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CHAPTER 1

Affine and quasi-affine varieties

The main goal in this chapter is to establish a correspondence between various
geometric notions and algebraic ones. Some references for this chapter are [Har77,
Chapter I], [Mum88, Chapter I], and [Sha13, Chapter I].

1.1. Algebraic subsets and ideals

Let k be a fixed algebraically closed field. We do not make any assumption on
the characteristic. Important examples are C, Q, and Fp, for a prime integer p.

For a positive integer n we denote by An the n-dimensional affine space. For
now, this is just a set, namely kn. We assume that n is fixed and denote the
polynomial ring k[x1, . . . , xn] by R. Note that if f ∈ R and u = (u1, . . . , un), we
may evaluate f at u to get f(u) ∈ k. This gives a surjective ring homomorphism

k[x1, . . . , xn]→ k, f → f(u),

whose kernel is the (maximal) ideal (x1 − u1, . . . , xn − un).
Our goal in this section is to establish a correspondence between certain subsets

of An (those defined by polynomial equations) and ideals in R (more precisely,
radical ideals). A large part of this correspondence is tautological. The non-trivial
input will be provided by Hilbert’s Nullstellensatz, which we will be prove in the
next section.

Definition 1.1.1. Given a subset S ⊆ R, the zero-locus of S (also called the
subset of An defined by S) is the set

V (S) := {u ∈ An | f(u) = 0 for all f ∈ S}.
An algebraic subset of An is a subset of the form V (S) for some subset S of R.

Example 1.1.2. Any linear subspace of kn is an algebraic subset; in fact, it can
be written as V (S), where S is a finite set of linear polynomials (that is, polynomials
of the form

∑n
i=1 aixi). More generally, any translation of a linear subspace (that

is, an affine subspace) of kn is an algebraic subset.

Example 1.1.3. A union of two lines in A2 is an algebraic subset (see Propo-
sition 1.1.6). For example, the union of the two coordinate axes can be written as
V (x1x2).

Example 1.1.4. Another example of an algebraic subset of A2 is the hyperbola

{u = (u1, u2) ∈ A2 | u1u2 = 1}.

Remark 1.1.5. Recall that if S is a subset of R and I is the ideal of R generated
by S, then we can write

I = {g1f1 + . . .+ gmfm | m ≥ 0, f1, . . . , fm ∈ S, g1, . . . , gm ∈ R}.

1



2 1. AFFINE AND QUASI-AFFINE VARIETIES

It is then easy to see that V (S) = V (I). In particular, every algebraic subset of
An can be written as V (I) for some ideal I in R.

We collect in the following proposition the basic properties of taking the zero
locus.

Proposition 1.1.6. The following hold:

1) V (R) = ∅; in particular, the empty set is an algebraic subset.
2) V (0) = An: in particular, An is an algebraic subset.
3) If I and J are ideals in R with I ⊆ J , then V (J) ⊆ V (I).
4) If (Iα)α is a family of ideals in R, we have⋂

α

V (Iα) = V

(⋃
α

Iα

)
= V

(∑
α

Iα

)
.

5) If I and J are ideals in R, then

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

Proof. The assertions in 1)–4) are trivial to check. Note also that the inclu-
sions

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (I · J)

follow directly from 3). In order to show that V (I · J) ⊆ V (I) ∪ V (J), we argue
by contradiction: suppose that u ∈ V (I · J) r

(
V (I) ∪ V (J)

)
. We can thus find

f ∈ I such that f(u) 6= 0 and g ∈ J such that g(u) 6= 0. In this case fg ∈ I · J and
(fg)(u) = f(u)g(u) 6= 0, a contradiction with the fact that k is a domain. �

An important consequence of the assertions in the above proposition is that
the algebraic subsets of An form the closed subsets for a topology of An. This is
the Zariski topology on An.

The Zariski topology provides a convenient framework for dealing with algebraic
subsets of An. However, we will see that it has a lot less subsets than one is used
to from the case of the usual Euclidean space (over R or over C).

We now define a map in the other direction, from subsets of An to ideals in R.
Given a subset W of An, we put

I(W ) := {f ∈ R | f(u) = 0 for all u ∈W}.

It is straightforward to see that this is an ideal in R. In fact, it is a radical1 ideal:
indeed, since k is a reduced ring, if f(u)q = 0 for some positive integer q, then
f(u) = 0. We collect in the next proposition some easy properties of this definition.

Proposition 1.1.7. The following hold:

1) I(∅) = R.
2) If (Wα)α is a family of subsets of An, then I (

⋃
αWα) =

⋂
α I(Wα).

3) If W1 ⊆W2, then I(W2) ⊆ I(W1).

Proof. All assertions follow immediately from definition. �

1An ideal I in a ring R is radical if whenever fq ∈ I for some f ∈ R and some positive integer

q, we have f ∈ I. A related concept is that of a reduced ring: this is a ring such that whenever
fq = 0 for some f ∈ R and some positive integer q, we have f = 0. Note that an ideal I is radical

if and only if R/I is a reduced ring.
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We have thus set up two maps between subsets of An and ideals in R and we
are interested in the two compositions. Understanding one of these compositions is
tautological, as follows:

Proposition 1.1.8. For every subset Z of An, the set V
(
I(Z)

)
is equal to

the closure Z of Z, with respect to the Zariski topology. In particular, if Z is an
algebraic subset of An, then V

(
I(Z)

)
= Z.

Proof. We clearly have
Z ⊆ V

(
I(Z)

)
,

and since the right-hand side is closed by definition, we have

Z ⊆ V
(
I(Z)

)
.

In order to prove the reverse inclusion, recall that by definition of the closure of a
subset, we have

Z =
⋂
W

W,

where W runs over all algebraic subsets of An that contain Z. Every such W can
be written as W = V (J), for some ideal J in R. Note that we have J ⊆ I(W ),
while the inclusion Z ⊆ W gives I(W ) ⊆ I(Z). We thus have J ⊆ I(Z), hence
V
(
I(Z)

)
⊆ V (J) = W . Since V

(
I(Z)

)
is contained in every such W , we conclude

that
V
(
I(Z)

)
⊆ Z.

�

The interesting statement here concerns the other composition. Recall that if
J is an ideal in a ring R, then the set

{f ∈ R | fq ∈ J for some q ≥ 1}
is a radical ideal; in fact, it is the smallest radical ideal containing J , denoted
rad(J).

Theorem 1.1.9 (Hilbert’s Nullstellensatz). For every ideal J in R, we have

I
(
V (J)

)
= rad(J).

The inclusion J ⊆ I
(
V (J)

)
is trivial and since the right-hand side is a radical

ideal, we obtain the inclusion

rad(J) ⊆ I
(
V (J)

)
.

This reverse inclusion is the subtle one and this is where we use the hypothesis
that k is algebraically closed (note that this did not play any role so far). We will
prove this in the next section, after some preparations. Assuming this, we obtain
the following conclusion.

Corollary 1.1.10. The two maps I(−) and V (−) between the algebraic subsets
of An and the radical ideals in k[x1, . . . , xn] are inverse, order-reversing bijections.

Remark 1.1.11. It follows from Corollary 1.1.10 that via the above bijection,
the minimal nonempty algebraic subsets correspond to the maximal ideals in R.
It is clear that the minimal nonempty algebraic subsets are precisely the points
in An. On the other hand, given a = (a1, . . . , an) ∈ An, the ideal I(u) contains
the maximal ideal (x1 − a1, . . . , xn − an), hence the two ideals are equal. We thus
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deduce that every maximal ideal in R is of the form (x1 − a1, . . . , xn − an) for
some a1, . . . , an ∈ k. We will see in the next section that the general statement of
Theorem 1.1.9 is proved by reduction to this special case.

Exercise 1.1.12. Show that the closed subsets of A1 are A1 and its finite
subsets.

Exercise 1.1.13. Show that if W1 and W2 are algebraic subsets of An, then

I(W1 ∩W2) = rad
(
I(W1) + I(W2)

)
.

Exercise 1.1.14. For m and n ≥ 1, let us identify Amn with the set of all
matrices B ∈Mm,n(k). Show that the set

Mr
m,n(k) := {B ∈Mm,n(k) | rk(B) ≤ r}

is a closed algebraic subset of Mm,n(k).

Exercise 1.1.15. Show that the following subset of A3

W1 = {(t, t2, t3) | t ∈ k}
is a closed algebraic subset, and describe I(W1). Can you do the same for

W2 = {(t2, t3, t4) | t ∈ k}?
How about

W3 = {(t3, t4, t5) | t ∈ k}?

Exercise 1.1.16. For an arbitrary commutative ring R, one can define the
maximal spectrum MaxSpec(R) of R, as follows. As a set, this is the set of all
maximal ideals in R. For every ideal J in R, we put

V (J) := {m ∈ MaxSpec(R) | J ⊆ m}
and for every subset S ⊆ MaxSpec(R), we define

I(S) :=
⋂
m∈S

m.

i) Show that MaxSpec(R) has a structure of topological space in which the
closed subsets are the subsets of the form V (I), for an ideal I in R.

ii) Show that for every subset S of MaxSpec(R), we have V
(
I(S)

)
= S.

iii) Show that if R is an algebra of finite type over an algebraically closed field
k, then for every ideal J in S, we have I

(
V (J)

)
= rad(J).

iv) Show that if X ⊆ An is a closed subset, then we have a homeomorphism
X ' MaxSpec(R/J), where R = k[x1, . . . , xn] and J = I(X).

1.2. Noether normalization and Hilbert’s Nullstellensatz

The proof of Hilbert’s Nullstellensatz is based on the following result, known as
Noether’s normalization lemma. As we will see, this has many other applications.

Before stating the result, we recall that a ring homomorphism A→ B is finite
if B is finitely generated as an A-module. It is straightforward to check that a
composition of two finite homomorphisms is again finite. Moreover, if A → B
is a finite homomorphism, then for every homomorphism A → C, the induced
homomorphism C = A⊗AC → B⊗AC is finite. For details about finite morphisms
and the connection with integral morphisms, see Appendix A. One property that
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we will need is that if A ↪→ B is an injective finite homomorphism, with A and B
domains, then A is a field if and only if B is a field (see Proposition A.2.1).

Remark 1.2.1. If A ↪→ B is an injective, finite homomorphism between two
domains, and K = Frac(A) and L = Frac(B), then the induced injective homo-
morphism K ↪→ L is finite. Indeed, by tensoring the inclusion A ↪→ B with K, we
obtain a finite, injective homomorphism K ↪→ K⊗AB between domains. Note that
K⊗AB is a ring of fractions of B, hence the canonical homomorphism K⊗AB → L
is injective. Since K is a field, it follows that K⊗AB is a field, and thus K⊗AB = L.
In particular, we see that [L : K] <∞.

Theorem 1.2.2. Let k be a field and A a finitely generated k-algebra which
is an integral domain, with fraction field K. If trdeg(K/k) = n, then there is a
k-subalgebra B of A, such that

1) B is isomorphic as a k-algebra to k[x1, . . . , xn], and
2) The inclusion B ↪→ A is finite.

Proof. We only give the proof when k is infinite. This will be enough for our
purpose, since in all our applications the field k will always contain an algebraically
closed (hence infinite) field. For a proof in the general case, see [Mum88].

The fact that k is infinite will be used via the following property: for every
nonzero polynomial f ∈ k[x1, . . . , xr], there is λ ∈ kr such that f(λ) 6= 0. When
r = 1, this follows from the fact that a nonzero polynomial in one variable has
at most as many roots as its degree. The general case then follows by an easy
induction on r.

Let y1, . . . , ym ∈ A be generators of A as a k-algebra. In particular, we have
K = k(y1, . . . , ym), hence m ≥ n. We will show, by induction on m, that we can
find a change of variable of the form

yi =

n∑
j=1

bi,jzj , for 1 ≤ i ≤ m, with det(bi,j) 6= 0,

(so that we have A = k[z1, . . . , zm]) such that the inclusion k[z1, . . . , zn] ↪→ A is
finite. Note that this is enough: if B = k[z1, . . . , zn], then it follows from Re-
mark 1.2.1 that the induced field extension Frac(B) ↪→ K is finite. Therefore we
have

n = trdeg(K/k) = trdeg
(
k(z1, . . . , zn)/k

)
,

hence z1, . . . , zn are algebraically independent.
If m = n, there is nothing to prove. Suppose now that m > n, hence y1, . . . , ym

are algebraically dependent over k. Therefore there is a nonzero polynomial f ∈
k[x1, . . . , xm] such that f(y1, . . . , ym) = 0. Suppose now that we write

yi =

m∑
j=1

bi,jzj , with bi,j ∈ k, det(bi,j) 6= 0.

Let d = deg(f) and let us write

f = fd + fd−1 + . . .+ f0, with deg(fi) = i or fi = 0.

By assumption, we have fd 6= 0. If we write

f =
∑

α∈Zm
≥0

cαx
α1
1 · · ·xαm

m ,



6 1. AFFINE AND QUASI-AFFINE VARIETIES

then we have

0 = f(y1, . . . , ym) =
∑
α

cα(b1,1z1 + . . .+ b1,mzm)α1 · · · (bm,1z1 + . . .+ bm,mzm)αm

= fd(b1,m, . . . , bm,m)zdm + lower degree terms in zm.

Since we assume that k is infinite, we may choose the bi,j such that

det(bi,j) · fd(b1,m, . . . , bm,m) 6= 0.

In this case, we see that after this linear change of variable, the inclusion

k[y1, . . . , ym−1] ↪→ k[y1, . . . , ym]

is finite, since the right-hand side is generated as a module over the left-hand side
by 1, ym, . . . , y

d−1
m . Note that by Remark 1.2.1, the induced extension

k(y1, . . . , ym−1) ↪→ k(y1, . . . , ym)

is finite, hence trdeg
(
k(y1, . . . , ym−1)/k

)
= n. By induction, we can do a linear

change of variable in y1, . . . , ym−1, after which the inclusion

k[y1, . . . , yn] ↪→ k[y1, . . . , ym−1]

is finite, in which case the composition

k[y1, . . . , yn] ↪→ k[y1, . . . , ym−1] ↪→ k[y1, . . . , ym]

is finite. This completes the proof of the theorem. �

We will use Theorem 1.2.2 to prove Hilbert’s Nullstellensatz in several steps.

Corollary 1.2.3. If k is a field, A is a finitely generated k-algebra, and K =
A/m, where m is a maximal ideal in A, then K is a finite extension of k.

Proof. Note that K is a field which is finitely generated as a k-algebra. It
follows from the theorem that if n = trdeg(K/k), then there is a finite injective
homomorphism

k[x1, . . . , xn] ↪→ K.

Since K is a field, it follows that k[x1, . . . , xn] is a field, hence n = 0. Therefore
K/k is finite. �

Corollary 1.2.4. (Hilbert’s Nullstellensatz, weak version) If k is an alge-
braically closed field, then every maximal ideal m in R = k[x1, . . . , xn] is of the
form (x1 − a1, . . . , xn − an), for some a1, . . . , an ∈ k.

Proof. It follows from Corollary 1.2.3 that if K = R/m, the field extension
K/k is finite. Since k is algebraically closed, the canonical homomorphism k → K
is an isomorphism. In particular, for every i there is ai ∈ R such that xi − ai ∈ m.
Therefore we have (x1 − a1, . . . , xn − an) ⊆ m and since both ideals are maximal,
they must be equal. �

We can now prove Hilbert’s Nullstellensatz, in its strong form.

Proof of Theorem 1.1.9. It follows from Corollary 1.2.4 that given any
ideal a of R, different from R, the zero-locus V (a) of a is nonempty. Indeed,
since a 6= R, there is a maximal ideal m containing a. By Corollary 1.2.4, we have

m = (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k.
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In particular, we see that a = (a1, . . . , an) ∈ V (m) ⊆ V (J). We will use this fact in
the polynomial ring R[y] = k[x1, . . . , xn, y]; this is Rabinovich’s trick.

It is clear that for every ideal J in R we have the inclusion

rad(J) ⊆ I
(
V (J)

)
.

In order to prove the reverse inclusion, suppose that f ∈ I
(
V (J)

)
. Consider now

the ideal a in R[y] generated by J and by 1 − fy. If a 6= R[y], we have seen that
there is (a1, . . . , an, b) ∈ V (a). By definition of a, this means that g(a1, . . . , an) = 0
for all g ∈ J (that is, (a1, . . . , an) ∈ V (J)) and 1 = f(a1, . . . , an)g(b). In particular,
we have f(a1, . . . , an) 6= 0, contradicting the fact that f ∈ I

(
V (J)

)
.

We thus conclude that a = R. Therefore we can find f1, . . . , fr ∈ J and
g1, . . . , gr+1 ∈ R[y] such that

(1.2.1)

r∑
i=1

fi(x)gi(x, y) +
(
1− f(x)y

)
gr+1(x, y) = 1.

We now consider the R-algebra homomorphism R[y]→ Rf that maps y to 1
f . The

relation (1.2.1) gives
r∑
i=1

fi(x)gi
(
x, 1/f(x)

)
= 1

and after clearing the denominators (recall that R is a domain), we see that there is
a positive integer N such that fN ∈ (f1, . . . , fr), hence f ∈ rad(J). This completes
the proof of the theorem. �

1.3. The topology on the affine space

In this section we begin making use of the fact that the ring k[x1, . . . , xn] is
Noetherian. Recall that a (commutative) ring R is Noetherian if the following
equivalent conditions hold:

i) Every ideal in R is finitely generated.
ii) There is no infinite strictly increasing sequence of ideals of R.
iii) Every nonempty family of ideals of R has a maximal element

For this and other basic facts about Noetherian rings and modules, see Appen-
dix B. A basic result in commutative algebra is Hilbert’s basis theorem: if R is a
Noetherian ring, then R[x] is Noetherian (see Theorem B.2.1). In particular, since
a field k is trivially Noetherian, a recursive application of the theorem implies that
every polynomial algebra k[x1, . . . , xn] is Noetherian.

As in the previous sections, we fix an algebraically closed field k and a positive
integer n. The fact that the ring R = k[x1, . . . , xn] is Noetherian has two immediate
consequences. First, since every ideal is finitely generated, it follows that for every
algebraic subset W ⊆ An, there are finitely many polynomials f1, . . . , fr such that
W = V (f1, . . . , fr). Second, we see via the correspondence in Corollary 1.1.10 that
there is no infinite strictly decreasing sequence of closed subsets in An.

Definition 1.3.1. A topological space X is Noetherian if there is no infinite
strictly decreasing sequence of closed subsets in X.

We have thus seen that with the Zariski topology An is a Noetherian topological
space. This implies that every subspace of An is Noetherian, by the following
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Lemma 1.3.2. If X is a Noetherian topological space and Y is a subspace of X,
then Y is Noetherian.

Proof. If we have a infinite strictly decreasing sequence of closed subsets of
Y

F1 ) F2 ) . . . ,

consider the corresponding sequence of closures in X:

F1 ⊇ F2 ⊇ . . . .
Since Fi is closed in Y , we have Fi ∩ Y = Fi for all i, which implies that Fi 6= Fi+1

for every i. This contradicts the fact that X is Noetherian. �

Remark 1.3.3. Note that every Noetherian topological space is quasi-compact:
this follows from the fact that there is no infinite strictly increasing sequence of open
subsets.

Example 1.3.4. The real line R, with the usual Euclidean topology, is not
Noetherian.

We now introduce an important notion.

Definition 1.3.5. A topological space X is irreducible if it is nonempty and
whenever we write X = X1 ∪X2, with both X1 and X2 closed, we have X1 = X
or X2 = X. We say that X is reducible when it is not irreducible.

Remark 1.3.6. By passing to complements, we see that a topological space is
irreducible if and only if it is nonempty and for every two nonempty open subsets
U and V , the intersection U ∩ V is nonempty (equivalently, every nonempty open
subset of X is dense in X).

Remarks 1.3.7. 1) If Y is a subset of X (with the subspace topology),
the closed subsets of Y are those of the form F ∩ Y , where F is a closed
subset of X. It follows that Y is irreducible if and only if it is nonempty
and whenever Y ⊆ Y1 ∪ Y2, with Y1 and Y2 closed in X, we have Y ⊆ Y1

or Y ⊆ Y2.
2) If Y is an irreducible subset of X and if Y ⊆ Y1∪. . .∪Yr, with all Yi closed

in X, then there is i such that Y ⊆ Yi. This follows easily by induction
on r.

3) If Y and F are subsets of X, with F closed, then Y ⊆ F if and only if
Y ⊆ F . It then follows from the description in 1) that Y is irreducible if
and only if Y is irreducible.

4) If X is irreducible and U is a nonempty open subset of X, then it follows
from Remark 1.3.6 that U is dense in X. Since X is irreducible, it follows
from 3) that U is irreducible.

In the case of closed subsets of An, the following proposition describes irre-
ducibility in terms of the corresponding ideal.

Proposition 1.3.8. If W ⊆ An is a closed subset, then W is irreducible if and
only if I(W ) is a prime ideal in R.

Proof. Note first that W 6= ∅ if and only if I(W ) 6= R. Suppose first that W
is irreducible and let f, g ∈ R be such that fg ∈ I(W ). We can then write

W =
(
W ∩ V (f)

)
∪
(
W ∩ V (g)
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Since both subsets on the right-hand side are closed and W is irreducible, it follows
that we have either W = W ∩ V (f) (in which case f ∈ I(W )) or W = W ∩ V (g)
(in which case g ∈ I(W )). Therefore I(W ) is a prime ideal.

Conversely, suppose that I(W ) is prime and we write W = W1 ∪W2, with W1

and W2 closed. Arguing by contradiction, suppose that W 6= Wi for i = 1, 2, in
which case I(W ) ( I(Wi), hence we can find fi ∈ I(Wi) r I(W ). On the other
hand, we have f1f2 ∈ I(W1) ∩ I(W2) = I(W ), contradicting the fact that I(W ) is
prime. �

Example 1.3.9. Since R is a domain, it follows from the proposition that An

is irreducible.

Example 1.3.10. If L ⊆ An is a linear subspace, then L is irreducible. Indeed,
after a linear change of variables, we have R = k[y1, . . . , yn] such that I(L) =
(y1, . . . , yr) for some r ≥ 1, and this is clearly a prime ideal in R.

Example 1.3.11. The union of two lines in A2 is a reducible closed subset.

Proposition 1.3.12. Let X be a Noetherian topological space. Given a closed,
nonempty subset Y , there are finitely many irreducible closed subsets Y1, . . . , Yr
such that

Y = Y1 ∪ . . . ∪ Yr.
We may clearly assume that the decomposition is minimal, in the sense that Yi 6⊆ Yj
for i 6= j. In this case Y1, . . . , Yr are unique up to reordering.

The closed subsets Y1, . . . , Yr in the proposition are the irreducible components
of Y and the decomposition in the proposition is the irreducible decomposition of
Y .

Proof of Proposition 1.3.12. Suppose first that there are nonempty closed
subsets Y of X that do not have such a decomposition. Since X is Noetherian, we
may choose a minimal such Y . In particular, Y is not irreducible, hence we may
write Y = Y1 ∪ Y2, with Y1 and Y2 closed and strictly contained in Y . Note that
Y1 and Y2 are nonempty, hence by the minimality of Y , we may write both Y1 and
Y2 as finite unions of irreducible subsets. In this case, Y is also a finite union of
irreducible subsets, a contradiction.

Suppose now that we have two minimal decompositions

Y = Y1 ∪ . . . ∪ Yr = Y ′1 ∪ . . . ∪ Y ′s ,

with the Yi and Y ′j irreducible. For every i ≤ r, we get an induced decomposition

Yi =

s⋃
j=1

(Yi ∩ Y ′j ),

with the Yi ∩ Y ′j closed for all j. Since Yi is irreducible, it follows that there is
j ≤ s such that Yi = Yi ∩ Y ′j ⊆ Y ′j . Arguing in the same way, we see that there is
` ≤ r such that Y ′j ⊆ Y`. In particular, we have Yi ⊆ Y`, hence by the minimality
assumption, we have i = `, and therefore Yi = Y ′j . By iterating this argument and
by reversing the roles of the Yα and the Y ′β , we see that r = s and the Yα and the

Y ′β are the same up to relabeling. �
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Remark 1.3.13. It is clear that if X is a Noetherian topological space, W is a
closed subset ofX, and Z is a closed subset ofW , then the irreducible decomposition
of Z is the same whether considered in W or in X.

Recall that by a theorem due to Gauss, if R is a UFD, then the polynomial ring
R[x] is a UFD. A repeated application of this result gives that every polynomial
ring k[x1, . . . , xn] is a UFD. In particular, a nonzero polynomial f ∈ k[x1, . . . , xn]
is irreducible if and only if the ideal (f) is prime.

Example 1.3.14. Given a polynomial f ∈ k[x1, . . . , xn] r k, the subset V (f)
is irreducible if and only if f is a power of an irreducible polynomial. In fact, if
the irreducible decomposition of f is f = cfm1

1 · · · fmr
r , for some c ∈ k∗, then the

irreducible components of V (f) are V (f1), . . . , V (fr).

Exercise 1.3.15. Let Y be the algebraic subset of A3 defined by the two
polynomials x2 − yz and xz − x. Show that Y is a union of three irreducible
components. Describe them and find the corresponding prime ideals.

Exercise 1.3.16. Show that if X and Y are topological spaces, with X irre-
ducible, and f : X → Y is a continuous map, then f(X) is irreducible.

Exercise 1.3.17. Let X be a topological space, and consider a finite open
cover

X = U1 ∪ . . . ∪ Un,
where each Ui is nonempty. Show that X is irreducible if and only if the following
hold:

i) Each Ui is irreducible.
ii) For every i and j, we have Ui ∩ Uj 6= ∅.

Exercise 1.3.18. Let X be a Noetherian topological space and Y a subset
X. Show that if Y = Y1 ∪ . . . ∪ Yr is the irreducible decomposition of Y , then
Y = Y1 ∪ . . . ∪ Yr is the irreducible decomposition of Y .

Exercise 1.3.19. Let X be a Noetherian topological space and Y a nonempty
closed subset of X, with irreducible decomposition

Y = Y1 ∪ . . . ∪ Yr.
Show that if U is an open subset of X, then the irreducible decomposition of U ∩Y
is given by

U ∩ Y =
⋃

i,U∩Yi 6=∅

(U ∩ Yi).

We end these general topological considerations by discussing the notion of
locally closed subsets.

Definition 1.3.20. Let X be a topological space. A subset V of X is locally
closed if for every x ∈ V , there is an open neighborhood Ux of x in X such that
Ux ∩ V is closed in Ux.

Remark 1.3.21. One should contrast the above definition with the local char-
acterization of closed subsets: V is closed in X if and only if for every x ∈ X, there
is an open neighborhood Ux of x in X such that Ux ∩ V is closed in Ux.

Proposition 1.3.22. If V is a subset of a topological space X, then the follow-
ing are equivalent:
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i) V is a locally closed subset.
ii) V is open in V .
iii) We can write V = U ∩ F , with U open and F closed.

Proof. If V is locally closed, let us choose for every x ∈ V an open neighbor-
hood Ux of x as in the definition. In this case V is closed in U by Remark 1.3.21,
hence V = U ∩ F for some F closed in X, proving i)⇒iii). In order to see iii)⇒ii),
note that if if V = U ∩F , with U open and F closed, then V ⊆ F , hence V = U ∩V
is open in V . Finally, the implication ii)⇒i) is clear: if V = W ∩ V for some W
open in X, then for every x ∈ V , if we take Ux = W , we have Ux ∩ V closed in
Ux. �

Let X ⊆ An be a closed subset. We always consider on X the subspace
topology. We now introduce a basis of open subsets on X.

Definition 1.3.23. A principal affine open subset of X is an open subset of
the form

DX(f) := X r V (f) = {x ∈ X | f(x) 6= 0},
for some f ∈ k[x1, . . . , xn].

Note that DX(f) is nonempty if and only if f 6∈ I(X). It is clear that DX(f)∩
DX(g) = DX(fg). Every open subset of X can be written as X r V (J) for some
ideal J in R. Since J is finitely generated, we can write J = (f1, . . . , fr), in which
case

X r V (J) = DX(f1) ∪ . . . ∪DX(fr).

Therefore every open subset of X is a finite union of principal affine open subsets of
X. We thus see that the principal affine open subsets give a basis for the topology
of X.

Exercise 1.3.24. Let X be a topological space and Y a locally closed subset
of X. Show that a subset Z of Y is locally closed in X if and only if it is locally
closed in Y .

1.4. Regular functions and morphisms

Definition 1.4.1. An affine algebraic variety (or affine variety, for short) is a
a closed subset of some affine space An. A quasi-affine variety is a locally closed
subset of some affine space An, or equivalently, an open subset of an affine algebraic
variety. A quasi-affine variety is always endowed with the subspace topology.

The above is only a temporary definition: a (quasi)affine variety is not just
a topological space, but it comes with more information that distinguishes which
maps between such objects are allowed. We will later formalize this as a ringed
space. We now proceed describing the “allowable” maps.

Definition 1.4.2. Let Y ⊆ An be a locally closed subset. A regular function
on Y is a map φ : Y → k that can locally be given by a quotient of polynomial
functions, that is, for every y ∈ Y , there is an open neighborhood Uy of y in Y ,
and polynomials f, g ∈ k[x1, . . . , xn] such that

g(u) 6= 0 and φ(u) =
f(u)

g(u)
for all u ∈ Uy.
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We write O(Y ) for the set of regular functions on Y . If Y is an affine variety, then
O(Y ) is also called the coordinate ring of Y . By convention, we put O(Y ) = 0 if
Y = ∅.

Remark 1.4.3. It is easy to see that O(Y ) is a subalgebra of the k-algebra of
functions Y → k, with respect to point-wise operations. For example, suppose that
φ1 and φ2 are regular functions, y ∈ Y and U1 and U2 are open neighborhoods of
y, and f1, f2, g1, g2 ∈ k[x1, . . . , xn] are such that for all u ∈ Uy we have

gi(u) 6= 0 and φi(u) =
fi(u)

gi(u)
for i = 1, 2.

If we take U = U1 ∩ U2 and f = f1g2 + f2g1, g = g1g2, then for all u ∈ U , we have

g(u) 6= 0 and (φ1 + φ2)(u) =
f(u)

g(u)
.

Remark 1.4.4. It follows from definition that if φ : Y → k is a regular function
such that φ(y) 6= 0 for every y ∈ Y , then the function 1

φ is a regular function, too.

Example 1.4.5. If X is a locally closed subset of An, then the projection πi
on the ith component, given by

πi(a1, . . . , an) = ai

induces a regular function X → k. Indeed, if fi = xi ∈ k[x1, . . . , xn], then πi(a) =
fi(a) for all a ∈ X.

When Y is closed in An, one can describe more precisely O(Y ). It follows by
definition that we have a k-algebra homomorphism

k[x1, . . . , xn]→ O(Y )

that maps a polynomial f to the function
(
u→ f(u)

)
. By definition, the kernel of

this map is the ideal I(Y ). With this notation, we have the following

Proposition 1.4.6. The induced k-algebra homomorphism

k[x1, . . . , xn]/I(Y )→ O(Y )

is an isomorphism.

A similar description holds for principal affine open subsets of affine varieties.
Suppose that Y is closed in An and U = DY (h), for some h ∈ k[x1, . . . , xn]. We
have a k-algebra homomorphism

Φ: k[x1, . . . , xn]h → O(U),

that maps f
hm to the map

(
u → f(u)/h(u)m

)
. With this notation, we have the

following generalization of the previous proposition.

Proposition 1.4.7. The above k-algebra homomorphism induces an isomor-
phism

k[x1, . . . , xn]h/I(Y )h → O
(
DY (h)

)
.

Of course it is enough to prove this more general version.
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Proof of Proposition 1.4.7. The kernel of Φ consists of those fractions f
hm

such that f(u)
h(u) = 0 for every u ∈ DY (h). It is clear that this condition is satisfied if

f ∈ I(Y ). Conversely, if this condition holds, then f(u)h(u) = 0 for every u ∈ Y .

Therefore fh ∈ I(Y ), hence f
hm = fh

hm+1 ∈ I(Y )h. This shows that Φ is injective.

We now show that Φ is surjective. Consider φ ∈ O
(
DY (h)

)
. Using the hy-

pothesis and the fact that DY (h) is quasi-compact (being a Noetherian topological
space), we can write

DY (h) = V1 ∪ . . . ∪ Vr
and we have fi, gi ∈ k[x1, . . . , xn] for 1 ≤ i ≤ r such that gi(u) 6= 0 and φ(u) = fi(u)

gi(u)

for all u ∈ Vi and all i. Since the principal affine open subsets form a basis
for the topology on Y , we may assume that Vi = DY (hi) for all i, for some
hi ∈ k[x1, . . . , xn] r I(Y ). Since gi(u) 6= 0 for all u ∈ Y r V (hi), it follows from
Theorem 1.1.9 that

hi ∈ rad
(
I(Y ) + (gi)

)
.

After possibly replacing each hi by a suitable power, and then by a suitable element
with the same class mod I(Y ), we may and will assume that hi ∈ (gi). Finally,
after multiplying both fi and gi by a suitable polynomial, we may assume that
gi = hi for all i.

We know that on DY (gi) ∩DY (gj) = DY (gigj) we have

fi(u)

gi(u)
=
fj(u)

gj(u)
.

Applying the injectivity statement for DY (gigj), we conclude that

fi
gi

=
fj
gj

in k[x1, . . . , xn]gigj/I(Y )gigj .

Therefore there is a positive integer N such that

(gigj)
N (figj − fjgi) ∈ I(Y ) for all i, j.

After replacing each fi and gi by fig
N
i and gN+1

i , respectively, we may assume that

figj − fjgi ∈ I(Y ) for all i, j.

On the other hand, we have

DY (h) =

r⋃
i=1

DY (gi),

hence Y ∩ V (h) = Y ∩ V (g1, . . . , gr), and by Theorem 1.1.9, we have

rad
(
I(Y ) + (h)

)
= rad

(
I(Y ) + (g1, . . . , gr)

)
.

