ∈ T[t] is the point where the
facetFi touchesB[t]. It is the orthogonal pro-
jection ofx[t] onFHi for i ∈ T[t]; it is a bound-
ary point ofB[t], andFHi is the tangent plane
to B[t] at xi(t) = x[t]− δ [t]AT

i. .
15. t∗ is a value oft whereδ [t] attains its maximum

value.
16. SM Sphere method.

17. Right, left of a t̄: We considert decreasing
from tmax to tmin in the interval[tmin, tmax]. We will also
refer to this interval as thet-axis. For any valuēt in
this interval “left (right) of t̄ ” refers to values oft in
the interval less (greater) than̄t.

18. Right, left half-spaces: These half-spaces of
H(t) refer to the half-spaces{x : cx≥ t}, {x : cx≤ t}
respectively.

19. Semisphere: The portion of a sphere on one
side of a hyperplane which has a nonempty intersection
with its interior.

Any hyperplaneH that intersects a sphereS at an
interior point divides it into two semispheres, one on
each side ofH. These two semispheres are not equal
in content unlessH passes through the center ofS. The
semispheres formed by a hyperplane passing through
the center ofS are calledhemispheres of S. Typically
the semispheres that we deal with in this paper will not
be hemispheres.

Let H be a hyperplane that intersects a sphereSat an
interior point, butH does not contain the center ofS.
Then the two semispheresS1,S2 into whichH dividesS
are unequal in content. One, sayS1, contains the center
and is larger in content than a hemisphere, it is said to be
thesemisphere on the side of H containing the center.
The other,S2, smaller in content than a hemisphere is
on the side of H not containing the center.

20. Right semisphere of B[ t̃ ], left semisphere of
B[ t̂ ] in <B[ t̃ ]∪B[ t̂ ]>, wheret̃ > t̂: Let t̃ > t̂ (i.e.,
t̃ is on the right side of̂t ), andΓ = < B[ t̃ ]∪B[ t̂ ]>.
ThenΓ can be partitioned intoΓ1∪Γ2∪Γ3 where:

Γ1 = Convex hull of the set of boundary points of
B[ t̃ ] which are not interior points ofΓ; this is a
semisphere ofB[ t̃ ], and since t̃ > t̂ , we will call
Γ1 as theright semisphere of B[ t̃ ] in Γ.

Γ3 = Convex hull of the set of boundary points

of B[ t̂ ] which are not interior points ofΓ; this is a
semisphere ofB[ t̂ ], and since t̂ < t̃ , we will call
Γ3 as theleft semisphere of B[ t̂ ] in Γ.

Γ2 = Γ\(Γ1∪Γ3), the conical portion ofΓ; Γ2 =
< (B[ t̃ ]\Γ1)∪ (B[ t̂ ]\Γ3)>.

20.1. Also, in this item 20, suppose none of the
spheresB[ t̃ ],B[ t̂ ] contain the center of the other in
its interior, and

(the radius ofB[ t̃ ]) is > {<} (the radius ofB[ t̂ ])

then the right semisphere ofB[ t̃ ] in Γ = < B[ t̃ ]∪
B[ t̂ ]> is larger{smaller}
in content than a hemisphere ofB[ t̃ ]; and the left semi-
sphere ofB[ t̂ ] in Γ is smaller{larger} in content than
a hemisphere ofB[ t̂ ].

Notice the difference in the type of brackets in
δ (x),δ [t] etc. δ (x) etc. are defined forx ∈ K, δ [t]
etc. are defined for objective values intmin ≤ t ≤ tmax.
Clearlyδ [t] = maximum{δ (x) : x∈ H(t)∩K}.

3. Breakpoints, and the Problem Addressed in the
Paper

We will use the words “ball, sphere” synonymously.
Let (x[t],δ [t]) be an optimum solution of the following
LP (2).

Maximize δ
subject to δ ≤ Ai.x−bi i = 1, ...,m (2)

cx= t

So,

δ [t] = minimum{Ai.x[t]−bi, i = 1, ...,m} (3)

We will refer to points likexi(t) where facetal hyper-
planes ofK which are tangent planes ofB[t] touch it,
as thetouching points corresponding tot.

In Murty [5, 6], it has been proved thatδ [t] is piece-
wise linear concave, it is monotonic increasing in the
interval tmin ≤ t ≤ t∗ and monotonic decreasing in the
intervalt∗ ≤ t ≤ tmax. Values oft where the slope ofδ [t]
changes (these are the same values where the setT[t]
changes) are calledbreakpoints.



32 Katta G. Murty –O(m) Bound on Number of Iterations in Sphere Methods for LP

Also, in the same papers, Theorems 7, 8, 9 claimed
that the total number of possible changes in the setT[t]
ast varies continuously in its rangetmin≤ t ≤ tmax (i.e.,
the total number of breakpoints) is at mostO(m), but
Mirzaian [2] showed that the proofs of these theorems
given there are wrong, and he produced a counterexam-
ple to the arguments in those proofs inR3. This raised
the question whether the total number of distinct sets
in the class{T[t] : tmin ≤ t ≤ tmax} (i.e., the total num-
ber of breakpoints) grows as a polynomial inm,n in the
worst case, this is the open problem 2 in page 441 of
Murty [7]. The only thing known is that (2) is a special
parametric right hand side linear program (PRHSLP)
with t as the parameter, the number of changes inT[t]
is the number of slope changes in the optimum objec-
tive value in this PRHSLP; and that the number of slope
changes in the optimum objective value in the general
PRHSLP grows exponentially inm,n in the worst case,
Murty [3].

