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Abstract

Consider the linear program (LP): minimize=zcx, subject to A% b, where A is an nx n matrix. Sphere methods
(SMs) for solving this LP were introduced in Murty [5, 6], evéhough this name was not used there. Theorems in
those papers claimed that a version of this method needs at ®o) iterations to solve this LP, however Mirzaian
[2] pointed out an error in the proofs of these theorems thetere we prove the claim using the geometry of inspheres.
Also the results in this paper provide a solution to the splecase of the open problem 2 in page 441 of the book Murty

[7] dealing only with inspheres encountered in the SM.
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1. Introduction

Consider an LP in the form:

Minimize z=cx (1)
subjectto Ax>Db

whereA is anmx n data matrix. We use the Euclidean
distance irR". We assume that and each row vectdy;

of Afori =1tomis normalized so thdic|| = ||A || =1
for all i.

Sphere methods (SMs) for LP were introduced in
Murty [5, 6], and developed further in Murty [7, 8],
Murty and Kabadi [9], and Murty and Oskoorouchi[10,
11, 12].

2. Notation

The following notation and concepts are used in SMs.

1. < A> For any sefA C R", < A > denotes the
convex hull ofA.

2. K = Set of feasible solutions of (1). We assume
thatK is bounded and is of full dimension R".

3. tmax tmin the maximum and minimum values of
zover K W|th tmax > tmm

4. A, Aj thei-th row vector,j-th column vector of
the matrix A.
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10.

11.

12.

13.

o(x) = minimum{A; x—b; :i =1 to m}. For
eachx € K, 9(x) is the radius of the largest
ball that can be inscribed K (i.e., insphere of
K) with x as centerd(x) = 0 for all boundary
pointsx of K, and> 0 for all interior points of
K.

B(x), T (x) defined forx € K, B(x) is the sphere
with x as center and(x) as radius, it is the
largest sphere witl as center that can be in-
scribed insideK. T(x) is the index set of all
attaining the minimum in the definition @kx)
given above, it is the index set of facetal hyper-
planes ofK which are tangent planes 8{x).
H(t) = the objective planéx: cx=t}

FH;i = {x: A x=b;}, theith facetal hyperplane
of K, fori =1tom

F = FHinK, is the facet oK corresponding
toi

o[t] the radius of a largest ball inscrib&dwith
its center restricted tbl (t) NK

x[t] is the center of a largest ball inscribed inside
K with center restricted tél (t)

B[t] = {x:||x—x[t]|| < d][t]}, the inscribed ball
with centerx[t] and radiu[t] = d(x[t]). B[t] =
B(X[t]).

T[t] =the index sefi : i ties for the minimum in
(3)}. See below for equation (3).[t] = T (x[t])

is the index set of facetal hyperplanes kf
which are tangent planes B8ift].
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14. X(t) defined fori € T[t] is the point where the
facetF touchesBlt]. It is the orthogonal pro-
jection ofx]t] onFH; fori € T[t]; it is a bound-
ary point of B[t], andFH; is the tangent plane
to B[t] at X (t) = x[t] — S[t]A].

15. t*isavalue of whered|[t] attains its maximum
value.

16. SM Sphere method.

17. Right, left of a t: We considett decreasing
from tmax to tmin in the intervalftmin, tmay]. We will also
refer to this interval as the-axis. For any valué in
this interval 1eft (right) of t ” refers to values of in
the interval less (greater) than

18. Right, left half-spaces. These half-spaces of
H(t) refer to the half-spacefsc: cx>t}, {x:cx<t}
respectively.

19. Semisphere: The portion of a sphere on one

of B[t ] which are not interior points df; this is a
semisphere oB[ f ], and sincet < t, we will call
I3 as theleft semisphere of B[f ] in T.

M, =M\(rF1Url3), the conical portion of ; ', =
<(B[T]\M1)U(B[T]\['3) >.
20.1. Also, in this item 20, suppose none of the
spheresB|[ t ],B[ f ] contain the center of the other in
its interior, and

(the radius oB[ T ]) is > {<} (the radius oB[ { ])

then the right semisphere & f]in T = < B[ ]U
B[t ] > is larger{smallei

in content than a hemisphere®ft |; and the left semi-
sphere oB[ f ] in [ is smaller{larger} in content than
a hemisphere oB| f |.

Notice the difference in the type of brackets in
0(x),d[t] etc. o(x) etc. are defined fox € K, Jt]
etc. are defined for objective valuestifn <t < tmax

side of a hyperplane which has a nonempty intersection Clearly 5[t] = maximum{&(x) : xe H(t) NK}.

with its interior.