In particular, we can write

hm −
r∑
i=1

aigi ∈ I(Y ) for some m ≥ 1 and a1, . . . , ar ∈ k[x1, . . . , xn].

We claim that

φ = Φ

(
a1f1 + . . .+ arfr

hm

)
.
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Indeed, for u ∈ DY (gj), we have

fj(u)

gj(u)
=
a1(u)f1(u) + . . .+ ar(u)fr(u)

h(u)m

since

h(u)mfj(u) =

r∑
i=1

ai(u)gi(u)fj(u) =

(
r∑
i=1

ai(u)fi(u)

)
gj(u).

This completes the proof of the claim and thus that of the proposition. �

Example 1.4.8. In general, it is not the case that a regular function admits
a global description as the quotient of two polynomial functions. Consider, for
example the closed subset W of A4 defined by x1x2 = x3x4. Inside W we have the
plane L given by x2 = x3 = 0. We define the regular function φ : W rL→ k given
by

φ(u1, u2, u3, u4) =

{
u1

u3
, ifu3 6= 0;

u4

u2
, ifu2 6= 0.

It is an easy exercise to check that there are no polynomials P,Q ∈ k[x1, x2, x3, x4]
such that

Q(u) 6= 0 and φ(u) =
P (u)

Q(u)
for all u ∈W r L.

We now turn to maps between quasi-affine varieties. If Y is a subset of Am and
f : X → Y is a map, then the composition X → Y ↪→ Am is written as (f1, . . . , fm),
with fi : X → k. We often abuse notation writing f = (f1, . . . , fm).

Definition 1.4.9. If X ⊆ An and Y ⊆ Am are locally closed subsets, a map
f = (f1, . . . , fm) : X → Y is a morphism if fi ∈ O(X) for all i.

Remark 1.4.10. It follows from definition that f : X → Y is a morphism if
and only if the composition

X → Y ↪→ Am

is a morphism

Remark 1.4.11. If X ⊆ An is a locally closed subset, then a morphism X →
A1 is the same as a regular function X → k.

Example 1.4.12. If X is a locally closed of An, then the inclusion map ι : X →
An is a morphism (this follows from Example 1.4.5). This implies that the identity
map 1X : X → X is a morphism.

Proposition 1.4.13. If X and Y are quasi-affine varieties, then every mor-
phism f : X → Y is continuous.

Proof. Suppose that X and Y are locally closed in An and Am, respectively,
and write f = (f1, . . . , fm). We will show that if V ⊆ Y is a closed subset, then
f−1(V ) is a closed subset of X. By assumption, we can write

V = Y ∩ V (I) for some ideal I ⊆ k[x1, . . . , xn].

In order to check that f−1(V ) is closed, it is enough to find for every x ∈ X
an open neighborhood Ux of x in X such that Ux ∩ f−1(V ) is closed in Ux (see
Remark 1.3.21). Since each fi is a regular function, after replacing X by a suitable
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open neighborhood of x, we may assume that there are Pi, Qi ∈ k[x1, . . . , xn] such
that

Qi(u) 6= 0 and fi(u) =
Pi(u)

Qi(u)
for all u ∈ X.

For every h ∈ I, there are polynomials Ah, Bh ∈ k[x1, . . . , xn] such that

Bh(u) 6= 0 and h

(
P1(u)

Q1(u)
, . . . ,

Pm(u)

Qm(u)

)
=
Ah(u)

Bh(u)
for all u ∈ X.

It is then clear that for u ∈ X we have u ∈ f−1(V ) if and only if Ah(u) = 0 for all
h ∈ I. Therefore f−1(V ) is closed. �

Proposition 1.4.14. If f : X → Y and g : Y → Z are morphisms between
quasi-affine varieties, the composition g ◦ f is a morphism.

Proof. Suppose that X ⊆ Am, Y ⊆ An and Z ⊆ Aq are locally closed
subsets and let us write f = (f1, . . . , fn) and g = (g1, . . . , gq). We need to show
that gi ◦ f ∈ O(X) for 1 ≤ i ≤ q. Let us fix such i, a point x ∈ X, and let
y = f(x). Since gi ∈ O(Y ) is a morphism, there is an open neighborhood Vy of y
and P,Q ∈ k[x1, . . . , xn] such that

Q(u) 6= 0 and gi(u) =
P (u)

Q(u)
for all u ∈ Vy.

Similarly, since f is a morphism, we can find an open neighborhood Ux of x and
Aj , Bj ∈ k[x1, . . . , xm] for 1 ≤ j ≤ n such that

Bj(u) 6= 0 and fj(u) =
Aj(u)

Bj(u)
for all u ∈ Ux.

It follows from Proposition 1.4.13 that Ux ∩ f−1(Vy) is open and we have

gi ◦ f(u) =
P
(
A1(u)
B1(u) , . . . ,

An(u)
Bn(u)

)
Q
(
A1(u)
B1(u) , . . . ,

An(u)
Bn(u)

) .
After clearing the denominators, we see that indeed, gi ◦ f is a regular function in
the neighborhood of x. �

It follows from Proposition 1.4.14 (and Example 1.4.12) that we may consider
the category of quasi-affine varieties over k, whose objects are locally closed subsets
of affine spaces over k, and whose arrows are the morphisms as defined above.
Moreover, since a regular function on X is the same as a morphism X → A1, we
see that if f : X → Y is a morphism of quasi-affine varieties, we get an induced
map

f# : O(Y )→ O(X), f#(φ) = φ ◦ f.
This is clearly a morphism of k-algebras. By mapping every quasi-affine variety X
to O(X) and every morphism f : X → Y to f#, we obtain a contravariant functor
from the category of quasi-affine varieties over k to the category of k-algebras.

Definition 1.4.15. A morphism f : X → Y is an isomorphism if it is an
isomorphism in the above category. It is clear that this is the case if and only if f
is bijective and f−1 is a morphism.
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The following result shows that for affine varieties, this functor induces an anti-
equivalence of categories. Let AfV ark be the full subcategory of the category of
quasi-affine varieties whose objects consist of the closed subsets of affine spaces
over k and let Ck denote the category whose objects are reduced, finitely generated
k-algebras and whose arrows are the morphisms of k-algebras.

Theorem 1.4.16. The contravariant functor

AfV ark → Ck

that maps X to O(X) and f : X → Y to f# : O(Y )→ O(X) is an anti-equivalence
of categories.

Proof. Note first that if X is an affine variety, then O(X) is indeed a reduced,
finitely generated k-algebra. Indeed, if X is a closed subset of An, then it follows
from Proposition 1.4.6 that we have an isomorphism O(X) ' k[x1, . . . , xn]/I(X),
which gives the assertion.

In order to show that the functor is an anti-equivalence of categories, it is
enough to check two things:

i) For every affine varieties X and Y , the map

HomAfV ark(X,Y )→ HomCk
(
O(Y ),O(X)

)
, f → f#

is a bijection.
ii) For every reduced, finitely generated k-algebra A, there is an affine variety

X with O(X) ' A.
The assertion in ii) is clear: since A is finitely generated, we can find an isomorphism
A ' k[x1, . . . , xm]/J , for some positive integer m and some ideal J . Moreover,
since A is reduced, J is a radical ideal. If X = V (J) ⊆ Am, then it follows from
Theorem 1.1.9 that J = I(X) and therefore O(X) ' A by Proposition 1.4.6.

In order to prove the assertion in i), suppose that X ⊆ Am and Y ⊆ An are
closed subsets. By Proposition 1.4.6, we have canonical isomorphisms

O(X) ' k[x1, . . . , xm]/I(X) and O(Y ) ' k[y1, . . . , yn]/I(Y ).

If f : X → Y is a morphism and we write f = (f1, . . . , fn), then f#(yi) = f i. Since
f is determined by the classes f1, . . . , fn mod I(X), it is clear that the map in i) is
injective.

Suppose now that α : O(Y ) → O(X) is a morphism of k-algebras and let fi ∈
k[x1, . . . , xm] be such that fi = α(yi) ∈ O(X). It is then clear that f = (f1, . . . , fn)
gives a morphism X → An. Its image lies inside Y since for every g ∈ I(Y ) we
have g(f1, . . . , fn) ∈ I(X), hence g

(
f(u)

)
= 0 for all u ∈ X. Therefore f gives a

morphism X → Y such that f# = α. �

Definition 1.4.17. We extend somewhat the notion of affine variety by saying
that a quasi-affine variety is affine if it is isomorphic (in the category of quasi-affine
varieties) to a closed subset of some affine space.

An important example that does not come directly as a closed subset of an
affine space is provided by the following proposition.
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Proposition 1.4.18. Let X be a closed subset of An and U = DX(g), for
some g ∈ k[x1, . . . , xn]. If J is the ideal in k[x1, . . . , xn, y] generated by I(X) and
1− g(x)y, then U is isomorphic to V (J). In particular, U is an affine variety2.

Proof. Define φ : U → V (J) by φ(u) =
(
u, 1/g(u)

)
. It is clear that φ(u)

lies indeed in V (J) and that φ is a morphism. Moreover, we also have a mor-
phism ψ : V (J) → U induced by the projection onto the first n components. It is
straightforward to check that φ and ψ are inverse to each other. �

Notation 1.4.19. If X is a quasi-affine variety and f ∈ O(X), then we put

DX(f) = {u ∈ X | f(u) 6= 0}.

If X is affine, say it is isomorphic to the closed subset Y of An, then f corresponds
to the restriction to Y of some g ∈ k[x1, . . . , xn]. In this case, it is clear that DX(f)
is isomorphic to DY (g), hence it is an affine variety.

Remark 1.4.20. If X is a locally closed subset of An, then X is open in X.
Since the principal affine open subsets of X give a basis of open subsets for the
topology of X, it follows from Proposition 1.4.18 that the open subsets of X that
are themselves affine varieties give a basis for the topology of X.

Exercise 1.4.21. Suppose that f : X → Y is a morphism of affine algebraic
varieties, and consider the induced homomorphism f ] : O(Y )→ O(X). Show that
if u ∈ O(Y ), then

i) We have f−1(DY (u)) = DX(w), where w = f ](u).
ii) The induced ring homomorphism

O(DY (u))→ O(DX(w))

can be identified with the homomorphism

O(Y )u → O(X)w

induced by f ] by localization.

Exercise 1.4.22. Let X be an affine algebraic variety, and let O(X) be the
ring of regular functions on X. For every ideal J of O(X), let

V (J) := {p ∈ X | f(p) = 0 for all f ∈ J}.

For S ⊆ X, consider the following ideal of O(X)

IX(S) := {f ∈ O(X) | f(p) = 0 for all p ∈ S}.

Show that for every subset S of X and every ideal J in O(X), we have

V
(
IX(S)

)
= S and IX

(
V (J)

)
= rad(J).

In particular, the maps V (−) and IX(−) define order-reversing inverse bijections
between the closed subsets of X and the radical ideals in O(X). Via this corre-
spondence, the irreducible closed subsets correspond to the prime ideals in O(X)
and the points of X correspond to the maximal ideals in O(X). This generalizes
the case X = An that was discussed in Section 1.1.

2This justifies calling these subsets principal affine open subsets.
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We have seen that a morphism f : X → Y between affine varieties is determined
by the corresponding k-algebra homomorphism f# : O(Y ) → O(X). For such a
morphism, it follows from the above exercise that the closed subsets in X and Y
are in bijection with the radical ideals in O(X) and, respectively, O(Y ). In the
next proposition we translate the operations of taking the image and inverse image
as operations on ideals.

Proposition 1.4.23. Let f : X → Y be a morphism of affine varieties and
φ = f# : O(Y ) → O(X) the corresponding k-algebra homomorphism. For a point
x in X or Y , we denote by mx the corresponding maximal ideal.

i) If x ∈ X and y = f(x), then my = φ−1(mx).

ii) More generally, if a is an ideal in O(X) and W = V (a), then IY
(
f(W )

)
=

φ−1
(
IX(W )

)
.

iii) In particular, we have IY
(
f(X)

)
= ker(φ). Therefore f(X) = Y if and

only if φ is injective.
iv) If b is an ideal in O(Y ) and Z = V (b), then f−1(Z) = V

(
b · O(X)

)
.

Proof. The assertion in i) is a special case of that in ii), hence we begin by
showing ii). We have

IY
(
f(W )

)
= IY

(
f(W )

)
= {g ∈ O(Y ) | g

(
f(x)

)
= 0 for all x ∈W}

= {g ∈ O(Y ) | φ(g) ∈ IX(W )} = φ−1
(
IX(W )

)
.

By taking W = X, we obtain the assertion in iii)
Finally, if b and Z are as in iv), we see that

f−1(Z) = {x ∈ X | g
(
f(x)

)
= 0 for all g ∈ b} = V

(
b · O(X)

)
.

�

Remark 1.4.24. If f : X → Y is a morphism of affine varieties, then f# : O(Y )→
O(X) is surjective if and only if f factors as X

g−→ Z
ι−→ Y , where Z is a closed

subset of Y , ι is the inclusion map, and g is an isomorphism.

Exercise 1.4.25. Let Y ⊆ A2 be the cuspidal curve defined by the equation
x2 − y3 = 0. Construct a bijective morphism f : A1 → Y . Is it an isomorphism ?

Exercise 1.4.26. Suppose that char(k) = p > 0, and consider the map
f : An → An given by f(a1, . . . , an) = (ap1, . . . , a

p
n). Show that f is a morphism of

affine algebraic varieties, and that it is a homeomorphism, but it is not an isomor-
phism.

Exercise 1.4.27. Use Exercise 1.3.16 to show that the affine variety

Mr
m,n(k) := {B ∈Mm,n(k) | rk(B) ≤ r}

is irreducible.

Exercise 1.4.28. Let n ≥ 2 be an integer.

i) Show that the set

Bn =

{
(a0, a1, . . . , an) ∈ An+1 | rank

(
a0 a1 . . . an−1

a1 a2 . . . an

)
≤ 1

}
is a closed subset of An+1.
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ii) Show that

Bn = {(sn, sn−1t, . . . , tn) | s, t ∈ k}.
Deduce that Bn is irreducible.

Exercise 1.4.29. In order to get an example of a quasi-affine variety which
is not affine, consider U = A2 r {0}. Show that the canonical homomorphism
O(A2)→ O(U) is an isomorphism and deduce that U is not affine.

Exercise 1.4.30. Show that A1 is not isomorphic to any proper open subset
of itself.

Exercise 1.4.31. Show that if X is a quasi-affine variety such that O(X) = k,
then X consists of only one point.

1.5. Local rings and rational functions

Let X be a quasi-affine variety and W an irreducible closed subset of X.

Definition 1.5.1. The local ring of X at W is the k-algebra

OX,W := lim−→
U∩W 6=∅

O(U).

Here the direct limit is over the open subsets of X with U ∩W 6= ∅, ordered by
reverse inclusion, and where for U1 ⊆ U2, the map O(U2) → O(U1) is given by
restriction of functions.

Remark 1.5.2. Note that the poset indexing the above direct limit is filtering:
given any two open subsets U1 and U2 that intersect W nontrivially, we have U1 ∩
U2 ∩ W 6= ∅ (we use here the fact that W is irreducible). Because of this, the
elements of OX,W can be described as pairs (U, φ), where U is open with W ∩U 6= ∅
and φ ∈ O(U), modulo the following equivalence relation:

(U1, φ1) ∼ (U2, φ2)

if there is an open subset U ⊆ U1 ∩ U2, with U ∩W 6= ∅, such that φ1|U = φ2|U .
Operations are defined by restricting to the intersection: for example, we have

(U1, φ1) + (U2, φ2) = (U1 ∩ U2, φ1|U1∩U2
+ φ2|U1∩U2

).

In order to describe OX,W , we begin with the following lemma.

Lemma 1.5.3. If W is an irreducible closed subset of X and V is an open subset
of X with V ∩W 6= ∅, we have a canonical k-algebra isomorphism

OX,W ' OV,W∩V .

Proof. The assertion follows from the fact that the following subset

{U ⊆ V | U open, U ∩W 6= ∅} ⊆ {U ⊆ X | U open, U ∩W 6= ∅}
is final. Explicitly, we have the morphism

OV,W∩V → OX,W , (U, φ)→ (U, φ),

with inverse

OX,W → OV,W∩V , (U, φ)→ (U ∩ V, φ|U∩V ).

�
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Given a quasi-affine variety X, the open subsets of X that are affine varieties
give a basis for the topology of X (see Remark 1.4.20). By Lemma 1.5.3, we see
that it is enough to compute OX,W when X is an affine variety. This is the content
of the next result.

Proposition 1.5.4. Let X be an affine variety and W an irreducible closed
subset of X. If p ⊆ O(X) is the prime ideal corresponding to W , then we have a
canonical isomorphism

OX,W ' O(X)p.

In particular, OX,W is a local ring, with maximal ideal consisting of classes of pairs
(U, φ), with φU∩W = 0.

Proof. Since the principal affine open subsets of X form a basis for the topol-
ogy of X, we obtain using Proposition 1.4.7 a canonical isomorphism

OX,W ' lim−→
f

O(X)f ,

where the direct limit on the right-hand side is over those f ∈ O(X) such that
DX(f) ∩W 6= ∅. This condition is equivalent to f 6∈ p and it is straightforward to
check that the maps O(X)f → O(X)p induce an isomorphism

lim−→
f

O(X)f ' O(X)p.

The last assertion in the proposition follows easily from the fact that O(X)p is a
local ring, with maximal ideal pO(X)p �

There are two particularly interesting cases of this definition. First, if we take
W = {x}, for a point x ∈ X, we obtain the local ring OX,x of X at x. Its elements
are germs of regular functions at x. This is a local ring, whose maximal ideal
consists of germs of functions vanishing at x. As we will see, this local ring is
responsible for the properties of X in a neighborhood of x. If X is an affine variety
and m is the maximal ideal corresponding to x, then Proposition 1.5.4 gives an
isomorphism

OX,x ' O(X)m.

Exercise 1.5.5. Let f : X → Y be a morphism of quasi-affine varieties, and let
Z ⊆ X be a closed irreducible subset. Recall that by Exercise 1.3.16, we know that
W := f(Z) is irreducible. Show that we have an induced morphism of k-algebras

g : OY,W → OX,Z
and that g is a local homomorphism of local rings (that is, it maps the maximal
ideal of OY,W inside the maximal ideal of OX,Z). If X and Y are affine varieties,
and

p = IX(Z) and q = IY (W ) = (f#)−1(p),

then via the isomorphisms given by Proposition 1.5.4, g gets identified to the ho-
momorphism

O(Y )q → O(X)p

induced by f# via localization.

Exercise 1.5.6. Let X and Y be quasi-affine varieties. By the previous exer-
cise, if f : X → Y is a morphism, p ∈ X is a point, and f(p) = q, then f induces a
local ring homomorphism φ : OY,q → OX,p.
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i) Show that if f ′ : X → Y is another morphism with f ′(p) = q, and induced
homomorphism φ′ : OY,y → OX,x, then φ = φ′ if and only if there is an
open neighborhood U of p such that f |U = g|U .

ii) Show that given any local morphism of local k-algebras ψ : OY,q → OX,p,
there is an open neighborhood W of p, and a morphism g : W → Y with
g(p) = q, and inducing ψ.

iii) Deduce that OX,p and OY,q are isomorphic as k-algebras if and only if
there are open neighborhoods W of p and V of q, and an isomorphism
h : W → V , with h(p) = q.

Another important example of local ring of X occurs when X is an irreducible
variety and we take W = X. The resulting local ring is, in fact, a field, the field
of rational functions k(X) of X. Indeed, if U ⊆ X is an affine open subset, then
it follows from Lemma 1.5.3 and Proposition 1.5.4 that k(X) is isomorphic to the
field of fractions of the domain O(X). The elements of k(X) are rational functions
on X, that is, pairs (U, φ), where U is a nonempty open subset of X and φ : U → k
is a regular function, where we identify two such pairs if the two functions agree
on some nonempty open subset of their domains (in fact, as we will see shortly, in
this case they agree on the intersection of their domains). We now discuss in more
detail rational functions and, more generally, rational maps.

Lemma 1.5.7. If X and Y are quasi-affine varieties and f1 and f2 are two
morphisms X → Y , then the subset

{a ∈ X | f1(a) = f2(a)} ⊆ X
is closed.

Proof. If Y is a locally closed subset in An, then we write fi = (fi,1, . . . , fi,n)
for i = 1, 2. With this notation, we have

{a ∈ X | f1(a) = f2(a)} =

n⋂
j=1

{a ∈ X | (f1,j − f2,j)(a) = 0},

hence this set is closed in X, since each function f1,j − f2,j is regular, hence con-
tinuous. �

Definition 1.5.8. Let X and Y be quasi-affine varieties. A rational map
f : X 99K Y is given by a pair (U, φ), where U is a dense, open subset of X and
φ : U → Y is a morphism, and where we identify (U1, φ1) with (U2, φ2) if there is
an open dense subset V ⊆ U1 ∩ U2 such that φ1|V = φ2|V . In fact, in this case we
have φ1|U1∩U2 = φ2|U1∩U2 by Lemma 1.5.7. We also note that since U1 and U2 are
dense open subsets of X, then also U1 ∩ U2 is a dense subset of X.

Remark 1.5.9. If f : X 99K Y is a rational map and (Ui, φi) are the repre-
sentatives of f , then we can define a map φ : U =

⋃
i Ui → Y by φ(u) = φi(u) if

u ∈ Ui. This is well-defined and it is a morphism, since its restriction to each of the
Ui is a morphism. Moreover, (U, φ) is a representative of f . The open subset U ,
the largest one on which a representative of f is defined, is the domain of definition
of f .

Definition 1.5.10. Given a quasi-affine variety X, the set of rational functions
X 99K k is denoted by k(X). Since the intersection of two dense open sets is again
open and dense, we may define the sum and product of two rational functions. For
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example, given two rational functions with representatives (U1, φ1) and (U2, φ2),
we define their sum by the representative

(U1 ∩ U2, φ1|U1∩U2 + φ2|U1∩U2),

and similarly for the product. It is straightforward to see that using also scalar
multiplication, k(X) is a k-algebra. Note that when X is irreducible, we recover
our previous definition.

Exercise 1.5.11. Let X be a quasi-affine variety, and let X1, . . . , Xr be its
irreducible components. Show that there is a canonical isomorphism

k(X) ' k(X1)× · · · × k(Xr).

Exercise 1.5.12. Let W be the closed subset in A2, defined by x2 + y2 = 1.
What is the domain of definition of the rational function on W given by 1−y

x ?

Our next goal is to define a category in which the arrows are given by rational
function. For simplicity, we only consider irreducible varieties.

Definition 1.5.13. A morphism f : X → Y is dominant if Y = f(X). Equiv-
alently, for every nonempty open subset V ⊆ Y , we have f−1(V ) 6= ∅. Note that
if U is open and dense in X, then f is dominant if and only if the composition

U ↪→ X
f−→ Y is dominant. We can thus define the same notion for rational

maps: if f : X 99K Y is a rational map with representative (U, φ), we say that f is
dominant if φ : U → Y is dominant.

Suppose that X, Y , and Z are irreducible quasi-affine varieties and f : X 99K Y
and g : Y 99K Z are rational maps, with f dominant. In this case we may define the
composition g◦f , which is a rational map; moreover, if g is dominant, too, then g◦f
is dominant. Indeed, choose a representative (U, φ) for f and a representative (V, ψ)
for g. Since the morphism φ : U → Y is dominant, it follows that W := φ−1(V ) is
nonempty. We then take g◦f to be the rational function defined by the composition

W
f |W−→ V −→ Z.

It is straightforward to see that this independent of the representatives for f and
g. Moreover, if g is dominant, then g ◦ f is dominant: if Z ′ is a nonempty open
subset of Z, then ψ−1(Z ′) is nonempty and open since g is dominant and therefore
φ−1

(
ψ−1(Z ′)

)
is nonempty, since f is dominant.

It is clear that the identity map is dominant. Moreover, composition of dom-
inant rational map is associative. We thus obtain a category in which the objects
are the irreducible quasi-affine varieties over k and the set Homrat(X,Y ) of arrows
from X to Y consists of the dominant rational maps X 99K Y , with the composition
defined above. We are then led to the following important concept.

Definition 1.5.14. A rational dominant map f : X 99K Y between irreducible
quasi-affine varieties is birational if it is an isomorphism in the above category.
More precisely, this is the case if there is a dominant rational map g : Y 99K X such
that

g ◦ f = 1X and f ◦ g = 1Y .

A birational morphism is a morphism which is birational as a rational map. Two
irreducible quasi-affine varieties X and Y are birational if there is a birational map
X 99K Y .
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This notion plays a fundamental role in the classification of algebraic varieties.
On one hand, birational varieties share interesting geometric properties. On the
other hand, classifying algebraic varieties up to birational equivalence turns out to
be a more reasonable endeavor than classifying varieties up to isomorphism.

Example 1.5.15. If U is an open subset of the irreducible quias-affine variety
X, then the inclusion map i : U ↪→ X is a birational morphism. Its inverse is given
by the rational map represented by the identity morphism of U .

Example 1.5.16. An interesting example, which we will come back to later, is
given by the morphism

f : An → An, f(x1, . . . , xn) = (x1, x1x2, . . . , x1xn).

Note that the linear subspace given L = (x1 = 0) is mapped to 0, but f induces an
isomorphism

An r L = f−1(An r L)→ An r L,

with inverse given by g(y1, . . . , yn) = (y1, y2/y1, . . . , yn/y1).

Example 1.5.17. Let X be the closed subset of A2 (on which we denote the
coordinates by x and y), defined by x2− y3 = 0. Let f : A1 → X be the morphism
given by f(t) = (t3, t2). Note that f is birational: if g : X r {(0, 0)} → A1 is the
morphism given by g(u, v) = u

v , then g gives a rational map X 99K A1 that is

an inverse of f . Note that since f−1(0, 0) = {0}, it follows that the morphism f
is bijective, However, f is not an isomorphism: otherwise, by Theorem 1.4.16 the
induced homomorphism

f# : O(X) = k[x, y]/(x2 − y3)→ k[t], f#(x) = t3, f#(y) = t2

would be an isomorphism. However, it is clear that t is not in the image.

If f : X 99K Y is a rational, dominant map, then by taking Z = A1, we see
that by precomposing with f we obtain a map

f# : k(Y )→ k(X).

It is straightforward to see that this is a field homomorphism.

Theorem 1.5.18. We have an anti-equivalence of categories between the cate-
gory of irreducible quasi-affine varieties and dominant rational maps and the cate-
gory of finite type field extensions of k and k-algebra homomorphisms, that maps a
variety X to k(X) and a rational dominant map f : X 99K Y to f# : k(Y )→ k(X).

Proof. It is clear that we have a contravariant functor as described in the
theorem. Note that if X is an irreducible quasi-affine variety, then k(X) is a finite
type extension of k: indeed, if U is an affine open subset of X, then we have
k(X) ' k(U) ' Frac

(
O(U)

)
.

In order to show that this functor is an anti-equivalence, it is enough to prove
the following two statements:

i) Given any two quasi-affine varieties X and Y , the map

Homrat(X,Y )→ Homk−alg

(
k(Y ), k(X)

)
is bijective.

ii) Given any finite type field extension K/k, there is an irreducible quasi-
affine variety X such that k(X) ' K.
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The assertion in ii) is easy to see: if K = k(a1, . . . , an), let A = k[a1, . . . , an].
We can thus write A ' k[x1, . . . , xn]/P for some (prime) ideal P and if X = V (P ) ⊆
An, then X is irreducible and k(X) ' K.

In order to prove i), suppose that X and Y are locally closed in Am and,
respectively, An. Since X and Y are open in X and Y , respectively, by Proposi-
tion 1.3.22, and since inclusions of open subsets are birational, it follows that the
inclusions X ↪→ X and Y ↪→ Y induce an isomorphism

Homrat(X,Y ) ' Homrat(X,Y ),

and also isomorphisms

k(X) ' k(X) and k(Y ) ' k(Y ).

We may thus replace X and Y by X and Y , respectively, in order to assume that
X and Y are closed subsets of the respective affine spaces.

It is clear that

Homrat(X,Y ) =
⋃

g∈O(X)

Homdom

(
DX(g), Y

)
,

where each set on the right-hand side consists of the dominant morphisms DX(g)→
Y . Moreover, since O(Y ) is a finitely generated k-algebra, we have

Homk−alg

(
k(Y ), k(X)

)
=

⋃
g∈O(X)

Hominj

(
O(Y ),O(X)g

)
,

where each set on the right-hand side consists of the injective k-algebra homomor-
phisms O(Y )→ O(X)g. Since the map f → f# gives a bijection

Homdom

(
DX(g), Y

)
' Hominj

(
O(Y ),O(X)g

)
by Theorem 1.4.16 and Proposition 1.4.23, this completes the proof. �

Corollary 1.5.19. A dominant rational map f : X → Y between irreducible
quasi-affine varieties X and Y is birational if and only if the induced homomorphism
f# : k(Y )→ k(X) is an isomorphism.

Remark 1.5.20. A rational map f : X 99K Y between the irreducible quasi-
affine varieties X and Y is birational if and only if there are open subsets U ⊆ X
and V ⊆ Y such that f induces an isomorphism U ' V . The “if” assertion is clear,
so we only need to prove the converse. Suppose that f is defined by the morphism
φ : X ′ → Y and its inverse g is defined by the morphism ψ : Y ′ → X, where X ′ ⊆ X
and Y ′ ⊆ Y are open subsets. The equality f ◦ g = 1Y as rational functions implies
by Lemma 1.5.7 that the composition

ψ−1(X ′)
ψ−→ X ′

φ−→ Y

is the inclusion. In particular, we deduce that

ψ
(
ψ−1(X ′)

)
⊆ φ−1

(
ψ−1(X ′)

)
⊆ φ−1(Y ′).

Similarly, the equality of rational functions g ◦ f = 1X shows that the composition

φ−1(Y ′)
φ−→ Y ′

ψ−→ X

is the inclusion; in particular, we obtain

φ
(
φ−1(Y ′)

)
⊆ ψ−1(X ′).
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It is now clear that φ and ψ induce inverse morphisms between φ−1(Y ′) and
ψ−1(X ′).

Exercise 1.5.21. Let X ⊂ An be a hypersurface defined by an equation
f(x1, . . . , xn) = 0, where f = fd−1 +fd, with fd−1 and fd nonzero, homogeneous of
degrees d−1 and d, respectively. Show that if X is irreducible, then X is birational
to An−1.

1.6. Products of (quasi-)affine varieties

We begin by showing that for positive integers m and n, the Zariski topology
on Am ×An = Am+n is finer than the product topology.

Proposition 1.6.1. If X ⊆ Am and Y ⊆ An are closed subsets, then X × Y
is a closed subset of Am+n.

Proof. The assertion follows from the fact that if X = V (I) and Y = V (J),
for ideals I ⊆ k[x1, . . . , xm] and J ⊆ k[y1, . . . , yn], then

X × Y = V (I ·R+ J ·R),

where R = k[x1, . . . , xm, y1, . . . , yn]. �

Corollary 1.6.2. If X ⊆ Am and Y ⊆ An are open (respectively, locally
closed) subsets, then X×Y is an open (respectively, locally closed) subset of Am+n =
Am×An. In particular, the topology on Am×An is finer than the product topology.

Proof. The assertion for open subsets follows from Proposition 1.6.1 and the
fact that

Am+n rX × Y =
(
Am × (An r Y )

)
∪
(
(Am rX)×An

)
.

The assertion for locally closed subsets follows immediately from the assertions for
open and closed subsets. �

Corollary 1.6.3. Given any quasi-affine varieties X and Y , the topology on
X × Y is finer than the product topology.

Proof. If X and Y are locally closed subsets of Am and An, respectively,
then X × Y is a locally closed subset of Am+n. Since the topology on Am+n is
finer than the product topology by the previous corollary, we are done. �

Example 1.6.4. The topology on Am ×An is strictly finer than the product
topology. For example, the diagonal in A1×A1 is closed (defined by x−y ∈ k[x, y]),
but it is not closed in the product topology.

Remark 1.6.5. If X ⊆ Am and Y ⊆ An are locally closed subsets, then
X×Y ⊆ Am+n is a locally closed subset, and the two projections induce morphisms
p : X×Y → X and q : X×Y → Y . These make X×Y the product of X and Y in the
category of quasi-affine varieties over k. Indeed, given two morphisms f : Z → X
and g : Z → Y , it is clear that there is a unique morphism φ : Z → X × Y such
that p ◦ φ = f and q ◦ φ = g, namely φ = (f, g).

This implies, in particular, that if f : X → X ′ and g : Y → Y ′ are isomorphisms,
then the induced map X × Y → X ′ × Y ′ is an isomorphism.
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Proposition 1.6.6. If X ⊆ Am and Y ⊆ An are locally closed subsets, then
the two projections p : X × Y → X and q : X × Y → Y are open3.

Proof. We show that p is open, the argument for q being entirely similar.
Note first that by Remark 1.6.5, we may replace X and Y by isomorphic quasi-
affine varieties. Moreover, if we write X =

⋃
iXi and Y =

⋃
j Yj , then for any open

subset W of X × Y , we have

p(W ) = p

⋃
i,j

W ∩ (Xi × Yj)

 ,

hence if order to show that p is open, it is enough to show that each projection
Xi × Yj → Xi is open. By Remark 1.4.20, both X and Y can be covered by open
subsets that are affine varieties. We may thus assume that X ⊆ Am and Y ⊆ An

are closed subsets. Let k[x1, . . . , xm] and k[y1, . . . , yn] be the rings corresponding
to Am and An, respectively. Using again the fact that every open subset of X ×Y
is a union of principal affine open subsets, we see that it is enough to show that
p(W ) is open in Am for a nonempty subest W = DX×Y (h), where h ∈ k[x, y].

Let us write

(1.6.1) h =

r∑
i=1

fi(x)gi(y).

