Solutions for the take-home exam

Problem 1. Let H be a hyperplane in \mathbf{P}^{n} and $p \in \mathbf{P}^{n} \backslash H$.
i) The projection from \mathbf{P}^{n} to H with center p is the map $\pi: \mathbf{P}^{n} \backslash\{p\} \rightarrow H$ such that $\pi(q)$ is the intersection of the line spanned by p and q with H. Show that this is a morphism.
ii) Show that if X is a closed subvariety of \mathbf{P}^{n} such that $p \notin X$, then π restricts to a finite morphism $X \rightarrow H$ (this follows easily from the result stated in class saying that a proper morphism with finite fibers is finite; however, since we did not prove that result, you can't use it).

Solution. After a linear change of coordinates, we may assume that $H=\left(x_{n}=0\right)$ and $p=[0, \ldots, 0,1]$. We identify \mathbf{P}^{n-1} with H via

$$
\left[a_{0}, \ldots, a_{n-1}\right] \rightarrow\left[a_{0}, \ldots, a_{n-1}, 0\right] .
$$

If $q=\left[a_{0}, \ldots, a_{n}\right] \in \mathbf{P}^{n} \backslash H$, then the line spanned by p and q is the set

$$
\left\{\left[\lambda a_{0}, \ldots, \lambda a_{n-1}, b\right] \mid \lambda \in k^{*}, b \in k\right\} .
$$

We thus see that the map $\pi: \mathbf{P}^{n} \backslash\{p\} \rightarrow \mathbf{P}^{n-1}$ is given by

$$
\pi\left(\left[a_{0}, \ldots, a_{n}\right]\right)=\left[a_{0}, \ldots, a_{n-1}\right]
$$

and it is now straightforward to check that π is a morphism. Indeed, \mathbf{P}^{n-1} is covered by the affine open subsets $U_{i}=\left(x_{i} \neq 0\right) \simeq \mathbf{A}^{n-1}$, with $0 \leq i \leq n-1$, and $\pi^{-1}\left(U_{i}\right)=\left(x_{i} \neq\right.$ $0) \simeq \mathbf{A}^{n}$. Via these isomorphisms, the induced map $\pi^{-1}\left(U_{i}\right) \rightarrow U_{i}$ gets identified with the map

$$
\mathbf{A}^{n} \rightarrow \mathbf{A}^{n-1}, \quad\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(a_{1}, \ldots, a_{n-1}\right),
$$

which is clearly a morphism. Since this holds for all i, we see that π is a morphism.
We now show that if X is a closed subvariety of \mathbf{P}^{n} such that $p \notin X$, then the induced morphism $\pi_{X}: X \rightarrow \mathbf{P}^{r-1}$ is finite. It is enough to show that if $U_{i}=\left(x_{i} \neq 0\right) \subseteq$ \mathbf{P}^{n-1}, then for each i, with $0 \leq i \leq n-1$, the inverse image $\pi_{X}^{-1}\left(U_{i}\right)$ is affine and the induced homomorphism

$$
\begin{equation*}
\mathcal{O}\left(U_{i}\right) \rightarrow \mathcal{O}\left(\pi_{X}^{-1}\left(U_{i}\right)\right) \tag{1}
\end{equation*}
$$

is a finite homomorphism. The fact that $\pi_{X}^{-1}\left(U_{i}\right)$ is affine is clear, since this is equal to $D_{X}^{+}\left(x_{i}\right)$, hence it is affine by a result proved in class. Moreover, we can identify the homomorphism (1) with

$$
\begin{equation*}
k\left[x_{0}, \ldots, x_{n-1}\right]_{\left(x_{i}\right)}=k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n-1}}{x_{i}}\right] \rightarrow\left(S_{X}\right)_{\left(x_{i}\right)} \tag{2}
\end{equation*}
$$

where S_{X} is the homogeneous coordinate ring of X. Since $\left(S_{X}\right)_{\left(x_{i}\right)}$ is generated by $\frac{x_{j}}{x_{i}}$, with $0 \leq j \leq n$, in order to show that (2) is a finite homomorphism, it is enough to show that each $\frac{x_{j}}{x_{i}} \in\left(S_{X}\right)_{\left(x_{i}\right)}$ is integral over $k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n-1}}{x_{i}}\right]$. This is clear if $j \leq n-1$, hence we only need to consider $\frac{x_{n}}{x_{i}}$. By hypothesis, we have $[0, \ldots, 0,1] \notin X$. Therefore
there is a homogeneous polynomial f, say of degree d, in the ideal I_{X} corresponding to X such that x_{n}^{d} appears in f with nonzero coefficient. If $d=0$, then X is empty, in which case the assertion to prove is trivial. If $d>0$, we may assume that $f=$ $x_{n}^{d}+\sum_{i=1}^{d} g_{i}\left(x_{0}, \ldots, x_{n-1}\right) x_{n}^{d-i}$. Dividing by x_{i}^{d}, we thus conclude that