However, in the SM,t does not vary continuously,
because each iteration of the method consists of descent
steps in whicht takes a jump downwards, and for all
vales of t covered by the jump, the centering step is
not carried out. So, in the SM, we encounter only a
finite number of discrete values oft, and hence only
a subset of{T[t] : tmax≥ t ≥ tmin}. Using this, and the
property of the steepest descent step, the descent step
in the direction of the path of centers being generated,
and other descent steps used in the SM, we show that
the total number of changes inT[t] encountered in the
SM = number of iterations in the method, is ofO(m).

The SM is initiated with an interior feasible solu-
tion x1 with objective valuecx1 = t1, i.e., Ax1 > b, so
δ (x1) > 0, and consequentlyδ [t1] > 0; and since it is
a descent method, the objective valuecx= t is mono-
tonic decreasing. For somēt if δ [ t̄ ] = 0, thent̄ may
be eithertmax or tmin. Clearly, in the SM if the objec-
tive value reaches āt satisfyingδ [ t̄ ] = 0, thent̄ must
be =tmin = the optimum objective value in (1), and the
method terminates.

4. How to Find a Breakpoint ≤ t1

We make the following assumptions.

Assumptions: For eacht in its range, the optimum
solution (x[t],δ [t]) of (2) is unique, and hence it is a
basic feasible solution (BFS) for it. SoB[t] is the unique
largest ball insideK with center restricted toH(t). Also,
the LP (1) is primal nondegerate.

Given the objective valuet1 at an interior feasible
solution x1, here we discuss a method for finding an
objective valuet which is a breakpoint≤ t1 under these
assumptions.

Let si denote theslack variable in (2) associated
with the i-th constraint in (2) fori = 1 to m. By intro-
ducing these slack variablessi , convert the inequality
constraints in (2) into a system of linear equations. This
leads to the PRHSLP

Maximize δ
s. to δe−Ax+ Is=−b (4)

cx= t

s≥ 0

wheree is the column vector of all 1’s of appropriate
order, ands= (s1, ...,sm)

T .
(4) is a PRHSLP witht as the parameter. LetB

denote an optimum basic vector for (4) fort = t1. Since
each of thex j variables are unrestricted variables in (4),
it must be a basic variable inB. So, the basic variables
in B areδ ,x1, ...,xn, and the remaining arem−n basic
variables among thesi , i = 1 to m.

Nonbasic variables correspond to slack variables
sp associated with the touching constraints: If the
variablesp is a nonbasic variable not inB, its value in
the BFS of (4) corresponding toB is 0, which means
that thep-th constraint in (2) holds as an equation at its
optimum solution whent = t1, or equivalentlyp∈ T[t1].

Basic variables correspond to slack variables si

associated with constraints i, i 6∈ T[t1]: By the as-
sumption of primal nondegeneracy of (1), ifsi is a
basic variable inB, its value in the BFS corresponding
to B will be positive, and thei-th constraint in (2) will
not be in the touching constraint setT[t1].

So, under the assumptions made above, the opti-
mum basic vectorB for (4) corresponding tot = t1
consists of the variablesδ ,x1, ...,xn and thesi for all
i ∈ {1, ...,m}\T[t1].

The BFS of (4) corresponding to the basic vectorB

remains optimal for values oft for which the values of
the basicsi -variables in this basic vector remain≥ 0 in
this BFS; this leads to the optimality range of the form
t1 ≥ t ≥ t̄1, where this upper limit̄t1 can be computed
from this BFS. ThusT[t]=T[t1], for all t1≥ t ≥ t̄1. Also,
by the assumptions, we know that in the parametric
RHS simplex algorithm for solving the PRHSLP (4),
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all pivot steps will be nondegenerate, and the slope of
the optimum objective value changes after each pivot
step. So,̄t1 is a brake point≤ t1, andT[t] changes ast
is decreasing through̄t1

5. The Version Of SM Considered

Here is the general iteration in the SM that we con-
sider.

General iteration: Let t̄ be the current objective
value (value ofcx at the initial feasible solution of (1)
for this iteration).

Centering steps: Let x[ t̄ ], δ [ t̄ ] be an optimum
solution of (2) obtained fort = t̄.

If δ [ t̄ ] = 0 then t̄ must be =tmin, andx[ t̄ ] is an
optimum solution of (1), terminate the method with
this output.

Otherwise, find the breakpoint̄̄t ≤ t̄ as described in
Section 4; and let(x[ ¯̄t ], δ [ ¯̄t ]), be the optimum solution
of (4) att = ¯̄t. x[ ¯̄t ] is called thecenter for this iteration.