We may and will assume that for the given set W , h and the expression (1.6.1) are
chosen such that r is minimal. Note that in this case, the classes g1, . . . , gr in O(Y )
are linearly independent over k. Indeed, if this is not the case and

∑r
i=1 λigi =

P (y) ∈ I(Y ), such that λj 6= 0 for some j, then we may take h′ = h−λ−1
j fj(x)P (y);

we then have DX×Y (h′) = DX×Y (h) and we can write

h′ =
∑
i,i 6=j

(
fi(x)− λiλ−1

j fj(x)
)
gi(y),

contradicting the minimality of r.
Suppose now that u ∈ p(W ). This implies that u ∈ X such that there is v ∈ Y ,

with h(u, v) 6= 0. In particular, there is j such that fj(u) 6= 0. It is enough to
show that in this case DX(fj), which contains u, is contained in p(W ). Suppose,
arguing by contradiction, that there is u′ ∈ DX(fj) r p(W ). This implies that for
every v ∈ Y , we have

∑r
i=1 fi(u

′)gi(v) = 0, hence
∑r
i=1 fi(u

′)gi ∈ I(Y ). Since
fj(u

′) 6= 0, this contradicts the fact that the classes g1, . . . , gr in O(Y ) are linearly
independent over k. �

Corollary 1.6.7. If X and Y are irreducible quasi-affine varieties, then X×Y
is irreducible.

Proof. We need to show that if U and V are nonempty, open subsets of
X × Y , then U ∩ V is nonempty. Let p : X × Y → X and q : X × Y → Y be the
two projections. By the proposition, the nonempty subsets p(U) and p(V ) of X
are open. Since X is irreducible, we can find a ∈ p(U) ∩ p(V ). In this case, the
subsets {b ∈ Y | (a, b) ∈ U} and {b ∈ Y | (a, b) ∈ V } of Y are nonempty. They
are also open: this follows from the fact that the map Y → X × Y , y → (a, y) is

3Recall that a continuous map φ : Z1 → Z2 is open if for every open subset U of Z1, its image
φ(U) is open in Z2.
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a morphism, hence it is continuous. Since Y is irreducible, these two subsets must
intersect, hence there is a point (a, b) ∈ U ∩ V . �

Our next goal is to describe the ideal defining the product of two affine varieties.
Suppose that X ⊆ Am and Y ⊆ An are closed subsets. We have seen in the proof of
Proposition 1.6.1 that if I(X) ⊆ O(Am) and I(Y ) ⊆ O(An) are the ideals defining
X and Y , respectively, then X × Y is the algebraic subset of Am+n defined by

J := I(X) · O(Am+n) + I(Y ) · O(Am+n).

We claim that, in fact, J is the ideal defining X × Y , that is, J is a radical ideal.
Note that O(Am+n) is canonically isomorphic to O(Am) ⊗k O(An) and by the
right-exactness of the tensor product, we have

O(Am+n)/J ' O(X)⊗k O(Y ).

The assertion that J is a radical ideal (or equivalently, thatO(Am+n)/J is a reduced
ring is the content of the following

Proposition 1.6.8. If X and Y are affine varieties, then the ring O(X) ⊗k
O(Y ) is reduced.

Before giving the proof of the proposition, we need some algebraic preparations
concerning separable extensions.

Lemma 1.6.9. If k is any field and K/k is a finite, separable field extension,
then for every field extension k′/k, the ring K ⊗k k′ is reduced.

Proof. SinceK/k is finite and separable, it follows from the Primitive Element
theorem that there is an element u ∈ K such that K = k(u). Moreover, separability
implies that if f ∈ k[x] is the minimal polynomial of u, then all roots of f in some
algebraic closure of k are distinct. The isomorphism K ' k[x]/(f) induces an
isomorphism

K ⊗k k′ ' k′[x]/(f).

If g1, . . . , gr are the irreducible factors of f in k′[x], any two of them are relatively
prime (otherwise f would have multiple roots in some algebraic closure of k). It
then follows from the Chinese Remainder theorem that we have an isomorphism

K ⊗k k′ '
r∏
i=1

k′[x]/(gi).

Since each factor on the right-hand side is a field (the polynomial gi being irre-
ducible), the product is a reduced ring. �

Lemma 1.6.10. If k is a perfect4 field and K/k is a finitely generated field
extension, then there is a transcendence basis x1, . . . , xn of K over k such that K
is separable over k(x1, . . . , xn).

Proof. Of course, the assertion is trivial if char(k) = 0, hence we may assume
that char(k) = p > 0. Let us write K = k(x1, . . . , xm). We may assume that
x1, . . . , xn give a transcendence basis of K/k, and suppose that xn+1, . . . , xn+r are
not separable over K ′ := k(x1, . . . , xn), while xn+r+1, . . . , xm are separable over
K ′. If r = 0, then we are done. Otherwise, since xn+1 is not separable over K ′,

4Recall that a field k is perfect if char(k) = 0 or char(k) = p and k = kp. Equivalently, a
field is perfect if every finite extension K/k is separable.
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it follows that there is an irreducible polynomial f ∈ K ′[T ] such that f ∈ K ′[T p]
and such that f(xn+1) = 0. We can find a nonzero u ∈ k[x1, . . . , xn] such that
g = uf ∈ k[x1, . . . , xn, T

p].

We claim that there is i ≤ n such that ∂g
∂xi
6= 0. Indeed, otherwise we have

g ∈ k[xp1, . . . , x
p
n, T

p], and since k is perfect, we have k = kp, hence g = hp for some
h ∈ k[x1, . . . , xn, T ]; this contradicts the fact that f is irreducible.

After relabeling the variables, we may assume that i = n. The assumption on
i says that xn is (algebraic and) separable over K ′′ := k(x1, . . . , xn−1, xn+1). Note
that since xn is algebraic over K ′′ and K is algebraic over k(x1, . . . , xn−1, xn), it
follows that K is algebraic over K ′′, and since all transcendence bases of K over
k have the same number of elements, we conclude that x1, . . . , xn−1, xn+1 is a
transcendence basis of K over k. We may thus switch xn and xn+1 to lower r.
After finitely many steps, we obtain the conclusion of the lemma. �

Proposition 1.6.11. If k is a perfect field, then for every field extensions K/k
and k′/k, the ring K ⊗k k′ is reduced.

Proof. We may assume that K is finitely generated over k. Indeed, we can
write

K = lim−→
i

Ki,

where the direct limit is over all k ⊆ Ki ⊆ K, with Ki/k finitely generated. Since
we have an induced isomorphism

K ⊗k k′ ' lim−→
i

Ki ⊗k k′,

and a direct limit of reduced rings is reduced, we see that it is enough to prove the
proposition when K/k is finitely generated.

In this case we apply Lemma 1.6.10 to find a transcendence basis x1, . . . , xn of
K/k such that K is separable over K1 := k(x1, . . . , xn). We have

K ⊗k k′ = K ⊗K1 K1 ⊗k k′.
Since K1 ⊗k k′ is a ring of fractions of k′[x1, . . . , xn], we have an injective homo-
morphism

K1 ⊗k k′ ↪→ K2 := k′(x1, . . . , xn).

By tensoring with K, we get an injective homomorphism

K ⊗k k′ ↪→ K ⊗K1
K2.

Since K/K1 is a finite separable extension, we deduce from Lemma 1.6.9 that
K ⊗K1

K2 is reduced, hence K ⊗k k′ is reduced. �

We can now prove our result about the coordinate ring of the product of two
affine varieties.

Proof of Proposition 1.6.8. We will keep using the fact that the tensor
product over k is an exact functor. Note first that we may assume that X and
Y are irreducible. Indeed, let X1, . . . , Xr be the irreducible components of X and
Y1, . . . , Ys the irreducible components of Y . Since X = X1 ∪ . . . ∪ Xr, it is clear
that the canonical homomorphism

O(X)→
r∏
i=1

O(Xi)
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is injective. Similarly, we have an injective homomorphism

O(Y )→
s∏
j=1

O(Yi)

and we thus obtain an injective homomorphism

O(X)⊗k O(Y ) ↪→
∏
i,j

O(Xi)⊗k O(Yj).

The right-hand side is a reduced ring if each O(Xi)⊗k O(Yj) is reduced, in which
case O(X)⊗k O(Y ) is reduced. We thus may and will assume that both X and Y
are irreducible.

We know that in this case O(X) and O(Y ) are domains and let k(X) and k(Y )
be the respective fraction fields. Since k is algebraically closed, it is perfect, hence
k(X)⊗k k(Y ) is a reduced ring by Proposition 1.6.11. The inclusions

O(X) ↪→ k(X) and O(Y ) ↪→ k(Y )

induce an injective homomorphism

O(X)⊗k O(Y ) ↪→ k(X)⊗k k(Y ),

which implies that O(X)⊗k O(Y ) is reduced. �

We now give another application of Lemma 1.6.10. We first make a definition.

Definition 1.6.12. A hypersurface in An is a closed subset of the form

{u ∈ An | f(u) = 0} for some f ∈ k[x1, . . . , xn] r k.

Proposition 1.6.13. Every irreducible variety is birational to an (irreducible)
hypersurface in an affine space An.

Proof. Let X be an irreducible variety, with function field K = k(X). By
Lemma 1.6.10, we can find a transcendence basis x1, . . . , xn of K/k such that K
is separable over k(x1, . . . , xn). In this case, it follows from the Primitive Element
theorem that there is u ∈ K such that K = k(x1, . . . , xn, u). If f ∈ k(x1, . . . , xn)[t]
is the minimal polynomial of u, then

K ' k(x1, . . . , xn)[t]/(f).

It is easy to see that after multiplying u by a suitable nonzero element of k[x1, . . . , xn],
we may assume that f ∈ k[x1, . . . , xn, t] and f is irreducible. In this case, we see
by Theorem 1.5.18 that X is birational to the affine variety V (f) ⊆ An+1. �

We end this section with some exercises about linear algebraic groups. We
begin with a definition.

Definition 1.6.14. A linear algebraic group over k is an affine variety G over k
that is also a group, and such that the multiplication µ : G×G→ G, µ(g, h) = gh,
and the inverse map ι : G → G, ι(g) = g−1 are morphisms of algebraic varieties.
If G1 and G2 are linear algebraic groups, a morphism of algebraic groups is a
morphism of affine varieties f : G1 → G2 that is also a group homomorphism.

Linear algebraic groups over k form a category. In particular, we have a notion
of isomorphism between linear algebraic groups: this is an isomorphism of affine
algebraic varieties that is also a group isomorphism.
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Exercise 1.6.15. i) Show that (k,+) and (k∗, ·) are linear algebraic
groups.

ii) Show that the set GLn(k) of n× n invertible matrices with coefficients in
k has a structure of linear algebraic group.

iii) Show that the set SLn(k) of n×n matrices with coefficients in k and with
determinant 1 has a structure of linear algebraic group.

iv) Show that if G and H are linear algebraic groups, then the product G×H
has an induced structure of linear algebraic group. In particular, the (al-
gebraic) torus (k∗)n is a linear algebraic group with respect to component-
wise multiplication.

Definition 1.6.16. Let G be a linear algebraic group and X a quasi-affine
variety. An algebraic group action of G on X is a (say, left) action of G on X such
that the map G×X → X giving the action is a morphism of algebraic varieties.

Exercise 1.6.17. Show that GLn(k) has an algebraic action on An.

Exercise 1.6.18. Let G be a linear algebraic group acting algebraically on an
affine variety X. Show that in this case G has an induced linear action on O(X)
given by

(g · φ)(u) = φ
(
g−1(u)

)
.

While O(X) has in general infinite dimension over k, show that the action of G on
O(X) has the following finiteness property: every element f ∈ O(X) lies in some
finite-dimensional vector subspace V of O(X) that is preserved by the G-action
(Hint: consider the image of f by the corresponding k-algebra homomorphism
O(X)→ O(G)⊗k O(X)).

Exercise 1.6.19. Let G and X be as in the previous problem. Consider a
system of k-algebra generators f1, . . . , fm of O(X), and apply the previous problem
to each of these elements to show that there is a morphism of algebraic groups
G → GLN (k), and an isomorphism of X with a closed subset of AN , such that
the action of G on X is induced by the standard action of GLN (k) on AN . Use a
similar argument to show that every linear algebraic group is isomorphic to a closed
subgroup of some GLN (k).

Exercise 1.6.20. Show that the linear algebraic group GLm(k)×GLn(k) has
an algebraic action on the space Mm,n(k) (identified to Amn), induced by left and
right matrix multiplication. What are the orbits of this action ? Note that the
orbits are locally closed subsets of Mm,n(k) (as we will see later, this is a general
fact about orbits of algebraic group actions).

1.7. Affine toric varieties

In this section we discuss a class of examples of affine varieties that are associ-
ated to semigroups.

Definition 1.7.1. A semigroup is a set S endowed with an operation + (we
will use in general the additive notation) which is commutative, associative and
has a unit element 0. If S is a semigroup, a subsemigroup of S is a subset S′ ⊆ S
closed under the operation in S and such that 0S ∈ S′ (in which case, S′ becomes a
semigroup with the induced operation). A map φ : S → S′ between two semigroups
is a semigroup morphism if φ(u1 + u2) = φ(u1) + φ(u2) for all u1 and u2, and if
φ(0) = 0.
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Example 1.7.2. i) Every Abelian group is a semigroup.
ii) The field k, endowed with the multiplication, is a semigroup.
iii) The set N of non-negative integers, with the addition, is a semigroup.
iv) The set {m ∈ N | m 6= 1} is a subsemigroup of N.
v) If S1 and S2 are semigroups, then S1×S2 is a semigroup, with component-

wise addition.

Given a semigroup S, we consider the semigroup algebra k[S]. This has a basis
over k indexed by the elements of S. We denote the elements of this basis by χu,
for u ∈ S. The multiplication is defined by χu1 ·χu2 = χu1+u2 (hence 1 = χ0). This
is a k-algebra. Note that if φ : S1 → S2 is a morphism of semigroups, then we get
a morphism of k-algebras k[S1]→ k[S2] that maps χu to χφ(u).

Example 1.7.3. We have an isomorphism

k[Nr] ' k[x1, . . . , xr], χei → xi,

where ei is the tuple that has 1 on the ith component and 0 on all the others. We
similarly have an isomorphism

k[Zr] ' k[x1, x
−1
1 , . . . , xr, x

−1
r ].

Example 1.7.4. In general, if S1 and S2 are semigroups, we have a canonical
isomorphism

k[S1 × S2] ' k[S1]⊗k k[S2].

We will assume that our semigroups satisfy two extra conditions. First, we will
assume that they are finitely generated : a semigroup S satisfies this property if it
has finitely many generators u1, . . . , ur ∈ S (this means that every element in S
can be written as

∑r
i=1 aiui, for some a1, . . . , ar ∈ N). In other words, the unique

morphism of semigroups Nr → S that maps ei to ui for all i is surjective. Note
that in this case, the induced k-algebra homomorphism

k[x1, . . . , xr] ' k[Nr]→ k[S]

is onto, hence k[S] is finitely generated.
We will also assume that S is integral, that is, it is isomorphic to a subsemigroup

of a finitely generated, free Abelian group. Since we have an injective morphism
of semigroups S ↪→ Zr, we obtain an injective k-algebra homomorphism k[S] ↪→
k[x1, x

−1
1 , . . . , xr, x

−1
r ]. In particular, k[S] is a domain.

Exercise 1.7.5. Suppose that S is the image of a morphism of semigroups
φ : Nr → Zm (this is how semigroups are usually described). Show that the kernel
of the induced surjective k-algebra homomorphism

k[x1, . . . , xr] ' k[Nr]→ k[S]

is the ideal (
xa − xb | a, b ∈ Nr, φ(a) = φ(b)

)
.

We have seen that if S is an integral, finitely generated semigroup, then k[S] is
a finitely generated k-algebra, which is also a domain. Therefore it corresponds to
an irreducible affine variety over k, uniquely defined up to canonical isomorphism.
We will denote this variety5 by TV(S). Its points are in bijection with the maximal
ideals in k[S], or equivalently, with the k-algebra homomorphisms k[S]→ k. Such

5This is not standard notation in the literature.
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homomorphisms in turn are in bijection with the semigroup morphisms S → (k, ·).
Via this bijection, if we consider φ : S → (k, ·) as a point in TV(S) and χu ∈ k[S],
then

χu(φ) = φ(u) ∈ k.
Given a morphism of finitely generated, integral semigroups S → S′, the k-algebra
homomorphism k[S]→ k[S′] corresponds to a morphism TV(S′)→ TV(S).

The affine variety TV (S) carries more structure, induced by the semigroup S,
which we now describe. First, we have a morphism

TV (S)× TV (S)→ TV (S)

corresponding to the k-algebra homomorphism

k[S]→ k[S]⊗k k[S], χu → χu ⊗ χu.

At the level of points (identified, as above, to semigroup morphisms to k), this is
given by

(φ, ψ)→ φ · ψ, where (φ · ψ)(u) = φ(u) · ψ(u).

It is clear that the operation is commutative, associative, and has an identity ele-
ment, given by the morphism S → k that takes constant value 1.

Remark 1.7.6. If S → S′ is a morphism between integral, finitely generated
semigroups, it is clear that the induced morphism of affine varieties TV(S′) →
TV(S) is compatible with the operation defined above.

Example 1.7.7. If S = Nr, then the operation that we get on TV(S) = Ar is
given by

(a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn).

In particular, note that TV(S) is not a group.

Example 1.7.8. With the operation defined above, TV(Z) is a linear algebraic
group isomorphic to (k∗, ·). In general, if M is a finitely generated, free Abelian
group, then the above operation makes TV(M) a linear algebraic group. In fact,
we have M ' Zr, for some r, and therefore TV(M) is isomorphic, as an algebraic
group, to the torus (k∗)r (see Exercise 1.6.15 for the definition of the algebraic tori).
It follows from the lemma below that we can recover M from TV(M), together with
the group structure, as

M ' Homalg−gp

(
TV(M), k∗

)
.

Lemma 1.7.9. For every finitely generated, free Abelian groups M and M ′, the
canonical map

HomZ(M,M ′)→ Homalg−gp

(
TV(M ′),TV(M)

)
is a bijection.

Proof. A morphism of algebraic groups TV(M ′) → TV(M) is given by a
k-algebra homomorphism f : k[M ]→ k[M ′] such that the induced diagram

k[M ] k[M ′]

k[M ]⊗ k[M ] k[M ′]⊗ k[M ′],

f

αM αM′

f⊗f
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is commutative, where αM and αM ′ are the k-algebra homomorphisms inducing
the group structure. Given u ∈M , we see that if f(χu) =

∑
u′∈M ′ au,u′χ

u′ , then∑
u′∈M ′

au,u′χ
u′ ⊗ χu

′
=

∑
u′,v′∈M ′

au,u′au,v′χ
u′ ⊗ χv

′
.

First, this implies that if u′, v′ ∈ M ′ are distinct, then au,u′ · au,v′ = 0. Therefore
there is a unique u′ ∈ M ′ such that au,u′ 6= 0 (note that χu ∈ k[M ] is invertible,
hence f(χu) 6= 0). Moreover, for this u′ we have a2

u,u′ = au,u′ , hence au,u′ = 1.

This implies that we have a (unique) map φ : M → M ′ such that f is given by
f(χu) = χφ(u). Since f is a ring homomorphism, we see that φ is a semigroup
morphism. This shows that the map in the lemma is bijective. �

Exercise 1.7.10. Given an integral semigroup S, show that there is an injec-
tive semigroup morphism ι : S ↪→ Sgp, where Sgp is a finitely generated Abelian
group, that satisfies the following universal property: given any semigroup mor-
phism h : S → A, where A is an Abelian group, there is a unique group morphism
g : Sgp → A such that g ◦ ι = h. Hint: if S ↪→ M is an injective semigroup mor-
phism, where M is a finitely generated, free Abelian group, then show that one can
take Sgp to be the subgroup of M generated by S. Note that it follows from this
description that Sgp is finitely generated (since M is) and Sgp is generated as a
group by S.

Suppose now that S is an arbitrary integral, finitely generated semigroup. The
semigroup morphism ι : S → Sgp induces a k-algebra homomorphism k[S]→ k[Sgp]
and correspondingly a morphism of affine algebraic varieties j : TV(Sgp)→ TV(S).

Lemma 1.7.11. With the above notation, the morphism j : TV(Sgp)→ TV(S)
is an isomorphism onto a principal affine open subset of TV(S).

Proof. Suppose that u1, . . . , ur is a finite system of generators of S. In this
case Sgp is generated as a semigroup by u1, . . . , ur, and −(u1 + . . . + ur). This
shows that we can identify the homomorphism k[S]→ k[Sgp] with the localization
homomorphism of k[S] at χu1+...+us . �

Since the morphism TV(Sgp) → TV(S) is compatible with the operations on
the two varieties, we conclude that in particular, the action of the torus TV(Sgp),
considered as an open subset of TV(S), extends to an action of TV(Sgp) on TV(S).
We are thus led to the following

Definition 1.7.12. An affine toric variety is an irreducible affine variety X,
together with an open subset T that is (isomorphic to) a torus, such that the action
of the torus on itself extends to an action of T of X.

We note that in the literature, it is common to require an affine toric variety
to be normal, but we do not follow this convention. For the definition of normality
and for the description in the context of toric varieties, see Definition 1.7.26 and
Proposition 1.7.30 below.

We have seen that for every (integral, finitely generated) semigroup S, we
obtain a toric variety TV(S). The following proposition shows that, in fact, every
affine toric variety arises in this way.

Proposition 1.7.13. Let X be an irreducible affine variety, T ⊆ X an open
subset which is a torus such that the action of T on itself extends to an action on
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X. Then there is a finitely generated, integral semigroup S and an isomorphism
X ' TV(S) which induces an isomorphism of algebraic groups T ' TV(Sgp), and
which is compatible with the action.

Proof. Let M = Homalg−gp(T, k∗), so that we have a canonical isomorphism
T ' TV(M). The dominant inclusion morphism T → X induces an injective
k-algebra homomorphism f : O(X) → O(T ) = k[M ], hence we may assume that
O(X) is a subalgebra of k[M ]. The fact that the action of T on itself extends to
an action of T on X is equivalent to the fact that the k-algebra homomorphism

k[M ]→ k[M ]⊗k k[M ], χu → χu ⊗ χu

induces a homomorphismO(X)→ k[M ]⊗kO(X). In other words, if f =
∑
u∈M auχ

u

lies in O(X), then
∑
u∈M auχ

u ⊗ χu lies in k[M ] ⊗k O(X). This implies that
for every u ∈ M such that au 6= 0, we have χu ∈ O(X). It follows that if
S = {u ∈ M | χu ∈ O(X)}, then O(X) = k[S]. It is clear that S is integral
and since k[S] is a finitely generated k-algebra, it follows easily that S is a finitely
generated semigroup. In order to complete the proof of the proposition, it is enough
to show that M = Sgp.

It follows from Exercise 1.7.10 that we may take Sgp to be the subgroup of M
generated by S. By hypothesis, the composition

TV (M)
g−→ TV(Sgp)

h−→ X = TV(S)

is an isomorphism onto an open subset of X. Since we also know that h is an
isomorphism onto an open subset of X, it follows that g gives is an isomorphism
onto an open subset of TV(Sgp). In particular, this implies that g is injective. We
now show that M = Sgp.

Since M is a finitely generated, free Abelian group, we can find a basis e1, . . . , en
of M such that Sgp has a basis given by a1e1, . . . , arer, for some r ≤ n and some
positive integers a1, . . . , ar. In this case g gets identified to the morphism

(k∗)n → (k∗)r, (t1, . . . , tn)→ (ta11 , . . . , tarr ).

Since g is injective, we see that r = n. Moreover, if aj > 1 for some j, then
char(k) = p > 0 and for every i we have ai = pei for some nonnegative integer ei.
It is easy to see that in this case g is surjective (cf. Exercise 1.4.26). Since we know
that it gives an isomorphism of TV(M) with an open subset of TV(Sgp), it follows
that g is an isomorphism. However, this implies ai = 1 for all i. Therefore we have
Sgp = M . �

We now turn to the description of toric morphisms. Suppose that X and Y are
affine toric varieties, with tori TX ⊆ X and TY ⊆ Y .

Definition 1.7.14. With the above notation, a toric morphism X → Y is a
morphism of algebraic varieties f : X → Y that induces a morphism of algebraic
groups g : TX → TY .

Remark 1.7.15. Note that if f : X → Y is a toric morphism as above, then f
is a morphism of varieties with torus action, in the sense that

f(t · x) = g(t) · f(x) for every t ∈ TX , x ∈ X.

Indeed, this follows by Lemma 1.5.7 from the fact that we have this equality for
(t, x) ∈ TX × TX .
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If φ : S1 → S2 is a semigroup morphism between two integral, finitely generated
semigroups, we get an induced group morphism Sgp

1 → Sgp
2 . We then obtain an

induced morphism f : TV(S2)→ TV(S1) that restricts to a morphism of algebraic
groups TV(Sgp

2 ) → TV(Sgp
1 ); therefore f is a toric morphism. The next propo-

sition shows that all toric morphisms arise in this way, from a unique semigroup
homomorphism.

Proposition 1.7.16. If S1 and S2 are finitely generated, integral semigroups,
then the canonical map

Homsemigp(S1, S2)→ Homtoric

(
TV(S2),TV(S1)

)
is a bijection.

Proof. By definition, a toric morphism TV(S2) → TV(S1) is given by a
k-algebra homomorphism k[S1] → k[S2] such that the induced homomorphism
f : k[Sgp

1 ] → k[Sgp
2 ] gives a morphism of algebraic groups TV(Sgp

2 ) → TV(Sgp
1 ).

It follows from Lemma 1.7.9 that we have a group morphism φ : Sgp
1 → Sgp

2 such

that f(χu) = χφ(u) for every u ∈ Sgp
1 . Since f induces a homomorphism k[S1] →

k[S2], we have φ(S1) ⊆ S2, hence φ is induces a semigroup morphism S1 → S2.
This shows that the map in the proposition is surjective and the injectivity is
straightforward. �

Remark 1.7.17. We can combine the assertions in Proposition 1.7.13 and
1.7.16 as saying that the functor from the category of integral, finitely generated
semigroups to the category of affine toric varieties, that maps S to TV(S), is an
anti-equivalence of categories.

Example 1.7.18. If S = Nr, then TV(S) = Ar, with the torus (k∗)r ⊆ Ar

acting by component-wise multiplication.

Example 1.7.19. If S = {m ∈ N | m 6= 1}, then Sgp = Z. If we embed X in
A2 as the curve with equation u3 − v2 = 0, then the embedding T ' k∗ ↪→ X is
given by λ→ (λ2, λ3). The action of T on X is described by λ · (u, v) = (λ2u, λ3v).

Exercise 1.7.20. Show that if X and Y are affine toric varieties, with tori
TX ⊆ X and TY ⊆ Y , then X × Y has a natural structure of toric variety, with
torus TX × TY . Describe the semigroup corresponding to X × Y in terms of the
semigroups of X and Y .

Exercise 1.7.21. Let S be the sub-semigroup of Z3 generated by e1, e2, e3

and e1 + e2 − e3. These generators induce a surjective morphism f : k[N4] =
k[t1, . . . , t4] → k[S]. Show that the kernel of f is generated by t1t2 − t3t4. We
have Sgp = Z3, the embedding of T = (k∗)3 ↪→ X is given by (λ1, λ2, λ3) →
(λ1, λ2, λ3, λ1λ2/λ3), and the action of T on X is induced via this embedding by
component-wise multiplication.

The following lemma provides a useful tool for dealing with torus-invariant
objects. Consider X = TV(S) and let T = TV(Sgp) be the corresponding torus.
As in the case of any algebraic group action, the action of T on X induces an action
of T on O(X) (see Exercise 1.6.18). Explicitly, in our setting this is given by

φ · χu = φ(u)−1χu for all u ∈ S, φ ∈ Homgp(Sgp, k∗).
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Lemma 1.7.22. With the above notation, a subspace V ⊆ k[S] is T -invariant
(that is, t · g ∈ V for every g ∈ V ) if and only if it is S-homogenous, in the sense
that for every g =

∑
u∈S auχ

u ∈ V , we have χu ∈ V whenever au 6= 0.

Proof. We only need to prove the “only if” part, the other direction being
straightforward. By definition, V is T -invariant if and only if for every group
morphism φ : Sgp → k∗ and every g =

∑
u∈S auχ

u ∈ V , we have∑
u∈S

auφ(u)−1χu ∈ V.

Iterating, we obtain

(1.7.1)
∑
u∈S

auφ(u)−mχu ∈ V for all m ≥ 1.

Claim. Given pairwise distinct u1, . . . , ud ∈ S, we can find φ ∈ T such that
φ(ui) 6= φ(ui′) for i 6= i′. Indeed, let us choose an isomorphism Sgp ' Zn, so
that each ui corresponds to (ai,1, . . . , ai,n). After adding to each (ai,1, . . . , ai,n) the
element (m, . . . ,m) for m� 0, we may assume that ai,j ≥ 0 for all i and j. Since
each polynomial

Qi,i′ =

n∏
j=1

x
ai,j
j −

n∏
j=1

x
ai′,j
j , for i 6= i′

is nonzero, it follows that the open subset Ui,i′ defined by Qi,i′ 6= 0 is a nonempty
subset of An. Since An is irreducible, it follows that the intersection

(k∗)n ∩
⋂
i 6=i′

Ui,i′

is nonempty, giving the claim.
By applying the claim to those u ∈ S such that au 6= 0, we deduce from (1.7.1)

and from the formula for the Vandermonde determinant that χu ∈ V for all u such
that au 6= 0. �

In the next two exercises we describe the torus-invariant subvarieties of TV(S)
and the orbits of the torus action. We begin by defining the corresponding concept
at the level of the semigroup.

Definition 1.7.23. A face F of a semigroup S is a subsemigroup such that
whenever u1, u2 ∈ S have u1 + u2 ∈ F , we have u1 ∈ F and u2 ∈ F .

Note that if F is a face of S, then S r F is a subsemigroup of S. Moreover, if
S is generated by u1, . . . , un. then a face F of S is generated by those ui that lie in
F . In particular, if S is an integral, finitely generated semigroup, then S has only
finitely many faces, and each of these is an integral, finitely generated semigroup.

Exercise 1.7.24. Let X = TV(S) be an affine toric variety, with torus T ⊂ X.
A subset Y of X is torus-invariant if t · Y ⊆ Y for every t ∈ T .

i) Show that a closed subset Y of X is torus-invariant if and only if each
irreducible component of Y is torus-invariant.

ii) Show that the torus-invariant irreducible closed subsets of X are precisely
the closed subsets defined by ideals of the form⊕

u∈SrF
kχu,
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where F is a face of S.
iii) Show that if Y is the closed subset defined by the ideal in ii), then we

have O(Y ) ' k[F ], hence Y has a natural structure of affine toric variety.

Exercise 1.7.25. Let X = TV(S) be an affine toric variety, with torus TX ⊆
X.

i) Show that if M ↪→M ′ is an injective morphism of finitely generated, free
Abelian groups, then the induced morphism of tori TV(M ′)→ TV(M) is
surjective.

ii) Show that if F is a face of S with corresponding closed invariant subset
Y , then the inclusion of semigroups F ⊆ S induces a morphism of toric
varieties fY : X → Y , which is a retract of the inclusion Y ↪→ X. Show
that the torus OF in Y is an orbit for the action of TX on X.

iii) Show that the map F → OF gives a bijection between the faces of S and
the orbits for the TX -action on X.

We now discuss normality for the varieties we defined. Recall that if R→ S is
a ring homomorphism, then the set of elements of S that are integral over R form
a subring of S, the integral closure of R in S (see Proposition A.2.2).

Definition 1.7.26. An integral domain A is integrally closed if it is equal to its
integral closure in its field of fractions. It is normal if, in addition, it is Noetherian.
An irreducible, affine variety X is normal if O(X) is a normal ring.

Remark 1.7.27. If A is an integral domain and B is the integral closure of A
in its fraction field, then B is integrally closed. Indeed, the integral closure of B in
K is integral over A (see Proposition A.2.3), hence it is contained in B.

Example 1.7.28. Every UFD is integrally closed. Indeed, suppose that A
is a UFD and u = a

b lies in the fraction field of A and it is integral over A.
We may assume that a and b are relatively prime. Consider a monic polynomial
f = xm + c1x

m−1 + . . . cm ∈ A[x] such that f(u) = 0. Since

am = −b · (c1am−1 + . . . cmb
m−1),

it follows that b divides am. Since b and a are relatively prime, it follows that b is
invertible, hence u ∈ A.

In particular, we see that every polynomial ring k[x1, . . . , xn] is integrally
closed.

Definition 1.7.29. An integral, finitely generated semigroup S is saturated if
whenever mu ∈ S for some u ∈ Sgp and some positive integer m, we have u ∈ S.

Proposition 1.7.30. If S is an integral, finitely generated semigroup, the va-
riety TV(S) is normal if and only if S is saturated.

Proof. The rings k[S] ⊆ k[Sgp] have the same fraction field, and k[Sgp] '
k[t±1

1 , . . . , t±1
n ] for some n, so k[Sgp] is normal, being a UFD. Therefore k[S] is

normal if and only if it is integrally closed in k[Sgp].
Suppose first that k[S] is normal. If u ∈ Sgp and if mu ∈ S, then (χu)m ∈ k[S]

and χu ∈ k[Sgp]. As k[S] is integrally closed in k[Sgp], it follows that χu ∈ k[S], so
u ∈ S.