Any hyperplaneH that intersects a sphef®at an

interior point divides it into two semispheres, one on
each side oH. These two semispheres are not equal

in content unlessi passes through the center®fThe

3. Breakpoints, and the Problem Addressed in the
Paper

We will use the words “ball, sphere” synonymously.

semispheres formed by a hyperplane passing throughLet (x[t], 5[t]) be an optimum solution of the following

the center ofS are callechemispheres of S. Typically

the semispheres that we deal with in this paper will not

be hemispheres.

LetH be a hyperplane that intersects a spt&atan
interior point, butH does not contain the center &f
Then the two semispher&s, S, into whichH dividesS
are unequal in content. One, s&y contains the center

and is larger in content than a hemisphere, it is said to be

thesemisphereon theside of H containing the center.

The other,S,, smaller in content than a hemisphere is

onthe side of H not containing the center.

20. Right semisphere of B[ T |, left semisphere of
B[f]in<B[f]uB[t]>,wheref >{:Let T > (i.e.,
t is on the right side off ), andr = < B[ T JuB[ ] >.
Thenl can be partitioned intd; U, U3 where:
M1 = Convex hull of the set of boundary points of
B[t ] which are not interior points of; this is a
semisphere oB| f ], and sincet > t, we will call
I as theright semisphere of B[T | in T.

'3 = Convex hull of the set of boundary points

LP (2).
Maximize &
subjectto & <A xX— b i=1..m (2
cx=t
So,
O[t] = minimum{ A x[t] —b;, i=1..m} (3)

We will refer to points likex (t) where facetal hyper-
planes ofK which are tangent planes &ft] touch it,
as thetouching points corresponding ta.

In Murty [5, 6], it has been proved thaft] is piece-
wise linear concave, it is monotonic increasing in the
interval tmin <t <t* and monotonic decreasing in the
intervalt* <t <tmax Values oft where the slope oj[t]
changes (these are the same values where thg[get
changes) are calldor eakpoints.
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Also, in the same papers, Theorems 7, 8, 9 claimed Given the objective valug¢; at an interior feasible

that the total number of possible changes in theT$gt
ast varies continuously in its randgin <t <tmax (i-e.,
the total number of breakpoints) is at m@tm), but

Mirzaian [2] showed that the proofs of these theorems

solution x!, here we discuss a method for finding an
objective valug which is a breakpoin£ t; under these
assumptions.

Let 5 denote thedack variable in (2) associated

given there are wrong, and he produced a counterexam-with the i-th constraint in (2) foi = 1 to m. By intro-

ple to the arguments in those proofsRA. This raised

ducing these slack variables convert the inequality

the question whether the total number of distinct sets constraints in (2) into a system of linear equations. This

in the class{T[t] : tmin <t <tmax} (i.e., the total num-
ber of breakpoints) grows as a polynomiahinn in the

worst case, this is the open problem 2 in page 441 of

Murty [7]. The only thing known is that (2) is a special

parametric right hand side linear program (PRHSLP)

with t as the parameter, the number of changeE[th

is the number of slope changes in the optimum objec-
tive value in this PRHSLP; and that the number of slope
changes in the optimum objective value in the general

PRHSLP grows exponentially im n in the worst case,
Murty [3].
However, in the SM{ does not vary continuously,

because each iteration of the method consists of descenf2ch of the

steps in whicht takes a jump downwards, and for all

vales oft covered by the jump, the centering step is
not carried out. So, in the SM, we encounter only a

finite number of discrete values ¢f and hence only
a subset of T[t] : tmax>t > tmin}. Using this, and the

leads to the PRHSLP

Maximize o
s.to de— Ax+Is=-b
cx=t
s>0

(4)

| Wheree is the column vector of all 1's of appropriate

order, ands = (sq,...,Sm)" .

(4) is a PRHSLP witht as the parameter. Le®
denote an optimum basic vector for (4) foe t;. Since
variables are unrestricted variables in (4),
it must be a basic variable i#8. So, the basic variables
in 4 ared, xy, ..., Xn, and the remaining ana— n basic
variables among thg, i = 1 tom.

Nonbasic variables correspond to slack variables
sp associated with the touching constraints: If the

property of the steepest descent step, the descent steRariaples,, is a nonbasic variable not i, its value in
in the direction of the path of centers being generated, the BFS of (4) corresponding t@ is 0, which means
and other descent steps used in the SM, we show thathat thep-th constraint in (2) holds as an equation at its

the total number of changes t] encountered in the
SM = number of iterations in the method, is ©fm).

The SM is initiated with an interior feasible solu-
tion x' with objective valuecx! =ty, i.e., Axt > b, so
3(x) > 0, and consequentl§[t;] > 0; and since it is
a descent method, the objective value=t is mono-
tonic decreasing. For sontef 6]t | =0, thent may
be eithertnax or tmin. Clearly, in the SM if the objec-
tive value reaches tsatisfyingd| t | = 0, thent must
be =tmin = the optimum objective value in (1), and the
method terminates.