$$
\left(\frac{x_{n}}{x_{i}}\right)^{d}+\sum_{i=1}^{d} g_{i}\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n-1}}{x_{i}}\right)\left(\frac{x_{n}}{x_{i}}\right)^{d-i}=0 \quad \text { in } \quad\left(S_{X}\right)_{\left(x_{i}\right)}
$$

hence $\frac{x_{n}}{x_{i}}$ is integral over $k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n-1}}{x_{i}}\right]$. This gives our assertion.

Problem 2. Let $f: X \rightarrow Y$ be a dominant morphism of irreducible varieties. Show that if $\operatorname{dim}(X)=\operatorname{dim}(Y)$, then there is a non-empty open subset V of Y such that the induced morphism $f^{-1}(V) \rightarrow V$ is finite (in this case, one says that f is generically finite).

Solution. We may clearly replace Y by an affine open subset and X by the inverse image of this subset, in order to assume that Y is an affine variety. In fact, we may assume that X is affine as well. Indeed, let us choose an affine open subset U of X and suppose that we know the assertion in the proposition for the induced morphism $U \rightarrow Y$. In other words, we know that there is a non-empty open subset V of Y, such that the induced morphism $g: U \cap f^{-1}(V) \rightarrow V$ is finite. Note that if $Z=\overline{f(X \backslash U)}$, then

$$
\operatorname{dim}(Z) \leq \operatorname{dim}(X \backslash U)<\operatorname{dim}(X)=\operatorname{dim}(Y)
$$

hence Z is a proper closed subset of Y. If we take $V^{\prime}=V \backslash Z$, then V^{\prime} is non-empty and the induced morphism $g^{-1}\left(V^{\prime}\right)=U \cap f^{-1}\left(V^{\prime}\right) \rightarrow V^{\prime}$ is finite. However, it follows from the definition of X^{\prime} that $f^{-1}\left(V^{\prime}\right) \subseteq U$, which implies that V^{\prime} satisfies the requirement in the proposition.

Suppose now that both X and Y are affine varieties, and consider the homomorphism

$$
f^{\#}: A=\mathcal{O}(Y) \rightarrow \mathcal{O}(X)=B
$$

corresponding to f. Note that this is injective since f is dominant. Let $k(Y)=\operatorname{Frac}(A)$ be the field of rational functions of Y. The assumption that $\operatorname{dim}(X)=\operatorname{dim}(Y)$ implies that $\operatorname{Frac}(B)$ is algebraic, hence finite, over $\operatorname{Frac}(A)$ by the result proved in class, describing the dimension of an irreducible variety as the transcendence degree of its function field. Noether's Normalization lemma thus implies that $B \otimes_{A} k(Y)$ is a finite $k(Y)$-algebra. Let $b_{1}, \ldots, b_{r} \in B$ be generators of B as a k-algebra. Since each b_{i} is algebraic over $k(Y)$, we see that there is $f_{i} \in A$ such that $\frac{b_{i}}{1}$ is integral over $A_{f_{i}}$. This implies that if $f=\prod_{i} f_{i}$, then each $\frac{b_{i}}{1}$ is integral over A_{f}, hence $A_{f} \rightarrow B_{f}$ is a finite homomorphism. Therefore $V=D_{Y}(f)$ satisfies the assertion in the proposition.

Problem 3.

i) Give an example of an irreducible hypersurface of degree 3 in \mathbf{P}^{4} that contains a 2-dimensional linear subspace.
ii) Show that any hypersurface as in i) is singular.
iii) Show that there are smooth hypersurfaces of degree 3 in \mathbf{P}^{5} that contain a 2dimensional linear subspace.