Conversely, let us assume that S is saturated, and let R be the integral closure
of k[S] in k[Sgp]. It is clear that R is a torus-invariant linear subspace of k[Sgp],
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hence it follows from Lemma 1.7.22 that it is Sgp-homogeneous. In order to show
that R = k[S] it is thus enough to check that for every χu ∈ R, we have u ∈ S. By
assumption, χu satisfies an equation of the form

(χu)m + a1(χu)m−1 + . . .+ amχ
vm = 0,

for a positive integer m and a1, . . . , am ∈ k[S]. By only considering the scalar
multiples of χmu, we may assume that in fact ai = ciχ

vi for some ci ∈ k and
vi ∈ S. It follows that vi + (m − i)u = mu if ai 6= 0, hence iu = vi. Since some
ai must be nonzero, we have iu ∈ S for some i ≥ 1, and because S is saturated we
deduce u ∈ S. �

Exercise 1.7.31. We have seen in Exercise 1.7.24 that if X is an affine toric
variety and Y is a torus-invariant irreducible subset, then Y has a natural structure
of toric variety. Show that if X is normal, then every such Y is normal.



CHAPTER 2

General algebraic varieties

In this chapter we introduce general algebraic varieties. Roughly speaking,
these are objects obtained by gluing finitely many affine algebraic varieties and by
imposing an analogue of the Hausdorff condition. The gluing could be expressed in
terms of atlases (as in differential geometry), but the usual language for handling
this is that of ringed spaces and we take this approach, following [Mum88]. We thus
begin with a brief discussion of sheaves that is needed for the definition of algebraic
varieties. A more detailed treatment of sheaves will be given in Chapter 8.

2.1. Presheaves and sheaves

Let X be a topological space. Recall that associated to X we have a category
Cat(X), whose objects consist of the open subsets of X and such that for every open
subsets U and V of X, the set of arrows U → V contains precisely one element if
U ⊆ V and it is empty, otherwise.

Definition 2.1.1. Given a topological space X and a category C, a presheaf
on X of objects in C is a contravariant functor F : Cat(X) → C. Explicitly, this
means that for every open subset U of X, we have an object F(U) in C, and for
every inclusion of open sets U ⊆ V , we have a restriction map

ρV,U : F(V )→ F(U)

that satisfies:

i) ρU,U = IdF(U) for every open subset U ⊆ X, and
ii) ρV,U ◦ ρW,V = ρW,U for every open subsets U ⊆ V ⊆W of X.

It is common to denote ρV,U (s) by s|U . The elements of F(U) are the
sections of F over U . A common notation for F(U) is Γ(U,F).

The important examples for us are when C is the category of R-modules or
the category of commutative R-algebras (where R is a fixed commutative ring). In
particular, when R = Z, we have the category of Abelian groups and the category
of rings.

We now introduce sheaves: these are presheaves in which the sections can be
described locally. For the sake of concreteness, whenever dealing with sheaves, we
assume that C is a subcategory of the category of sets and that a morphism in C
is an isomorphism if and only if it is bijective (note that this is the case for the
categories mentioned above).

Definition 2.1.2. Let X be a topological space. A presheaf F on X of objects
in C is a sheaf if for every family of open subsets (Ui)i∈I of X, with U =

⋃
i∈I Ui,

given si ∈ F(Ui) for every i such that

si|Ui∩Uj
= sj |Ui∩Uj

for every i, j ∈ I,

39
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there is a unique s ∈ F(U) such that s|Ui
= si for all i ∈ I.

Remark 2.1.3. A special case of the condition in the definition of a sheaf is
that when I = ∅: in this case it says that F(∅) has exactly one element.

Example 2.1.4. If X is a topological space, then we have a presheaf CX,R of
R-algebras on X, where CX,R(U) is the R-algebra of continuous functions U → R,
with the restriction maps given by restriction of functions. It is clear that this is a
sheaf, the sheaf of continuous functions on X.

Example 2.1.5. If X is a C∞-manifold, then we have a sheaf of R-algebras
C∞X,R on X, where C∞X,R(U) is the R-algebra of C∞ functions U → R, with the
restriction maps being given by restriction of functions.

Example 2.1.6. IfX is a quasi-affine variety over an algebraically closed field k,
then we have a sheaf OX of k-algebras, such that OX(U) is the k-algebra of regular
functions U → k, with the restriction maps given by restriction of functions. This
is the sheaf of regular functions on X.

Example 2.1.7. Given a continuous map f : X → Y of topological spaces, we
have a sheaf of sets F on Y such that F(U) is the set of sections of f over U ,
that is, of continuous maps s : U → X such that f

(
s(y)

)
= y for all y ∈ U ; the

restriction maps given by restriction of functions.

Remark 2.1.8. If C is the category of R-modules, for a ring R, it is sometimes
convenient to rewrite the sheaf condition for F as follows: given an open cover
U =

⋃
i Ui, we have an exact sequence

0 −→ F(U)
α−→
∏
i

F(Ui)
β−→ F(Ui ∩ Uj),

where
α(s) = (s|Ui

)i and β((si)i∈I) = (si|Ui∩Uj
− sj |Ui∩Uj

)i,j∈I .

Definition 2.1.9. If F and G are presheaves on X of objects in C, a mor-
phism of presheaves φ : F → G is given by a functorial transformation between the
two contravariant functors. Explicitly, for every open subset U ⊆ X, we have a
morphism φU : F(U)→ G(U) in C such that if U ⊆ V are open subsets of X, then

φU (s|U ) = φV (s)|U for every s ∈ F(V ).

The same definition applies for sheaves to give the notion of morphism of sheaves.

It is clear that morphisms of presheaves can be composed and in this way
the presheaves on X of objects in C form a category. We also have the category
of sheaves on X of objects in C, that forms a full subcategory of the category
of presheaves. In particular, we may consider isomorphisms of presheaves or of
sheaves.

Definition 2.1.10. Given a presheaf F on X (of objects in some category C)
and an open subset W of X, we obtain a presheaf F|W on W such that for every
open subset U of W , we take F|W (U) = F(U), with the restriction maps given by
those for F . This presheaf is the restriction of F to W . It is clear that if F is a
sheaf, then F|W is a sheaf. If φ : F → G is a morphism of presheaves on X, then
we obtain in the obvious way an induced morphism φ|W : F|W → G|W . We thus
get a functor from the category of presheaves on X of objects in C to the category
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of presheaves on U of objects in C and a similar functor between the corresponding
categories of sheaves.

From now on we assume, for simplicity, that the category C is either the category
of R-modules or the category of R-algebras, where R is a commutative ring.

Definition 2.1.11. If F is a presheaf on X (of R-modules or of R-algebras),
then the stalk of F at a point x ∈ X is

Fx := lim−→
U3x
F(U),

where the direct limit is over all open neighborhoods of x, ordered by reverse
inclusion. Note that both categories we consider have direct limits. More generally,
if W is an irreducible, closed subset of X, then the stalk of F at W is

FW := lim−→
U∩W 6=∅

F(U),

where the direct limit is over all open subsets U of X, with U ∩W 6= ∅.
Example 2.1.12. IfOX is the sheaf of regular functions on a quasi-affine variety

X and W is an irreducible closed subset of X, then the stalk of OX at W is the local
ring OX,W of X at W . On general topological spaces, we typically only consider
the stalks at the points of X, but in the case of algebraic varieties, it is sometimes
natural to also consider the more general stalks.

Remark 2.1.13. As in the case of a quasi-affine variety, we see that in general,
the poset in the definition of FW is filtering: given two open subsets U and V with
U ∩W 6= ∅ and V ∩W 6= ∅, we have (U ∩ V ) ∩W 6= ∅, by the irreducibility of W .
As a result, we may describe FW as the set of all pairs (U, s), for some open subset
U with U ∩W 6= ∅ and some s ∈ F(U), modulo the equivalence relation given by
(U, s) ∼ (U ′, s′) if there is an open subset V ⊆ U ∩ U ′, with V ∩W 6= ∅ and such
that s|V = s′|V . If s ∈ F(U), for some open subset U with U ∩W 6= ∅, we write
sW for the image of s in FW .

Remark 2.1.14. Note that if φ : F → G is a morphism of presheaves on X,
then for every irreducible closed subset W ⊆ X, we have an induced morphism
φW : FW → GW , that maps (U, s) to

(
U, φ(s)

)
. We thus obtain a functor from the

category of sheaves on X with values in C to C.
Remark 2.1.15. If F is a sheaf on X and s, t ∈ F(U) are such that sx = tx

for every x ∈ U , then s = t.

Definition 2.1.16. Let F be a presheaf of R-modules or R-algebras on a
topological space X. A subpresheaf of F is a presheaf G such that for every open
subset U of X, G(U) is a submodule (respectively, an R-subalgebra) of F(U) and
such that the restriction maps for G are induced by those for F . In this case we
write F ⊆ G. It is clear that in this case the inclusion maps define a morphism of
presheaves G → F . If both F and G are sheaves, we say that G is a subsheaf of F .

Example 2.1.17. If X is a C∞-manifold, then C∞X,R is a subsheaf of CX,R.

Definition 2.1.18. Let C be a category. If f : X → Y is a continuous map
between two topological spaces and F is a presheaf on X of objects in C, then we
define the presheaf f∗F on Y by

f∗F(U) = F
(
f−1(U)

)
,
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with the restriction maps being induced by those of F . Moreover, if φ : F → G is a
morphism of presheaves on X, we clearly get a morphism f∗F → f∗G of presheaves
on Y , so that we have the push-forward functor from the category of presheaves on
X to the category of presheaves on Y . It is easy to see that if F is a sheaf on X,
then f∗F is a sheaf on Y .

Example 2.1.19. If f : X → Y is a continuous map between topological spaces,
then we have a morphism of sheaves

CY,R → f∗CX,R, CY,R(U) 3 φ→ φ ◦ f ∈ CX,R
(
f−1(U)

)
.

The following exercises illustrate the advantages of working with sheaves, as
opposed to presheaves.

Exercise 2.1.20. Show that if φ : F → G is a morphism of sheaves, then the
following are equivalent:

i) The morphism φ is an isomorphism.
ii) There is an open cover X =

⋃
i Ui such that φ|Ui

is an isomorphism for
all i.

iii) For every x ∈ X, the induced morphism φx is an isomorphism.

Exercise 2.1.21. Let F be a sheaf and F1 and F2 be subsheaves of F .

i) Show that if there is an open cover X =
⋃
i∈I Ui such that F1|Ui

⊆ F2|Ui

for every i, then F1 ⊆ F2.
ii) Show that if F1,x ⊆ F2,x for every x ∈ X, then F1 ⊆ F2.

Exercise 2.1.22. (Gluing morphisms of sheaves) Let X be a topological space
and F and G be sheaves on X (of objects in some subcategory C that satisfies our
usual requirements). If we have an open cover X =

⋃
i∈I Ui and for every i ∈ I we

have a morphism of sheaves φi : F|Ui
→ G|Ui

such that for every i, j ∈ I we have
φi|Ui∩Uj

= φj |Ui∩Uj
, then there is a unique morphism of sheaves φ : F → G such

that φ|Ui
= φi for all i ∈ I.

Exercise 2.1.23. (Gluing sheaves). Let X be a topological space and suppose
that X =

⋃
i∈I Ui is an open cover. Suppose that for every i ∈ I we have a sheaf

Fi on Ui (of objects in some subcategory C of the category of sets) and for every
i, j ∈ I we have isomorphisms

φj,i : Fi|Uij
→ Fj |Uij

, where Uij = Ui ∩ Uj
that satisfy the following compatibility conditions:

i) We have φi,i = IdF|Ui
for every i ∈ I, and

ii) We have

φk,j |Uijk
◦ φj,i|Uijk

= φk,i|Uijk
for all i, j, k ∈ I,

where Uijk = Ui ∩ Uj ∩ Uk. In this case there is a sheaf F on X with
isomorphisms φi : F|Ui

→ Fi for all i ∈ I, such that

(2.1.1) φj,i ◦ φi|Uij
= φj |Uij

for all i, j ∈ I.

Moreover, if G is another such sheaf, with isomorphisms ψi : G → F|Ui
for

every i ∈ I that satisfy the compatibility conditions (2.1.1), then there is
a unique morphism α : F → G such that ψi ◦ α|Ui

= φi for all i ∈ I.
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2.2. Prevarieties

Let k be a fixed algebraically closed field. Given a topological space X and an
open subset U of X, we consider the k-algebra FunX(U) of functions U → k, with
point-wise operations. It is clear that this gives a sheaf FunX of k-algebras on
X, with the restriction maps being induced by restriction of functions. Note that
if f : X → Y is a continuous map of topological spaces, then we have a canonical
morphism of sheaves

FunY → f∗FunX , mapping FunY (U) 3 φ→ φ ◦ f ∈ FunX
(
f−1(U)

)
.

We begin by defining a category T opk of topological spaces endowed with a
sheaf of k-algebras, whose sections are functions on the given topological space.
More precisely, the objects of this category are pairs (X,OX), with X a topological
space and OX a sheaf of k-algebras on X which is a subsheaf of FunX . The sheaf
OX is the structure sheaf. A morphism in this category f : (X,OX) → (Y,OY ) is
given by a continuous map f : X → Y such that the morphism of sheaves FunY →
f∗FunX induces a morphism OY → f∗OX ; in other words, for every open subset
U of Y and every φ ∈ OY (U), we have φ ◦ f ∈ OX

(
φ−1(U)

)
. It is clear that

composition of continuous maps induces a composition of morphisms that makes
T opk a category.

Example 2.2.1. Let (X,OX) be an object in T opk. If U is an open subset of
X, then we obtain another object (U,OU ) in T opk, where OU = OX |U . Note that
the inclusion map induces a morphism (U,OU )→ (X,OX) in T opk.

Remark 2.2.2. Let (X,OX) and (Y,OY ) be two objects in T opk. If X =⋃
i∈I Ui is an open cover and αi : Ui → X is the inclusion map, then a map f : X →

Y is a morphism if and only if each f ◦αi is a morphism. Indeed, this follows from
the fact that continuity is a local property and the fact that OX is a sheaf.

Example 2.2.3. An isomorphism (X,OX)→ (Y,OY ) in T opk is a homeomor-
phism f : X → Y such that for every open subset U of Y and every φ : U → k, we
have φ ∈ OY (U) if and only if φ ◦ f ∈ OX

(
f−1(U)

)
.

Example 2.2.4. If X is a locally closed subset of some An, then (X,OX) is
an object in T opk. Note that if U is an open subset of X, then OU = OX |U .

Example 2.2.5. If X and Y are locally closed subsets of Am and An, re-
spectively, then a morphism f : X → Y as defined in Chapter 1 is the same as a
morphism (X,OX) → (Y,OY ) in T opk. Indeed, we know that if f : X → Y is a
morphism, then f is continuous and for every open subset U in Y and every regular
function φ : U → k, the composition φ ◦ f is regular (see Propositions 1.4.13 and
1.4.14). Conversely, if f : X → Y gives a morphism in T opk and if pi : Y → k is
induced by the ith projection An → k, then it follows from definition that pi ◦ f
is a regular function on X for every i; therefore f is a morphism as defined in
Chapter 1.

We enlarge one more time our notion of affine variety, as follows.

Definition 2.2.6. We say that an object (X,OX) in T opk is an affine variety
if it is isomorphic to (V,OV ) for some closed subset of an affine space An. We say
that (X,OX) is a quasi-affine variety if it is isomorphic to (V,OV ) for some locally
closed subspace of an affine space An.
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Definition 2.2.7. An algebraic prevariety over k (or simply prevariety) is a
pair (X,OX), with X a topological space and OX of subsheaf of k-algebras of
FunX , such that there is a finite open covering X =

⋃r
i=1 Ui, with each (Ui,OUi)

being an affine variety.

Example 2.2.8. A quasi-affine variety (V,OV ) is a prevariety. Indeed, we may
assume that V is a locally closed subset of some An and we know that there is a
finite cover by open subsets V = V1, . . . , Vr such that each (Vi,OVi

) is isomorphic
to an affine variety (see Remark 1.4.20).

Notation 2.2.9. By an abuse of notation, we often denote a prevariety (X,OX)
simply by X.

Definition 2.2.10. The category of algebraic prevarieties over k is a full sub-
category of T opk. In other words, if (X,OX) and (Y,OY ) are prevarieties, then
a morphism of prevarieties (X,OX) → (Y,OY ) is a continuous map f : X → Y
such that for every open subset U of Y and every φ ∈ OY (U), we have φ ◦ f ∈
OX
(
f−1(U)

)
.

Remark 2.2.11. While strictly speaking we have enlarged our notion of quasi-
affine varieties, in fact our old category of quasi-affine varieties and the new one
are equivalent.

Proposition 2.2.12. Every prevariety X is a Noetherian topological space. In
particular, it is quasi-compact.

Proof. By assumption, we have a finite open cover X = U1 ∪ . . . ∪ Ur, such
that each Ui is Noetherian. Given a sequence

F1 ⊇ F2 ⊇ . . .
of closed subsets of X, for every i, we can find ni such that Fn ∩ Ui = Fn+1 ∩ Ui
for all n ≥ ni. Therefore we have Fn = Fn+1 for every n ≥ maxi ni, and we thus
see that X is Noetherian. �

Remark 2.2.13. For every prevariety (X,OX), the sheaf OX is a subsheaf of
CX , where CX(U) is the k-algebra of continuous functions U → k. Indeed, this
assertion can be checked locally, and thus follows from the fact that it holds on
affine varieties.

Remark 2.2.14. For every prevariety X, the affine open subsets of X give a
basis for the topology of X. Indeed, this follows from the definition of a prevariety
and the fact that the assertions holds if X is affine.

Remark 2.2.15. If (X,OX) is a prevariety and φ ∈ OX(U), for some open
subset U of X, then the set

V := {x ∈ U | φ(x) 6= 0}
is an open subset of X and the function 1

φ lies in OX(V ). Indeed, this follows from

the fact that the assertion holds on affine varieties.

Remark 2.2.16. If X is a prevariety and W is an irreducible closed subset of
X, then we can define OX,W as in Chapter 1. This is, in fact, equal to the stalk
of OX at W . If U is an affine open subset with U ∩W 6= ∅ and p ⊆ OX(U) is the
corresponding ideal, then we have canonical isomorphisms

OX,W ' OU,U∩W ' OX(U)p.
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We know that the functor mapping X to O(X) gives an equivalence of cate-
gories between the category of affine varieties over k and the category of reduced,
finite type k-algebras. The following exercise gives an explicit construction of the
inverse functor. This point of view is useful in several instances, for example when
discussing the Proj construction.

Exercise 2.2.17. Recall that if R is any commutative ring, then we have
the maximal spectrum MaxSpec(R), a topological space with the underlying space
consisting of all maximal ideals in R (see Exercise 1.1.16). Suppose now that R
is an algebra of finite type over an algebraically closed field k. Recall that in this
case, for every m ∈ MaxSpec(R), the canonical homomorphism k → R/m is an
isomorphism. For every open subset U of MaxSpec(R), let O(U) be the set of
functions s : U → k such that for every x ∈ U , there is an open neighborhood
Ux ⊆ U of x and a, b ∈ R such that for every m ∈ Ux, we have

b 6∈ m and s(m) = a · b−1
,

where we denote by u ∈ k ' R/m the class of u ∈ R.

1) Show that O is a sheaf such that the pair
(
MaxSpec(R),O

)
defines an

element in T opk that, by an abuse of notation, we denote by MaxSpec(R),
too.

2) Show that given a homomorphism of reduced, finite type k-algebras R→
S, we have an induced morphism MaxSpec(S)→ MaxSpec(R) in T opk, so
that we get a functor from the category of reduced, finite type k-algebras
to T opk.

3) Show that for every R as above, MaxSpec(R) is an affine variety. More-
over, the functor MaxSpec is an inverse of the functor from the category
of affine varieties to the category of reduced, finite type k-algebras, that
maps X to O(X).

2.3. Open and closed immersions

Definition 2.3.1. Let (X,OX) be an object in T opk. If Z is a locally closed
subset of X, then we define a subsheaf OZ of CZ , as follows. Given an open
subset U of Z, a function φ : U → k lies in OZ(U) if for every x ∈ U , there is
an open neighborhood V of x in X and ψ ∈ OX(V ) such that φ(u) = ψ(u) for
u ∈ V ∩ X ⊆ U . It is clear that restriction of functions makes OZ a presheaf of
k-algebras. Moreover, since the condition in the definition is local, OZ is a sheaf,
hence (Z,OZ) is an object in T opk.

Remark 2.3.2. If X and Z are as in the above definition and Y is a locally
closed subset of Z, then it follows from the definition that the sheaves on Y defined
from (X,OX) and from (Z,OZ) are equal.

Example 2.3.3. If Z is open in X, then the sheaf OZ defined above is just
OX |Z .

Example 2.3.4. If X is a locally closed subset in An, then the sheaf OX on X
defined from (An,OAn) is the sheaf of regular functions on X. This is an immediate
consequence of the definition of regular functions on locally closed subsets of An.

Proposition 2.3.5. For every prevariety (X,OX) and every locally closed sub-
set Z of X, the pair (Z,OZ) is a prevariety.
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Proof. Note that by assumption, we have an open cover X = V1 ∪ . . . ∪ Vr
such that each (Vi,OVi) is an affine variety. Since it is enough to show that each
(Vi ∩ Z,OZ |Vi∩Z) is a prevariety and OZ |Vi∩Z is the sheaf defined on Z ∩ Vi as
a locally closed subset of Vi (see Remark 2.3.2), it follows that we may and will
assume that X is a closed subset of An and OX is the sheaf of regular functions
on X. In this case, it follows from Example 2.3.4 that Z is a quasi-affine variety,
hence a prevariety by Example 2.2.8. �

Definition 2.3.6. A locally closed subvariety of a prevariety (X,OX) is a
prevariety (Z,OZ), where Z is a locally closed subset of X and OZ is the sheaf
defined in Definition 2.3.1. By the above proposition, this is indeed a prevariety. If
Z is in fact open or closed inX, we say that we have an open subvariety, respectively,
closed subvariety of X.

Definition 2.3.7. Note that if Z is a locally closed subvariety of X, then the
inclusion map i : Z → X is a morphism of prevarieties. A morphism of prevarieties
f : X → Y is a locally closed (open, closed) immersion (or embedding) if it factors
as

X
g−→ Z

i−→ Y,

where g is an isomorphism and i is the inclusion of a locally closed (respectively,
open, closed) subvariety.

Proposition 2.3.8. If f : X → Y is a locally closed immersion, then for every
map g : W → Y , there is a morphism h : W → X such that g = f ◦ h if and only if
g(W ) ⊆ f(X). Moreover, in this case h is unique.

Proof. It is clear that if we have such h, then g(W ) = f
(
h(W )

)
⊆ f(X),

hence it is enough to prove the converse. Moreover, since we may replace X by
an isomorphic variety, we may assume that f is the inclusion of a locally closed
subvariety. Since f is injective, it is clear that if g(W ) ⊆ f(X), then there is
a unique map h : W → X such that f ◦ h = g. We need to prove that h is a
morphism. Note first that since X is a subspace of Y , the map h is continuous.
Furthermore, if Y = V1 ∪ . . . ∪ Vr is an open cover such that each Vi is affine, in
order to show that h is a morphism it is enough to show that each induced map
h−1

(
f−1(Vi)

)
→ f−1(V ) is a morphism (see Remark 2.2.2). Therefore we may

assume that Y is an affine variety, in which case the assertion is clear. �

Exercise 2.3.9. Let f : X → Y and g : Y → Z be morphisms of algebraic
prevarieties.

i) Show that if both f and g are locally closed (respectively open, closed)
immersions, then g ◦ f is a locally closed (respectively open, closed) im-
mersion.

ii) Show that if g is a locally closed immersion and g◦f is a locally closed (re-
spectively open, closed) immersion, then f is a locally closed (respectively
open, closed) immersion.

Proposition 2.3.10. If f : X → Y is a morphism of prevarieties, then the
following are equivalent:

i) The morphism f is a closed immersion.
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ii) For every affine open subset U of Y , its inverse image f−1(U) is affine,
and the induced k-algebra homomorphism OY (U)→ OX

(
f−1(U)

)
is sur-

jective.
iii) There is a finite cover Y = U1 ∪ . . . ∪ Ur by affine open subsets such that

for every i, the inverse image f−1(Ui) is affine, and the induced k-algebra
homomorphism OY (Ui)→ OX

(
f−1(Ui)

)
is surjective.

Proof. We first prove the implication i)⇒ii). Suppose that f factors as

X
g−→ Z

i−→ Y,

with g an isomorphism and i the inclusion map of a closed subvariety. If U ⊆ Y is
an affine open subset, then U ∩ Z is a closed subvariety of an affine variety, hence
it is affine, and the restriction map induces a surjection O(U)→ O(U ∩ Z). Since
the induced morphism f−1(U)→ U ∩Z is an isomorphism, we obtain the assertion
in i).

Since the implication ii)⇒iii) is trivial, in order to complete the proof it is
enough to show iii)⇒i). With the notation in iii), we see that each induced mor-
phism f−1(Ui) → Ui is a closed immersion. In particular, it is a homeomorphism
onto its image, which is a closed subset of Y . This easily implies that f is a home-
omorphism onto its image, which is a closed subset of Y . Let Z be the closed
subvariety of Y with underlying set f(X). We need to show that the inverse map
φ : Z → X is a morphism. Since X =

⋃
i f
−1(Ui), it follows from Remark 2.2.2

that it is enough to check that each φ−1
(
f−1(Ui)

)
→ f−1(Ui) is a morphism. This

is clear, since f−1(Ui)→ Ui is a closed immersion. �

Remark 2.3.11. A morphism f : X → Y is a locally closed immersion if and

only if there is an open subset U of Y such that f factors as X
g−→ U

j−→ Y , with
g a closed immersion and j the inclusion morphism.

One way to construct algebraic prevarieties is by glueing. This is the content
of the next exercise.

Exercise 2.3.12. Let X1, . . . , Xr be prevarieties and for every i and j, suppose
that we have open subvarieties Ui,j ⊆ Xi and isomorphisms φi,j : Ui,j → Uj,i such
that

i) We have Ui,i = Xi and φi,i = IdXi for every i, and

ii) φj,k ◦ φi,j = φi,k on Ui,j ∩ φ−1
i,j (Uj,k) ⊆ Ui,k.

In this case, there is a prevariety X and an open cover X = U1 ∪ . . . ∪ Ur and
isomorphisms fi : Ui → Xi such that for every i and j, we have

Ui ∩ Uj = f−1
i (Ui,j) and φi,j ◦ fi = fj on Ui ∩ Uj .

Moreover, if Y is another such prevariety with an open cover Y = V1 ∪ . . . ∪ Vr
and isomorphisms gi : Vi → Xi that satisfy the same compatibility condition, then
there is a unique isomorphism h : X → Y such that h(Ui) = Vi and gi ◦ h = fi for
1 ≤ i ≤ r.

Example 2.3.13. Let X and Y be two copies of A1 and let U ⊆ X and V ⊆ Y
be the complement of the origin. We can apply the previous exercise to construct
a prevariety W1 by glueing X and Y along the isomorphism U → V given by the
identity. This prevariety is the affine line with the origin doubled. On the other



48 2. GENERAL ALGEBRAIC VARIETIES

hand, we can glue X and Y along the isomorphism U → V corresponding to the
k-algebra isomorphism

k[x, x−1]→ k[x, x−1], x→ x−1.

As we will see in Chapter 4, the resulting prevariety is the projective line P1.

We end this section by extending to arbitrary prevarieties some properties that
we proved for affine varieties. We then apply these properties to prove a sufficient
criterion for a variety to be affine.

Proposition 2.3.14. For every prevarieties X and Y , with X affine, the map

Hom(Y,X)→ Homk−alg

(
OX(X),OY (Y )

)
that maps f to the homomorphism taking φ to φ ◦ f is a bijection.

Proof. Recall that we know this result if Y is affine, too (see Theorem 1.4.16).
We denote the map in the proposition by αY . We first show that αY is injective
for all Y . Suppose that f, g : Y → X are morphisms such that αY (f) = αY (g).
Consider an affine open cover Y =

⋃r
i=1 Ui. For every i, the composition

OX(X)
αY (f)−→ OY (Y )

βi−→ OY (Ui),

where βi is given by restriction of functions, is equal to αUi(f |Ui). A similar asser-
tion holds for g. Our assumption of f and g thus gives

αUi(f |Ui) = αUi(g|Ui)

for all i, and since the Ui are affine, we conclude that f |Ui = g|Ui . This implies
that f = g, completing the proof of injectivity.

We now prove the surjectivity of αY for every Y . Let φ : OX(X)→ OY (Y ) be
a k-algebra homomorphism. We consider again the affine open cover Y =

⋃r
i=1 Ui

and consider φi = βi ◦ φ. Since each Ui is affine, there are morphisms fi : Ui → X
such that αUi

(fi) = φi for all i.
Claim. For every i and j, we have fi|Ui,j = fj |Ui,j , where Ui,j = Ui ∩ Uj . Indeed,
αUi,j (fi|Ui,j ) is equal to the composition

OX(X)
φ−→ OY (Y ) −→ OY (Ui,j),

where the second map is given by restriction of functions, and the same holds for
αUi,j

(fj |Ui,j
). Since we already know that αUi,j

is injective, we obtain the assertion
in the claim.

We deduce from the claim that we have a morphism f : Y → X such that
f |Ui = fi for all i. This implies that αY (f) = φ: indeed, since the morphism

OY (Y )→
r∏
i=1

OY (Ui)

is injective, it is enough to note that

βi ◦ φ = φi = αY (fi) = βi ◦ αY (f)

for all i. This completes the proof of the proposition. �
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Proposition 2.3.15. Let X be a prevariety and f ∈ Γ(X,OX). If

DX(f) = {x ∈ X | f(x) 6= 0},

then the restriction map

Γ(X,OX)→ Γ
(
DX(f),OX

)
induces a k-algebra isomorphism

Γ(X,OX)f ' Γ(DX(f),OX).

Proof. Since f(x) 6= 0 for every x ∈ DX(f), it follows that f |DX(f) is invert-
ible (see Remark 2.2.15). By the universal property of localization, we see that the
restriction map induces a k-algebra homomorphism

τX,f : Γ(X,OX)f −→ Γ
(
DX(f),OX

)
.

We will show that this is an isomorphism. Recall that we know this when X is
affine (see Proposition 1.4.7).

Consider an affine open cover X = U1 ∪ . . .∪Ur. Since OX is a sheaf, we have
exact sequences of Γ(X,OX)-modules

0→ Γ(X,OX)→
⊕
i

Γ(Ui,OX)→
⊕
i,j

Γ(Ui ∩ Uj ,OX)

and

0→ Γ
(
DX(f),OX

)
→
⊕
i

Γ
(
Ui ∩DX(f),OX

)
→
⊕
i,j

Γ(Ui ∩ Uj ∩DX(f),OX
)
.

By localizing the first sequence at f , we obtain again an exact sequence, and we
thus get a commutative diagram

0 // Γ(X,OX)f

τX,f

��

// ∏
i Γ(Ui,OX)f

γ

��

// ∏
i,j Γ(Ui ∩ Uj ,OX)f

δ

��
0 // Γ

(
DX(f),OX

)
// ∏

i Γ
(
DX(f) ∩ Ui,OX

)
// ∏

i,j Γ
(
DX(f) ∩ Ui ∩ Uj ,OX

)
with exact rows, where

γ = (τUi,f |Ui
)i and δ = (τUi∩Uj

, f |Ui∩Uj
)i,j .

Note that since each Ui is affine, we know that γ is an isomorphism. This implies
that τX,f is injective. Since this holds for all (X, f), applying the assertion for
(Ui ∩ Uj , f |Ui∩Uj

), we conclude that δ is injective. An easy diagram chase then
implies that τX,f is surjective. This completes the proof of the proposition. �

Proposition 2.3.16. Let X be a prevariety and let f1, . . . , fr ∈ Γ(X,OX) such
that the ideal they generate is Γ(X,OX). If DX(fi) is an affine variety for every i,
then X is an affine variety.

Proof. We put R = Γ(X,OX). This is clearly a reduced k-algebra. By
assumption, we can write

r∑
i=1

figi = 1 for some g1, . . . , gr ∈ R.
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We begin by showing that R is a finitely generated k-algebra. Since each
DX(fi) is affine, we know that Γ

(
DX(fi),OX

)
is a finitely generated k-algebra. By

Proposition 2.3.15, we have a canonical isomorphism

Rfi ' Γ
(
DX(fi),OX

)
,

hence each Rfi is a finitely generated k-algebra. For each Rfi , we choose finitely
many generators of the form

ai,j

f
mi,j
i

, for suitable ai,j ∈ R and mi,j ∈ Z≥0. Let S ⊆ R
be the k-algebra generated by the ai,j , by the fi, and by the gi. It follows that
S is a finitely generated k-algebra, with f1, . . . , fr ∈ S, such that they generate
the unit ideal in S. Moreover, we have Sfi = Rfi for all i. This implies that if
M is the S-module R/S, we have Mfi = 0 for all i, and therefore M = 0 (see
Proposition C.3.1). Therefore R = S, hence R is a finitely generated k-algebra.

Recall that we have the functor MaxSpec on the category of reduced, finitely
generated k-algebras, with values in the category of affine varieties that is the inverse
of the functor that maps Y to Γ(Y,OY ) (for what follows, the choice of an inverse
functor does not actually play a role). Since R is finitely generated, it follows from
Proposition 2.3.14 that we have a canonical morphism pX : X → MaxSpec(R) such
that the induced k-algebra homomorphism

R ' Γ
(
MaxSpec(R),OMaxSpec(R)

)
→ Γ(X,OX)

is the identity. We show that pX is an isomorphism.
In fact, it is easy to see explicitly what the map pX : for every x ∈ X, we have

pX(x) = {φ ∈ R | φ(x) = 0}.