4. How to Find a Breakpoint <t;
We make the following assumptions.

Assumptions. For eacht in its range, the optimum
solution (x]t], d[t]) of (2) is unique, and hence it is a
basic feasible solution (BFS) for it. Rit] is the unique
largest ball insid& with center restricted tbl (t). Also,
the LP (1) is primal nondegerate.

optimum solution wheh=t;, or equivalentlyp € T [t;].

Basic variables correspond to dack variables 5
associated with constraints i, i ¢ T[t1]: By the as-
sumption of primal nondegeneracy of (1),sfis a
basic variable ir#, its value in the BFS corresponding
to % will be positive, and theé-th constraint in (2) will
not be in the touching constraint sEfts].

So, under the assumptions made above, the opti-
mum basic vectorZ for (4) corresponding ta = t;
consists of the variabled, x,,...,x, and thes for all
ie{l,...mH\T[t].

The BFS of (4) corresponding to the basic vec#r
remains optimal for values affor which the values of
the basics-variables in this basic vector remain0 in
this BFS; this leads to the optimality range of the form
t; >t > t1, where this upper limit; can be computed
from this BFS. Thud [t] = T ty], forallty >t >1;. Also,
by the assumptions, we know that in the parametric
RHS simplex algorithm for solving the PRHSLP (4),
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all pivot steps will be nondegenerate, and the slope of being generated: From the current centet t | take the
the optimum objective value changes after each pivot maximum length step possible insillein the direction

step. Sof; is a brake poink t;, andT [t] changes at
is decreasing through

5. The Version Of SM Considered

Here is the general iteration in the SM that we con-
sider.

General iteration: Let t be the current objective
value (value ofcx at the initial feasible solution of (1)
for this iteration).

Centering steps: Let x[ t |, 8[ t ] be an optimum
solution of (2) obtained for =t.

If 5[t ] =0 thent must be =tmin, andx[ t | is an
optimum solution of (1), terminate the method with
this output.

Otherwise, find the breakpoibt< t as described in
Section 4; and lefx[t |, 5[t ]), be the optimum solution
of (4) att =t. x[t ] is called thecenter for this iteration.

Let € be a small positive number, and Iet] t —
€], 8[t—&]) be the optimum solution of (4) at=t —¢.
Then(x[t—&]—x[t]) is thedirection of the path of
center sbeing generated at the center for this iteration,
X[ t].

Go to the descent steps with this center.

Descent steps:

In SMs, when a descent step is taken from an interior
feasible solutiorx in a directiony, the step length is
always taken as —e + (maximum step length possible
in that direction withinK), wheree > 0 is a small
positive tolerance, to make sure that the output point is
again an interior feasible solution. We will refer to this
as “the maximum step length possible insidefrom
x in the directiony”. Like in other methods for LP, it
takes one minimum ratio computation to compute this
step length.

Steepest descent step: From the center take the max-
imum length step possible insi#tein the direction—c'.
Let X denote the point obtained at the end of this step.
SinceBJ[ t | is an insphere oK with positive radius,
the step length will be> 0, and there will be a strict
decrease in objective valwx in this step.

Descent step in thedirection of the path of centers

(x[t—€]—x[t]) of the path of centers being generated.

Descent step in the direction joining two consec-
utive centers. From the current centeq| t | take the
maximum length step possible insillein the direction
(x[t]—x[t]), wherex| f ] is the center in the previous
iteration.

Actually in the SM several other descent steps are
carried out from the current center in this iteration, and
among the output points from all these descent steps, the
one with the least objective value is the initial feasible
solution for the next iteration.

6. Results

Since the center in each iteration corresponds to a
breakpoint, the touching constraint set changes after
each iteration.

In an iteration of the SM in which is the objective
value at the initial feasible solution for this iteration,
suppos€ 9, x) is a feasible solution of (2) witld > 0.
Even if we carry out this iteration witk as the center
for this iteration instead of a true optimuxfor (2) as
required in the statement of the algorithm, the property
of strict descent of the objective value in each iteration
continues to hold. Exploiting the special structure of
(2), approximations to an optimum solution of (2) can
be obtained very efficiently, and implementations of the
SM are based on these. But for the analysis of the num-
ber of iterations needed by the algorithm to solve (1),
we will assume that the method is carried out exactly as
stated above. Also, we will use the assumptions stated
earlier.

Theorem 1. As t is decreasing through a valtg
suppose the index 1 drops outDft]; i.e., 1€ T [t1] but
1¢ Tty — ] for € > 0 and sufficiently small. Thext[t;]
lies on the spherical boundary of the right semisphere
of B[t1] in < B[t1] UB[t1 — €] >.