Let ε be a small positive number, and let(x[ ¯̄t −
ε ], δ [ ¯̄t−ε ]) be the optimum solution of (4) att = ¯̄t−ε.
Then(x[ ¯̄t− ε ]−x[ ¯̄t ]) is thedirection of the path of
centers being generated at the center for this iteration,
x[ ¯̄t ].

Go to the descent steps with this center.

Descent steps:

In SMs, when a descent step is taken from an interior
feasible solution ¯x in a directiony, the step length is
always taken as −ε + (maximum step length possible
in that direction withinK), whereε > 0 is a small
positive tolerance, to make sure that the output point is
again an interior feasible solution. We will refer to this
as “the maximum step length possible insideK from
x̄ in the directiony”. Like in other methods for LP, it
takes one minimum ratio computation to compute this
step length.

Steepest descent step: From the center take the max-
imum length step possible insideK in the direction−cT .
Let x̂ denote the point obtained at the end of this step.
SinceB[ ¯̄t ] is an insphere ofK with positive radius,
the step length will be> 0, and there will be a strict
decrease in objective valuecx in this step.

Descent step in the direction of the path of centers

being generated: From the current centerx[ ¯̄t ] take the
maximum length step possible insideK in the direction
(x[ ¯̄t−ε ]−x[ ¯̄t ]) of the path of centers being generated.

Descent step in the direction joining two consec-
utive centers: From the current centerx[ ¯̄t ] take the
maximum length step possible insideK in the direction
(x[ ¯̄t ]−x[ t̂ ]), wherex[ t̂ ] is the center in the previous
iteration.

Actually in the SM several other descent steps are
carried out from the current center in this iteration, and
among the output points from all these descent steps, the
one with the least objective value is the initial feasible
solution for the next iteration.

6. Results

Since the center in each iteration corresponds to a
breakpoint, the touching constraint set changes after
each iteration.

In an iteration of the SM in whicht is the objective
value at the initial feasible solution for this iteration,
suppose(δ̄ , x̄) is a feasible solution of (2) with̄δ > 0.
Even if we carry out this iteration with ¯x as the center
for this iteration instead of a true optimumx for (2) as
required in the statement of the algorithm, the property
of strict descent of the objective value in each iteration
continues to hold. Exploiting the special structure of
(2), approximations to an optimum solution of (2) can
be obtained very efficiently, and implementations of the
SM are based on these. But for the analysis of the num-
ber of iterations needed by the algorithm to solve (1),
we will assume that the method is carried out exactly as
stated above. Also, we will use the assumptions stated
earlier.

Theorem 1: As t is decreasing through a valuet1,
suppose the index 1 drops out ofT[t]; i.e., 1∈ T[t1] but
1 6∈ T[t1−ε] for ε > 0 and sufficiently small. Thenx1[t1]
lies on the spherical boundary of the right semisphere
of B[t1] in < B[t1]∪B[t1− ε]>.

Proof: ConsiderB[t1] and B[t1 − ε]. x1(t1) is con-
tained on the boundary ofB[t1] but not contained in
B[t1−ε]; and this is true for allε > 0 sufficiently small.

So,x1(t1) is on the (boundary ofB[t1])\B[t1− ε].
Sinceδ [t] is monotonic increasing or decreasing de-

pending on the interval[tmax, t∗] or [t∗, tmin] in which it



34 Katta G. Murty –O(m) Bound on Number of Iterations in Sphere Methods for LP

lies,δ [t1−ε]> or< δ [t1]. LetΓ = <B[t1]∪B[t1−ε]>.
SinceF1 touchesB[t1] but does not intersectB[t1− ε];
x1[t1], the point whereF1 touchesB[t1], can only be con-
tained on the spherical boundary portion of the right
semisphere ofB[t1] in Γ. 2

Theorem 2: As t is decreasing through a valuet2,
suppose the index 2 entersT[t]; i.e., 2∈ T[t2] but 2 6∈
T[t2+ε] for ε > 0 sufficiently small. Thenx2[t2] lies on
the spherical boundary of the left semisphere ofB[t2] in
< B[t2+ ε]∪B[t2]>.

Proof: Similar to the proof of Theorem 1.2

Theorem 3: Suppose a constraint 1 is dropping out of
the set of touching constraints ast is decreasing through
t1. Then, there must be another constraint which enters
the touching constraint set att1.

Proof: Since 16∈T[t1−ε] but inT[t1], s1 is a nonbasic
variable entering the optimum basic vector of(4) as
t decreases throught1. We know that in solving the
PRHSLP(4) whens1 enters an optimum basic vector
B, one basic variable,s2 say, must leave it, i.e., there
must be a constraint like constraint 2 which enters the
touching constraint setT[t1] at t = t1. 2

For anyt in its range, touching constraints inT[t] can
be classified into the following 3 classes:

Class 1 touching constraints: These correspond to
i ∈ T[t] satisfyingFi ∩H(t) = /0, and the touching point
xi(t) satisfiescxi(t)> t (i.e., xi(t) lies in the right open
halfspace ofH(t)). For these facetsFi , minimum cx
overx∈ Fi is > t.