This follows from the fact that the bijection in Proposition 2.3.14 is functorial,
applied to the inclusion {x} ↪→ X. The elements fi ∈ R define open subsets

Ui = {m ∈ MaxSpec(R) | fi 6∈ m}

and since f1, . . . , fr generate the unit ideal in R, it follows that MaxSpec(R) =⋃
i Ui. On the other hand, it follows from the description of pX that p−1

X (Ui) =

DX(fi) and via the isomorphism Rfi ' Γ
(
DX(fi),OX

)
provided by Proposi-

tion 2.3.15, the induced map p−1
X (Ui)→ Ui gets identified to

pDX(fi) : DX(fi)→ MaxSpec
(
Γ(DX(fi),ODX(fi))

)
,

which is an isomorphism since DX(fi) is affine. Since each induced morphism
p−1
X (Ui)→ Ui is an isomorphism, it follows that pX is an isomorphism, hence X is

affine. �

2.4. Products of prevarieties

We now show that the category of prevarieties has fibered products. We begin
with the case of direct products.

Proposition 2.4.1. The category of prevarieties over k has direct products.

Proof. We show that given two prevarieties X and Y , there is a topology on
the set X × Y and a subsheaf of k-algebras OX×Y ⊆ FunX×Y that make X × Y ,
together with the two projections, the direct product in the category of prevarieties.
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Let us consider open covers X = U1 ∪ . . . ∪ Ur and Y = V1 ∪ . . . ∪ Vs, with all Ui
and Vj affine varieties. We can thus write

X × Y =
⋃
i,j

Ui × Vj .

Note that each Ui × Vj has the structure of an affine variety; in particular, it is
a topological space, with a topology that is finer than the product topology (see
Corollary 1.6.2). Note that for every two pairs (i1, j1) and (i2, j2), we have a priori
two structures of algebraic prevariety on

(2.4.1) (Ui1 × Vj1) ∩ (Ui2 × Vj2),

one coming from Ui1 × Vj1 and the other one from Ui2 × Vj2 . However, they are
the same, both being equal to the structure of prevariety on the quasi-affine variety
(Ui1 ∩ Ui2)× (Vj1 ∩ Vj2). This follows from the fact that if A and B are affine (or,
more generally, quasi-affine) varieties and if UA ⊆ A and UB ⊆ B are open subsets,
then the open subvariety UA × UB of A × B is the product of UA and UB in the
category of quasi-affine varieties, which characterizes it uniquely, up to a canonical
isomorphism.

It is then easy to see that if we declare that a subset W of X×Y is open if and
only if W ∩ (Ui × Vj) is open for all i and j, then this gives a topology on X × Y
such that the topology on each Ui × Vj is the subspace topology. Note that the
topology on X × Y is finer than the product topology. Moreover, if given an open
subset W ⊆ X × Y and a function φ : W → k, we put φ ∈ OX×Y (W ) when

φ|W∩(Ui×Vj) ∈ OUi×Vj

(
W ∩ (Ui × Vj)

)
for all i, j,

then OX×Y is a subsheaf of FunX×Y such that OX×Y |Ui×Vj = OUi×Vj for all i
and j.

We now show that with this structure, the two projections p : X × Y → X
and q : X × Y → Y make X × Y the direct product of X and Y in the category
of prevarieties. Note first that since X × Y is covered by the affine open subsets
Ui×Vj , it follows that X ×Y is a prevariety. Second, both projections p and q are
morphisms: for example, for p this follows from the fact that each projection Ui ×
Vj → Ui is a morphism (see Remark 2.2.2). Given a prevariety Z and morphisms
f : Z → X and g : Z → Y , there is a unique map h : Z → X×Y such that p◦h = f
and q ◦ h = g, namely h(z) =

(
f(z), g(z)

)
for every z ∈ Z. In order to check that

this is a morphism, note first that for every i and j, the subset

h−1(Ui × Vj) = f−1(Ui) ∩ g−1(Vj)

is open in Z. Moreover, the restriction of h to this subset is a morphism: by
Remark 2.2.2, in order to check this, it is enough to show that the restriction of h
to the subsets in an affine open cover of h−1(Ui × Vj) is a morphism; this follows
from the fact that Ui × Vj is the direct product of Ui and Vj in the category of
affine varieties. This completes the proof of the proposition. �

Remark 2.4.2. It follows from the proof of the proposition that the product
of two prevarieties X and Y has as underlying set the Cartesian product X × Y
and the topology is finer than the product topology.

Exercise 2.4.3. Show that if f : Z → X and g : W → Y are locally closed
(open, closed) immersions, then we have an induced locally closed (respectively,
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open, closed) immersion

Z ×W → X × Y, (z, w)→
(
f(z), g(w)

)
.

Remark 2.4.4. If X and Y are irreducible prevarieties, then X × Y is irre-
ducible.

Proof. Consider affine open covers

X = U1 ∪ . . . ∪ Ur and Y = V1 ∪ . . . ∪ Vs.
Since each Ui × Vj is irreducible by Corollary 1.6.7, it is enough to note that each
intersection

(Ui × Vj) ∩ (Ui′ ∩ Vj′) = (Ui ∩ Ui′)× (Vj ∩ Vj′)
is nonempty (see Exercise 1.3.17). �

Definition 2.4.5. Given a morphism of prevarieties f : X → Y , the graph
morphism of f is the morphism jf : X → X × Y given by jf (x) =

(
x, f(x)

)
. Note

that this is indeed a morphism by the universal property of the product. The graph
of f is the image Γf of jf . When f = idX , the graph of f is the diagonal ∆X of
X ×X.

Proposition 2.4.6. For every morphism f : X → Y , the graph morphism
jf : X → X × Y is a locally closed embedding.

Proof. For every x ∈ X, let Vx ⊆ Y be an affine open neighborhood of f(x)
and Ux ⊆ f−1(Vx) an affine open neighborhood of x. If U =

⋃
x∈X Ux × Vx, then

it is clear that the image of jf is contained in U . Therefore it is enough to show
that the induced morphism j′f : X → U is a closed immersion. We also note that
since U is quasi-compact, the union in the definition of U can be taken over a finite
subset of X. Since (j′f )−1(Ux×Vx) = Ux is affine, in order to complete the proof of
the proposition, it is enough to show that when X and Y are affine, the morphism

j#
f : O(X × Y )→ O(X) is surjective. We may assume that X is a closed subset of

Am and Y is a closed subset of An. We denote by x1, . . . , xm the coordinates on
Am and by y1, . . . , yn the coordinates on An. Let us write f = (f1, . . . , fn), with

fi ∈ O(X) for 1 ≤ i ≤ n. In this case, j#
f is given by

j#
f (xi) = xi and j#

f (yj) = fj for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
and it is clear that this is surjective. �

We now prove the existence of fibered products in the category of prevarieties.

Proposition 2.4.7. Let f : X → Z and g : Y → Z be morphisms of prevari-
eties. If

W = {(x, y) ∈ X × Y | f(x) = g(y)},
then W is a locally closed subset of X × Y and (W,OW ), with the restrictions of
the two projections is the fiber product X ×Z Y in the category of prevarieties.

Proof. Consider the morphism h : X × Y → Z × Z given by h(x, y) =(
f(x), g(y)

)
. It follows from Proposition 2.4.6 that the diagonal ∆Z ⊆ Z × Z

is locally closed in Z ×Z, hence W = h−1(∆Z) is locally closed in X × Y . We now
consider on W the structure of locally closed subvariety of X × Y . Let p : W → X
and q : W → Y be the restrictions of the two projections to W . We need to
show that given a prevariety T and morphisms α : T → X and β : T → Y such that
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f◦α = g◦β, there is a unique morphism γ : T →W such that p◦γ = α and q◦γ = β.
Uniqueness of γ as a map is clear: in fact, we need to have γ(t) =

(
α(t), β(t)

)
for

all t ∈ T . In order to check that this is a morphism, note that the composition
T → W ↪→ X × Y is a morphism since X × Y is the direct product of X and Y ,
and thus γ is a morphism by Proposition 2.3.8. �

Example 2.4.8. If f : X → Y is a morphism of prevarieties and Z is a locally
closed subset of Y , then we have a Cartesian diagram1

f−1(W )

��

j // X

f

��
W

i // Y,

in which i and j are the inclusion morphisms. Indeed, the assertion is an immediate
application of Proposition 2.3.8.

Remark 2.4.9. Given a Cartesian diagram

X ×Z Y

��

// X

f

��
Z

i // Y,

with X, Y , and Z are affine varieties, it follows that X ×Y Z is affine too: this
follows from the fact that it is a closed subvariety of X×Y . Moreover, the canonical
homomorphism

O(X)⊗O(Y ) O(Z)→ O(X ×Y Z)

is surjective, with the kernel being the nil-radical of O(X)⊗O(Y )O(Z). This follows
from the anti-equivalence of categories between affine varieties over k and reduced,
finitely generated k-algebras, by noting that the tensor product gives the push-out
in the category of k-algebras, hence the reduced tensor product gives the push-out
in the category of reduced k-algebras.

2.5. Algebraic varieties

Algebraic varieties are prevarieties that satisfy an analogue of the Hausdorff
condition. Note that the Zariski topology is almost never Hausdorff: if X is an
irreducible prevariety, then any two nonempty open subsets intersect nontrivially.
The right condition is suggested by the following observation: if X is an arbitrary
topological space and if we consider on X × X the product topology, then X is
Hausdorff if and only if the diagonal ∆X is closed in X ×X.

Definition 2.5.1. An algebraic prevariety X is separated if the diagonal ∆X

is a closed subset of the prevariety X ×X. An algebraic variety over k (or simply,
a variety) is a separated algebraic prevariety.

Remark 2.5.2. It follows from Proposition 2.3.8 that the diagonal map X →
X×X, given by x→ (x, x) is always a locally closed immersion for every prevariety
X. Hence X is separated if and only if this map is a closed immersion.

1Recall that this means that it is a commutative diagram such that the induced morphism
f−1(W )→ X ×Y W given by the universal property of the fiber product is an isomorphism.
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Remark 2.5.3. If f, g : X → Y are morphisms of prevarieties and Y is sepa-
rated, then the set

{x ∈ X | f(x) = g(x)}
is closed in X. Indeed, this is just the inverse image of the diagonal ∆Y ⊆ Y × Y
by the morphism X → Y × Y , that maps x to

(
f(x), g(x)

)
. Because of this, the

considerations in Section 1.5 about the domain of rational maps extend to the case
of arbitrary algebraic varieties.

Proposition 2.5.4. The following hold:

i) If Z is a subvariety of the prevariety X and X is separated, then Z is
separated. In particular, quasi-affine varieties are separated.

ii) If f : X → Y is a morphism of prevarieties and Y is separated, then the
graph morphism jf : X → X × Y , given by jf (x) =

(
x, f(x)

)
is a closed

immersion.
iii) If X and Y are algebraic varieties, so is X×Y . More generally, if f : X →

Z and g : Y → Z are morphisms of varieties, then X ×Z Y is a closed
subvariety of X × Y , and therefore it is a variety.

iv) If f : X → Y and g : Y → Z are morphisms of algebraic varieties, then
the morphism α : X → X ×Z Y , given by α(x) =

(
x, f(x)

)
, is a closed

immersion.

Proof. If Z is a locally closed subvariety of X, then Z ×Z is a locally closed
subvariety of X × X and ∆Z = (Z × Z) ∩∆X . It follows that if ∆X is closed in
X ×X, then ∆Z is closed in Z × Z. Note now that if X = An, with coordinates
x1, . . . , xn, then ∆X is the closed subset of An×An defined by x1−y1, . . . , xn−yn.
We thus conclude that every quasi-affine variety is separated.

Under the assumptions in ii), we know that jf is a locally closed embedding by
Proposition 2.4.6. Its image is the inverse image of ∆Y by the morphism h : X×Y →
Y × Y given by h(x, y) =

(
f(x), y

)
, hence it is closed in X × Y . Therefore if is a

closed immersion.
Let us prove iii). Suppose that X and Y are varieties. If

p1,3 : (X × Y )× (X × Y )→ X ×X and p2,4 : (X × Y )× (X × Y )→ Y × Y

are the projections given by

p1,3(x1, y1, x2, y2) = (x1, x2) and p2,4(x1, y1, x2, y2) = (y1, y2),

then ∆X×Y = p−1
1,3(∆X)∩p−1

2,4(∆Y ) and it is thus a closed subset of (X×Y )×(X×Y ).
This shows that X × Y is a variety. Moreover, it follows from Proposition 2.4.7
that the fiber product X ×Z Y is a locally closed subvariety of X × Y , hence it is
a variety by i). In fact it is a closed subvariety, since its underlying subset is the
inverse image of ∆Z via the morphism

X × Y → Z × Z, (x, y)→
(
f(x), g(y)

)
.

Finally, the assertion in iv) follows from the fact that X ×Z Y is a closed
subvariety of X × Y and the composition of α with the inclusion map X ×Z Y ↪→
X × Y is the graph morphism jf , which is a closed immersion (see assertion ii) in
Exercise 2.3.9). �

The following property is sometimes useful:
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Proposition 2.5.5. If X is an algebraic variety and U , V are affine open
subvarieties of X, then U ∩ V is affine, too.

Proof. Consider the closed immersion i : X → X ×X given by the diagonal
map. If U and V are affine variety, then U ×V is affine. Since U ∩V = i−1(U ×V ),
we see that U ∩ V is affine by Proposition 2.3.10. �

Proposition 2.5.6. Let X be a prevariety and suppose that we have an open
cover X = U1 ∪ . . . ∪ Ur by affine open subsets. Then X is separated if and only if
for every i and j, the intersection Ui ∩ Uj is an affine variety and the homomor-
phism O(Ui)⊗k O(Uj)→ O(Ui ∩Uj) induced by the restriction homomorphisms is
surjective.

Proof. We know that X is separated if and only if the diagonal morphism
i : X → X×X is a closed immersion. The assertion in the proposition is now an im-
mediate consequence of the description of closed immersions in Proposition 2.3.10,
using the fact that the canonical homomorphism

O(Ui)⊗k O(Uj)→ O(Ui ×k Uj)
is an isomorphism (see Section 1.6). �

Example 2.5.7. Let us consider the two examples in Example 2.3.13. If X is
obtained by glueing two copies of A1 along the identity automorphism of A1r{0},
then X is covered by two affine open subsets U and V such that U ' A1 ' V ,
U ∩ V ' A1 r {0}, and the morphism

k[x, y] = O(U × V )→ O(U ∩ V ) = k[t, t−1]

maps both x and y to t. This is clearly not surjective, hence X is not separated. On
the other hand, if Y is obtained by glueing two copies of A1 along the automorphism
of A1 r {0} given by t→ t−1, then Y is also covered by two affine open subsets U
and V such that U ' A1 ' V , U ∩ V ' A1 r {0}, but now the morphism

k[x, y] = O(U × V )→ O(U ∩ V ) = k[t, t−1]

maps x to t and y to t−1. This is surjective, hence Y is separated.

Exercise 2.5.8. i) Show that if X1, . . . , Xn are algebraic varieties, then
on the disjoint union X =

⊔n
i=1Xi there is a unique structure of algebraic

variety such that each inclusion map Xi ↪→ X is an open immersion .
ii) Show that every variety X is a disjoint union of connected open subvari-

eties; each of these is a union of irreducible components of X.
iii) Show that if X is an affine variety and R = O(X), then X is disconnected

if and only if there is an isomorphism R ' R1 × R2 for suitable nonzero
k-algebras R1 and R2.

Exercise 2.5.9. Let f : X 99K Y be a rational map between the irreducible
varieties X and Y . The graph Γf of f is defined as follows. If U is an open subset
of X such that f is defined on U , then the graph of f |U is well-defined, and it is
a closed subset of U × Y . By definition, Γf is the closure of the graph of f |U in
X × Y .

i) Show that the definition is independent of the choice of U .
ii) Let p : Γf → X and q : Γf → Y be the morphisms induced by the two

projections. Show that p is a birational morphism, and that q is birational
if and only if f is.
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iii) Show that if the fiber p−1(x) does not consist of only one point, then f is
not defined at x ∈ X.

A useful criterion for proving that a prevariety is separated involves the notion
of separated morphisms. We will not need this notion until Chapter 8, so the reader
can skip this for now, and return to it later.

Definition 2.5.10. Given a morphism of prevarieties f : X → Y , note that the
diagonal ∆X ⊆ X×X lies inside the locally closed subset X×Y X. The morphism
f is separated if ∆X is closed in X ×Y X.

Example 2.5.11. It is clear that the morphism from X to a point is separated
if and only if X is separated.

Example 2.5.12. If f : X → Y is a morphism of prevarieties and X is sepa-
rated, then f is separated. Indeed, ∆X is closed in X ×X, and thus it is closed in
X ×Y X, too.

Example 2.5.13. Let f : X → Y be a morphism of prevarieties and consider
an open cover Y =

⋃
i∈I Vi. If all f−1(Vi) are separated, then f is a separated

morphism. More generally, if each restriction f−1(Vi)→ Vi is separated, then f is
separated. Indeed, we can write

X ×Y X =
⋃
i∈I

(
f−1(Vi)×Vi

f−1(Vi)
)

and
∆X ∩

(
f−1(Vi)×Vi f

−1(Vi)
)

= ∆f−1(Vi),

which implies our assertion.

The following proposition provides an useful criterion for showing that certain
prevarieties are separated.

Proposition 2.5.14. If f : X → Y and g : Y → Z are separated morphisms
of prevarieties, then g ◦ f is separated. In particular, if f is a separated morphism
and Y is separated, then X is separated, too.

Proof. We have the following inclusions:

∆X ⊆ X ×Y X ⊆ X ×Z X.
Note that ∆X is closed in X ×Y X, since f is separated. If φ : X ×Z X → Y ×Z Y
is given by φ(x1, x2) =

(
f(x1), f(x2)

)
, then X ×Y X = φ−1(∆Y ), hence using the

fact that g is separated, we deduce that X ×Y X is closed in X ×Z X. We thus
conclude that ∆X is closed in X ×Z X. �



CHAPTER 3

Dimension theory

In this chapter we prove the main results concerning the dimension of algebraic
varieties. We begin with some general considerations about Krull dimension in
topological spaces. We then discuss finite morphisms between affine varieties and
show that they are closed maps and preserve the dimension of closed subsets. We
then give a proof of the Principal Ideal theorem that relies on Noether normalization
and use this to deduce the main properties of dimension for algebraic varieties.
The last two sections are devoted to the behavior of the dimension of the fibers of
morphisms and to the Chevalley constructibility theorem.

3.1. The dimension of a topological space

Definition 3.1.1. Let X be a nonempty topological space. The dimension
(also called Krull dimension) of X, denoted dim(X), is the supremum over the
non-negative integers r such that there is a sequence

Z0 ) Z1 . . . ) Zr,

with all Zi closed, irreducible subsets of X. We make the convention that if X is
empty, then dim(X) = −1.

In particular, we may consider the dimension of quasi-affine varieties, endowed
with the Zariski topology. Note that in general we could have dim(X) = ∞, even
when X is Noetherian, but this will not happen in our setting.

Definition 3.1.2. Let R 6= 0 be a commutative ring. The dimension (also
called Krull dimension) of R, denoted dim(R), is the supremum over the non-
negative integers r such that there is a sequence

p0 ( p1 ( . . . ( pr,

with all pi prime ideals in R. We make the convention that dim(R) = −1 when
R = 0.

Remark 3.1.3. It follows from Corollary 1.1.10 and Proposition 1.3.8 that if
X is an affine variety, we have dim(X) = dim

(
O(X)

)
. More generally, for every

commutative ring R one can interpret the dimension of R as the dimension of a
topological space, as shown in the following exercise.

Exercise 3.1.4. Let R be a commutative ring and consider the spectrum of R:

Spec(R) := {p | p prime ideal in R}.
For every ideal J in R, consider

V (J) = {p ∈ Spec(R) | J ⊆ p}.
Show that the following hold:

57
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i) For every ideals J1, J2 in R, we have

V (J1) ∪ V (J2) = V (J1 ∩ J2) = V (J1 · J2).

ii) For every family (Jα)α of ideals in R, we have⋂
α

V (Jα) = V

(∑
α

Jα

)
.

iii) We have
V (0) = Spec(R) and V (R) = ∅.

iv) Deduce that Spec(R) has a topology (the Zariski topology) whose closed
subsets are the V (J), with J an ideal in R.

v) Show that V (J) ⊆ V (J ′) if and only if rad(J ′) ⊆ rad(J). In particular,
V (J ′) = V (J) if and only if rad(J ′) = rad(J).

vi) Show that the closed irreducible subsets in Spec(R) are those of the form
V (P ), where P is a prime ideal in R. Deduce that

dim(R) = dim
(
Spec(R)

)
.

The following easy two lemmas show that the notion of dimension behaves as
expected when it comes to some basic operations.

Lemma 3.1.5. If Y is a subspace of X, then

dim(Y ) ≤ dim(X).

Proof. Given a sequence of irreducible closed subsets in Y

Z0 ) Z2 ) . . . ) Zr,

by taking closures we obtain a sequence of closed subsets in X

Z0 ) Z2 ) . . . ) Zr

(the fact that the inclusions are strict follows from Zi = Zi∩Y for all i). This gives
the inequality in the lemma. �

Lemma 3.1.6. If X is a topological space, Y1, . . . , Yr are closed subsets of X,
and Y = Y1 ∪ . . . ∪ Yr, then

dim(Y ) =
r

max
i=1

dim(Yi).

This applies, in particular, if X is Noetherian, and Y1, . . . , Yr are the irreducible
components of Y .

Proof. After replacing X by Y , we may assume that X = Y . The inequality
“≥” follows from Lemma 3.1.5. The opposite inequality follows from the fact that
given any sequence

Z0 ) Z1 . . . ) Zr

of irreducible, closed subsets of X, there is i such that Z0 ⊆ Yi, in which case
dim(Yi) ≥ r. �

The next lemma will allow us to reduce understanding the dimension of quasi-
affine varieties to the case of affine varieties.

Lemma 3.1.7. If X is a topological space and X = U1 ∪ . . . ∪ Ur, with Ui open
subsets of X, then

dim(X) =
r

max
i=1

dim(Ui).
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Proof. Again, the inequality “≥” follows from Lemma 3.1.5. In order to prove
the opposite inequality, consider a sequence

Z0 ) Z1 . . . ) Zr

of irreducible, closed subsets of X. Let i be such that Zr ∩ Ui 6= ∅. Since each
Zj ∩Ui is irreducible and dense in Zj (see Remarks 1.3.7), we obtain the following
sequence of irreducible closed subsets of Ui:

Z0 ∩ Ui ) Z1 ∩ Ui . . . ) Zr ∩ Ui,
hence dim(Ui) ≥ r. This completes the proof of the lemma. �

Definition 3.1.8. If X is a topological space and Y is a closed, irreducible
subset of X, then the codimension of Y in X, denoted codimX(Y ), is the supremum
over the non-negative integers r for which there is a sequence

Z0 ) Z1 ) . . . ) Zr = Y,

with all Zi closed and irreducible in X.

Definition 3.1.9. Given a prime p in a commutative ring R, the codimension
(also called height) of p, denoted codim(p), is the supremum over the non-negative
integers r such that there is a sequence

p0 ( p1 ( . . . ( pr = p,

with all pi prime ideals in R.

Remark 3.1.10. It follows from Exercise 1.4.22 that if X is an affine variety
and Y is an irreducible closed subset, defined by the prime ideal p ⊂ O(X), we
have

codim(p) = codimX(Y ).

Note also that if q is a prime ideal in the commutative ring R and Z = V (q) ⊆
W = Spec(R) is the corresponding irreducible closed subset, then

codim(q) = codimW (Z).

Remark 3.1.11. Using arguments similar to the ones in the proofs of Lemma 3.1.5
and Proposition 3.1.7, we see that if Y is an irreducible closed subset of a topological
space X and U is an open subset of X such that U ∩ Y 6= ∅, then

codimU (U ∩ Y ) = codimX(Y ).

Remark 3.1.12. If X is a Noetherian topological space, with irreducible com-
ponents X1, . . . , Xr, and Y is an irreducible, closed subset of X, then

codimX(Y ) = max{codimXi(Y ) | Y ⊆ Xi}.
Indeed, given any chain

Y = Y0 ( Y1 ( . . . ( Yr ⊆ X
of irreducible, closed subsets of X, by irreducibility of Yr, there is i such that
Yr ⊆ Xi. This gives the inequality “≤” and the opposite inequality is obvious.

It is sometimes convenient to have a notion of codimension for arbitrary closed
subsets. We thus make the following

Definition 3.1.13. If Y is a non-empty closed subset of a Noetherian topo-
logical space X and Y1, . . . , Yr are the irreducible components of Y , we put

codimX(Y ) := min{codimX(Yi) | 1 ≤ i ≤ r}.
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3.2. Properties of finite morphisms

In order to prove the basic results concerning the dimension of affine algebraic
varieties, we will make use of Noether’s Normalization lemma. In order to exploit
this, we will need some basic properties of finite morphisms. In this chapter we
only discuss such morphisms between affine varieties; we will consider the general
notion in Chapter 5.

Definition 3.2.1. A morphism of affine varieties f : X → Y is finite if the
corresponding ring homomorphism f# : O(Y )→ O(X) is finite.

Example 3.2.2. Let Y be an affine variety and a1, . . . , an ∈ O(Y ). If

X = {(u, t) ∈ Y ×A1 | tn + a1(u)tn−1 + . . .+ an(u) = 0},

then X is a closed subset of Y ×A1, and the composition

X
i
↪→ Y ×A1 p−→ Y,

where i is the inclusion and p is the projection onto the first component, is finite.
In fact, O(X) is free over O(Y ), with a basis given by the classes of 1, t, . . . , tn−1.

Example 3.2.3. Given an irreducible closed subsetX ⊆ AN , with trdeg
(
k(X)/k

)
=

n, it follows from Theorem 1.2.2 (and its proof) that after a linear change of
coordinates yi =

∑n
j=1 ai,jxj , with det(ai,j) 6= 0, the inclusion homomorphism

k[y1, . . . , yn] ↪→ O(X) is finite. In other words, there is a linear automorphism
φ : AN → AN , such that if i : X ↪→ AN is the inclusion, and p : AN → An is the
projection p(u1, . . . , uN ) = (u1, . . . , un), the composition

X
i
↪→ AN φ−→ AN p−→ An

is a finite morphism.

Example 3.2.4. If X is an affine variety and Y is a closed subset of X, then Y
is an affine variety and the inclusion map Y ↪→ X is finite. Indeed, the morphism
O(X)→ O(Y ) is surjective, hence finite.

Remark 3.2.5. It is straightforward to see that if f : X → Y and g : Y → Z
are finite morphisms between affine varieties, then the composition g ◦ f is finite.

Example 3.2.6. If X is an affine variety and Y consists of one point, then
the unique morphism f : X → Y is finite if and only if X is a finite set. Indeed,
note first that if X consists of r points, then O(X) = k×r, hence O(X) is clearly a
finitely generated k-vector space. For the converse, if X1, . . . , Xn are the irreducible
components of X, then for every i, the composition Xi ↪→ X → Y is finite by
Remark 3.2.5 and Example 3.2.4. Since it is enough to show that each Xi consists
of one point, we may assume that X is irreducible. In this case, the canonical
injective homomorphism k → O(X) is finite, and since k is a field and O(X) is
an integral domain, we conclude that O(X) is a field. The finite field extension
k → O(X) must be an isomorphism, since k is algebraically closed.

Remark 3.2.7. If f : X → Y is a finite morphism of affine varieties and Z ⊆ X
and W ⊆ Y are closed subsets such that f(Z) ⊆ W , then the induced morphism
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g : Z →W is finite. Indeed, we have a commutative diagram

O(Y )

��

f#

// O(X)

��
O(W )

g# // O(Z).

Since f# is a finite homomorphism and the vertical homomorphisms in the diagram
are surjective, it follows that g# is finite as well.

In particular, using also Example 3.2.6, we see that if f : X → Y is finite, then
for every y ∈ Y , the fiber f−1(y) is finite.

We collect in the next proposition some basic properties of finite ring homo-
morphisms (in fact, the same properties hold for integral homomorphisms).

Proposition 3.2.8. Let φ : A→ B be a finite ring homomorphism.

i) If q is a prime ideal in B and p = φ−1(q), then q is a maximal ideal if
and only if p is a maximal ideal.

ii) If q1 ( q2 are prime ideals in B, then φ−1(q1) 6= φ−1(q2).
iii) If φ is injective, then for every prime ideal p in A, there is a prime ideal

q in B such that φ−1(q) = p.
iv) Given prime ideals p1 ⊆ p2 in A and a prime ideal q1 in B such that

φ−1(q1) = p1, there is a prime ideal q2 in B such that q1 ⊆ q2 and
φ−1(q2) = p2.

Proof. Under the assumption in i), note that we have a finite, injective ho-
momorphism of integral domains

A/p ↪→ B/q.

In this case, A/p is a field if and only if B/q is a field (see Proposition A.2.1). This
gives i).

In order to prove ii), we first recall that the map q→ qBp/pBp gives a bijection
between the primes q in B with φ−1(q) = p and the primes in the ring Bp/pBp.
Since φ is finite, the induced homomorphism

Ap/pAp → B ⊗A Ap/pAp = Bp/pBp

is again finite. Given q1 and q2 as in ii), suppose that φ−1(q1) = p = φ−1(q2). In
this case, it follows from i) that both q1Bp/pBp and q2Bp/pBp are maximal ideals.
Since the first one is strictly contained in the second one, we obtain a contradiction.

We now prove iii). Since B is a finitely generated A-module, we see that Bp

is a finitely generated Ap-module, and it is nonzero since it contains Ap. It thus
follows from Nakayama’s lemma (see Proposition C.1.1) that Bp 6= pBp. Since the
ring Bp/pBp is nonzero, it contains a prime ideal and every such prime ideal is of
the form qBp/pBp, for some prime ideal q in B, with φ−1(q) = p.

Finally, suppose that p1, p2, and q1 are as in iv). The induced homomorphism

φ : A/p1 −→ B/q1

is finite and injective. We may thus apply iii) to find a prime ideal in B/q1 whose
inverse image via φ is p2/p1. This ideal is of the form q2/q1, for some prime ideal
q2 containing q1 and it is clear that φ−1(q2) = p2. �
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We now reformulate geometrically the properties of finite homomorphisms in
the above proposition.

Corollary 3.2.9. Let f : X → Y be a finite morphism of affine varieties and
φ = f# the corresponding homomorphism O(Y )→ O(X).

1) The map f is closed, that is, f(Z) is closed in Y for every closed subset
Z of X. In particular, the map f is surjective if and only if φ is injective.

2) If Z1 ( Z2 are irreducible closed subsets of X, then f(Z1) ( f(Z2) are
irreducible closed subsets of Y .

3) If f is surjective, then given any irreducible, closed subset W of Y , there
is an irreducible, closed subset Z in X such that f(Z) = W .

4) If Z1 is an irreducible, closed subset of X and W1 ⊇ W2 are irreducible,
closed subsets of Y , with W1 = f(Z1), then there is Z2 ⊆ Z1 irreducible
and closed such that f(Z2) = W2.

Proof. Let Z be a closed subset in X. In order to show that f(Z) is closed,
after writing Z as the union of its irreducible components, we see that it is enough
to prove the assertion when Z is irreducible. Let q ⊆ O(X) be the prime ideal
corresponding to Z. Recall that by Proposition 1.4.23, we have

f(Z) = V
(
φ−1(q)

)
.

If m is a maximal ideal in O(Y ) containing φ−1(q), we deduce from assertions iv)
and i) in the proposition that there is a maximal ideal n in O(X) such that q ⊆ n
and φ−1(n) = m. Therefore

V
(
φ−1(q)

)
= f(Z)

and therefore f(Z) is closed. In order to prove the second assertion in 1), recall

that by Proposition 1.4.23, we know that φ is injective if and only if f(X) = Y .
Since f(X) is closed, we obtain the assertion.

The assertions in 2), 3), and 4) now follow from assertions ii), iii), and respec-
tively iv) in the proposition using the above description of the images of closed
subsets of X. �

Corollary 3.2.10. If f : X → Y is a finite, surjective morphism of affine
varieties, then

dim(X) = dim(Y ).

Moreover, if Z is a closed, irreducible subset of X, then

codimX(Z) = codimY

(
f(Z)

)
.

Proof. If
Z0 ) Z1 . . . ) Zr

is a sequence of irreducible closed subsets in X, then it follows from assertions 1)
and 2) in Corollary 3.2.9 that we have the following sequence of irreducible closed
subsets in Y :

f(Z0) ) f(Z1) ⊇ . . . ) f(Zr).

This gives dim(Y ) ≥ dim(X).
Suppose now that

W0 )W1 ) . . . )Ws

is a sequence of irreducible closed subsets in Y . Assertion 3) in Corollary 3.2.9
gives an irreducible closed subset T0 ⊆ X such that f(T0) = W0. Using repeatedly
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assertion 4) in Corollary 3.2.9, we obtain a sequence of irreducible closed subsets
in X

T0 ) T1 ) . . . ) Ts

such that f(Ti) = Wi for all i. We thus have dim(X) ≥ dim(Y ) and by combining
the two inequalities we get dim(X) = dim(Y ). The proof of the second assertion is
entirely analogous, so we leave it as an exercise. �

3.3. Main results of dimension theory

The following result, the Principal Ideal theorem, is the starting point of dimen-
sion theory. A similar statement holds for prime ideals in an arbitrary Noetherian
ring; a proof in the general setting, relying on some basic commutative algebra, is
given in Appendix J. We give a proof in our geometric setting, following closely
[Mum88].

Theorem 3.3.1. (Krull) If X is an algebraic variety, f ∈ O(X), and Y is an
irreducible component of

V (f) = {u ∈ X | f(u) = 0},
then codimX(Y ) ≤ 1.

We begin with some comments about the statement.

Remark 3.3.2. If X1, . . . , Xr are the irreducible components of X and f |Xi
6= 0

for all i, then codimX(Y ) ≥ 1. Indeed, since Y is irreducible, there is i such that
Y ⊆ Xi, and our assumption on f implies that this inclusion is strict.