Proof: ConsiderB[t;] and B[t; — &]. x}(t;) is con-
tained on the boundary d[t;] but not contained in
B[t; — &]; and this is true for alk > 0 sufficiently small.

So,x}(t1) is on the (boundary oB|t;])\Blt; — €].

Sinced|t] is monotonic increasing or decreasing de-
pending on the intervdtmax t*] or [t*,tmin] in which it
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lies, d[t1 — €] > or < O[ty]. Letl = < B[t1]UBJt; — €] >.
SinceF; touchesBJt;] but does not interse®[t; — &J;
xL[t1], the point wheré; touchesB|t;], can only be con-
tained on the spherical boundary portion of the right
semisphere oBJt;] inF. O

Theorem 2: As t is decreasing through a valtg
suppose the index 2 entefst]; i.e., 2 T[tp] but 2¢
T[to + €] for € > 0 sufficiently small. The?[t,] lies on
the spherical boundary of the left semispher8jpf] in
< Blt2+ €] UBJty] >.

Proof: Similar to the proof of Theorem 1.0

Theorem 3: Suppose a constraint 1 is dropping out of
the set of touching constraintstas decreasing through
t1. Then, there must be another constraint which enters
the touching constraint set gt

Proof: Since 1¢ T[t; — €] butinT|ty], 51 is @a nonbasic
variable entering the optimum basic vector (@) as
t decreases through. We know that in solving the
PRHSLP(4) whens; enters an optimum basic vector
4, one basic variabls; say, must leave it, i.e., there
must be a constraint like constraint 2 which enters the
touching constraint séf[t;] att =t;. O

For anyt in its range, touching constraintsTt] can
be classified into the following 3 classes:

Class 1 touching constraints. These correspond to
i € T[t] satisfyingk NH (t) = 0, and the touching point
X (t) satisfiescX (t) >t (i.e.,X (t) lies in the right open
halfspace ofH(t)). For these facet§;, minimum cx
overxe Fis >t.

Class 2 touching constraints. These correspond to
i € T[t] satisfyingi NH(t) # 0. These facets contain a
point satisfyingcx=t.

Class 3 touching facets: These correspond tee T|t]
satisfyingF NH(t) = 0, andcX (t) <t. For these facets,
X (t) are on the left open half-space dft).

Theorem 4: Once a Class 1 facdg for i € T(ty)
leavesT (t) ast is decreasing throudh, it never enters
T(t) for anyt < t;.

Proof: By the definition of Class 1 touching con-
straints aty, F is completely contained in the right open
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half-space oH(t;).

The centerd in any subsequent iteration of the SM
will satisfy t3 = ox@ < t; — 8([ts], and if F; were to enter
the touching constraint set in that iteration, its touching
point with the spher@| t3 ] in that iteration has to be
on the spherical boundary of a left semisphere of that
B[ t3] by Theorem 2. This is clearly impossible Bss
completely contained on the right-side open half-space
of H(t1). So, this facetr never enters the touching
constraint set in subsequent iterations of the SI.

Discussion 1: Consider the case in which there is
a facetal hyperplane df which is parallel to the ob-
jective planeH (t). In this case, in some iteratianof
the SM, when the center igt;] with objective value
tr = cxty], if H(tr — d[t;]) is a facetal hyperplane of
K, then the facet oK corresponding to it is the op-
timum face for (1). In this case, the output point ob-
tained in the steepest descent step in this iteration will
be = x[t;] — (8[t;] — £)c', and the breakpoint the ob-
jective value at this point; will b& — d[t;] =t,1, the
optimum objective value in this LP; and we will find
that (X = x[t;] — d[tr]c", d[tr 11] = 0) is an optimum so-
lution of (2) fort =t,, 1. Soxis the center for the next
iteration, and sincd|t; 1] = 0, the SM will terminate
in this iteration by concluding thatis an optimum so-
lution of (1).

Discussion 2: From Murty[5, 6] we know thad|t] is
a piecewise linear concave function which is monotonic
increasing in the intervah, <t <t* (and hence slope
of d[t] is > 0in this interval), and monotonic decreasing
in the intervalt* <t <tmax (@and hence slope di[t] is
< 0 in this interval). So the only possible value where
the slope oB[t] can be 0, is the value wheddt] attains
its maximum value, i.et.

So if the value oft whered[t] attains its maximum
value is unique, then at all valuestahe absolute value
of the left-side slope 0d]t] is strictly positive.

On the other hand if the value bivhered|t] attains
its maximum value is not unique, then all these values
of t belong to an interval, say" <t <t*Y in which
oO[t] is a constant, which is its maximum value.