Class 2 touching constraints: These correspond to
i ∈ T[t] satisfyingFi ∩H(t) 6= /0. These facets contain a
point satisfyingcx= t.

Class 3 touching facets: These correspond toi ∈T[t]
satisfyingFi ∩H(t) = /0, andcxi(t)< t. For these facets,
xi(t) are on the left open half-space ofH(t).

Theorem 4: Once a Class 1 facetFi for i ∈ T(t1)
leavesT(t) ast is decreasing throught1, it never enters
T(t) for any t < t1.

Proof: By the definition of Class 1 touching con-
straints att1, Fi is completely contained in the right open

half-space ofH(t1).
The centerx3 in any subsequent iteration of the SM

will satisfy t3 = cx3 < t1−δ ([t1], and ifFi were to enter
the touching constraint set in that iteration, its touching
point with the sphereB[ t3 ] in that iteration has to be
on the spherical boundary of a left semisphere of that
B[ t3 ] by Theorem 2. This is clearly impossible asFi is
completely contained on the right-side open half-space
of H(t1). So, this facetFi never enters the touching
constraint set in subsequent iterations of the SM.2

Discussion 1: Consider the case in which there is
a facetal hyperplane ofK which is parallel to the ob-
jective planeH(t). In this case, in some iterationr of
the SM, when the center isx[tr ] with objective value
tr = cx[tr ], if H(tr − δ [tr ]) is a facetal hyperplane of
K, then the facet ofK corresponding to it is the op-
timum face for (1). In this case, the output point ob-
tained in the steepest descent step in this iteration will
be= x[tr ]− (δ [tr ]− ε)cT , and the breakpoint≤ the ob-
jective value at this point; will betr − δ [tr ] = tr+1, the
optimum objective value in this LP; and we will find
that (x̄= x[tr ]− δ [tr ]cT ,δ [tr+1] = 0) is an optimum so-
lution of (2) for t = tr+1. So x̄ is the center for the next
iteration, and sinceδ [tr+1] = 0, the SM will terminate
in this iteration by concluding that ¯x is an optimum so-
lution of (1).

Discussion 2: From Murty[5, 6] we know thatδ [t] is
a piecewise linear concave function which is monotonic
increasing in the intervaltmin ≤ t ≤ t∗ (and hence slope
of δ [t] is≥ 0 in this interval), and monotonic decreasing
in the intervalt∗ ≤ t ≤ tmax (and hence slope ofδ [t] is
≤ 0 in this interval). So the only possible value where
the slope ofδ [t] can be 0, is the value whereδ [t] attains
its maximum value, i.e.,t∗.

So if the value oft whereδ [t] attains its maximum
value is unique, then at all values oft the absolute value
of the left-side slope ofδ [t] is strictly positive.

On the other hand if the value oft whereδ [t] attains
its maximum value is not unique, then all these values
of t belong to an interval, sayt∗L ≤ t ≤ t∗U in which
δ [t] is a constant, which is its maximum value.

The assumption made in Section 4 that the optimum
solution of the LP (2) is unique for all values oft im-
plies that the LP (2) is dual nondegenerate, and that it
has a unique optimum basic feasible solution; also the
assumption of primal nondegeneracy of (2) implies that
the optimum basic vector for (2) is unique for allt.

Also, by these assumptions we know thatT[t] is the
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same for allt∗L ≤ t ≤ t∗U , and sinceδ [t] is the same for
all t in this interval, the line joiningx[t∗L] andx[t∗U ] is
parallel to all factes inT[t] for anyt in this interval; and
a descent step in the direction of the path of centers at
t∗U will help the SM cross this interval of values oft
in one iteration of the SM. Our aim is to prove that the
total number of iterations in this SM isO(m); and this
interval of values oft will be crossed in one iteration,
and so it is sufficient to focus on what happens for values
of t outside this interval; i.e., values oft at which the
absolute value of the left-side slope ofδ [t] is > 0.

We will now discuss some theorems for establishing
a bound on the number of iterations needed by the SM.

Theorem 5: Considert decreasing in the ranget∗ ≤
t ≤ tmin. In this process, suppose a constraint 1 is drop-
ping out of the set of touching constraints ast is de-
creasing throught1. By the arguments in Discussion 2
we will assume that̄µ , the absolute value of the left-
side slope ofδ [t] at t = t1 is > 0. Then (the minimum
value ofcx overF1) is ≥ t1− (δ [t1]/µ̄)).

Proof: We will first try to find the smallest value of
α ≥ 0 satisfying the property that the (minimum value
of cx overF1) is ≥ t1−α. This is equivalent to finding
the smallest value ofα such that the following system
(5) is infeasible.

A1.x= b1

Ai.x≥ bi for i = 2 to m (5)

cx≤ t1−α

From theorems of alternatives for linear systems of
constraints (see for example, Mangasarian [1], Ap-
pendix 1 in Murty [4]), we know that (5) is infeasible
iff the following system (6) in variablesπ = (π1, ...,πm)
andµ ∈ R1 has a feasible solution.

