
Solutions for the take-home exam

Problem 1. Let H be a hyperplane in Pn and p ∈ Pn rH.

i) The projection from Pn to H with center p is the map π : Pn r {p} → H such
that π(q) is the intersection of the line spanned by p and q with H. Show that
this is a morphism.

ii) Show that if X is a closed subvariety of Pn such that p 6∈ X, then π restricts
to a finite morphism X → H (this follows easily from the result stated in class
saying that a proper morphism with finite fibers is finite; however, since we did
not prove that result, you can’t use it).

Solution. After a linear change of coordinates, we may assume that H = (xn = 0) and
p = [0, . . . , 0, 1]. We identify Pn−1 with H via

[a0, . . . , an−1]→ [a0, . . . , an−1, 0].

If q = [a0, . . . , an] ∈ Pn rH, then the line spanned by p and q is the set

{[λa0, . . . , λan−1, b] | λ ∈ k∗, b ∈ k}.
We thus see that the map π : Pn r {p} → Pn−1 is given by

π
(
[a0, . . . , an]

)
= [a0, . . . , an−1]

and it is now straightforward to check that π is a morphism. Indeed, Pn−1 is covered by
the affine open subsets Ui = (xi 6= 0) ' An−1, with 0 ≤ i ≤ n− 1, and π−1(Ui) = (xi 6=
0) ' An. Via these isomorphisms, the induced map π−1(Ui) → Ui gets identified with
the map

An → An−1, (a1, . . . , an)→ (a1, . . . , an−1),

which is clearly a morphism. Since this holds for all i, we see that π is a morphism.

We now show that if X is a closed subvariety of Pn such that p 6∈ X, then the
induced morphism πX : X → Pr−1 is finite. It is enough to show that if Ui = (xi 6= 0) ⊆
Pn−1, then for each i, with 0 ≤ i ≤ n − 1, the inverse image π−1X (Ui) is affine and the
induced homomorphism

(1) O(Ui)→ O
(
π−1X (Ui)

)
is a finite homomorphism. The fact that π−1X (Ui) is affine is clear, since this is equal
to D+

X(xi), hence it is affine by a result proved in class. Moreover, we can identify the
homomorphism (1) with

(2) k[x0, . . . , xn−1](xi) = k

[
x0
xi
, . . . ,

xn−1
xi

]
→ (SX)(xi),

where SX is the homogeneous coordinate ring of X. Since (SX)(xi) is generated by
xj

xi
,

with 0 ≤ j ≤ n, in order to show that (2) is a finite homomorphism, it is enough to

show that each
xj

xi
∈ (SX)(xi) is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This is clear if j ≤ n− 1,

hence we only need to consider xn

xi
. By hypothesis, we have [0, . . . , 0, 1] 6∈ X. Therefore
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there is a homogeneous polynomial f , say of degree d, in the ideal IX corresponding
to X such that xdn appears in f with nonzero coefficient. If d = 0, then X is empty,
in which case the assertion to prove is trivial. If d > 0, we may assume that f =
xdn +

∑d
i=1 gi(x0, . . . , xn−1)x

d−i
n . Dividing by xdi , we thus conclude that(

xn
xi

)d

+
d∑

i=1

gi

(
x0
xi
, . . . ,

xn−1
xi

)(
xn
xi

)d−i

= 0 in (SX)(xi),

hence xn

xi
is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This gives our assertion.
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Problem 2. Let f : X → Y be a dominant morphism of irreducible varieties. Show that
if dim(X) = dim(Y ), then there is a non-empty open subset V of Y such that the induced
morphism f−1(V )→ V is finite (in this case, one says that f is generically finite).

Solution. We may clearly replace Y by an affine open subset and X by the inverse image
of this subset, in order to assume that Y is an affine variety. In fact, we may assume that
X is affine as well. Indeed, let us choose an affine open subset U of X and suppose that
we know the assertion in the proposition for the induced morphism U → Y . In other
words, we know that there is a non-empty open subset V of Y , such that the induced
morphism g : U ∩ f−1(V )→ V is finite. Note that if Z = f(X r U), then

dim(Z) ≤ dim(X r U) < dim(X) = dim(Y ),

hence Z is a proper closed subset of Y . If we take V ′ = V rZ, then V ′ is non-empty and
the induced morphism g−1(V ′) = U ∩ f−1(V ′) → V ′ is finite. However, it follows from
the definition of X ′ that f−1(V ′) ⊆ U , which implies that V ′ satisfies the requirement in
the proposition.