The assumption made in Section 4 that the optimum
solution of the LP (2) is unique for all values bim-
plies that the LP (2) is dual nondegenerate, and that it
has a unique optimum basic feasible solution; also the
assumption of primal nondegeneracy of (2) implies that
the optimum basic vector for (2) is unique for all

Also, by these assumptions we know tfat] is the
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same for alt*- <t <t*Y, and sincé[t] is the same for
all t in this interval, the line joining(t*'] andx[t*V] is
parallel to all factes iff [t] for anyt in this interval; and

a descent step in the direction of the path of centers at

t*Y will help the SM cross this interval of values bf

in one iteration of the SM. Our aim is to prove that the
total number of iterations in this SM B(m); and this
interval of values ot will be crossed in one iteration,
and so itis sufficient to focus on what happens for values
of t outside this interval; i.e., values ofat which the
absolute value of the left-side slope @] is > 0.

We will now discuss some theorems for establishing
a bound on the number of iterations needed by the SM.

Theorem 5: Considert decreasing in the rangé <
t < tmin. In this process, suppose a constraint 1 is drop-
ping out of the set of touching constraints tas de-
creasing througly. By the arguments in Discussion 2
we will assume thajt , the absolute value of the left-
side slope od[t] att =t; is > 0. Then (the minimum
value ofcx overFy) is > t; — (O[t1]/L)).

Proof: We will first try to find the smallest value of
o > 0 satisfying the property that the (minimum value
of cxoverFy) is >t; — a. This is equivalent to finding
the smallest value aff such that the following system
(5) is infeasible.

A1_X: bl
A x>bj fori=2tom (5)
cx<t1—a

From theorems of alternatives for linear systems of
constraints (see for example, Mangasarian [1], Ap-
pendix 1 in Murty [4]), we know that (5) is infeasible
iff the following system (6) in variableg = (rm, ..., Tin)
andu € R! has a feasible solution.

MA—uc=0
m—puti—a)>0 (6)
,...,Thm, 1 >0, 1 unrestricted.

Now, ast is decreasing in the rangé >t > tmn,
o[t] is monotonically decreasing. So, for atyin this
range, for the LP (7) given below

35
maximize o
subjectto 6 —Ax<-—b;, =1tom @)
cx<ty

(X[t1], O[t1]) defined earlier is an optimum solution.
From duality theory of LP we know that there is a cor-
responding dual optimum solutidmr, 1), satisfying

yii-1

—TA+uc=0
()= 0 &
dty]) = — b+ pty
=0, foralligT(xti])

From the assumptions in Section 4, and Discussion
2 we know thatu is >0

So, from (8), we haverb = ut; — d[t;]. Therefore for
values oft; in this ranget* > t1 > tmin, TO— Uty — a)
= pty — O[ta] — pu(ty — a) = pa —S[ta]. So, for(r, ) to
be feasible to (6) we only neqda — J[t;] > 0, ora >
(S[ta))/H. -

Thusifa > d[ta]/u, (1, 1) will be a feasible solution
of (6) and (5) will be infeasible; i.eF;NH(t; — a) will
be the 0. This implies that (the minimum value ©f
over Fy) is > t; — (0[t1]/p)) where u is the absolute
value of the left-side slope di[t] att =t;. O

Theorem 6: Considet decreasing in the rangigax >
t > t*. In this process, suppose a constraint 2 is entering
the set of touching constraintstis decreasing through
to. By the assumptions in Section 4, and the arguments
in Discussion 2, we will assume th#t, the absolute
value of the right-side slope @ft] att =ty is > 0. Then
(the maximum value ofx overR,) is <ty + (d[tz]/[1)).

Proof: Here we havémax > t2 > t*. (X[t2], Otz]) is
an optimum solution of (2) when=ty, and let(7t, i)
be a dual optimum solutution corresponding to it. Then
we know thatfi < 0.

Consider the casg < 0. In this case, as discussed
in the proof of Theorem 5, we will haveg> 0, —fTA+
fic=0; and

b = fit, — 5[t2], or

(1/f)b =t + (—1/[1)O[tz].

T
Let m= (1/f1)7t. Sincefi <0, we haverr<0.
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Now consider the problem of finding the maximum
value ofcxoverx e F. ltis:

Maximize cx 9)
s.to Ax>b i=13,...m
=b fori=2
Its dual is:
Minimize b (10)
s.to MA=c
™ unrestricted <0, i=1,3,....m

From the facts discussed earlier, we see that
(1/f1)7t defined above is feasible to (10). From duality
theorem of LP we know that the optimum objective
value in (10) is< mb =ty + (—1/[1)d[tz]. Here(—1/f1)
is 1/t where I = |1], the absolute value of the right
side slope oP[t] att =t5.