πA− µc= 0

πb− µ(t1−α)> 0 (6)

π2, ...,πm,µ ≥ 0, π1 unrestricted.

Now, as t is decreasing in the ranget∗ ≥ t ≥ tmin,
δ [t] is monotonically decreasing. So, for anyt1 in this
range, for the LP (7) given below

maximize δ
subject to δ −Ai.x≤−bi, = 1 to m (7)

cx≤ t1

(x[t1], δ [t1]) defined earlier is an optimum solution.
From duality theory of LP we know that there is a cor-
responding dual optimum solution(π̄ , µ̄), satisfying

∑
i

π̄i = 1

−π̄A+ µ̄c= 0

(π̄ , µ̄)≥ 0 (8)

δ [t1] =−π̄b+ µ̄t1
π̄i = 0, for all i 6∈ T(x[t1])

From the assumptions in Section 4, and Discussion
2 we know thatµ̄ is > 0

So, from (8), we havēπb= µ̄t1−δ [t1]. Therefore for
values oft1 in this ranget∗ ≥ t1 ≥ tmin, π̄b− µ̄(t1−α)
= µ̄t1−δ [t1]− µ̄(t1−α) = µ̄α −δ [t1]. So, for(π̄, µ̄) to
be feasible to (6) we only need̄µα −δ [t1]> 0, or α >
(δ [t1])/µ̄ .

Thus ifα > δ [t1]/µ̄, (π̄ , µ̄) will be a feasible solution
of (6) and (5) will be infeasible; i.e.,F1∩H(t1−α) will
be the /0. This implies that (the minimum value ofcx
over F1) is ≥ t1 − (δ [t1]/µ̄)) where µ̄ is the absolute
value of the left-side slope ofδ [t] at t = t1. 2

Theorem 6: Considert decreasing in the rangetmax≥
t > t∗. In this process, suppose a constraint 2 is entering
the set of touching constraints ast is decreasing through
t2. By the assumptions in Section 4, and the arguments
in Discussion 2, we will assume thatµ̂ , the absolute
value of the right-side slope ofδ [t] att = t2 is> 0. Then
(the maximum value ofcxoverF2) is≤ t2+(δ [t2]/µ̂)).

Proof: Here we havetmax≥ t2 > t∗. (x[t2], δ [t2]) is
an optimum solution of (2) whent = t2, and let(π̃ , µ̃)
be a dual optimum solutution corresponding to it. Then
we know thatµ̃ ≤ 0.

Consider the casẽµ < 0. In this case, as discussed
in the proof of Theorem 5, we will havẽπ ≥ 0,−π̃A+
µ̃c= 0; and

π̃b= µ̃t2− δ [t2], or

(1/µ̃)π̃b= t2+(−1/µ̃)δ [t2].

Let π̄ = (1/µ̃)π̃ . Sinceµ̃ < 0, we haveπ̄ ≤ 0.
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Now consider the problem of finding the maximum
value ofcx overx∈ F2. It is:

Maximize cx (9)

s. to Ai.x≥ bi i = 1,3, ...,m

= bi for i = 2.

Its dual is:

Minimize πb (10)

s. to πA= c

π2 unrestricted, πi ≤ 0, i = 1,3, ...,m.

From the facts discussed earlier, we see thatπ̄ =
(1/µ̃)π̃ defined above is feasible to (10). From duality
theorem of LP we know that the optimum objective
value in (10) is≤ π̄b= t2+(−1/µ̃)δ [t2]. Here(−1/µ̃)
is 1/µ̂ where µ̂ = |µ̃ |, the absolute value of the right
side slope ofδ [t] at t = t2.

Now consider the casẽµ = 0. In this case the slope
of δ [t] at t = t2 is 0, sot2 is in an interval of values
of t in which δ [t] is constant; i.e.,t2 corresponds to the
maximum value ofδ [t], or t2 = t∗, the end point of the
closure of the range we are considering, but not in the
range itself. 2

7. Analysis of the Sphere Method

We will now analyze the process being used by the
SM for solving (1) beginning with an iteration, call it
iteration 1, in which the objective value at the initial
interior feasible solution ist1. The objective value is
monotone decreasing in the method.

Denote the center in an iteration bȳ̄x and letc¯̄x= ¯̄t.
The step length for each descent step in this iteration
will be ≥ δ [ ¯̄t ]. Also from the manner in which the
iterations in the algorithm are organized, we know that
¯̄t is a breakpoint. We now consider several cases.

Case 1: ¯̄t is in an interval in which the slope ofδ [t]
is 0, i.e., every value oft in this interval corresponds to
t∗, which maximizesδ [t].

In this case, by the assumptions in Section 4 and Dis-
cussion 2,̄̄t is in an interval in which the touching con-
straint set remains the same. Since the touching con-

straint set changes after each iteration, SM will leave
this interval in one iteration.

Case 2: ¯̄t is in the ranget∗ ≥ t ≥ tmin.

Since¯̄t is a breakpoint, one constraint inT[ ¯̄t ] will
be dropping out at̄̄t.