Solution. For part i), let $f \in k\left[x_{0}, x_{1}, x_{2}\right.$ be a general degree 3 polynomial, that defines a smooth hypersurface C in \mathbf{P}^{2}. Note that this is automatically irreducible: any two irreducible components would meet, and the resulting intersection would be contained in the singular locus. For an explicit example, when $\operatorname{char}(k) \neq 3$, one can take $f=$ $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}$. If H is the hypersurface defined by $f=0$ in \mathbf{P}^{4}, then H is clearly irreducible and for every point $\left[a_{0}, a_{1}, a_{2}\right] \in C$, it contains the 2-dimensional linear subspace

$$
\left\{\left[a_{0}, a_{1}, a_{2}, b, c\right] \in \mathbf{P}^{4} \mid b, c \in k\right\}
$$

The assertions in ii) and iii) are special cases of the following more general assertions: consider hypersurfaces in \mathbf{P}^{n} of degree $d \geq 2$. We will show that the following hold:
a) If X is a smooth such hypersurface containing a linear subspace $\Lambda \subseteq \mathbf{P}^{n}$ of dimension r, then $r \leq \frac{n-1}{2}$.
b) If $\Lambda \subseteq \mathbf{P}^{n}$ is a linear subspace of dimension $r \leq \frac{n-1}{2}$, then a general hypersurface containing Λ is smooth.

After a suitable choice of coordinates on \mathbf{P}^{n}, we may assume that Λ is the linear subspace defined by

$$
x_{r+1}=\ldots=x_{n}=0
$$

Suppose that X is the hypersurface defined by a homogeneous polynomial F, of degree d. If X contains Λ, then we can write

$$
\begin{equation*}
F=\sum_{i=1}^{n-r} x_{r+i} f_{i} \tag{3}
\end{equation*}
$$

for some $f_{i} \in k\left[x_{0}, \ldots, x_{n}\right]$, homogeneous of degree $d-1$. For every i, with $1 \leq i \leq n-r$, consider the homogeneous polynomials of degree $d-1$

$$
g_{i}\left(x_{0}, \ldots, x_{r}\right)=f_{i}\left(x_{0}, \ldots, x_{r}, 0, \ldots, 0\right)
$$

If $n-r \leq r$, then a repeated application of a result proved in class ${ }^{1}$ implies that there is a point $\left[u_{0}, \ldots, u_{r}\right] \in \mathbf{P}^{r}$ such that

$$
g_{i}\left(u_{0}, \ldots, u_{r}\right)=0 \quad \text { for } \quad 1 \leq i \leq n-r .
$$

In other words, there is a point $p \in \Lambda$ such that $f_{i}(p)=0$ for all $1 \leq i \leq n-r$. In this case, it follows from (3) that $F(p)=0$ and $\frac{\partial F}{\partial x_{j}}(p)=0$ for $0 \leq j \leq n$, hence p is a singular point of X. We thus deduce that if X is smooth, then $n-r \geq r+1$, giving a).

[^0]Suppose now that $r \leq \frac{n-1}{2}$ and consider the subset W of $\mathbf{P}^{N_{d}}$ consisting of those $[F]$ such that Λ is contained in the zero-locus $(F=0)$ (recall that $\mathbf{P}^{N_{d}}$ is the projective space of lines in the vector space $k\left[x_{0}, \ldots, x_{n}\right]_{d}$). Therefore W consists of those $[F]$ such that $F \in\left(x_{r+1}, \ldots, x_{n}\right)$, which is a linear subspace in $\mathbf{P}^{N_{d}}$, of codimension $\binom{r+d}{d}$. Let U be the subset of W consisting of those $[F]$ such that there is no $p \in \mathbf{P}^{n}$, with

$$
\begin{equation*}
F(p)=0=\frac{\partial F}{\partial x_{i}}(p) \quad \text { for } \quad 0 \leq i \leq n \tag{4}
\end{equation*}
$$

Every such F generates a radical ideal and the corresponding degree d hypersurface contains Λ and is smooth. We need to show that U is open and non-empty.

Let us consider the set \mathcal{Y}_{W} of pairs $(p,[F]) \in \mathbf{P}^{n} \times W$ such that (4) holds. This is a closed subset of $\mathbf{P}^{n} \times W$, hence it is a projective variety. Let $\alpha: \mathcal{Y}_{W} \rightarrow \mathbf{P}^{n}$ and $\beta: \mathcal{Y}_{W} \rightarrow W$ be the morphisms induced by the two projections. Since $U=W \backslash \beta\left(\mathcal{Y}_{W}\right)$, it follows that U is open in W, and it is enough to show that $\beta\left(\mathcal{Y}_{W}\right) \neq W$.