Remark 3.3.3. With notation as in the theorem, if U is an open subset of X
with U ∩ Y 6= ∅, it is enough to prove the assertion in the theorem for U , f |U , and
Y ∩ U . Indeed, it follows from Remark 3.1.11 that

codimX(Y ) = codimU (U ∩ Y ),

while Exercise 1.3.19 implies that U ∩ Y is an irreducible component of V (f |U ) =
V (f) ∩ U ⊆ U .

Remark 3.3.4. It is enough to prove the theorem when X is affine and irre-
ducible and Y = V (f). First, note that if we have a sequence

Z0 ) Z1 ) Z2 = Y,

with all Zi irreducible closed subsets of X, then codimZ0
(Y ) ≥ 2 and Y is an

irreducible component also for V (f |Z0
) = V (f)∩Z0 ⊆ Z0. This shows that we may

assume that X is irreducible. Second, let us choose an affine open subset U ⊆ X
that meets Y , but does not meet the other irreducible components of V (f). By the
previous remark, it is enough to prove the theorem for U , f |U , and Y ∩ U , and by
our choice of U , we have U ∩ Y = V (f |U ).

Remark 3.3.5. The theorem is easy to prove when X is affine and O(X) is
a UFD. Indeed, the assertion is clearly true when f = 0 (in which case Y = X
and codimX(Y ) = 0). Suppose now that f 6= 0. In this case, it follows from
Example 1.3.14 that if the prime decomposition of f is f = ufm1

1 · · · fmr
r , with u

invertible, then there is i such that Y = V (fi). If there is an irreducible closed
subset Z with Y ( Z ( X and IX(Z) = p, then p ( (fi). Let h ∈ p be any
nonzero element and let m be the exponent of fi in the prime decomposition of h
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is minimal. If we write h = fmi h
′, since p is prime and fi 6∈ p, we have h′ ∈ (fi),

contradicting the definition of m.

The proof of the theorem makes use of Noether’s Normalization lemma to re-
duce the general case to that treated in Remark 3.3.5. We will also need some basic
facts about norm maps for finite field extensions, for which we refer to Appendix D.

Proof of Theorem 3.3.1. As we have seen in Remark 3.3.4, we may assume
that X is affine and irreducible and Y = V (f). Let A = O(X) and put K = k(X).
By Noether’s Normalization lemma, if n = trdegk(K), we can find a k-subalgebra
B ' k[x1, . . . , xn] of A such that the inclusion map B ↪→ A is finite (hence integral,
see Proposition A.1.3). We denote by L the fraction field of B, so that the field
extension K/L is finite (see Remark 1.2.1). We denote by p ⊆ A the prime ideal
corresponding to Y and let q = p ∩B.

Let h = NK/L(f). Note that h 6= 0. Moreover, since A is an integral extension
of B, f ∈ A, and B is integrally closed (see Example 1.7.28), we have h ∈ q by
Proposition D.2.1.

In fact, we have q = rad(h). Indeed, suppose that u ∈ q. Since p = rad(f), it
follows that we can find a positive integer m and w ∈ A such that um = fw. By
the multiplicative property of the norm and the behavior of NK/L on elements in
L (for both properties, see Proposition D.1.1), we deduce

um·[K:L] = NK/L(u)m = h ·NK/L(w) ∈ (h).

Since B is a UFD, we deduce from Remark 3.3.5 that codim(q) ≤ 1. On the
other hand, since the morphism B ↪→ A is finite and injective, it follows from
Proposition 3.2.10 that codim(p) = codim(q). This completes the proof of the
theorem. �

Remark 3.3.6. IfX is an affine variety with irreducible componentsX1, . . . , Xr

and f ∈ O(X) is a non-zero-divisor, then f |Xi
6= 0 for every i. Indeed, let pi =

IX(Xi) and suppose that we have f ∈ p1. Let us choose gj ∈ pj r p1 for j ≥ 2.
Since p1 is prime, if g =

∏
j≥2 gj , then g 6∈ p1. In particular, g 6= 0. However,

fg ∈
⋂
j≥1 pj , hence fg = 0, contradicting the fact that f is a non-zero-divisor. For

a more general assertion, valid in arbitrary Noetherian rings, see Proposition E.2.1.
We thus see, by combining Theorem 3.3.1 and Remark 3.3.2, that if f is a non-

zero-divisor in O(X), for an affine variety X, then every irreducible component of
V (f) has codimension 1 in X.

We now deduce from Theorem 3.3.1 the basic properties of dimension of alge-
braic varieties. We begin with a generalization of the theorem to the case of several
functions.

Corollary 3.3.7. If X is an algebraic variety and f1, . . . , fr are regular func-
tions on X, then for every irreducible component Y of

V (f1, . . . , fr) = {u ∈ X | f1(u) = . . . = fr(u) = 0},
we have codimX(Y ) ≤ r.

Proof. We do induction on r, the case r = 1 being a consequence of the
theorem. Arguing as in Remarks 3.3.3 and 3.3.4, we see that we may assume that
X is affine and Y = V (f1, . . . , fr). We need to show that for every sequence

Y = Y0 ( Y1 ( . . . ( Ym
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of irreducible closed subsets of X, we have m ≤ r. By Noetherianity, we may
assume that there is no irreducible closed subset Z, with Y ( Z ( Y1.

By assumption, there is i (say, i = 1) such that Y1 6⊆ V (fi). Since there are
no irreducible closed subsets strictly between Y and Y1, it follows that Y is an
irreducible component of Y1 ∩ V (f1). After replacing X by an affine open subset
meeting Y , but disjoint from the other components of Y1 ∩ V (f1), we may assume
that in fact Y = Y1 ∩ V (f1), hence IX(Y ) = rad

(
IX(Y1) + (f1)

)
. It follows that for

2 ≤ i ≤ r, we can find positive integers qi and gi ∈ IX(Y1) such that

(3.3.1) fqii − gi ∈ (f1).

We will show that Y1 is an irreducible component of V (g2, . . . , gr). If this is
the case, then we conclude by induction that m − 1 ≤ r − 1, hence we are done.
Note first that (3.3.1) gives

Y = V (f1, . . . , fr) = V (f1, g2, . . . , gr).

If there is an irreducible closed subset Z such that

Y1 ( Z ⊆ V (g2, . . . , gr),

then Y = Z ∩ V (f1), and the theorem implies codimZ(Y ) ≤ 1, contradicting the
fact that we have Y ( Y1 ( Z. Therefore Y1 is an irreducible component of
V (g2, . . . , gr), completing the proof of the corollary. �

Corollary 3.3.8. For every positive integer n, we have dim(An) = n.

Proof. It is clear that dim(An) ≥ n, since we have the following sequence of
irreducible closed subsets in An:

V (x1, . . . , xn) ( V (x1, . . . , xn−1) ( . . . ( V (x1) ( An.

In order to prove the reverse inequality, it is enough to show that for every point p =
(a1, . . . , an) ∈ An, we have codimX({p}) ≤ n. This follows from Corollary 3.3.7,
since Y = V (x1 − a1, . . . , xn − an). �

Corollary 3.3.9. If X is an irreducible variety, then

dim(X) = trdegkk(X).

In particular, we have dim(X) <∞.

Proof. By taking a finite cover by affine open subsets and using Lemma 3.1.7,
we see that it is enough to prove the assertion when X is affine. It follows from
Noether’s Normalization lemma that if n = trdegkk(X), then there is a finite,
surjective morphism f : X → An. The assertion then follows from the previous
corollary via Corollary 3.2.10. �

Remark 3.3.10. It follows from the previous corollary and Lemma 3.1.6 that
for every algebraic variety X, we have dim(X) <∞.

Remark 3.3.11. Another consequence of Corollary 3.3.9 is that if X is an
irreducible quasi-affine variety, then for every nonempty open subset U of X, we
have dim(U) = dim(X).
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Definition 3.3.12. If X is a Noetherian topological space, we say that X has
pure dimension if all its irreducible components have the same dimension. A curve
is an algebraic variety of pure dimension 1 and a surface is an algebraic variety
of pure dimension 2; moreover, in both these cases, unless we explicitly mention
otherwise, the variety is assumed to be irreducible.

Corollary 3.3.13. If X is an algebraic variety, then the following hold:

i) If Y ⊆ Z are closed irreducible subsets, then every saturated1 chain

Y = Y0 ( Y1 ( . . . ( Yr = Z

of irreducible closed subsets has length r = codimZ(Y ).
ii) If X has pure dimension, then for every irreducible closed subset Y ⊆ X,

we have
dim(Y ) + codimX(Y ) = dim(X).

Proof. We begin by showing the following statement: given irreducible, closed
subsets Y ( Z, with codimZ(Y ) = 1, we have dim(Y ) = dim(Z)− 1. For this, we
may of course assume that X = Z. Note also that in light of Remark 3.3.11, we
may replace Z by any open subset U with U ∩ Y 6= ∅, since dim(U) = dim(Z) and
dim(U ∩ Y ) = dim(Y ). In particular, after replacing Z by an affine open subset U
with U ∩ Y 6= ∅, we may assume that Z is affine.

Let f ∈ IZ(Y ) r {0}. Since codimZ(Y ) = 1, we see that Y is an irreducible
component of V (f). After replacing Z by an affine open subset that intersects
Y , but does not intersect the other components of V (f), we may assume that
Y = V (f). We now make use of the argument in the proof of Theorem 3.3.1.
Noether’s Normalization lemma gives a finite, surjective morphism p : Z → An and
we have seen that p

(
V (f)

)
= V (h), for some nonzero h ∈ O(An), hence the ideal

I
(
p(Y )

)
⊆ k[x1, . . . , xn] is principal, say generated by a polynomial g. This implies

that dim
(
p(Y )

)
= n−1: indeed, arguing as in the proof of Noether’s Normalization

lemma, we see that after a suitable linear change of coordinates, we may assume
that g is a monic polynomial in xn, with coefficients in k[x1, . . . , xn−1], in which
case the morphism

k[x1, . . . , xn−1] ↪→ k[x1, . . . , xn]/(g)

is finite and injective, hence we get the assertion via Corollaries 3.2.10 and 3.3.8.
Since Corollary 3.2.10 gives dim(Z) = n and dim(Y ) = dim

(
p(Y )

)
= n − 1, this

completes the proof of our initial statement.
This assertion implies that given any saturated chain

Y = Y0 ( Y1 ( . . . ( Yr = Z

of irreducible, closed subsets, we have dim(Yi) = dim(Yi−1)+1 for 1 ≤ i ≤ r, hence
dim(Z) = dim(Y ) + r. In particular, all such chains have the same length. Since
there is such a chain of length codimZ(Y ), we obtain the assertion in i), as well as
the assertion in ii) when X is irreducible.

Suppose now that we are in the setting of ii). Using Remark 3.1.12, the assertion
when X is irreducible, and the fact that X is pure dimensional, we obtain

codimX(Y ) = max{codimXi
(Y ) | Y ⊆ Xi}

= max{dim(Xi)− dim(Y ) | Y ⊆ Xi} = dim(X)− dim(Y ),

1This means that for every i, with 1 ≤ i ≤ r, there is no closed, irreducible subset Z, with
Yi−1 ( Z ( Yi; equivalently, we have codimYi

(Yi−1) = 1.
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completing the proof of the proposition. �

Remark 3.3.14. if X is an algebraic variety, and p is a point on X, then
dimp(X) := dim(OX,p) is equal to the largest dimension of an irreducible com-
ponent of X that contains p. Indeed, it follows from definition that dimp(X) =
codimX({p}) and we deduce from Corollary 3.3.13 that if X1, . . . , Xr are the irre-
ducible components of X that contain p, then

dimp(X) =
r

max
i=1

codimXi
({p}) =

r
max
i=1

dim(Xi).

Remark 3.3.15. Suppose that X is an algebraic variety, f ∈ O(X) is a non-
zero-divisor, and

Y = {x ∈ X | f(x) = 0}.
In this case, for every x ∈ Y , we have

(3.3.2) dim(OY,x) = dim(OX,x)− 1.

In order to see this, we use the interpretation of the two dimensions given by the
previous remark. Note first that it follows from Remark 3.3.6 that f does not
vanish on any irreducible component of X. If Y ′ is an irreducible component of
Y that contains x and if X ′ is an irreducible component of X that contains Y ′,
then it follows from Theorem 3.3.1 that codimX′(Y

′) = 1 and Corollary 3.3.13
implies dim(Y ′) = dim(X ′) − 1. This gives the inequality “≤” in (3.3.2). On the
other hand, given any irreducible component Z of X that contains x, then every
irreducible component W of Y ∩ Z that contains x satisfies codimW (Z) = 1 by
Theorem 3.3.1. Using again Corollary 3.3.13, we obtain

dim(OY,x) ≥ dimW = dim(Z)− 1,

hence we get the inequality “≥” in (3.3.2).

We end this section with the following partial converse to Corollary 3.3.7.

Proposition 3.3.16. Let X be an algebraic variety. If Y is an irreducible
closed subset with codimX(Y ) = r ≥ 1, then there are f1, . . . , fr ∈ O(X) such that
Y is an irreducible component of V (f1, . . . , fr).

Proof. Let X1, . . . , XN be the irreducible components of X. Note that there
is f1 ∈ IX(Y ) such that Xi 6⊆ V (f1) for all i. Indeed, otherwise

IX(Y ) ⊆
N⋃
i=1

IX(Xi).

Since all IX(Xi) are prime ideals and IX(Y ) 6⊆ IX(Xi) (recall that r ≥ 1), this
contradicts the Prime Avoidance lemma (see Lemma E.1.1).

For such f1, we have codimV (f1) Y ≤ r − 1. Iterating, we find f1, . . . , fr ∈
IX(Y ) such that codimV (f1,...,fr)(Y ) = 0, that is, Y is an irreducible component of
V (f1, . . . , fr). �

Remark 3.3.17. In general, if X and Y are as in the proposition, it might not
be possible to find f1, . . . , fr such that Y = V (f1, . . . , fr) (not even if we are willing
to restrict to affine open neighborhoods of a given point). Consider, for example

X = V (x1x2 − x3x4) ⊆ A4 and Y = V (x1, x3).
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In this case we have dim(X) = 3 and dim(Y ) = 2, hence codimX(Y ) = 1 by
Corollary 3.3.13. However, for every affine open neighborhood U of the origin,
there is no f ∈ O(U) such that V (f) = Y . Can you prove this?

Exercise 3.3.18. Show that if X and Y are algebraic varieties, then

dim(X × Y ) = dim(X) + dim(Y ).

Exercise 3.3.19. Show that if X is an algebraic variety and Z is a locally
closed subset of X, then

dim(Z) = dim(Z) > dim(Z r Z).

Exercise 3.3.20. Show that if X is an affine variety such that O(X) is a UFD,
then for every closed subset Y ⊆ X, having all components of codimension 1, the
ideal IX(Y ) defining Y is principal.

Exercise 3.3.21. Show that if X and Y are irreducible closed subsets of An,
then every irreducible component of X ∩Y has dimension ≥ dim(X) + dim(Y )−n
(Hint: describe X ∩ Y as the intersection of X × Y ⊆ An ×An with the diagonal
∆ = {(x, x) | x ∈ An}).

3.4. Dimension of fibers of morphisms

We now discuss the main results concerning the dimensions of fibers of a mor-
phism between algebraic varieties. More generally, we will be interested in the
dimension of f−1(Z), where Z is a closed subset of Y .

We fix a dominant morphism f : X → Y between irreducible algebraic varieties
and let k(Y ) ↪→ k(X) be the induced extension of function fields. We put

r = trdegk(Y )k(X) = dim(X)− dim(Y ).

Theorem 3.4.1. With the above notation, if W is an irreducible component of
f−1(Z) that dominates Z, then

codimX(W ) ≤ codimY (Z), or equivalently, dim(W ) ≥ dim(Z) + r.

In particular, for every point y in the image of f , all irreducible components of
f−1(y) have dimension ≥ r.

Proof. Note that if U is an open subset such that Z ∩ U 6= ∅, since f(W ) =
Z, we have W ∩ f−1(U) 6= ∅. By Corollary 3.3.11, we may thus replace f by
f−1(U)→ U . In particular, we may and will assume that Y is affine. In this case, if
s = codimY (Z), it follows from Proposition 3.3.16 that there are g1, . . . , gs ∈ O(Y )
such that Z is an irreducible component of V (g1, . . . , gs). Since W ⊆ f−1(Z), we
have W ⊆W ′ = V

(
f#(g1), . . . , f#(gs)

)
.

In fact, W is an irreducible component of W ′: if W ⊆ W ′′ ⊆ W ′, with W ′′

closed and irreducible, we have

Z = f(W ) ⊆ f(W ′′) ⊆ V (g1, . . . , gs).

Since Z is an irreducible component of V (g1, . . . , gs), we deduce that Z = f(W ′′).
In particular, we have W ′′ ⊆ f−1(Z), and since W is an irreducible component of
f−1(Z), we conclude that W = W ′′. Therefore W is an irreducible component of
W ′. Corollary 3.3.7 then implies that codimX(W ) ≤ s. �
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Theorem 3.4.2. With the above notation, there is a nonempty open subset
V of Y such that V ⊆ f(X) and for every irreducible, closed subset Z ⊆ Y with
Z ∩ V 6= ∅, and every irreducible component W of f−1(Z) that dominates Z, we
have

codimX(W ) = codimY (Z), or equivalently, dim(W ) = dim(Z) + r.

In particular, for every y ∈ V , every irreducible component of f−1(y) has dimension
r.

Proof. It is clear that we may replace f by f−1(U) → U for any nonempty
open subset, hence we may and will assume that Y is affine. We show that we may
further assume that X is affine, too. Indeed, if we know the theorem in this case,
we consider an open cover by affine open subsets

X = U1 ∪ . . . ∪ Um
and let Vi ⊆ Y be the nonempty open subset constructed for the morphism Ui → Y .
In this case it is straightforward to check that V =

⋂
i Vi satisfies the conditions in

the theorem.
Suppose now that X and Y are irreducible affine varieties and let f# : O(Y )→

O(X) be the induced homomorphism. This is injective, since f is dominant. We
consider the k(Y )-algebra S = O(X) ⊗O(Y ) k(Y ). This is a domain with fraction
field k(X). By Noether’s Normalization lemma, we can find y1, . . . , yr ∈ S that are
algebraically independent over k(Y ) and such that the inclusion

α : k(Y )[y1, . . . , yr] ↪→ S

is finite. After replacing each yi by some aiyi, for a suitable nonzero ai ∈ O(Y ),
we may assume that yi ∈ O(X) for all i.
Claim. There is a nonzero s ∈ O(Y ) such that the inclusion

O(Y )s[y1, . . . , yr] ↪→ O(X)s

is finite. In order to see this, let us choose generators x1, . . . , xN of O(X) as a
k-algebra. Since α is finite, it follows that each xi satisfies a monic equation of the
form:

xmi
i + ai,1x

mi−1
i + . . .+ ai,mi

= 0 for some ai,j ∈ k(Y )[y1, . . . , yr].

If s ∈ O(Y ) r {0} is such that sai,j ∈ O(Y )[y1, . . . , yr] for all i and j, then it
follows that each xi is integral over O(Y )s[y1, . . . , yr], hence O(X)s is finite over
O(Y )s[y1, . . . , yr], proving the claim.

After replacing f by DX

(
f#(s)

)
= f−1

(
DY (s)

)
→ DY (s), we may thus assume

that f factors as

X
g−→ Y ×Ar p−→ Y,

where p is the first projection and g is finite and surjective. It is clear that in this
case f is surjective. Moreover, if Z and W are as in the statement of the theorem,
then g(W ) ⊆ Z×Ar, and using Corollary 3.2.9, as well as Exercise 3.3.18, we have

dim(W ) = dim
(
g(W )

)
≤ dim(Z ×Ar) = dim(Z) + r.

Since the opposite inequality follows by Theorem 3.4.1, we have in fact equality. �

Corollary 3.4.3. If f : X → Y is a morphism of algebraic varieties such that
all fibers of f have dimension r (in particular, f is surjective), then dim(X) =
dim(Y ) + r.
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Proof. If Y1, . . . , Ym are the irreducible components of Y , each morphism
f−1(Yi)→ Yi has all fibers of dimension r. Since

dim(X) =
m

max
i=1

dim
(
f−1(Yi)

)
and dim(Y ) =

m
max
i=1

dim(Yi),

we see that it is enough to prove the assertion in the corollary when Y is irreducible.
Suppose now that X1, . . . , Xs are the irreducible components of X. It follows

from Theorem 3.4.2 that for every i, if we put

di := dim(Xi)− dim
(
f(Xi)

)
,

then there is an open subset Ui of f(Xi) such that every fiber of Xi → f(Xi) over
a point in Ui has dimension di. The hypothesis implies that di ≤ r for every i;
moreover, there is i0 such that di0 = r and f(Xi) = Y . The former fact implies
that for every i, we have

dim(Xi) ≤ dim
(
f(Xi)

)
+ r ≤ dim(Y ) + r,

hence dim(X) ≤ dim(Y ) + r. On the other hand, the latter fact implies that
dim(Xi0) = dim(Y ) + r, hence dim(X) ≥ dim(Y ) + r, completing the proof of the
corollary. �

Example 3.4.4. Let a, b, and c be positive integers and let

f : A3 → A3, given by f(u, v, w) = (uavbw, ucv, u).

This is birational, with inverse

g : V = {(x, y, z) ∈ A3 | yz 6= 0} → A3

given by

g(x, y, z) = (z, yz−c, xy−bz−a+bc).

Therefore f induces an isomorphism f−1(V ) → V . In particular, for P ∈ V , the
fiber f−1(P ) is a point.

On the other hand, if P = (x0, y0, 0), then

f−1(P ) =

{
V (u) ' A2, if x0 = y0 = 0;

∅, otherwise

If P = (x0, 0, z0), with z0 6= 0, then

f−1(P ) =

{
V (v, u− z0) ' A1, if x0 = 0;

∅, otherwise

3.5. Constructible subsets and Chevalley’s theorem

Definition 3.5.1. A subset of a topological space X is constructible if it is a
finite union of locally closed subsets.

Proposition 3.5.2. If X is a topological space, the set of constructible subsets
of X is the smallest set that contains the open subsets of X and is closed under
finite unions, finite intersections, and complements.
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Proof. The fact that a finite union of constructible sets is constructible is
clear. Suppose now that A and B are constructible and let us show that A ∩ B is
constructible. We can write

A = A1 ∪ . . . ∪Ar and B = B1 ∪ . . . ∪Bs,

with the Ai and Bj locally closed. In this case we have

A ∩B =
⋃
i,j

(Ai ∩Bj).

Since the intersection of two locally closed sets is locally closed, we see that A ∩B
is constructible.

If A is constructible and we write A = A1∪ . . .∪Ar, with the Ai locally closed,
we have

X rA =

r⋂
i=1

(X rAi).

Since each Ai is locally closed, we can write it as Ui ∩ Fi, with Fi closed and Ui
open. In this case

X rAi = (X r Ui) ∪ (X r Fi)

is the union of a closed set with an open set, hence it is constructible. Since we
have already seen that a finite intersection of constructible sets is constructible, we
conclude that X rA is constructible.

The minimality statement in the proposition is straightforward: given a set C
of subsets of X as in the statement, this contains the open subsets by assumption,
hence it also contains the closed sets, since we assume that C is closed under com-
plements. Therefore C also contains the locally closed subsets (since it is closed
under finite intersections) and therefore contains all constructible subsets (since it
is closed under finite unions). �

This notion is important because of the following result, due to Chevalley.

Theorem 3.5.3. If f : X → Y is a morphism between algebraic varieties, the
image f(X) is constructible. More generally, for every constructible subset A of X,
its image f(A) is constructible.

Proof. If A is constructible in X, we write A = A1 ∪ . . . ∪ Ar, with all Ai
locally closed in X. Since f(A) = f(A1)∪ . . .∪f(Ar), it is enough to show that the
image of each composition Ai ↪→ X → Y is constructible. Therefore it is enough
to consider the case A = X.

We prove that f(X) is constructible by induction on dim(X). If X = X1 ∪
. . . ∪Xr is the decomposition of X in irreducible components, we have

f(X) = f(X1) ∪ . . . ∪ f(Xr),

hence it is enough to show that each f(Xi) is irreducible. We may thus assume

that X is irreducible and after replacing Y by f(X), we may assume that Y is

irreducible, too, and f is dominant (note that a constructible subset of f(X) is
constructible also as a subset of Y ). By Theorem 3.4.2, there is an open subset V
of Y such that V ⊆ f(X). We can thus write

(3.5.1) f(X) = V ∪ g(X ′),



72 3. DIMENSION THEORY

where X ′ = X r g−1(V ) is a closed subset of X, with dim(X ′) < dim(X). By
induction, we know that g(X ′) is constructible, and we deduce from (3.5.1) that
f(X) is constructible. �

Exercise 3.5.4. i) Show that if Y is a topological space and A is a
constructible subset of Y , then there is a subset V of A that is open and
dense in A (in particular, V is locally closed in Y ).

ii) Use part i) and Chevalley’s theorem to show that if G is an algebraic
group2 having an algebraic action on the algebraic variety X, then every
orbit is a locally closed subset of X. Deduce that X contains closed orbits.

2An algebraic group is defined like a linear algebraic group, but the variety is not necessarily
affine.



CHAPTER 4

Projective varieties

In this chapter we introduce a very important class of algebraic varieties, the
projective varieties.

4.1. The Zariski topology on the projective space

In this section we discuss the Zariski topology on the projective space, by build-
ing an analogue of the correspondence between closed subsets in affine space and
radical ideals in the polynomial ring. As usual, we work over a fixed algebraically
closed field k.

Definition 4.1.1. For a non-negative integer n, the projective space Pn = Pn
k

is the set of all 1-dimensional linear subspaces in kn+1.

For now, this is just a set. We proceed to endow it with a topology and
in the next section we will put on it a structure of algebraic variety. Note that
a 1-dimensional linear subspace in kn+1 is described by a point (a0, . . . , an) ∈
An+1 r {0}, with two points (a0, . . . , an) and (b0, . . . , bn) giving the same subspace
if and only if there is λ ∈ k∗ such that λai = bi for all i. In this way, we identify
Pn with the quotient of the set An+1 r {0} by the action of k∗ given by

λ · (a0, . . . , an) = (λa0, . . . , λan).

Let π : An+1 r {0} → Pn be the quotient map. We denote the image in Pn of a
point (a0, . . . , an) ∈ An+1 r {0} by [a0, . . . , an].

Let S = k[x0, . . . , xn]. The relevant structure on S, for the study of Pn, is that
of a graded k-algebra. Recall that a graded (commutative) ring R is a commutative
ring that has a decomposition as an Abelian group

R =
⊕
m∈Z

Rm

such that Ri ·Rj ⊆ Ri+j for all i and j. We say that R is N-graded if Rm = 0 for
m < 0.

Note that the definition implies that if R is a graded ring, then R0 is a subring
of R and each Rm is an R0-module, making R an R0-algebra. We say that R
is a graded A-algebra, for a commutative ring A, if R is a graded ring such that
R0 is an A-algebra (in which case R becomes an A-algebra, too). If R and S are
graded rings, a graded homomorphism φ : R→ S is a ring homomorphism such that
φ(Rm) ⊆ Sm for all m ∈ Z.

The polynomial ring S is an N-graded k-algebra, with Sm being the set of
homogeneous polynomials of degree m. In general, if R is a graded ring, a nonzero
element of Rm is homogeneous of degree m. By convention, 0 is homogeneous of

73
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degree m for every m. Given an arbitrary element f ∈ R, if we write

f =
∑
i

fi, with fi ∈ Ri,

then the fi are the homogeneous componenets of f .

Remark 4.1.2. Note that the action of k∗ on An+1r{0} is an algebraic action:
in fact, it is induced by the algebraic action of k∗ on An+1 corresponding to the
homomorphism

S → k[t, t−1]⊗k S, f → f(tx1, . . . , txn).

Exercise 4.1.3. For an ideal I in a graded ring R, the following are equivalent:
i) The ideal I can be generated by homogeneous elements of R.
ii) For every f ∈ I, all homogeneous components of f lie in I.
iii) The decomposition of R induces a decomposition I =

⊕
m∈Z(I ∩Rm).

An ideal that satisfies the equivalent conditions in the above exercise is a ho-
mogeneous (or graded) ideal. Note that if I is a homogeneous ideal in a graded ring
R, then the quotient ring R/I becomes a graded ring in a natural way:

R/I =
⊕
m∈Z

Rm/(I ∩Rm).

We now return to the study of Pn. The starting observation is that while it
does not make sense to evaluate a polynomial in S at a point p ∈ Pn, it makes sense
to say that a homogeneous polynomial vanishes at p: indeed, if f is homogeneous
of degree d and λ ∈ k∗, then

f(λa0, . . . , λan) = λd · f(a0, . . . , an),

hence f(λa0, . . . , λan) = 0 if and only if f(a0, . . . , an) = 0. More generally, given
any f ∈ S, we say that f vanishes at p if every homogeneous component of f
vanishes at p.

Given any homogeneous ideal I of S, we define the zero-locus V (I) of I to be
the subset of Pn consisting of all points p ∈ Pn such that every polynomial f in I
vanishes at p. Like the corresponding notion in the affine space, this notion satisfies
the following basic properties. The proof is straightforward, hence we leave it as
an exercise.

Proposition 4.1.4. The following hold:

1) V (S) = ∅.
2) V (0) = Pn.
3) If I and J are ideals in S with I ⊆ J , then V (J) ⊆ V (I).
4) If (Iα)α is a family of ideals in S, we have⋂

α

V (Iα) = V

(∑
α

Iα

)
.

5) If I and J are ideals in S, then

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

It follows from the proposition that we can put a topology on Pn (the Zariski
topology) in which the closed subsets of Pn are the subsets of the form V (I), where
I is a homogeneous ideal in S.
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Remark 4.1.5. A closed subset Y ⊆ An+1 is invariant by the k∗-action (that
is, λ · Y = Y for every λ ∈ k∗) if and only if the ideal IAn(Y ) ⊆ S is homogeneous
(cf. Lemma 1.7.22). Indeed, if f is homogeneous, then for every λ ∈ k∗ and every
u ∈ An+1, we have f(λu) = 0 if and only if f(u) = 0. We thus see that if I is
a homogeneous ideal, then its zero-locus in An+1 is k∗-invariant. In particular, if
IAn(Y ) is homogeneous, then Y is k∗-invariant. Conversely, if Y is k∗-invariant
and f ∈ IAn(Y ), let us write f =

∑
i fi, with fi ∈ Si. For every u ∈ Y and every

λ ∈ k∗, we have λu ∈ Y , hence

0 = f(λu) =
∑
i≥0

λi · fi(u).

It is easy to see that since this property holds for infinitely many λ, we have
fi(u) = 0 for all i, hence IAn(Y ) is homogeneous.

Remark 4.1.6. The topology on Pn is the quotient topology with respect to
the k∗-action on An+1r{0}. In other words, if π : An+1r{0} → Pn is the quotient
map, then a subset Z of Pn is closed if and only if its inverse image π−1(Z) is closed.
For this, we may assume that Z is nonempty. If π−1(Z) is closed, then it is clear
that π−1(Z)∪ {0} is closed, hence by the previous remark, there is a homogeneous
ideal I ⊆ S such that π−1(Z) ∪ {0} is the zero-locus of I. In this case, it is clear
that Z is the zero-locus of I in Pn. The converse is clear.

We now construct a map in the opposite direction. Given any subset S ⊆ Pn,
let I(S) be the set of polynomials in S that vanish at all points in S. Note that
I(S) is a homogeneous radical ideal of S (the fact that it is homogeneous follows
from the fact that if f ∈ I(S), then all homogeneous components of f lie in I(S)).
This definition satisfies the following properties, that are straightforward to check.

Proposition 4.1.7. The following hold:

1) I(∅) = S.
2) If (Wα)α is a family of subsets of An, then I (

⋃
αWα) =

⋂
α I(Wα).

3) If W1 ⊆W2, then I(W2) ⊆ I(W1).

We now turn to the compositions of the two maps. The first property is tau-
tological.

Proposition 4.1.8. For every subset S of Pn, we have V
(
I(S)

)
= S.

Proof. The proof follows verbatim the proof in the case of affine space (see
Proposition 1.1.8). �

The more interesting statement concerns the other composition. This is the
content of the next proposition, a graded version of the Nullstellensatz.

Proposition 4.1.9. If J ⊆ S is a radical ideal different from S+ = (x0, . . . , xn),
then I

(
V (J)

)
= J .

Note that V (S+) = ∅, hence I
(
V (S+)

)
= S. The ideal S+, which behaves

differently in this correspondence, is the irrelevant ideal.

Proof of Proposition 4.1.9. The inclusion “⊇” is trivial, hence we only
need to prove the reverse inclusion. It is enough to show that every homogeneous
polynomial f ∈ I

(
V (J)

)
lies in J .
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We make use of the map π : An+1 r {0} → Pn. Let Z be the closed subset
of An+1 defined by J , so that Z r {0} = π−1

(
V (J)

)
. Our assumption on f says

that f vanishes on Z r {0}. If deg(f) > 0, then f(0) = 0, and we conclude by
Hilbert’s Nullstellensatz that f ∈ J . On the other hand, if deg(f) = 0 and f 6= 0,
then it follows that V (J) = ∅. This implies that Z ⊆ {0} and another application
of Hilbert’s Nullstellensatz gives S+ ⊆ J . Since J 6= S+ by assumption, we have
J = S, in which case f ∈ J . �

Corollary 4.1.10. The two maps V (−) and I(−) give inclusion reversing
inverse bijections between the set of homogeneous radical ideals in S different from
S+ and the closed subsets of Pn.

Proof. Note that for every closed subset Z of Pn, we have I(Z) 6= S+. Indeed,
if I(Z) = S+, then it follows from Proposition 4.1.8 that

Z = V
(
I(Z)

)
= V (S+) = ∅.

However, in this case I(Z) = I(∅) = S. The assertion in the corollary follows
directly from Propositions 4.1.8 and 4.1.9. �

Exercise 4.1.11. Show that if I is a homogeneous ideal in a graded ring S,
then the following hold:

i) The ideal I is radical if and only if for every homogeneous element f ∈ S,
with fm ∈ I for some m ≥ 1, we have f ∈ I.

ii) The radical rad(I) of I is a homogeneous ideal.