Suppose now that both X and Y are affine varieties, and consider the homomor-
phism

f# : A = O(Y )→ O(X) = B

corresponding to f . Note that this is injective since f is dominant. Let k(Y ) = Frac(A) be
the field of rational functions of Y . The assumption that dim(X) = dim(Y ) implies that
Frac(B) is algebraic, hence finite, over Frac(A) by the result proved in class, describing
the dimension of an irreducible variety as the transcendence degree of its function field.
Noether’s Normalization lemma thus implies that B⊗Ak(Y ) is a finite k(Y )-algebra. Let
b1, . . . , br ∈ B be generators of B as a k-algebra. Since each bi is algebraic over k(Y ), we
see that there is fi ∈ A such that bi

1
is integral over Afi . This implies that if f =

∏
i fi,

then each bi
1

is integral over Af , hence Af → Bf is a finite homomorphism. Therefore
V = DY (f) satisfies the assertion in the proposition.
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Problem 3.

i) Give an example of an irreducible hypersurface of degree 3 in P4 that contains a
2-dimensional linear subspace.

ii) Show that any hypersurface as in i) is singular.
iii) Show that there are smooth hypersurfaces of degree 3 in P5 that contain a 2-

dimensional linear subspace.

Solution. For part i), let f ∈ k[x0, x1, x2 be a general degree 3 polynomial, that defines
a smooth hypersurface C in P2. Note that this is automatically irreducible: any two
irreducible components would meet, and the resulting intersection would be contained
in the singular locus. For an explicit example, when char(k) 6= 3, one can take f =
x30+x31+x32. If H is the hypersurface defined by f = 0 in P4, then H is clearly irreducible
and for every point [a0, a1, a2] ∈ C, it contains the 2-dimensional linear subspace

{[a0, a1, a2, b, c] ∈ P4 | b, c ∈ k}.

The assertions in ii) and iii) are special cases of the following more general asser-
tions: consider hypersurfaces in Pn of degree d ≥ 2. We will show that the following
hold:

a) If X is a smooth such hypersurface containing a linear subspace Λ ⊆ Pn of
dimension r, then r ≤ n−1

2
.

b) If Λ ⊆ Pn is a linear subspace of dimension r ≤ n−1
2

, then a general hypersurface
containing Λ is smooth.

After a suitable choice of coordinates on Pn, we may assume that Λ is the linear
subspace defined by

xr+1 = . . . = xn = 0.

Suppose that X is the hypersurface defined by a homogeneous polynomial F , of degree
d. If X contains Λ, then we can write

(3) F =
n−r∑
i=1

xr+ifi,

for some fi ∈ k[x0, . . . , xn], homogeneous of degree d−1. For every i, with 1 ≤ i ≤ n− r,
consider the homogeneous polynomials of degree d− 1

gi(x0, . . . , xr) = fi(x0, . . . , xr, 0, . . . , 0).

If n− r ≤ r, then a repeated application of a result proved in class1 implies that there is
a point [u0, . . . , ur] ∈ Pr such that

gi(u0, . . . , ur) = 0 for 1 ≤ i ≤ n− r.
In other words, there is a point p ∈ Λ such that fi(p) = 0 for all 1 ≤ i ≤ n − r. In this
case, it follows from (3) that F (p) = 0 and ∂F

∂xj
(p) = 0 for 0 ≤ j ≤ n, hence p is a singular

point of X. We thus deduce that if X is smooth, then n− r ≥ r + 1, giving a).

1A special case of this result says that if X is a closed subset of Pn, with dim(X) ≥ 1, and H is a
hypersurface in Pn, then X ∩H is nonempty, of dimension equal to dim(X)− 1.
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Suppose now that r ≤ n−1
2

and consider the subset W of PNd consisting of those
[F ] such that Λ is contained in the zero-locus (F = 0) (recall that PNd is the projective
space of lines in the vector space k[x0, . . . , xn]d). Therefore W consists of those [F ] such
that F ∈ (xr+1, . . . , xn), which is a linear subspace in PNd , of codimension

(
r+d
d

)
. Let U

be the subset of W consisting of those [F ] such that there is no p ∈ Pn, with

(4) F (p) = 0 =
∂F

∂xi
(p) for 0 ≤ i ≤ n.

Every such F generates a radical ideal and the corresponding degree d hypersurface
contains Λ and is smooth. We need to show that U is open and non-empty.

Let us consider the set YW of pairs (p, [F ]) ∈ Pn ×W such that (4) holds. This
is a closed subset of Pn × W , hence it is a projective variety. Let α : YW → Pn and
β : YW → W be the morphisms induced by the two projections. Since U = W r β(YW ),
it follows that U is open in W , and it is enough to show that β(YW ) 6= W .

We now describe the fiber α−1(p) for p ∈ Pn. Suppose first that p ∈ Λ. We may
choose coordinates such that p = [1, 0, . . . , 0]. The conditions in (4) are equivalent with
the fact that the coefficients of xd0, x

d−1
0 x1, . . . , x

d−1
0 xn in F are 0. Since F ∈ (xr+1, . . . , xn),

we see that α−1(p) ↪→ W is a linear subspace of codimension n − r. Suppose now
that p 6∈ Λ, in which case we may choose coordinates such that p = [0, . . . , 0, 1], in
which case the conditions in (4) are equivalent with the fact that the coefficients of
xdn, x

d−1
n xn−1, . . . , x

d−1
n x0 are 0. We thus see that in this case α−1(p) ↪→ W is a linear

subspace of codimension n+ 1. We deduce from the theorems on fiber dimensions that

dim
(
α−1(Λ)

)
= dim(Λ) + dim(W )− (n− r) = dim(W ) + (2r − n)

and

dim
(
α−1(Pn r Λ)

)
= dim(Pn r Λ) + dim(W )− (n+ 1) = dim(W )− 1.