Now consider the casg = 0. In this case the slope
of J[t] att =ty is 0, soty is in an interval of values
of t in which 4[] is constant; i.ef, corresponds to the
maximum value o®[t], ort, =t*, the end point of the
closure of the range we are considering, but not in the
range itself. O

7. Analysis of the Sphere Method

We will now analyze the process being used by the
SM for solving (1) beginning with an iteration, call it
iteration 1, in which the objective value at the initial
interior feasible solution i$;. The objective value is
monotone decreasing in the method.

Denote the center in an iteration Eyand letcx =t.
The step length for each descent step in this iteration
will be > 3[ t ]. Also from the manner in which the
iterations in the algorithm are organized, we know that
t is a breakpoint. We now consider several cases.

Case 1: t is in an interval in which the slope dfit]
is 0, i.e., every value dfin this interval corresponds to
t*, which maximize|t].

In this case, by the assumptions in Section 4 and Dis-
cussion 21 is in an interval in which the touching con-

straint set remains the same. Since the touching con-
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straint set changes after each iteration, SM will leave
this interval in one iteration.

Case 2t isin the range™* >t > tmin.

Sincet is a breakpoint, one constraint T t | will
be dropping out at.

Since the step length will be 6]t ], the descent step
in the steepest descent directiert’ in this iteration
will lead to an output point at which the objective value
will be <t —d[t]cc’ =t—o[t].

Let i denote the absolute value of the dual variable
corresponding to the constraintcX=t " in the dual
optimum solution corresponding to (2) witk=t. Then
u is the absolute value of the slopedf] to the left oft.
So, fore small and positive as selected in the statement
of SM, |8[t—¢] - [t ]| = .

For taking a descent steptt | the directions[ t —
g] - x[t] andy= (x t—&] X[ ])/ (15[t €] - 5[t ]])
are both the same, and both lead to the same identical
output point. Also sincey = —1/, and since the step
length of this descent step isd| t |, we know that the
objective value at the output of this descent step will be
<t-o[t]/u.

Therefore the output point at the end of this iteration
in solving (1) using the SM will have an objective value
t <t— Maximum{d[t], 8[t ]/ u}, whereu is the
absolute value of the
slope of 5[] to the left oft. By Theorems 5 this im-
plies that the facet oK in the touching constraint set
T[t ] dropping out of the touching constraint settat
will be completely on the right side of the objective
plane through that output point of this iteration, hence
in future iterations this facet will be a Class 1 touching
facet. By Theorem 4, this implies that the associated
constraint will never enter into the touching constraint
index set in future iterations. The fact that this constrain
is the dropping constraint frofi[ t |, the touching con-
straint set at the center in this iteration, implies that in
each iteration a new constraint will not be able to enter
into the touching set in future iterations.

These facts imply that the total number of iterations
of the method fot in this range isO(m).

Case 3: tis in the rangemax >t > t*.

We will state the main result for getting an upper
bound for the number of iterations in the SM while the
objective value is in this range, in the form of a theorem.
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Theorem 7: In the rangémax >t > t*, letty; > tp be
the values ot at the initial interior feasible solutions
of two consecutive iterationsr + 1 of the SM applied
on (1). Suppose & T|[t1] but & T|ty]. Then 1 will not

appear in the touching constraintindex set in subsequent

iterations whilet is in this range.

Proof: (x[ti], d[ti],B[ti]) for i = 1, 2, are the center,
radius, largest inscribed ball obtained in iteratioms+
1 respectively. Then in the descent cycle in iteration
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F%Z: Boundary portion oBJt;] not in interior ofl 1>
= Spherical boundary of »
2, = Boundary portion oB]t;] not in interior ofl" 3
= Spherical boundary portion OI:'Z
Lij =Defined forj >i, is the straight line joining(ti], X[t;]
H2 = Unique hyperplane containirig N H, and the
point X[ty]
L = Line segment joiningx}(t;), x}(t3)

r+1, a descent step will be carried out at the center x;,— Point of intersection of. with H(t,)

X[tz] in the direction joining two consecutive centers
X[tz] — X[tl].

Suppose in an iteratiag™ r 42, Constraint 1 appears
again in the touching constraint index set at the initial
interior feasible solution, at which the objective value
is t3. (X[ts],d[ts],Blts]) are the center, radius, largest
inscribed ball obtained in that iteratien

Letx!(t;) be the points wherB|t;] touched=H; fori =
1, 3.FHj is a tangent plane to boit;], B[t3] touching
them along the lin& joiningx*(t; ), x'(t3), butFH; does
not touchBlJty]. There are two cases to consider now.

Subcase 1: x[tj] for i = 1, 2, 3 are collinear.