Exercise 4.1.12. Show that if I is a homogeneous ideal in a graded ring S,
then I is a prime ideal if and only if for every homogeneous elements f, g ∈ S with
fg ∈ I, we have f ∈ I or g ∈ I. Deduce that a closed subset Z of Pn is irreducible
if and only if I(Z) is a prime ideal. In particular, Pn is irreducible.

Definition 4.1.13. If X is a closed subset of Pn and IX is the corresponding
homogeneous radical ideal, then SX := S/IX is the homogeneous coordinate ring
of X. Note that this is an N-graded k-algebra. In particular, S is the homogeneous
coordinate ring of Pn.

Suppose that X is a closed subset of Pn, with homogeneous coordinate ring
SX . For every homogeneous g ∈ SX of positive degree, we consider the following
open subset of X:

D+
X(g) = X r V (g̃),

where g̃ ∈ S is any homogeneous polynomial which maps to g ∈ SX . Note that if
h is another homogeneous polynomial of positive degree, we have

D+
X(gh) = D+

X(g) ∩D+
X(h).

Remark 4.1.14. Every open subset of X is of the form X r V (J), where J
is a homogeneous ideal in S. By choosing a system of homogeneous generators for
J , we see that this is the union of finitely many open subsets of the form D+

X(g).

Therefore the open subsets D+
X(g) give a basis of open subsets for the topology of

X.

Definition 4.1.15. For every closed subset X of Pn, we define the affine cone
C(X) over X to be the union in An+1 of the corresponding lines in X. Note that
if X is nonempty, then

C(X) = π−1(Z) ∪ {0}.
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If X = V (I) is nonempty, for a homogeneous ideal I ⊆ S, it is clear that C(X) is
the zero-locus of I in An+1. Therefore C(X) is a closed subset of An for every X.
Moreover, we see that O

(
C(X)

)
= SX .

Exercise 4.1.16. Show that if G is an irreducible algebraic group acting on a
variety X, then every irreducible component of X is invariant under the G-action.

Remark 4.1.17. Let X be a closed subset of Pn, with corresponding homoge-
neous radical ideal IX ⊆ S, and let C(X) be the affine cone over X. Since C(X)
is k∗-invariant, it follows from the previous exercise that the irreducible compo-
nents of C(X) are k∗-invariant, as well. By Remark 4.1.5, this means that the
minimal prime ideals containing IX are homogeneous. They correspond to the irre-
ducible components X1, . . . , Xr of X, so that the irreducible components of C(X)
are C(X1), . . . , C(Xr).

4.2. Regular functions on quasi-projective varieties

Our goal in this section is to define a structure sheaf on Pn. The main obser-
vation is that if F and G are homogeneous polynomials of the same degree, then
we may define a function F

G on the open subset Pn r V (G) by

[a0, . . . , an]→ F (a0, . . . , an)

G(a0, . . . , an)
.

Indeed, if deg(F ) = d = deg(G), then

F (λa0, . . . , λan)

G(λa0, . . . , λan)
=
λd · F (a0, . . . , an)

λd ·G(a0, . . . , an)
=
F (a0, . . . , an)

G(a0, . . . , an)
.

Let W be a locally closed subset in Pn. A regular function on W is a function
f : W → k such that for every p ∈ W , there is an open neighborhood U ⊆ W of p
and homogeneous polynomials of the same degree F and G such that G(q) 6= 0 for
every q ∈ U and

f(q) =
F (q)

G(q)
for all q ∈ U.

The set of regular functions on W is denoted by O(W ). Note that O(W ) is
a k-algebra with respect to the usual operations on functions. For example, if

f1(q) = F1(q)
G1(q) for q ∈ U1 and f2(q) = F2(q)

G2(q) for q ∈ U2, where U1 and U2 are open

neighborhoods of p, then F1G2 +F2G1 and G1G2 are homogeneous polynomials of
the same degree and

f1(q) + f2(q) =
(F1G2 + F2G1)(q)

(G1G2)(q)
for q ∈ U1 ∩ U2.

Moreover, it is clear that if V is an open subset ofW , the restriction to V of a regular
function on W is a regular function of V . We thus obtain in this way a subpresheaf
OW of k-algebras of FunW . In fact, this is a sheaf, as follows immediately from
the fact that regular functions are defined in terms of a local property.

Remark 4.2.1. Note that if W is a locally closed subset of Pn, then the sheaf
OW we defined is the one induced from OPn as in Section 2.3.
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Our first goal is to show that all spaces defined in this way are algebraic vari-
eties. Let Ui be the open subset defined by xi 6= 0. Note that we have

Pn =

n⋃
i=0

Ui.

The key fact is the following assertion:

Proposition 4.2.2. For every i, with 0 ≤ i ≤ n, the map

ψi : An → Ui, ψ(v1, . . . , vn) = [v1, . . . , vi, 1, vi+1, . . . , vn]

is an isomorphism in T opk.

Proof. It is clear that ψi is a bijection, with inverse

φi : Ui → An, [u0, . . . , un]→ (u0/ui, . . . , ui−1/ui, ui+1/ui, . . . , un/ui).

In order to simplify the notation, we give the argument for i = 0, the other cases
being analogous. Consider first a principal affine open subset of An, of the form
D(f), for some f ∈ k[x1, . . . , xn]. Note that if deg(f) = d, then we can write

f(x1/x0, . . . , xn/x0) =
g(x0, . . . , xn)

xd0

for a homogeneous polynomial g ∈ S of degree d. It is then clear that φ−1
0

(
D(f)

)
=

D+
Pn(x0g), hence this is open in U0. Since the principal affine open subsets in An

give a basis for the topology of An, we see that φ0 is continuous.
Consider now an open subset of U0 of the form D+

Pn(h), for some homogeneous

h ∈ S, of positive degree. If we put h0 = h(1, x1, . . . , xn), we see that φ0

(
D+

Pn(h)
)

=

D(h0) is open in An. Since the open subsets of the form D+
Pn(h) give a basis for

the topology of Pn, we conclude that φ0 is a homeomorphism.
We now need to show that if U is open in An and α : U → k, then α ∈ OAn(U)

if and only if α ◦ φ0 ∈ OPn

(
φ−1

0 (U)
)
. If α ∈ OAn(U), then for every point p ∈ U ,

we have an open neighborhood Up ⊆ U of p and f1, f2 ∈ k[x1, . . . , xn] such that

f2(u) 6= 0 and α(u) =
f1(u)

f2(u)
for all u ∈ Up.

As above, we can write

f1(x1/x0, . . . , xn/x0) =
g1(x0, . . . , xn)

xd0
and f2(x1/x0, . . . , xn/x0) =

g2(x0, . . . , xn)

xd0

for some homogeneous polynomials g1, g2 ∈ S of the same degree, in which case we
see that

g2(v) 6= 0 and α
(
φ0(v)

)
=
g1(v)

g2(v)
for all v ∈ φ−1

0 (Up).

Since this holds for every p ∈ U , we see that α◦φ0 is a regular function on φ−1
0 (U).

Conversely, suppose that α ◦ φ0 is a regular function on φ−1
0 (U). This means

that for every q ∈ φ−1
0 (U), there is an open neighborhood Vq ⊆ φ−1

0 (U) of q and
homogeneous polynomials h1, h2 ∈ S of the same degree such that

h2(v) 6= 0 and α
(
φ0(v)

)
=
h1(v)

h2(v)
for all v ∈ Vq.
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In this case, we have

h2(1, u1, . . . , un) 6= 0 and α(u1, . . . , un) =
h1(1, u1, . . . , un)

h2(1, u1, . . . , un)

for all u = (u1, . . . , un) ∈ φ0(Vq). Since this holds for every q ∈ φ−1
0 (U), it follows

that α is a regular function on U . This completes the proof of the fact that φ0 is
an isomorphism. �

Corollary 4.2.3. For every locally closed subset W of Pn, the space (W,OW )
is an algebraic variety.

Proof. It is enough to show the assertion for W = Pn: the general case is
then a consequence of Propositions 2.3.5 and 2.5.4. We have already seen that Pn

is a prevariety. In order to show that it is separated, using Proposition 2.5.6, it is
enough to show that each Ui ∩ Uj is affine and that the canonical morphism

(4.2.1) τi,j : O(Ui)⊗k O(Uj)→ O(Ui ∩ Uj)

is surjective. Suppose that i < j and let us denote by x1, . . . , xn the coordinates
on the image of φi and by y1, . . . , yn the coordinates on the image of φj . Note that
via the isomorphism φi, the open subvariety Ui ∩ Uj is mapped to the open subset

{(u1, . . . , un) ∈ An | uj 6= 0},

which is affine, being a principal affine open subset of An. Similarly, φj maps
Ui ∩ Uj to the open subset

{(u1, . . . , un) ∈ An | ui+1 6= 0}.

Furthermore, since we have

φj ◦ φ−1
i (u1, . . . , un) =

(
u1

uj
, . . . ,

ui
uj
,

1

uj
,
ui+1

uj
, . . . ,

uj−1

uj
,
uj+1

uj
, . . . ,

un
uj

)
for all (u1, . . . , un) ∈ φi(Ui ∩ Uj), we see that the morphism

τi,j : k[x1, . . . , xn]⊗k k[y1, . . . , yn]→ k[x1, . . . , xn, x
−1
j ]

satisfies τ(x`) = x` for all ` and τ(yi+1) = x−1
j . Therefore τi,j is surjective for all i

and j, proving that Pn is separated. �

Example 4.2.4. The map

π : An+1 r {0} → Pn, π(x0, . . . , xn) = [x0, . . . , xn]

is a morphism. Indeed, with the notation in the proof of Proposition 4.2.2, it is
enough to show that for every i, the induced map π−1(Ui) → Ui is a morphism.
However, via the isomorphism Ui ' An, this map becomes

An+1 r V (xi)→ An, (x0, . . . , xn)→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi),

which is clearly a morphism.

Definition 4.2.5. A projective variety is an algebraic variety that is isomorphic
to a closed subvariety of some Pn. A quasi-projective variety is an algebraic variety
that is isomorphic to a locally closed subvariety ofsome Pn.
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Remark 4.2.6. It follows from definition that if X is a projective variety and
Y is a closed subvariety of X, then Y is a projective variety as well. Similarly, if
X is a quasi-projective variety and Z is a locally closed subvariety of X, then Z is
a quasi-projective variety.

Remark 4.2.7. Every quasi-affine variety is quasi-projective: this follows from
the fact that An is isomorphic to an open subvariety of Pn.

Remark 4.2.8. Note that unlike the coordinate ring of an affine variety, the
homogeneous coordinate ring of a projective variety X ⊆ Pn is not an intrinsic
invariant: it depends on the embedding in the projective space.

We next show that the distinguished open subsetsD+
X(g) are all affine varieties1.

Proposition 4.2.9. For every closed subvariety X of Pn and every homoge-
neous element g ∈ SX of positive degree, the variety D+

X(g) is affine.

Proof. Since X is a closed subvariety of Pn and D+
X(g) = D+

Pn(g̃)∩X, where
g̃ ∈ S is any lift of g, it is enough to prove the assertion when X = Pn. Let
U = D+

Pn(g) and put d = deg(g).

Consider the regular functions f0, . . . , fn on U given by fi(u0, . . . , un) =
ud
i

g(u) .

Note that they generate the unit ideal in Γ(U,OPn). Indeed, since g ∈ S+ =
rad(xd0, . . . , x

d
n), it follows that there is m such that gm ∈ (xd0, . . . , x

d
n). If we write

gm =
∑n
i=1 hix

d
i and if we consider the regular functions αi : U → k given by

αi(u1, . . . , un) =
hi(u)

g(u)m−1
,

then
∑n
i=0 fi · αi = 1, hence f0, . . . , fn generate the unit ideal in Γ(U,OPn). By

Proposition 2.3.16, we see that it is enough to show that each subset U∩Ui is affine,
where Ui is the open subset of Pn defined by xi 6= 0. However, by the isomorphism
Ui ' An given in Proposition 4.2.2, the open subset U ∩Ui becomes isomorphic to
the subset

{u = (u1, . . . , un) ∈ An | g(u1, . . . , ui, 1, ui+1, . . . , un) 6= 0},
which is affine by Proposition 1.4.18. This completes the proof. �

Since the open subsets D+
X(g) are affine, they are determined by their rings of

regular functions. Our next goal is to describe these rings.
We begin with some general considerations regarding localization in graded

rings. If S is a graded ring and T ⊆ S is a multiplicative system consisting of
homogeneous elements of S, then the ring of fractions T−1S has an induced grading,
in which

(T−1S)m =

{
f

t
| t ∈ T, f ∈ Sdeg(t)+m

}
.

Note that even if S is N-graded, T−1S is not, in general, N-graded. We will use
two special cases. If g ∈ S is a homogeneous element, then Sg is a graded ring, and
we denote by S(g) its degree 0 part. Similarly, if p is a homogeneous prime ideal in

S and if we take T to be the set of homogeneous elements in Sr p, then T−1S is a
graded ring and we denote its degree 0 part by S(p). Therefore S(g) is the subring

1For another proof of this proposition, making use of the Veronese embedding, see Exer-
cise 4.2.23 below.
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of Sg consisting of fractions h
gm , where h is a homogeneous element of S, of degree

m · deg(g). Similarly, S(p) is the subring of S(p) consisting of all fractions of the

form f
h , where f, g ∈ S are homogeneous, of the same degree, with g 6∈ p. Note

that S(p) is a local ring, with maximal ideal

{f/h ∈ S(p) | f ∈ p}.

Let X be a closed subset of Pn, with corresponding radical ideal IX and ho-
mogeneous coordinate ring SX . Note that if h ∈ SX is homogeneous, of positive
degree, we have a morphism of k-algebras

Φ: (SX)(h) → O
(
D+
X(h)

)
,

such that Φ(f/hm) is given by the function p→ f̃(p)

h̃m(p)
, where f̃ , h̃ ∈ S are elements

mapping to f, h ∈ SX , respectively (it is clear that Φ(f/hm) is independent of the

choice of f̃ and h̃).

Proposition 4.2.10. For every X and h as above, the morphism Φ is an
isomorphism.

Proof. We will prove a more general version in Proposition 4.3.16 below. �

We end this section with the description of the dimension of a closed subset of
Pn in terms of the homogeneous coordinate ring.

Proposition 4.2.11. If X ⊆ Pn is a nonempty closed subset, with homoge-
neous coordinate ring SX , then dim(X) = dim(SX)− 1.

Proof. Note that the morphism π : An+1 r {0} → Pn induces a surjective
morphism f : C(X)r {0} → X whose fibers are 1-dimensional (in fact, they are all
isomorphic to A1 r {0}). It follows from Corollary 3.4.3 that

dim
(
C(X)

)
= 1 + dim(X).

Since SX is the coordinate ring of the affine variety C(X), we obtain the assertion
in the proposition. �

Corollary 4.2.12. If X and Y are nonempty closed subsets of Pn, with
dim(X) + dim(Y ) ≥ n, then X ∩ Y is nonempty and every irreducible component
of X ∩ Y has dimension ≥ dim(X) + dim(Y )− n.

Proof. Note that
(
C(X)∩C(Y )

)
r{0} = C(X ∩Y )r{0}. It is clear C(X)∩

C(Y ) is nonempty, since it contains 0. In this case, it follows from Exercise 3.3.21
that every irreducible component of C(X) ∩ C(Y ) has dimension

≥ dim
(
C(X)

)
+ dim

(
C(Y )

)
− (n+ 1) = dim(X) + dim(Y )− n+ 1.

This implies that C(X)∩C(Y ) is not contained in {0}, hence X ∩Y is non-empty.
Moreover, the irreducible components of C(X)∩C(Y ) are of the form C(Z), where
Z is an irreducible component of X ∩ Y , hence

dim(Z) = dim
(
C(Z)

)
− 1 ≥ dim(X) + dim(Y )− n.

�
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Exercise 4.2.13. A hypersurface in Pn is a closed subset defined by

{[x0, . . . , xn] ∈ Pn | F (x0, . . . , xn) = 0},
for some homogeneous polynomial F , of positive degree. Given a closed subset
X ⊆ Pn, show that the following are equivalent:

i) X is a hypersurface.
ii) The ideal I(X) is a principal ideal.
iii) All irreducible component of X have codimension 1 in Pn.

Note that if X is any irreducible variety and U is a nonempty open subset
of X, then the map taking Z ⊆ U to Z and the map taking W ⊆ X to W ∩
U give inverse bijections (preserving the irreducible decompositions) between the
nonempty closed subsets of U and the nonempty closed subsets of X that have no
irreducible component contained in the X r U . This applies, in particular, to the
open immersion

An ↪→ Pn, (x1, . . . , xn)→ [1, x1, . . . , xn].

The next exercise describes this correspondence at the level of ideals.

Exercise 4.2.14. Let S = k[x0, . . . , xn] and R = k[x1, . . . , xn]. For an ideal J
in R, we put

Jhom :=
(
fhom | 0 6= f ∈ J

)
,

where fhom = x
deg(f)
0 · f(x1/x0, . . . , xn/x0) ∈ S. On the other hand, if a is a

homogeneous ideal in S, then we put a := {h(1, x1, . . . , xn) | h ∈ a} ⊆ R.
An ideal a in S is called x0-saturated if (a : x0) = a (recall that (a : x0) := {u ∈

S | x0u ∈ a}).
i) Show that the above maps give inverse bijections between the ideals in R

and the x0-saturated homogeneous ideals in S.
ii) Show that we get induced bijections between the radical ideals in R and

the homogeneous x0-saturated radical ideals in S. Moreover, a homoge-
neous radical ideal a is x0-saturated if and only if either no irreducible
component of V (a) is contained in the hyperplane (x0 = 0), or if a = S.

iii) The above correspondence induces a bijection between the prime ideals in
R and the prime ideals in S that do not contain x0.

iv) Consider the open immersion

An ↪→ Pn, (u1, . . . , un)→ (1 : u1 : . . . : un),

which allows us to identify An with the complement of the hyperplane
(x0 = 0) in Pn. Show that for every ideal J in R we have VAn(J) =
VPn(Jhom).

v) Show that for every homogeneous ideal a in S, we have VPn(a) ∩An =
VAn(a).

Exercise 4.2.15. Recall that GLn+1(k) denotes the set of invertible (n +
1) × (n + 1) matrices with entries in k. Let PGLn+1(k) denote the quotient
GLn+1(k)/k∗, where k∗ acts on GLn+1(k) by

λ · (ai,j)i,j = (λai,j)i,j .

i) Show that PGLn+1(k) has a natural structure of linear algebraic group,
and that it is irreducible.
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ii) Prove that PGLn+1(k) acts algebraically on Pn.

Definition 4.2.16. Two subsets of Pn are projectively equivalent if they differ
by an automorphism in PGLn+1(k) (we will see later that these are, indeed, all
automorphisms of Pn).

Definition 4.2.17. A linear subspace of Pn is a closed subvariety of Pn defined
by an ideal generated by homogeneous polynomials of degree one. A hyperplane is
a linear subspace of codimension one.

Exercise 4.2.18. Consider the projective space Pn.

i) Show that a closed subset Y of Pn is a linear subspace if and only if the
affine cone C(Y ) ⊆ An+1 is a linear subspace.

ii) Show that if L is a linear subspace in Pn of dimension r, then there is an
isomorphism L ' Pr.

iii) Show that the hyperplanes in Pn are in bijection with the points of “an-
other” projective space Pn, called the dual of Pn, and usually denoted by
(Pn)∗. We denote the point of (Pn)∗ corresponding to the hyperplane H
by [H].

iv) Show that the subset{(
p, [H]

)
∈ Pn × (Pn)∗ | p ∈ H

}
is closed in Pn × (Pn)∗.

v) Show that given two sets of points in Pn

Γ = {P0, . . . , Pn+1} and Γ′ = {Q0, . . . , Qn+1},
such that no (n+ 1) points in the same set lie in a hyperplane, there is a
unique A ∈ PGLn+1(k) such that A · Pi = Qi for every i.

Exercise 4.2.19. Let X ⊆ Pn be an irreducible closed subset of codimension
r. Show that if H ⊆ Pn is a hypersurface such that X is not contained in H, then
every irreducible component of X ∩H has codimension r + 1 in Pn.

Exercise 4.2.20. Let X ⊆ Pn be a closed subset of dimension r. Show that
there is a linear space L ⊆ Pn of dimension (n− r − 1) such that L ∩X = ∅.

Exercise 4.2.21. (The Segre embedding). Consider two projective spaces Pm

and Pn. Let N = (m+ 1)(n+ 1)− 1, and let us denote the coordinates on AN+1

by zi,j , with 0 ≤ i ≤ m and 0 ≤ j ≤ n.

1) Show that the map Am+1 ×An+1 → AN+1 given by

((xi)i, (yj)j)→ (xiyj)i,j

induces a morphism

φm,n : Pm ×Pn → PN .

2) Consider the ring homomorphism

fm,n : k[zi,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n]→ k[x1, . . . , xm, y1, . . . , yn], fm,n(zi,j) = xiyj .

Show that ker(fm,n) is a homogeneous prime ideal that defines in PN the
image of φm,n (in particular, this image is closed).

3) Show that φm,n is a closed immersion.
4) Deduce that if X and Y are (quasi)projective varieties, then X × Y is a

(quasi)projective variety.
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Exercise 4.2.22. (The Veronese embedding). Let n and d be positive integers,
and let M0, . . . ,MN be all monomials in k[x0, . . . , xn] of degree d (hence N =(
n+d
d

)
− 1).

1) Show that there is a morphism νn,d : Pn → PN that takes the point
[a0, . . . , an] to the point

[
M0(a), . . . ,MN (a)

]
.

2) Consider the ring homomorphism fd : k[z0, . . . , zN ] → k[x0, . . . , xn] de-
fined by fd(zi) = Mi. Show that ker(fd) is a homogeneous prime ideal
that defines in PN the image of νn,d (in particular, this image is closed).

3) Show that νn,d is a closed immersion.
4) Show that if Z is a hypersurface of degree d in Pn (this means that

I(Z) = (F ), where F is a homogeneous polyomial of degree d), then there
is a hyperplane H in PN such that for every projective variety X ⊆ Pn,
the morphism νn,d induces an isomorphism betweenX∩Z and νn,d(X)∩H.
This shows that the Veronese embedding allows to reduce the intersection
with a hypersurface to the intersection with a hyperplane.

5) The rational normal curve in Pd is the image of the Veronese embedding
ν1,d : P1 → Pd, mapping [a, b] to [ad, ad−1b, . . . , bd] (more generally, this
term applies to any subvariety of Pd projectively equivalent to this one).
Show that the rational normal curve is the zero-locus of the 2× 2-minors
of the matrix (

z0 z1 . . . zd−1

z1 z2 . . . zd

)
.

Exercise 4.2.23. Use the Veronese embedding to deduce the assertion in
Proposition 4.2.9 from the case when h is a linear form (which follows from Propo-
sition 4.2.2).

Exercise 4.2.24. A plane Cremona transformation is a birational map of P2

into itself. Consider the following example of quadratic Cremona transformation:
φ : P2 → P2, given by φ(x : y : z) = (yz : xz : xy), when no two of x, y, or z are
zero.

1) Show that φ is birational, and its own inverse.
2) Find open subsets U, V ⊂ P2 such that φ induces an isomorphism U ' V .
3) Describe the open sets on which φ and φ−1 are defined.

4.3. A generalization: the MaxProj construction

We now describe a generalization of the constructions in the previous two sec-
tions. A key idea introduced by Grothendieck in algebraic geometry is that it is
often better to study morphisms f : X → Y , instead of varieties X (the case of a
variety being recovered as the special case when Y is a point). More precisely, in-
stead of studying varieties with a certain property, one should extend this property
to morphisms and study it in this context. We begin with one piece of terminology.

Definition 4.3.1. Given a variety Y , a variety over Y is a morphism f : X →
Y , where X is another variety. A morphism between varieties f1 : X1 → Y and
f2 : X2 → Y is a morphism of varieties g : X1 → X2 such that f2 ◦ g = f1. It is
clear that we can compose morphisms of varieties over Y and we get, in this way,
a category that we denote by Var/X.
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Following the above philosophy, we introduce in this section the Proj construc-
tion, that allows us to study projective varieties over Y , when Y is affine (as we will
see, these are simply closed subvarieties of a product Y ×Pn). We will return later
to the case when Y is an arbitrary variety, after discussing quasi-coherent sheaves.

The setting is the following: we fix an N-graded, reduced, finitely generated
k-algebra S =

⊕
m∈N Sm. This implies that S0 is a finitely generated k-algebra

and it is also easy to see that each Sm is a finitely generated S0-module. We put
S+ =

⊕
m>0 Sm.

Exercise 4.3.2. Given homogeneous elements t0, . . . , tn ∈ S+, show that they
generate S as an S0-algebra if and only if they generate S+ as an ideal.

For the sake of simplicity, we always assume that S is generated as an S0-
algebra by S1. This condition is equivalent with the fact that S is isomorphic,
as a graded ring, to the quotient of S0[x0, . . . , xn] by a homogeneous ideal, where
the grading on this polynomial ring is given by the total degree of the monomials.
Note that by the above exercise, our assumption implies that S1 generates S+ as
an ideal.

Consider the affine varieties W = MaxSpec(S) and W0 = MaxSpec(S0) (see
Exercise 2.2.17 for the notation). The inclusion S0 ↪→ S corresponds to a morphism
f : W → W0. The grading on S translates into an algebraic action of the torus k∗

on W , as follows. We have a morphism

α : k∗ ×W →W

corresponding to the k-algebra homomorphism S → k[t, t−1] ⊗k S mapping
∑
i fi

to
∑
i t
ifi, where fi ∈ Si for all i. One can check directly that this gives an action

of k∗ on W , but we prefer to argue as follows: let us choose a surjective graded
homomorphism of S0-algebras φ : S0[x0, . . . , xn] → S, corresponding to a closed
immersion j : W ↪→ W0 × An+1 such that if p : W0 × An+1 → W0 is the first
projection, we have p ◦ j = f . As before, we have a morphism

β : k∗ ×W0 ×An+1 →W0 ×An+1.

Since φ is a graded homomorphism, we see that the two morphisms are compatible
via j, in the sense that

j
(
α(λ,w)

)
= β

(
λ, j(w)

)
for all λ ∈ k∗, w ∈W.

It is straightforward to check that

β(λ,w0, x0, . . . , xn) = (w0, λx0, . . . , λxn) for all λ ∈ k∗, w0 ∈W0, (x0, . . . , xn) ∈ An+1.

Therefore β gives an algebraic action of k∗ on W0 × An+1, and thus α gives an
algebraic action of k∗ on W . We will keep using this embedding for describing the
action of k∗ on W . To simplify the notation, we will write λ · w for α(λ,w).

Lemma 4.3.3. Given the above action of k∗ on W , the following hold:

i) An orbit consists either of one point or it is 1-dimensional.
ii) A point is fixed by the k∗-action if and only if it lies in V (S+).

iii) If O is a 1-dimensional orbit, then O is a closed subset of W r V (S+),
O ' A1, and O ∩ V (S+) consists of one point.

Proof. By embedding W in W0 × An+1 as above, we reduce the assertions
in the lemma to the case when W = W0 ×An+1, in which case they are all clear.
Note that via this embedding, we have V (S+) = W0 × {0}. �
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Remark 4.3.4. By arguing as in Remark 4.1.5, we see that a closed subset
Z ⊆ W is invariant by the k∗-action (that is, λ · Z = Z for every λ ∈ k∗) if and
only if the corresponding ideal IW (Z) is homogeneous.

Definition 4.3.5. Given S as above, we define MaxProj(S) to be the set of
one-dimensional orbit closures for the action of k∗ on W . Since every such orbit
is clearly irreducible, being the image of a morphism k∗ → W , it follows from
Lemma 4.3.3 and Remark 4.3.4 that these orbit closures are in bijection with the
homogeneous prime ideals q ⊆ S such that S+ 6⊆ q and dim(S/q) = 1.

We put a topology on X = MaxProj(S) by declaring that a subset is closed
if it consists of all 1-dimensional orbit closures contained in some torus-invariant
closed subset of W . Equivalently, the closed subsets are those of the form

V (I) = {q ∈ MaxProj(S) | I ⊆ q},

for some homogeneous ideal I ⊆ S. The assertions in the next lemma, which are
straightforward to prove, imply that this gives indeed a topology on MaxProj(S).

Lemma 4.3.6. With the above notation, the following hold:

i) We have V (0) = MaxProj(S) and V (S) = ∅.
ii) For every two homogeneous ideals I and J in S, we have

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

iii) For every family (Iα)α of homogeneous ideals in S, we have⋂
α

V (Iα) = V

(∑
α

Iα

)
.

Since every homogeneous ideal is generated by finitely many homogeneous el-
ements, we see that every open set can be written as a finite union of sets of the
form

D+
X(f) = {q ∈ MaxProj(S) | f 6∈ q},

where f ∈ S is a homogeneous element. In fact, we may take f of positive degree,
since if t0, . . . , tn ∈ S1 generate S+, we have

D+
X(f) =

n⋃
i=0

D+
X(tif).

As a special case of this equality for f = 1, we have

MaxProj(S) = D+
X(t0) ∪ . . . ∪D+

X(tn).

Remark 4.3.7. It is clear that if I is a homogeneous ideal in S, then V (I) =
V
(
rad(I)

)
. Moreover, if

I ′ = {f ∈ S | f · S+ ⊆ rad(I)},

then V (I) = V (I ′).

For future reference, we give the following variant of graded Nullstellensatz.

Proposition 4.3.8. Let S be a graded ring as in the proposition. If I is a
homogeneous, radical ideal in S, and f ∈ S is homogeneous, such that f ∈ q for all
q ∈ MaxProj(S) with q ⊇ I, then f · S+ ⊆ I. If deg(f) > 0, then f ∈ I.
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Proof. We first prove the last assertion, assuming deg(f) > 0. After writing
S as a quotient of a polynomial ring over S0, we see that we may assume that S =
A[x0, . . . , xn], with the standard grading. Recall that we take W0 = MaxSpec(S0)
and W = MaxSpec(S) = W0 ×An+1. Let Y ⊆ W be the closed subset defined by
I. Note that W is k∗-invariant. Our assumption says that f vanishes on {w0}×L,
whenever L is a line in An+1 with {w0} ×An+1 ⊆ Y . On the other hand, since
deg(f) > 0, we see that f automatically vanishes along W0×{0}, hence f vanishes
along Y (we use the fact that Y is a union of k∗-orbits). We thus conclude that
f ∈ I. The first assertion in the proposition now follows by applying what we know
to each product fg, with g ∈ S1. �

Given an ideal q ∈ MaxProj(S), let T denote the set of homogeneous elements
in S r q. Recall that the ring of fractions T−1S carries a natural grading, whose
degree 0 part is denoted by S(q). This is a local ring, with maximal ideal mq :=

q · T−1S ∩ S(q). Similarly, given a homogeneous element f ∈ S, the localization Sf
carries a natural grading, whose degree 0 part is denoted S(f).

Lemma 4.3.9. For every t ∈ S1, the following hold:

i) We have an isomorphism of graded rings St ' S(t)[x, x
−1].

ii) Every homogeneous ideal in St is of the form
⊕

m∈Z(I ∩ S(t))t
m.

iii) We have a homeomorphism between D+(t) and MaxSpec(S(t)).
iv) For every q ∈ MaxProj(S), the residue field of S(q) is equal to k.

Proof. Since the element t
1 ∈ St has degree 1 and is invertible, it follows

easily that the homomorphism of graded S(t)-algebras

S(t)[x, x
−1]→ St

that maps x to t
1 is an isomorphism. This gives i) and the assertion in ii) is

straightforward to check.
It is clear that localization induces a bijection between the homogeneous prime

ideals in S that do not contain t and the homogeneous prime ideals in St. Moreover,
it follows from ii) that every such prime ideal in St is of the form

⊕
m∈Z ptm, for a

unique prime ideal p in S(t). If q ⊆ S corresponds to p ⊆ S(t), then

(4.3.1) (S/q)t ' (S(t)/p)[x, x−1],

hence

dim(S/q) = dim
(
(S/q)t

)
= dim(S(t)/p) + 1.

Therefore q lies in MaxProj(S) if and only if p is a maximal ideal in S(t). This gives

the bijection between D+(t) and MaxSpec(S(t)) and it is straightforward to check,
using the definitions of the two topologies, that this is a homeomorphism.

Finally, given any q ∈ MaxProj(S), we can find t ∈ S1 such that q ∈ D+(t). If
p is the corresponding ideal in S(t), then the isomorphism (4.3.1) implies that the
residue field of S(q) is isomorphic as a k-algebra to the residue field of (S(t))p, hence
it is equal to k. �

We now define a sheaf of functions on X = MaxProj(S), with values in k, as
follows. For every open subset U in X, let OX(U) be the set of functions φ : U → k
with the following property: for every x ∈ U , there is an open neighborhood Ux ⊆ U
of x and homogeneous elements f, g ∈ S of the same degree such that for every
q ∈ Ux, we have g 6∈ q and φ(q) is equal to the image of fg in the residue field of S(q),
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which is equal to k by Lemma 4.3.9. It is straightforward to check that OX(U) is
a k-subalgebra of FunX(U) and that, with respect to restriction of functions, OX
is a sheaf. This is the sheaf of regular functions on X. From now on, we denote by
MaxProj(S) the object (X,OX) in T opk.

Remark 4.3.10. It is clear from the definition that we have a morphism in
T opk

MaxProj(S)→ MaxSpec(S0)

that maps q to q ∩ S0.

Proposition 4.3.11. If we have a surjective, graded homomorphism φ : S → T ,
then we have a commutative diagram

MaxProj(T )

��

j // MaxProj(S)

f

��
MaxSpec(T0)

i // MaxProj(S0),

in which i is a closed immersion and j given an isomorphism onto V (I) (with the
induced sheaf from the ambient space)2, where I = ker(φ).