Since by assumption we have 2r − n ≤ −1, we deduce that dim(YW ) = dim(W ) − 1,
hence dim

(
β(YW )

)
≤ dim(YW ) < dim(W ). This completes the proof of b).
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Problem 4. Fix a positive integer n and let

Nn = {A ∈Mn(k) | A is nilpotent}.

i) Show that Nn is a closed subset of Mn(k). Show that, in fact, it is the zero-locus
of n regular functions on Mn(k).

ii) Show that Nn is irreducible and dim(Nn) = n2 − n. Hint: use the description of
nilpotent endomorphisms of kn in terms of the existence of a suitable flag in kn.

Solution. Recall that a matrix A ∈ Mn(k) is nilpotent if and only if An = 0. Since the
entries of An are homogeneous polynomials of degree n in the entries of A, it follows that
Nn is a closed subset of Mn(k), preserved by the standard k∗-action on Mn(k) (in other
words, Nn is the affine cone over a projective variety N proj

n in the projective space P of
lines in Mn(k), isomorphic to Pn2−1).

In fact, we can define Nn by only n equations. Indeed, a matrix A is nilpotent if
and only if its characteristic polynomial det(A− λI) is equal to (−λ)n. If we write

det(A− λI) =
n∑

i=0

(−1)ipi(A)λi,

then pn(A) = 1 and for each i, with 0 ≤ i ≤ n − 1, pi(A) is a homogeneous polynomial
of degree n − i in the entries of A. We thus see that Nn is the zero-locus of the ideal
(p0, . . . , pn−1). This proves i)

Our next goal is to show that Nn is irreducible and compute its dimension. In order
to apply our irreducibility criterion, it is more convenient to work with the corresponding
projective variety N proj

n .

The key observation is the following: a matrix A ∈ Mn(k) is nilpotent if and only
if there is a complete flag of subspaces

V1 ⊆ V2 ⊆ . . . ⊆ Vn = V,

with dimk(Vi) = i and A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n (where we put V0 = 0). Indeed, it is
clear that if we have such a flag, then An = 0. Conversely, if An = 0, let Wi = An−i(kn).
It follows from definition that

W0 = 0 ⊆ W1 ⊆ . . . ⊆ Wn = kn

and A(Wi) ⊆ Wi−1 for 1 ≤ i ≤ n. If we refine this sequence of subspaces to a complete
flag, this flag will satisfy the required conditions.

Motivated by this, we define

Z =
{(

[A], (V1, . . . , Vn)
)
∈ P× Fl(kn) | A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n

}
(where in the above formula we make the convention that V0 = {0}). It is not hard to
check that Z is a closed subset of P×Fl(kn). In particular, we see that Z is a projective
variety. The projections of P×Fl(kn) onto the two components induce proper morphisms

π1 : Z → P and π2 : Z → Fl(kn).
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Let us consider the fiber of π2 over a flag V• = (V1, . . . , Vn). If we choose a basis
e1, . . . , en such that each Vi is generated by e1, . . . , ei, it follows that π−12 (V•) is isomor-
phic to the the subvariety of P consisting of classes of nonzero strictly upper-triangular

matrices, hence it is isomorphic to P
n(n−1)

2
−1. Since Fl(kn) is irreducible, of dimension

n(n−1)
2

(by a problem in HW10), it follows from our irreducibility criterion that Z is an
irreducible variety, of dimension n2−n− 1 (by the second theorem on fiber dimensions).

Consider now the morphism π1 : Z → P, whose image is N proj
n . This implies that

N proj
n is irreducible. We next show that over a non-empty open subset of N proj

n , each
fiber of π1 consists of just one point. Note that if A ∈Mn(k) is a nilpotent matrix, then
its rank is ≤ n− 1. Let Uproj

n be the open subset of N proj
n consisting of matrices of rank

n − 1. Note that this is a non-empty subset: for example, the nilpotent matrix (ai,j)
with a`,`−1 = 1 for 2 ≤ ` ≤ n and all other ai,j equal to 0 has rank n− 1. We note that
if [A] ∈ Uproj

n , then π−1
(
[A]
)

has only one element: if (V1, . . . , Vn) is a flag in kn such
that A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n, then Vi = An−i(V ) for all i. Indeed, the condition on
the flag implies that An−i(kn) ⊆ Vi and the condition on the rank of A implies easily,
by descending induction on i, that dimk A

n−i(kn) = i. Therefore An−i(kn) = Vi for
1 ≤ i ≤ n.

Since π1 has finite fibers over Un, we deduce from the first theorem on fiber dimen-
sions that

dim(N proj
n ) = dim(Z) = n2 − n− 1.

We thus conclude that Nn is an irreducible variety of dimension n2 − n.