We now describe the fiber $\alpha^{-1}(p)$ for $p \in \mathbf{P}^{n}$. Suppose first that $p \in \Lambda$. We may choose coordinates such that $p=[1,0, \ldots, 0]$. The conditions in (4) are equivalent with the fact that the coefficients of $x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots, x_{0}^{d-1} x_{n}$ in F are 0 . Since $F \in\left(x_{r+1}, \ldots, x_{n}\right)$, we see that $\alpha^{-1}(p) \hookrightarrow W$ is a linear subspace of codimension $n-r$. Suppose now that $p \notin \Lambda$, in which case we may choose coordinates such that $p=[0, \ldots, 0,1]$, in which case the conditions in (4) are equivalent with the fact that the coefficients of $x_{n}^{d}, x_{n}^{d-1} x_{n-1}, \ldots, x_{n}^{d-1} x_{0}$ are 0 . We thus see that in this case $\alpha^{-1}(p) \hookrightarrow W$ is a linear subspace of codimension $n+1$. We deduce from the theorems on fiber dimensions that

$$
\operatorname{dim}\left(\alpha^{-1}(\Lambda)\right)=\operatorname{dim}(\Lambda)+\operatorname{dim}(W)-(n-r)=\operatorname{dim}(W)+(2 r-n)
$$

and

$$
\operatorname{dim}\left(\alpha^{-1}\left(\mathbf{P}^{n} \backslash \Lambda\right)\right)=\operatorname{dim}\left(\mathbf{P}^{n} \backslash \Lambda\right)+\operatorname{dim}(W)-(n+1)=\operatorname{dim}(W)-1
$$

Since by assumption we have $2 r-n \leq-1$, we deduce that $\operatorname{dim}\left(\mathcal{Y}_{W}\right)=\operatorname{dim}(W)-1$, hence $\operatorname{dim}\left(\beta\left(\mathcal{Y}_{W}\right)\right) \leq \operatorname{dim}\left(\mathcal{Y}_{W}\right)<\operatorname{dim}(W)$. This completes the proof of b$)$.

Problem 4. Fix a positive integer n and let

$$
\mathcal{N}_{n}=\left\{A \in M_{n}(k) \mid A \text { is nilpotent }\right\} .
$$

i) Show that \mathcal{N}_{n} is a closed subset of $M_{n}(k)$. Show that, in fact, it is the zero-locus of n regular functions on $M_{n}(k)$.
ii) Show that \mathcal{N}_{n} is irreducible and $\operatorname{dim}\left(\mathcal{N}_{n}\right)=n^{2}-n$. Hint: use the description of nilpotent endomorphisms of k^{n} in terms of the existence of a suitable flag in k^{n}.

Solution. Recall that a matrix $A \in M_{n}(k)$ is nilpotent if and only if $A^{n}=0$. Since the entries of A^{n} are homogeneous polynomials of degree n in the entries of A, it follows that \mathcal{N}_{n} is a closed subset of $M_{n}(k)$, preserved by the standard k^{*}-action on $M_{n}(k)$ (in other words, \mathcal{N}_{n} is the affine cone over a projective variety $\mathcal{N}_{n}^{\text {proj }}$ in the projective space \mathbf{P} of lines in $M_{n}(k)$, isomorphic to $\left.\mathbf{P}^{n^{2}-1}\right)$.

In fact, we can define \mathcal{N}_{n} by only n equations. Indeed, a matrix A is nilpotent if and only if its characteristic polynomial $\operatorname{det}(A-\lambda I)$ is equal to $(-\lambda)^{n}$. If we write

$$
\operatorname{det}(A-\lambda I)=\sum_{i=0}^{n}(-1)^{i} p_{i}(A) \lambda^{i}
$$

then $p_{n}(A)=1$ and for each i, with $0 \leq i \leq n-1, p_{i}(A)$ is a homogeneous polynomial of degree $n-i$ in the entries of A. We thus see that \mathcal{N}_{n} is the zero-locus of the ideal $\left(p_{0}, \ldots, p_{n-1}\right)$. This proves i)

Our next goal is to show that \mathcal{N}_{n} is irreducible and compute its dimension. In order to apply our irreducibility criterion, it is more convenient to work with the corresponding projective variety $\mathcal{N}_{n}^{\text {proj }}$.

The key observation is the following: a matrix $A \in M_{n}(k)$ is nilpotent if and only if there is a complete flag of subspaces

$$
V_{1} \subseteq V_{2} \subseteq \ldots \subseteq V_{n}=V
$$

with $\operatorname{dim}_{k}\left(V_{i}\right)=i$ and $A\left(V_{i}\right) \subseteq V_{i-1}$ for $1 \leq i \leq n$ (where we put $V_{0}=0$). Indeed, it is clear that if we have such a flag, then $A^{n}=0$. Conversely, if $A^{n}=0$, let $W_{i}=A^{n-i}\left(k^{n}\right)$. It follows from definition that

$$
W_{0}=0 \subseteq W_{1} \subseteq \ldots \subseteq W_{n}=k^{n}
$$

and $A\left(W_{i}\right) \subseteq W_{i-1}$ for $1 \leq i \leq n$. If we refine this sequence of subspaces to a complete flag, this flag will satisfy the required conditions.