Since the step length will be≥ δ [ ¯̄t ], the descent step
in the steepest descent direction−cT in this iteration
will lead to an output point at which the objective value
will be ≤ ¯̄t − δ [ ¯̄t ]ccT = ¯̄t − δ [ ¯̄t ].

Let ¯̄µ denote the absolute value of the dual variable
corresponding to the constraint “cx= ¯̄t ” in the dual
optimum solution corresponding to (2) witht = ¯̄t. Then
¯̄µ is the absolute value of the slope ofδ [t] to the left of¯̄t.
So, forε small and positive as selected in the statement
of SM, |δ [ ¯̄t − ε]− δ [ ¯̄t ]| = ε ¯̄µ .

For taking a descent step atx[ ¯̄t ] the directionsx[ ¯̄t−
ε]−x[ ¯̄t ] and ¯̄y= (x[ ¯̄t−ε]−x[ ¯̄t ])/(|δ [ ¯̄t−ε]−δ [ ¯̄t ]|)
are both the same, and both lead to the same identical
output point. Also sincec¯̄y =−1/ ¯̄µ , and since the step
length of this descent step is≥ δ [ ¯̄t ], we know that the
objective value at the output of this descent step will be
≤ ¯̄t − δ [ ¯̄t ]/ ¯̄µ .

Therefore the output point at the end of this iteration
in solving (1) using the SM will have an objective value
t ≤ ¯̄t− Maximum{δ [ ¯̄t ], δ [ ¯̄t ]/ ¯̄µ}, where ¯̄µ is the
absolute value of the

slope ofδ [t] to the left of ¯̄t. By Theorems 5 this im-
plies that the facet ofK in the touching constraint set
T[ ¯̄t ] dropping out of the touching constraint set at¯̄t,
will be completely on the right side of the objective
plane through that output point of this iteration, hence
in future iterations this facet will be a Class 1 touching
facet. By Theorem 4, this implies that the associated
constraint will never enter into the touching constraint
index set in future iterations. The fact that this constraint
is the dropping constraint fromT[ ¯̄t ], the touching con-
straint set at the center in this iteration, implies that in
each iteration a new constraint will not be able to enter
into the touching set in future iterations.

These facts imply that the total number of iterations
of the method fort in this range isO(m).

Case 3: ¯̄t is in the rangetmax≥ t ≥ t∗.

We will state the main result for getting an upper
bound for the number of iterations in the SM while the
objective value is in this range, in the form of a theorem.
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Theorem 7: In the rangetmax≥ t ≥ t∗, let t1 > t2 be
the values oft at the initial interior feasible solutions
of two consecutive iterationsr, r +1 of the SM applied
on (1). Suppose 1∈ T[t1] but 6∈ T[t2]. Then 1 will not
appear in the touching constraint index set in subsequent
iterations whilet is in this range.

Proof: (x[ti ],δ [ti ],B[ti ]) for i = 1, 2, are the center,
radius, largest inscribed ball obtained in iterationsr, r +
1 respectively. Then in the descent cycle in iteration
r + 1, a descent step will be carried out at the center
x[t2] in the direction joining two consecutive centers
x[t2]− x[t1].

Suppose in an iterations≥ r+2, Constraint 1 appears
again in the touching constraint index set at the initial
interior feasible solution, at which the objective value
is t3. (x[t3],δ [t3],B[t3]) are the center, radius, largest
inscribed ball obtained in that iterations.

Letx1(ti) be the points whereB[ti ] touchesFH1 for i =
1, 3.FH1 is a tangent plane to bothB[t1],B[t3] touching
them along the lineL joiningx1(t1),x1(t3), butFH1 does
not touchB[t2]. There are two cases to consider now.

Subcase 1: x[ti ] for i = 1, 2, 3 are collinear.

In the descent cycle in iterationr+1 we will take a de-
scent step fromx[t2] in the descent directionx[t2]−x[t1]
(this is the direction joining two consecutive centers at
x[t2]). Sincex[t3] is on the line joiningx[t1] andx[t2], the
step length in this step will be≥ (t2 − t3)+ δ [t3], and
hence the output point of this descent step will corre-
spond to an objective value≤ t3− δ [t3], contradicting
the hypothesis that in iterations (s≥ r +2), the objec-
tive value at the initial interior feasible solution ist3.
So, this case cannot occur under the hypothesis.

Subcase 2: x[t3] is not on the line joiningx[t1] and
x[t2].

So, in this case the three centersx[ti ], i = 1 to 3 define
a unique triangle, call it∆1. Let

Γ12=< B[t1]∪B[t2]>

Γ23=< B[t2]∪B[t3]>

Γ̃2 = Left semisphere ofB[t2] in Γ12

˜̃Γ2 = Right semisphere ofB[t2] in Γ23

H̃[ ˜̃H] = Hyperplane such that̃Γ2[
˜̃Γ2] is a semisphere of

B[t2] on one side ofH̃[ ˜̃H]

Γ2
12= Boundary portion ofB[t2] not in interior ofΓ12

= Spherical boundary of̃Γ2

Γ2
23= Boundary portion ofB[t2] not in interior ofΓ23

= Spherical boundary portion of̃̃Γ2

Li j =Defined for j> i, is the straight line joiningx[ti ], x[t j ]

H2 = Unique hyperplane containing̃H ∩ ˜̃H, and the

point x[t2]

L = Line segment joiningx1(t1),x
1(t3)

x̄13= Point of intersection ofL with H(t2)

M = Straight line joiningx[t2] andx̄13

Γ̃1 = Right semisphere ofB[t1] in Γ12

˜̃Γ3 = Left semisphere ofB[t3] in Γ13

See Figure 1.