Inthe descentcycle in iteration- 1 we will take a de-
scent step from(t,] in the descent directioxty] — X[t1]
(this is the direction joining two consecutive centers at
X[tz]). Sincex|ts] is on the line joining«[t;] andx[tz], the
step length in this step will be (t, —t3) + J[tg], and
hence the output point of this descent step will corre-
spond to an objective valug t3 — J[ts], contradicting
the hypothesis that in iteratio(s > r + 2), the objec-
tive value at the initial interior feasible solution tis
So, this case cannot occur under the hypothesis.

Subcase 2: X[t] is not on the line joining«[t;] and
X[t2].

So, in this case the three centgftg], i = 1 to 3 define
a unique triangle, call if\;. Let
2= < B[t1] UBJtp] >
3= < Blt] UBJt3] >
I, = Left semisphere oBlt] in 12

2 = Right semisphere dB|ty] in 23
]

Tu T2

= Hyperplane such thafz[IEZ] is a semisphere of
Blt,] on one side ofti[H]

HI

M = Straight line joiningx[ty] andxy3
"1 = Right semisphere dB[ty] in 12

I'3 = Left semisphere oBJt3] in 13

See Figure 1.

Since the step length from the centdt;] in the
descent direction-c’ will be > 3]tj], we know that
X[tj+1], the center oB[tj 4] is not contained in the in-
terior of Bft;] for j = 1, 2. Also we know that the radius
of B[tj] for i =1, 2, 3 are increasing in that order.

We will now give a numbered list of several argu-
ments that can now be derived.

3.1: Sinced|ty] > d]t1], from 20.1 applied td 12,
we conclude thaf is on the side ofi containing the
centerx[ty], so it is larger than a
hemisphere oB|t,]. Also, x[t,] is not contained on H.

Similarly, sinced|tz] < d[ts], from 20.1 applied td 23
we conclude thak, is on the side of not containing
the cente(t;], so it is smaller than a

hemisphere oBty]. Also, x[t;] is not contained Ol

3.2: H is orthogonal to the link1, joining X[t1], X[tz],
and from 20.1 it follows thaH intersects the line seg-
ment joining these points in its relative interior. Simi-
larly H is orthogonal to the ling3 joining X[t2], X[t3];
but does not intersect the line segment joining them.

So, x[t1] is contained on the line from{ty] orthog-
onal toH (i.e., on the right side ok[t;] on this line);
while X[t3] is contained on the left side oft;] on the
line from xt,] orthogonal toH.

3.3 SinceIEZ is the right semisphere &to] in o3,
andt, > t3, we know that™, contains the point which
maximizescx on Bltp]. Similarly, we can verify thaf »
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1 \
LS\

Fig. 1. Values oft are plotted on the horizontal axis,decreases along the right to left direction. For 1 to 3, B[tj] is the
largest insphere insid& with center on the objective plari¢(tj) (these planes are not shown in the figuod}] is its center,
indicated by round dots in the figurEs, >3 are the convex hulls oB[tj] UBIJto] for i = 1, 3.L1,Lo3 are the straight lines
joining x[to] with x[t1], Xt3] respectivelyH {H;} is the hyperplane (represented by dashed lines) that diBég] {B[tl]}
into two semispheres, one in the interior of, the other whegeerical boundary is not in the interior Bf,. Similarly A {H3}
(represented by dotted lines in the figure) divids] {Bt3]} into two semispheres with similar properties. fer 1, 3,x (t.)

is the touching point ofHy with B[tj], andL is the line segment joining then@; to Q4 are the 4 quadrants into whidh, H
divide B[tp] and the whole space. The little black squareBjtp| represents thén— 2)-dimensional intersection dfi andH,
andH?2 (not shown in the figure) is the unique hyperplane contaitimgH and the poin[t,]. Also, the proof uses some more
concepts not shown in the figure.

contains the point which minimizesx on Blt;]. Hence by 3.3 implies thati, H intersect insideBty].

[2 is not a subset of ;. Hencel,N T is smaller in )

content thanl", which itself is a semisphere strictly 3.6: From 3.5 we conclude thati, H divide Blt)]
smaller than a hemisphere Bft,]. and the whole space into 4 quadrants. They are:

3.4: The spherical boundary @t;] not contained in  Q,:  on the side of not containing the centexity)],

', 5 is either in the interior of 15, or the interior of and the side ofi containing the centex(tp].

23, and hence in the interior &, and hence cannot  Q3:  on the side ofH containing the centex(t,],
contain any touching points &t. So, all the touching and the side oH not containing the centexit,]. So,
points onBlty] are contained on the spherical boundary  Q,, Qs are directly opposite to each other.

of F2Nly, i.e.,T2,NIZ,. Q2: onthe side of bothi, H containing the centext,).