Motivated by this, we define

$$
Z=\left\{\left([A],\left(V_{1}, \ldots, V_{n}\right)\right) \in \mathbf{P} \times \operatorname{Fl}\left(k^{n}\right) \mid A\left(V_{i}\right) \subseteq V_{i-1} \text { for } 1 \leq i \leq n\right\}
$$

(where in the above formula we make the convention that $V_{0}=\{0\}$). It is not hard to check that Z is a closed subset of $\mathbf{P} \times \operatorname{Fl}\left(k^{n}\right)$. In particular, we see that Z is a projective variety. The projections of $\mathbf{P} \times \operatorname{Fl}\left(k^{n}\right)$ onto the two components induce proper morphisms

$$
\pi_{1}: Z \rightarrow \mathbf{P} \quad \text { and } \quad \pi_{2}: Z \rightarrow \mathrm{Fl}\left(k^{n}\right)
$$

Let us consider the fiber of π_{2} over a flag $V_{\bullet}=\left(V_{1}, \ldots, V_{n}\right)$. If we choose a basis e_{1}, \ldots, e_{n} such that each V_{i} is generated by e_{1}, \ldots, e_{i}, it follows that $\pi_{2}^{-1}\left(V_{\bullet}\right)$ is isomorphic to the the subvariety of \mathbf{P} consisting of classes of nonzero strictly upper-triangular matrices, hence it is isomorphic to $\mathbf{P}^{\frac{n(n-1)}{2}-1}$. Since $\mathrm{Fl}\left(k^{n}\right)$ is irreducible, of dimension $\frac{n(n-1)}{2}$ (by a problem in HW10), it follows from our irreducibility criterion that Z is an irreducible variety, of dimension $n^{2}-n-1$ (by the second theorem on fiber dimensions).

Consider now the morphism $\pi_{1}: Z \rightarrow \mathbf{P}$, whose image is $\mathcal{N}_{n}^{\text {proj }}$. This implies that $\mathcal{N}_{n}^{\text {proj }}$ is irreducible. We next show that over a non-empty open subset of $\mathcal{N}_{n}^{\text {proj }}$, each fiber of π_{1} consists of just one point. Note that if $A \in M_{n}(k)$ is a nilpotent matrix, then its rank is $\leq n-1$. Let $\mathcal{U}_{n}^{\text {proj }}$ be the open subset of $\mathcal{N}_{n}^{\text {proj }}$ consisting of matrices of rank $n-1$. Note that this is a non-empty subset: for example, the nilpotent matrix $\left(a_{i, j}\right)$ with $a_{\ell, \ell-1}=1$ for $2 \leq \ell \leq n$ and all other $a_{i, j}$ equal to 0 has rank $n-1$. We note that if $[A] \in \mathcal{U}_{n}^{\text {proj }}$, then $\pi^{-1}([A])$ has only one element: if $\left(V_{1}, \ldots, V_{n}\right)$ is a flag in k^{n} such that $A\left(V_{i}\right) \subseteq V_{i-1}$ for $1 \leq i \leq n$, then $V_{i}=A^{n-i}(V)$ for all i. Indeed, the condition on the flag implies that $A^{n-i}\left(k^{n}\right) \subseteq V_{i}$ and the condition on the rank of A implies easily, by descending induction on i, that $\operatorname{dim}_{k} A^{n-i}\left(k^{n}\right)=i$. Therefore $A^{n-i}\left(k^{n}\right)=V_{i}$ for $1 \leq i \leq n$.

Since π_{1} has finite fibers over \mathcal{U}_{n}, we deduce from the first theorem on fiber dimensions that

$$
\operatorname{dim}\left(\mathcal{N}_{n}^{\text {proj }}\right)=\operatorname{dim}(Z)=n^{2}-n-1
$$

We thus conclude that \mathcal{N}_{n} is an irreducible variety of dimension $n^{2}-n$.

[^0]: ${ }^{1}$ A special case of this result says that if X is a closed subset of \mathbf{P}^{n}, with $\operatorname{dim}(X) \geq 1$, and H is a hypersurface in \mathbf{P}^{n}, then $X \cap H$ is nonempty, of dimension equal to $\operatorname{dim}(X)-1$.