Since the step length from the centerx[t j ] in the
descent direction−cT will be ≥ δ [t j ], we know that
x[t j+1], the center ofB[t j+1] is not contained in the in-
terior ofB[t j ] for j = 1, 2. Also we know that the radius
of B[ti ] for i = 1, 2, 3 are increasing in that order.

We will now give a numbered list of several argu-
ments that can now be derived.

3.1: Since δ [t2] > δ [t1], from 20.1 applied toΓ12,
we conclude that̃Γ2 is on the side ofH̃ containing the
centerx[t2], so it is larger than a
hemisphere ofB[t2]. Also,x[t2] is not contained on H̃.

Similarly, sinceδ [t2]< δ [t3], from 20.1 applied toΓ23

we conclude that̃̃Γ2 is on the side of˜̃H not containing
the centerx[t2], so it is smaller than a

hemisphere ofB[t2]. Also, x[t2] is not contained oñ̃H.

3.2: H̃ is orthogonal to the lineL12 joining x[t1], x[t2],
and from 20.1 it follows that̃H intersects the line seg-
ment joining these points in its relative interior. Simi-
larly ˜̃H is orthogonal to the lineL23 joining x[t2], x[t3];
but does not intersect the line segment joining them.

So, x[t1] is contained on the line fromx[t2] orthog-
onal to H̃ (i.e., on the right side ofx[t2] on this line);
while x[t3] is contained on the left side ofx[t2] on the
line from x[t2] orthogonal to ˜̃H.

3.3: Since ˜̃Γ2 is the right semisphere ofB[t2] in Γ23,
andt2 > t3, we know that˜̃Γ2 contains the point which
maximizescx on B[t2]. Similarly, we can verify that̃Γ2
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Fig. 1. Values oft are plotted on the horizontal axis,t decreases along the right to left direction. Fori = 1 to 3, B[ti] is the
largest insphere insideK with center on the objective planeH(ti) (these planes are not shown in the figure);x[ti ] is its center,
indicated by round dots in the figure.Γ12,Γ23 are the convex hulls ofB[ti]∪B[t2] for i = 1, 3. L12,L23 are the straight lines
joining x[t2] with x[t1], x[t3] respectively.H̃ {H̃1} is the hyperplane (represented by dashed lines) that divides B[t2] {B[t1]}

into two semispheres, one in the interior of, the other whosespherical boundary is not in the interior ofΓ12. Similarly ˜̃H { ˜̃H3}
(represented by dotted lines in the figure) dividesB[t2] {B[t3]} into two semispheres with similar properties. Fori = 1, 3,x1(ti)
is the touching point ofFH1 with B[ti ], andL is the line segment joining them.Q1 to Q4 are the 4 quadrants into which̃H, ˜̃H
divide B[t2] and the whole space. The little black square inB[t2] represents the(n−2)-dimensional intersection of̃H and ˜̃H,
andH2 (not shown in the figure) is the unique hyperplane containingH̃∩ ˜̃H and the pointx[t2]. Also, the proof uses some more
concepts not shown in the figure.

contains the point which minimizescx on B[t2]. Hence
˜̃Γ2 is not a subset of̃Γ2. HenceΓ̃2∩

˜̃Γ2 is smaller in
content than˜̃Γ2 which itself is a semisphere strictly
smaller than a hemisphere ofB[t2].

3.4: The spherical boundary ofB[t2] not contained in
Γ̃2∩

˜̃Γ2 is either in the interior ofΓ12, or the interior of
Γ23, and hence in the interior ofK, and hence cannot
contain any touching points att2. So, all the touching
points onB[t2] are contained on the spherical boundary
of Γ̃2∩

˜̃Γ2, i.e.,Γ2
12∩Γ2

23.

3.5: From 3.4 we conclude that̃Γ2∩
˜̃Γ2 6= /0, which

by 3.3 implies thatH̃, ˜̃H intersect insideB[t2].

3.6: From 3.5 we conclude that̃H, ˜̃H divide B[t2]
and the whole space into 4 quadrants. They are:

Q1: on the side of ˜̃H not containing the centerx[t2],
and the side ofH̃ containing the centerx[t2].

Q3: on the side of ˜̃H containing the centerx[t2],
and the side ofH̃ not containing the centerx[t2]. So,
Q1, Q3 are directly opposite to each other.

Q2: on the side of both̃H, ˜̃H containing the centerx[t2].
Q4: on the side of both̃H, ˜̃H not containing the center

x[t2].
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3.7: From 3.1 and 3.6 we know thatQ1 = Γ̃2∩
˜̃Γ2.