. Qq: on the side of botf, H not containing the center
3.5: From 3.4 we conclude that, N5 # 0, which X[to].
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3.7: From 3.1 and 3.6 we know th&; = >N Ty.
All the touching points orB[t;] are on the spherical
boundary ofQ;, andQ; is strictly smaller than a hemi-
sphere oB]ty].

3.8: Iy, the right semisphere dlt1] in 12 is on
the right side of a hyperpland; which is parallel to
H. This side ofH; does not contain the centeft;].
B[t1]\['1, the left semisphere d[t;] on the side of;
containing the centexit;] is in the interior ofl 1, and
hence all the touching points @it;] must be contained
on the spherical boundary 6f.

3.9: Using arguments similar to those in 3.8, we
conclude that all the touching points &its] must be
contained on the spherical boundary 6§, the left
semisphere o~B[t3] in 23 which is on the left side of
a hyperplangdz which is parallel toH in the right to
left direction of decreasing(see caption for Figure 1).
This side ofHs contains the centeqts].

3.10: From 3.2 we know thdt;, intersectdd at a rel-
ative interior point o NBJt,], and hence intersects the
boundary oBlt,] in the spherical boundary oB|t,]\ 5.
From a similar argument3 intersects the boundary of
Blt,] in the spherical boundary &t,]\l">. This implies
thatL13 is contained on the side ¢12 not containing
Q1.

3.11: Any line joining a pair of points one on each
on the spherical boundaries 6%, I'3; with at least
one of them on the side containilgy of hyperplanes
parallel toH? throughx]ty], Xtz] respectively, intersects
the interior of 1> or N3 or both. This implies that
bothx!(t1), x}(t3) must be contained on the sidetdf
not containingQ;.

3.12: BJt;] is completely contained on the right side
of H, and hence so is the touching poidtt;) on it.
Similarly Bits] is completely contained on the left
side ofH, and hence so is the touching poidttz) on
it.

3.13: From 3.11, 3.12 we know thad (t;) is in the
quadrant®, or Qg; and thatx!(ts) is in the quadrants
Qs or Qa.

Also, since bothx!(t;), x}(t3) are inF, and FH;
is not a tangent plane fd|ty], we know that the line
segment joining them does not interseBft,] at all,
which by 3.10, 3.11 implies that intersects the quad-
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rant Q3 away fromBJt;] and does not intersect the
guadranQ; at all.

3.14: From 3.11 and 3.13 we conclude théf sep-
arates. from Q;.

3.15: All these facts imply thaltl? separatek and the
spherical boundary of; which contains all touching
points onBJty]. Also, sinceFHj is not a tangent plane
to BJty] it does not intersedB[t,] at all, and the nearest
point to X[t,] on FH; has distance strictly- d[t,]. So,
it is possible forB|t] to move withinK with its center
moving from the currentt;] a positive distance along
the lineM. SinceM is completely contained oH (ty),
this contradicts either the hypothesis tigit,] is the
largest ball inscribed ik with its center restricted to
H(t2), or the assumption that the largest ball inscribed
in K with its center restricted to the objective plané)
is unique for allt, and hence also fdr=t5.

This shows that a value likg < to such that 1e
T|ts] cannot be the objective value at the initial interior
feasible solution in an iteratios> r +1 in the SM in
this case. O

From Theorem 7, we know that once a constraint
drops from the set of touching constraints in an iteration
of the SM while the objective valueis in the range
tmax>t > t*, it cannot reappear in the set of touching
constraints in subsequent iterations while the objective
valuet is in this range.

Starting from an objective valuein this range, this
clearly implies that the SM needs at m@m) itera-
tions to reach the objective valyet*.

Arguments similar to the above can also be used to
provide an alternate proof for the conclusions reached
in Case 2.

All these facts together imply that this version of the
SM needs at mosD(m) iterations before termination
under the assumption at the beginning of Section 4.

Note: The proof of the main result extends easily to
the general case where the assumption made in Section
4 may not hold. In this general case, standard pertur-
bation arguments in LP can be applied if (1) is primal
degenerate. Ldj >t > t3 be values of satisfying the
same properties as described above. B&f be any
largest insphere insid€ with center orH (t;) for i = 1,
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3, such thatFH; touches both of them.

Let S= {x: (x,0[t2]) is an optimum solution of (2)
whent =t,}. For eachx € S, defined(x) = ||x— Py(X)||,
whereP;(x) is the nearest point if; to x by Euclidean
distance. Then defindt,] as anx € Swhich minimizes
d(x) overS. Now applying the argument in the proof of
Theorem 7, we can see that in this case we can move
B[t,] closer toF; providing a contradiction in this gen-
eral case.
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