All the touching points onB[t2] are on the spherical
boundary ofQ1, andQ1 is strictly smaller than a hemi-
sphere ofB[t2].

3.8: Γ̃1, the right semisphere ofB[t1] in Γ12 is on
the right side of a hyperplanẽH1 which is parallel to
H̃. This side ofH̃1 does not contain the centerx[t1].
B[t1]\Γ̃1, the left semisphere ofB[t1] on the side ofH̃1

containing the centerx[t1] is in the interior ofΓ12, and
hence all the touching points onB[t1] must be contained
on the spherical boundary ofΓ̃1.

3.9: Using arguments similar to those in 3.8, we
conclude that all the touching points onB[t3] must be
contained on the spherical boundary of˜̃Γ3, the left
semisphere ofB[t3] in Γ23 which is on the left side of
a hyperplane˜̃H3 which is parallel to ˜̃H in the right to
left direction of decreasingt (see caption for Figure 1).
This side of ˜̃H3 contains the centerx[t3].

3.10: From 3.2 we know thatL12 intersectsH̃ at a rel-
ative interior point ofH̃∩B[t2], and hence intersects the
boundary ofB[t2] in the spherical boundary ofB[t2]\Γ̃2.
From a similar argument,L23 intersects the boundary of
B[t2] in the spherical boundary ofB[t2]\

˜̃Γ2. This implies
that L13 is contained on the side ofH2 not containing
Q1.

3.11: Any line joining a pair of points one on each
on the spherical boundaries ofΓ̃1, ˜̃Γ3; with at least
one of them on the side containingQ1 of hyperplanes
parallel toH2 throughx[t1],x[t3] respectively, intersects
the interior of Γ12 or Γ23 or both. This implies that
bothx1(t1), x1(t3) must be contained on the side ofH2

not containingQ1.

3.12: B[t1] is completely contained on the right side
of H̃, and hence so is the touching pointx1(t1) on it.

Similarly B[t3] is completely contained on the left
side of ˜̃H, and hence so is the touching pointx1(t3) on
it.

3.13: From 3.11, 3.12 we know thatx1(t1) is in the
quadrantsQ2 or Q3; and thatx1(t3) is in the quadrants
Q3 or Q4.

Also, since bothx1(t1), x1(t3) are in F1, and FH1

is not a tangent plane forB[t2], we know that the line
segmentL joining them does not intersectB[t2] at all,
which by 3.10, 3.11 implies thatL intersects the quad-

rant Q3 away from B[t2] and does not intersect the
quadrantQ1 at all.

3.14: From 3.11 and 3.13 we conclude thatH2 sep-
aratesL from Q1.

3.15: All these facts imply thatH2 separatesL and the
spherical boundary ofQ1 which contains all touching
points onB[t2]. Also, sinceFH1 is not a tangent plane
to B[t2] it does not intersectB[t2] at all, and the nearest
point to x[t2] on FH1 has distance strictly> δ [t2]. So,
it is possible forB[t2] to move withinK with its center
moving from the currentx[t2] a positive distance along
the lineM. SinceM is completely contained onH(t2),
this contradicts either the hypothesis thatB[t2] is the
largest ball inscribed inK with its center restricted to
H(t2), or the assumption that the largest ball inscribed
in K with its center restricted to the objective planeH(t)
is unique for allt, and hence also fort = t2.

This shows that a value liket3 < t2 such that 1∈
T[t3] cannot be the objective value at the initial interior
feasible solution in an iterations> r +1 in the SM in
this case. 2

From Theorem 7, we know that once a constraint
drops from the set of touching constraints in an iteration
of the SM while the objective valuet is in the range
tmax≥ t ≥ t∗, it cannot reappear in the set of touching
constraints in subsequent iterations while the objective
valuet is in this range.

Starting from an objective valuet in this range, this
clearly implies that the SM needs at mostO(m) itera-
tions to reach the objective value≤ t∗.

Arguments similar to the above can also be used to
provide an alternate proof for the conclusions reached
in Case 2.

All these facts together imply that this version of the
SM needs at mostO(m) iterations before termination
under the assumption at the beginning of Section 4.

Note: The proof of the main result extends easily to
the general case where the assumption made in Section
4 may not hold. In this general case, standard pertur-
bation arguments in LP can be applied if (1) is primal
degenerate. Lett1 > t2 > t3 be values oft satisfying the
same properties as described above. LetB[ti ] be any
largest insphere insideK with center onH(ti) for i = 1,
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3, such thatFH1 touches both of them.
Let S= {x : (x,δ [t2]) is an optimum solution of (2)

whent = t2}. For eachx∈S, defined(x) = ||x−P1(x)||,
whereP1(x) is the nearest point inF1 to x by Euclidean
distance. Then definex[t2] as anx∈ Swhich minimizes
d(x) overS. Now applying the argument in the proof of
Theorem 7, we can see that in this case we can move
B[t2] closer toF1 providing a contradiction in this gen-
eral case.
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