Proof. Note first that since φ is surjective, the induced homomorphism S0 →
T0 is surjective as well, hence the induced morphism i : MaxSpec(T0)→ MaxSpec(S0)
is a closed immersion. Since φ is graded and surjective, we have T+ = φ(S+) and
S+ = φ−1(T+), hence S+ ⊆ φ−1(p) if and only if T+ ⊆ p. We can thus define
j : MaxProj(T ) → MaxProj(S) by j(p) = φ−1(p). It is straightforward to see that
the diagram in the proposition is commutative and that j gives a homeomorphism
of MaxProj(T ) onto the closed subset V (I) of MaxProj(S). Furthermore, it is easy
to see, using the definition, that if U is an open subset of V (I), then a function
φ : U → k has the property that φ ◦ j is regular on j−1(U) if and only if it can be
locally extended to a regular function on open subsets in MaxProj(S). This gives
the assertion in the proposition. �

We now consider in detail the case when S = A[x0, . . . , xn], with the standard
grading. As before, let W0 = MaxSpec(A). We have seen that a point p in X =
MaxProj(S) corresponds to a subset in W0 ×An+1, of the form {w0} × L, where
L is a 1-dimensional linear subspace in kn+1, corresponding to a point in Pn. We
thus have a bijection between MaxProj(S) and W0×Pn. Moreover, since x0, . . . , xn
span S1, we see that

X =

n⋃
i=0

D+
X(xi).

The above bijection induces for every i a bijection between D+
X(xi) and W0 ×

D+
Pn(xi). In fact, this is the same as the homeomorphism between D+

X(xi) and

MaxSpec
(
A[x0, . . . , xn](xi)

)
= MaxSpec

(
A[x0/xi, . . . , xn/xi]

)
given by assertion iii) in Lemma 4.3.9. Furthermore, arguing as in the proof of
Proposition 4.2.2, we see that each of these homeomorphisms gives an isomorphism
of objects in T opk. We thus obtain the following

2Once we will show that MaxProj(S) and MaxProj(T ) are algebraic varieties, this simply
says that j is a closed immersion.
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Proposition 4.3.12. If S = A[x0, . . . , xn], with the standard grading, and
W0 = MaxSpec(A), then we have an isomorphism

MaxProj(S) 'W0 ×Pn

of varieties over W0.

Corollary 4.3.13. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then MaxProj(S) is a quasi-projective variety.

Proof. By the assumption on S, we have a graded, surjective morphism of
S0-algebras

S0[x0, . . . , xn]→ S.

If W0 = MaxSpec(S0), then it follows from Propositions 4.3.11 and 4.3.12 that we
have a closed immersion

MaxProj(S) ↪→ MaxProj
(
S0[x0, . . . , xn]

)
'W0 ×Pn,

which gives the assertion in the corollary, since a product of quasi-projective vari-
eties is quasi-projective by Exercise 4.2.21. �

Remark 4.3.14. If X is a closed subset of Pn, with homogeneous coordinate
ring SX , then MaxProj(SX) ' X. More generally, suppose that A is a reduced,
finitely generated k-algebra, W0 = MaxSpec(A), and X is a closed subvariety of
W0×Pn. If I is a radical, homogeneous ideal in A[x0, . . . , xn] such that X = V (I),
then

X ' MaxProj
(
A[x0, . . . , xn]/I

)
.

Indeed, the surjection

A[x0, . . . , xn]→ A[x0, . . . , xn]/I

induces by Proposition 4.3.11 a closed immersion

ι : MaxProj
(
A[x0, . . . , xn]/I

)
↪→ MaxProj

(
A[x0, . . . , xn]

)
.

It is then clear that, via the isomorphism MaxProj
(
A[x0, . . . , xn]

)
' W0 × Pn

provided by Proposition 4.3.12, the image of ι is equal to X.

Proposition 4.3.15. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then for every homogeneous f ∈ S, of positive
degree, the open subset D+

X(f) ⊆ X = MaxProj(S) is affine.

Proof. By Proposition 4.3.11, it is enough to prove this when S = S0[x0, . . . , xn].
The argument in this case follows the one in the proof of Proposition 4.2.9. �

We now give a generalization of Proposition 4.2.10 describing the regular func-
tions on the affine open subsets D+

X(f) in MaxProj(S).

Proposition 4.3.16. Let S be a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, and let X = MaxProj(S). For every homogeneous
f ∈ S, of positive degree, consider the homomorphism

Φ: S(f) → O
(
D+
X(f)

)
that maps g

fm to the function taking q ∈ D+
X(f) to the image of g

fm in the residue

field of S(q), which is isomorphic to k. Then Φ is an isomorphism.
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Proof. The proof is similar to that of Proposition 1.4.7. We first show that
Φ is injective. Suppose that g

fm lies in the kernel of Φ. In this case, for every

q ∈ X r V (f), we have g ∈ q. This implies that fg ∈ q for every q ∈ X, hence
fg = 0 by Proposition 4.3.8, hence g

fm = 0 in (SX)(f). This proves the injectivity

of Φ.
In order to prove the surjectivity of Φ, consider φ ∈ O

(
D+
X(f)

)
. By hypothesis,

and using the quasi-compactness of D+
X(f), we may write

D+
X(f) = V1 ∪ . . . ∪ Vr,

for some open subsets Vi such that for every i, there are gi, hi ∈ S homogeneous of
the same degree such that for every q ∈ Vi, we have hi 6∈ q and φ(q) is the image of
gi
hi

in the residue field of S(q). We may assume that Vi = XrV (fi) for 1 ≤ i ≤ r, for

some homogeneous fi ∈ S, of positive degree. Since hi 6∈ q for every q ∈ XrV (fi),
it follows from Proposition 4.3.8 that fi ∈ rad(hi). After possibly replacing fi by
a suitable power, we may assume that fi ∈ (hi) for all i. Finally, after multiplying
both gi and hi by the same homogeneous element, we may assume that fi = hi for
all i.

We know that for u ∈ X r V (gigj) the two fractions gi(u)
hi(u) and

gj(u)
hj(u) have the

same image in the residue field of every S(q). By the injectivity statement we have
already proved, this implies that

gi
hi

=
gj
hj

in Shihj .

Therefore there is a positive integer N such that

(hihj)
N (gihj − gjhi) = 0 for all i, j.

After replacing each gi and hi by gih
N
i and hN+1

i , respectively, we see that we may
assume that

gihj − gjhi = 0 for all i, j.

On the other hand, since

D+
X(f) =

r⋃
i=1

D+
X(hi),

we have

V (f) = V (h1, . . . , hr),

and therefore Proposition 4.3.8 implies that f ∈ rad(h1, . . . , hr). We can thus write

fm =

r∑
i=1

aihi for some m ≥ 1 and a1, . . . , ar ∈ S.

Moreover, by only considering the terms in Sm·deg(f), we see that we may assume
that each ai is homogeneous, with deg(ai) + deg(hi) = m · deg(f).

In order to complete the proof, it is enough to show that

φ = Φ

(
a1g1 + . . .+ argr

fm

)
.

Note that for q ∈ D+
X(hj), we have

gj
hj

=
a1g1 + . . .+ argr

fm
in S(q)
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since

hj ·
r∑
i=1

aigi =

r∑
i=1

aihigj = fmgj .

This completes the proof. �

Remark 4.3.17. Suppose that S is an N-graded k-algebra as above and

f : X = MaxProj(S)→ MaxSpec(S0) = Y

is the corresponding morphism. If a ∈ S0 and we consider the N-graded k-algebra
Sa, then we have a map

j : MaxProj(Sa)→ MaxProj(S)

that maps q to its inverse image in S. This gives an open immersion, whose image
is f−1

(
DY (a)

)
: this follows by choosing generators t1, . . . , tr ∈ S1 of S as an S0-

algebra, and by showing that for every i, the induced map

MaxSpec
(
(Sa)(ti)

)
→ MaxSpec

(
S(ti)

)
is an open immersion, with image equal to the principal affine open subset corre-
sponding to a

1 ∈ S(ti).

Remark 4.3.18. Suppose again that S is an N-graded k-algebra as above and
f : X = MaxProj(S) → MaxSpec(S0) = Y is the corresponding morphism. If J
is an ideal in S0, then the inverse image f−1

(
V (J)

)
is the closed subset V (J · S).

This is the image of the closed immersion

MaxProj
(
S/rad(J · S)

)
↪→ MaxProj(S)

(see Proposition 4.3.11).

Remark 4.3.19. For every S as above, we have a surjective morphism

π : MaxSpec(S) r V (S+)→ MaxProj(S).

Since all fibers are of dimension 1 (in fact, they are all isomorphic to A1 r {0}), we
conclude that

dim
(
MaxProj(S)

)
= dim

(
MaxSpec(S) r V (S+)

)
− 1 ≤ dim(S)− 1.

Moreover, this is an equality, unless every irreducible component of maximal dimen-
sion of MaxSpec(S) is contained in V (S+), in which case we have dim(S) = dim(S0).

Exercise 4.3.20. Show that if S is an N-graded k-algebra as above and X =
MaxProj(S), then for every q ∈ X, there is a canonical isomorphism

OX,q ' S(q).

Exercise 4.3.21. Let φ : S → T be a graded k-algebra homomorphism, where
both S and T are N-graded k-algebras, as above. Show that if φm : Sm → Tm is an
isomorphism for m� 0, then we have an isomorphism MaxProj(T )→ MaxProj(S)
that maps q to φ−1(q).

Exercise 4.3.22. Let S be an N-graded k-algebra as above. Given d ≥ 1, we
consider the N-graded k-algebra

S(d) =
⊕
j≥0

S
(d)
j , where S

(d)
j = Sjd.

i) Show that S(d) is generated in degree 1.
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ii) Show that the inclusion S(d) ↪→ S induces an isomorphism of algebraic
varieties MaxProj(S)→ MaxProj(S(d)) that maps an ideal p to p ∩ S(d).



CHAPTER 5

Proper, finite, and flat morphisms

In this chapter we discuss an algebraic analogue of compactness for algebraic
varieties, completeness, and a corresponding relative notion, properness. In particu-
lar, we prove Chow’s lemma, which relates arbitrary complete varieties to projective
varieties. As a special case of proper morphisms, we have finite morphisms, which
we have already encountered in the case of morphisms of affine varieties. We prove
an irreducibility criterion for varieties that admit a proper morphism onto an irre-
ducible variety, such that all fibers are irreducible, of the same dimension; we also
prove the semicontinuity of fiber dimension for proper morphisms. Finally we dis-
cuss an algebraic property, flatness, that is very important in the study of families
of algebraic varieties.

5.1. Proper morphisms

We will define a notion that is analogous to that of compactness for usual
topological spaces. Recall that the Zariski topology on algebraic varieties is quasi-
compact, but not Hausdorff. As we have seen, separatedness is the algebraic coun-
terpart to the Hausdorff property. A similar point of view allows us to define the
algebraic counterpart of compactness. The key observation is the following.

Remark 5.1.1. Let us work in the category of Hausdorff topological spaces.
A topological space X is compact if and only if for every other topological space
Z, the projection map p : X × Z → Z is closed. More generally, a continuous
map f : X → Y is proper (recall that this means that for every compact subspace
K ⊆ Y , its inverse image f−1(K) is compact) if and only if for every continuous
map g : Z → Y , the induced map X ×Y Z → Z is closed.

Definition 5.1.2. A morphism of varieties f : X → Y is proper if for every
morphism g : Z → Y , the induced morphism X ×Y Z → Z is closed. A variety X
is complete if the morphism from X to a point is proper, that is, for every variety
Z, the projection X × Z → Z is closed.

Remark 5.1.3. Note that if f : X → Y is a proper morphism, then it is closed
(simply apply the definition to the identity map Z = Y → Y .

We collect in the next proposition some basic properties of this notion.

Proposition 5.1.4. In what follows all objects are algebraic varieties.

i) If f : X → Y and g : Y → Z are proper morphisms, then g ◦ f is a proper
morphism.

ii) If f : X → Y is a proper morphism, then for every morphism g : Z → Y ,
the induced morphism X ×Y Z → Z is proper.

iii) Every closed immersion i : X ↪→ Y is proper.

93



94 5. PROPER, FINITE, AND FLAT MORPHISMS

iv) If X is a complete variety, then any morphism f : X → Y is proper.
v) If f : X → Y is a morphism and Y has an open cover Y = U1∪. . .∪Ur such

that each induced morphism f−1(Ui)→ Ui is proper, then f is proper.

Proof. Under the assumption in i), given any morphism h : W → Z, consider
the commutative diagram with Cartesian squares:

X ×Y Y ×Z W

��

p // Y ×Z W

��

q // W

��
X

f // Y
g // Z.

In this case, the big rectangle is Cartesian. The assumption implies that the mor-
phisms p and q are closed, hence the composition q ◦ p is closed. This gives i).

For ii), we argue similarly: given a morphism h : W → Z, consider the commu-
tative diagram with Cartesian squares:

X ×Y Z ×Z W

p

��

// X ×Y Z

q

��

// X

f

��
W // Z

g // Y.

Since the big rectangle is Cartesian, it follows from the hypothesis that p is closed.
This proves that q is proper.

If i : X ↪→ Y is a closed immersion, then for every morphism g : Z → Y , the
induced morphism X ×Y Z → Z is a closed immersion, whose image is g−1

(
i(X)

)
(see Example 2.4.8). Since every closed immersion is clearly closed, it follows that
i is proper.

Suppose now that X is a complete variety and f : X → Y is an arbitrary
morphism. We can factor f as

X
if
↪→ X × Y p−→ Y,

where if is the graph morphism associated to f and p is the projection. The map p
is proper, by property ii), since X is complete, and if is proper by iii), being a closed
immersion, since X and Y are separated. Therefore the composition f = p ◦ if is
proper, proving iv).

Under the assumptions in v), consider a morphism g : Z → Y and let p : X ×Y
Z → Z be the induced morphism. We have an induced open cover Z =

⋃r
i=1 g

−1(Ui)
and for every i, we have an induced morphism

pi : p
−1
(
g−1(Ui)

)
= f−1(Ui)×Ui

g−1(Ui)→ g−1(Ui).

Since f−1(Ui)→ Ui is proper, it follows that pi is closed, which easily implies that
p is closed. �

Remark 5.1.5. It follows from property ii) in the proposition that if f : X → Y
is a proper morphism, then for every y ∈ Y , the fiber f−1(y) is a complete variety
(possibly empty).

Exercise 5.1.6. Show that ifX is a connected, complete variety, then Γ(X,OX) =
k. Deduce that a complete variety is also affine if and only if it is a finite set of
points.
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We state the following proposition in a way that applies to several classes of
morphisms.

Proposition 5.1.7. Suppose that P is a class of morphisms between algebraic
varieties that satisfies the following conditions:

i) Every closed immersion is in P.
ii) If f : X → Y and g : Y → Z are in P, then g ◦ f is in P.
iii) Given a Cartesian diagram

X ′

��

f ′ // Y ′

��
X

f // Y

with f in P, then f ′ is in P.

Under these assumptions, if we have morphisms of algebraic varieties f : X → Y
and g : Y → Z such that g ◦ f is in P, then f is in P.

Proof. Consider the Cartesian diagram

X ×Z Y

p

��

q // Y

g

��
X

g◦f // Z.

Since g ◦f is in P, it follows that q is in P. Let h : X → X×Z Y be given by h(x) =(
x, f(x)

)
. Note that h is a closed immersion (see assertion iv) in Proposition 2.5.4),

hence it is in P. Since f = q ◦ h, we conclude that f is in P. �

Remark 5.1.8. By Proposition 5.1.4, we may apply the above the above propo-
sition if we take P to be the class of proper morphisms. It is clear that we can
also apply it by taking P to consist of all closed immersions or of all locally closed
immersions.

The following is the main result of this section.

Theorem 5.1.9. The projective space Pn is a complete variety.

Proof. We need to show that given any variety Y , the projection morphism
p : Pn × Y → Y is closed. If we consider an affine open cover Y =

⋃r
i=1 Ui, it is

enough to show that each projection Pn × Ui → Ui is closed. Therefore we may
and will assume that Y is affine, say Y = MaxSpec(A) and we need to show that
the canonical morphism

f : X = MaxProj
(
A[x0, . . . , xn]

)
→ Y

is closed.
Let W = V (I) be a closed subset of X. Recall that if

I ′ = {f ∈ A[x0, . . . , xn] | f · (x0, . . . , xn) ⊆ rad(I)},
then V (I ′) = V (I). We need to show that if m 6∈ f(W ), then there is h ∈ A such
that m ∈ DY (h) and DY (h) ∩ f(W ) = ∅. For this, it is enough to find h ∈ A such
that h ∈ I ′ and h 6∈ m. Indeed, in this case, for every q ∈ W = V (I ′), we have
h ∈ q ∩A, hence q ∩A 6∈ DY (h).
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For every i, with 0 ≤ i ≤ n, consider the affine open subset Ui = DX(xi) of
X. Since Ui is affine, with O(Ui) = A[x0, . . . , xn](xi) = A[x0/xi, . . . , xn/xi], and
W ∩ Ui is the open subset defined by

I(xi) = {g/xmi | m ≥ 0, g ∈ I ∩A[x0, . . . , xn]m},

the condition that m 6∈ f(Ui) is equivalent to the fact that

m ·A[x0/xi, . . . , xn/xi] + I(xi) = A[x0/xi, . . . , xn/xi].

By putting the condition that 1 lies on the left-hand side and by clearing the
denominators, we conclude that

xmi ∈ m ·A[x0, . . . , xn] + I for some m ∈ N.

Since such a condition holds for all i, we conclude that if N � 0 then

(x0, . . . , xn)N ⊆ m ·A[x0, . . . , xn] + I.

This implies

Am[x0, . . . , xn]N ⊆ m ·Am[x0, . . . , xn]N + (I ·Am[x0, . . . , xn])N

and we deduce from Nakayama’s lemma that

Am[x0, . . . , xn]N ⊆ (I ·Am[x0, . . . , xn])N .

This implies that there is h ∈ Arm such that h · (x0, . . . , xn)N ⊆ I, hence h ∈ I ′.
This completes the proof of the theorem. �

Corollary 5.1.10. Every projective variety is complete. Moreover, every mor-
phism of varieties f : X → Y , with X projective, is proper; in particular, it is closed.

Proof. This follows from the theorem, using various assertions in Proposi-
tion 5.1.4. Since X is a projective variety, there is a closed immersion i : X ↪→ Pn

for some n. Note that i is proper by assertion iii) in the proposition and Pn is
complete by the theorem, hence we conclude that X is complete, using assertion
i) in the proposition. The fact that every morphism X → Y is proper now follows
from assertion iv) in the proposition. �

Corollary 5.1.11. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then the canonical morphism f : MaxProj(S) →
MaxSpec(S0) is proper.

Proof. The morphism f factors as

MaxProj(S)
i
↪→ MaxSpec(S0)×Pn p−→ MaxSpec(S0),

where i is a closed immersion and p is the projection. Since Pn is complete, we
deduce that p is proper by assertion ii) in Proposition 5.1.4 and i is a closed im-
mersion by assertion iii) in the proposition. We thus conclude that f is proper by
assertion i) in the proposition. �

For the sake of completeness, we mention the following embedding theorem.
Its proof is more involved (see, for example, [Con07]).
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Theorem 5.1.12 (Nagata, Deligne). For every algebraic variety X, there is an
open immersion i : X ↪→ Y , where Y is complete. More generally, every morphism
of algebraic varieties f : X → Z factors as a composition

X
i
↪→ Y

p−→ Z,

with i an open immersion and p a proper morphism.

The next exercise deals with an important example of a proper, birational
morphism: the blow-up of the affine space at the origin.

Exercise 5.1.13. Thinking of Pn−1 as the set of lines in An, define the blow-up
of An at 0 as the set

Bl0(An) :=
{(
P, [`]

)
∈ An ×Pn−1 | P ∈ `

}
.

1) Show that Bl0(An) is a closed subset of An ×Pn−1.
2) Show that the restriction of the projection onto the first component gives

a morphism π : Bl0(An)→ An that is an isomorphism over An r {0}.
3) Show that π−1(0) ' Pn−1.
4) Show that π is a proper morphism.

5.2. Chow’s lemma

In this section we discuss a result that is very useful in reducing statements
about complete varieties to the case of projective varieties. More generally, it allows
reducing statements about proper morphisms to a special case of what we will later
define as projective morphisms. In order to make things more transparent, we begin
with the statement in the absolute case.

Theorem 5.2.1. (Chow’s lemma) If X is a complete variety, then there is
a projective variety Y and a morphism g : Y → X that induces an isomorphism
between dense open subsets of Y and X.

Here is the relative version of the above result:

Theorem 5.2.2. (Chow’s lemma, relative version) If f : X → Z is a proper
morphism of algebraic varieties, then there is a proper morphism g : Y → X that
satisfies the following conditions:

i) The morphism g induces an isomorphism between dense open subsets of
Y and X.

ii) The composition f ◦ g factors as

Y
i
↪→ Z ×PN p−→ Z,

where i is a closed immersion, N is a positive integer, and p is the pro-
jection onto the first factor.

Of course, it is enough to only prove the relative statement. We give the proof
following [Mum88].

Proof of Theorem 5.2.2. If g satisfies ii), then it is automatically proper,
since f ◦ g is a proper morphism (see Remark 5.1.8). We first note that we may
assume that X is irreducible. Indeed, if X1, . . . , Xr are the irreducible components
of X and if we can construct morphisms Yi → Xi as in the theorem, then we have
an induced morphism Y =

⊔
i Yi → X which satisfies the required conditions (note
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that if we have closed immersions Yi ↪→ Z × Pni , then we can construct a closed
immersion Y ↪→ Z×Pd, where d+ 1 =

∑r
i=1(ni + 1), by embedding the Pni in Pd

as disjoint linear subspaces).
Suppose now that X is irreducible and consider an affine open cover X =

U1∪ . . .∪Un. Since each Ui is an affine variety, it admits a locally closed immersion
in a projective space Pmi . We thus obtain a morphism Ui ↪→ Z × Pmi which is
again a locally closed immersion (see Remark 5.1.8) and we denote its image by Ui.
Using the Segre embedding we see that we have a closed immersion

U1 ×Z . . .×Z Un ↪→ Z ×Pm1 × . . .×Pmn ↪→ Z ×PN ,

where N + 1 =
∏
i(mi + 1).

Let U∗ = U1 ∩ . . . ∩ Un. Since X is irreducible, U∗ is a nonempty open subset
of X. We consider two locally closed immersions. First, we have

α : U∗ → U1 ×Z . . .×Z Un
that on each component is given by the corresponding inclusion map. This is a
locally closed immersion since it factors as the composition

U∗ → U∗ ×Z × . . .×Z U∗ → U1 ×Z . . .×Z Un,

with the first map being a diagonal map (hence a closed immersion) and the second
being a product of open immersions (hence an open immersion). We denote by W
the closure of α(U∗). Since W is a closed subvariety of U1 ×Z . . . ×Z Un, we see
that the canonical morphism W → Z factors as

W ↪→ Z ×PN → Z,

where the first morphism is a closed immersion and the second morphism is the
projection onto the first component.

We also consider the map

β : U∗ → X ×Z U1 ×Z . . .×Z Un
that on each component is given by the corresponding inclusion. Again, this is a
locally closed immersion, and we denote the closure of its image by Y . It is clear
that the projection onto the last n components

X ×Z U1 ×Z . . .×Z Un → U1 ×Z . . .×Z Un
induces a morphism q : Y →W , while the projection onto the first component

X ×Z U1 ×Z . . .×Z Un → X

induces a morphism g : Y → X. The restriction of g to U∗ is the identity, hence g
is birational. Note that q is a closed map, since f is proper. In particular, since its
image contains the dense open subset U∗, it follows that q is surjective.

The key assertion is that q is an isomorphism. Once we know this, we see that
f ◦ g factors as

Y ↪→ Z ×PN → Z,

with the first map being a closed immersion, and therefore g has the required
properties.

In order to show that q is an isomorphism, we consider for every i the map

αi : Ui ↪→ X ×Z Ui,
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given by the inclusion on each component. This is again a locally closed immersion.
Moreover, since the maps

Ui ↪→ X ×Z Ui and Ui ↪→ Ui ×Z Ui
are closed immersions (as the graphs of the inclusion maps Ui ↪→ X and Ui ↪→ Ui,
respectively), it follows that

αi(Ui) ∩ (X ×Z Ui) = {(u, u) | u ∈ Ui} = αi(Ui) ∩ (Ui ×Z Ui).
Consider the projection map

π1,i : X ×Z U1 ×Z . . .×Z Un → X ×Z Ui.

Since π1,i(Y ) ⊆ αi(U∗) = αi(Ui), we deduce that

Vi := Y ∩ (X ×Z U1 ×Z . . .×Z Ui ×Z . . .×Z Un)

= Y ∩ (Ui ×Z U1 ×Z . . .×Z Un) = Y ∩ {(u0, u1, . . . , un) | u0 = ui ∈ Ui}.
The first formula for Vi shows that Vi = q−1(V ′i ), where

V ′i = W ∩ U1 ×Z . . .×Z Ui ×Z . . .×Z Un
is an open subset of W . From the second formula for V ′i we deduce that Y =
V1 ∪ . . . ∪ Vn and since q is surjective, it follows that W = V ′1 ∪ . . . ∪ V ′n.

In order to conclude the proof, it is thus enough to show that each induced
morphism Vi → V ′i is an isomorphism. We define the morphism

γi : V
′
i → X ×Z U1 ×Z . . .×Z Un

by
γi(u1, . . . , un) = (ui, u1, . . . , un).

This is well-defined, and since it maps U∗ to U∗, it follows that its image lies inside
Y . Moreover, we clearly have q ◦ γi(u1, . . . , un) = (u1, . . . , un); in particular, the
image of γi lies inside Vi. Finally, if u = (u0, u1, . . . , un) ∈ Vi, then u0 = ui lies in
Ui, hence u = γi

(
q(u)

)
. This shows that γi gives an inverse of q|Vi : Vi → V ′i and

thus completes the proof of the theorem. �

Remark 5.2.3. Let P be the class of morphisms of algebraic varieties f : X →
Y that factor as X

i−→ Y ×Pn p−→ Y , for some n ≥ 0, where i is a closed immersion
and p is the projection onto the first component. We claim that P satisfies the
conditions in Proposition 5.1.7. Properties i) and iii) are straightforward to check,
so we only need to show that if f : X → Y and g : Y → Z admit such factorizations,
then so does the composition g◦f . Suppose that we have the following factorizations
of f and g:

X
i−→ Y ×Pm p−→ Y and Y

j−→ Z ×Pn q−→ Z.

Consider the closed immersion i′ given by the composition

X
i−→ Y ×Pm j×1Pn−−−−→ Z ×Pn ×Pm 1Z×ν−−−→ Z ×PN ,

where ν : Pn ×Pm ↪→ PN , with N = (m+ 1)(n+ 1)− 1, is the Segre embedding.
Since it is clear that g ◦ f factors as

X
i′−→ Z ×PN p′−→ Z,

where p′ is the projection onto the first component, we conclude that g ◦ f lies in
P.
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We can thus apply Proposition 5.1.7 to conclude that in the setting of Theo-
rem 5.2.2, since f ◦ g lies in P, we also have that g lies in P.

5.3. Finite morphisms

We discussed in Chapter 3 finite morphisms between affine varieties. We now
consider the general notion.

Definition 5.3.1. The morphism f : X → Y between algebraic varieties is
finite if for every affine open subset V ⊆ Y , its inverse image f−1(V ) is an affine
variety, and the induced k-algebra homomorphism

OY (V )→ OX
(
f−1(V )

)
is finite.

It is not clear that in the case when X and Y are affine varieties, the above
definition coincides with our old one. However, this follows from the following
theorem.

Proposition 5.3.2. Let f : X → Y be a morphism of algebraic varieties. If
there is an affine open cover Y =

⋃r
i=1 Vi such that each Ui = f−1(Vi) is an affine

variety and the induced morphism

OY (Vi)→ OX(Ui)

is finite, then f is a finite morphism.

We begin with a lemma which is useful in several other situations.

Lemma 5.3.3. If X is an algebraic prevariety and U , V ⊆ X are affine open
subsets, then for every p ∈ U ∩ V , there is open neighborhood W ⊆ U ∩ V of p that
is a principal affine open subset in both U and V .

Proof. We first choose an open neighborhood W1 ⊆ U ∩ V of p of the form
W1 = DU (f) for some f ∈ O(U). We next choose another open neighborhood
W ⊆ W1 of the form W = DV (g), for some g ∈ O(V ). It is enough to show that
W is a principal affine open subset also in U .

Since O(W1) ' O(U)f , it follows that there is h ∈ O(U) such that g|W1
= h

fm

for some non-negative integer m. In this case we have W = DU (fh), completing
the proof. �

Proof of Proposition 5.3.2. Note that if W is a principal affine open sub-
set of some of the Vi, then f−1(W ) is affine and the induced morphism

(5.3.1) OY (W )→ OX
(
f−1(W )

)
is finite. Indeed, if W = DVi

(φ), then f−1(W ) = DUi
(φ ◦ f) is affine and the

morphism (5.3.1) is identified to

OY (Vi)φ → O(Ui)φ◦f ,

which is finite.
Let V ⊆ Y be an arbitrary affine open subset. Since V is covered by the open

subsets V ∩Vi, applying for each pair (V, Vi) Lemma 5.3.3, and using what we have
already seen, we see that we can cover V by finitely many principal affine open
subsets W1, . . . ,Ws, such that each f−1(Wi) is affine and the induced morphism

(5.3.2) OY (Wi)→ OX
(
f−1(Wi)

)
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is finite. Let us write Wi = DV (φi), for some φi ∈ OY (V ). The condition that V =⋃s
i=1Wi is equivalent to the fact that φ1, . . . , φs generate the unit ideal in OY (V ).

This implies that the f#(φi) = φi ◦ f generate the unit ideal in OX
(
f−1(V )

)
.

Since each Df−1(V )(φi ◦ f) is affine, it follows from Proposition 2.3.16 that f−1(V )
is affine.

Moreover, theOY (V )-moduleOX
(
f−1(V )

)
has the property thatOX

(
f−1(V )

)
φi

is a finitely generated module over OY (V )φi for all i. Since the φi generate the unit
ideal in OY (V ), we conclude using Corollary C.3.5 that OX

(
f−1(V )

)
is a finitely

generated OY (V )-module. �

Remark 5.3.4. If f : X → Y is a finite morphism, then for every y ∈ Y ,
the fiber f−1(y) is finite. Indeed, if V is an affine open neighborhood of y, then
U = f−1(V ) is affine and the induced morphism f−1(V ) → V is finite. Applying
to this morphism Remark 3.2.7, we deduce that f−1(y) is finite.

In the next proposition we collect some general properties of finite morphisms.

Proposition 5.3.5. In what follows, all objects are algebraic varieties.

i) If f : X → Y and g : Y → Z are finite morphisms, then g ◦ f : X → Z is
a finite morphism.

ii) If f : X → Y is a finite morphism, then for every morphism g : Z → Y ,
the induced morphism h : X ×Y Z → Z is a finite morphism.

iii) Every closed immersion i : X ↪→ Y is a finite morphism.
iv) If f : X → Y is a morphism and Y = V1 ∪ . . . ∪ Vr is an open cover such

that each induced morphism f−1(Vi)→ Vi is finite, then f is finite.

Proof. The assertions in i) and iii) are straightforward to see and the one in iv)
follows by covering each Vi by affine open subsets and then using Proposition 5.3.2.
We now prove the assertion in ii). Let V = V1 ∪ . . . ∪ Vr be an affine open cover of
Y . For every i, consider an affine open cover g−1(Vi) =

⋃
j Ui,j . Note that we have

h−1(Ui,j) = f−1(Vi)×Vi Ui,j .

Using Proposition 5.3.2, we thus see that it is enough to prove the assertion when
X, Y , and Z are affine varieties. In this case, X ×Y Z is affine, since it is a closed
subvariety of X × Z (see Proposition 2.4.7). Moreover, the morphism

h# : O(Z)→ O(X ×Y Z)

factors as

O(Z) = O(Y )⊗O(Y ) O(Z)
f#⊗1−→ O(X)⊗O(Y ) O(Z)

p−→ O(X ×Y Z).

The homomorphism f#⊗1 is finite since f# is finite and p is surjective (this follows,
for example, from the fact that X×Y Z is a closed subvariety of X×Z, but see also
Remark 2.4.9 for a more precise statement). This completes the proof of ii). �

The next proposition extends to arbitrary morphisms some properties that we
have already proved for finite morphisms between affine varieties.

Proposition 5.3.6. Let f : X → Y be a finite morphism.

1) The map f is closed.
2) If Z1 ( Z2 are irreducible closed subsets of X, then f(Z1) ( f(Z2) are

irreducible, closed subsets of Y .
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3) If f is surjective, then given any irreducible, closed subset W of Y , there
is an irreducible, closed subset Z in X such that f(Z) = W .

4) If Z1 is an irreducible, closed subset of X and W1 ⊇ W2 are irreducible,
closed subsets of Y , with W1 = f(Z1), then there is Z2 ⊆ Z1 irreducible
and closed such that f(Z2) = W2.

Proof. We have already seen these properties when X and Y are affine vari-
eties in Corollary 3.2.9. Let Y = V1 ∪ . . . ∪ Vr be an affine open cover of Y . By
definition, each f−1(Vi) is affine and the induced morphism f−1(Vi)→ Vi is finite,
hence it satisfies the properties in the proposition. Since each map f−1(Vi)→ Vi is
closed, it follows that f is closed, hence we have 1). The assertions in 2), 3), and 4)
similarly follow from the corresponding ones for the morphisms f−1(Vi)→ Vi. �

Corollary 5.3.7. Every finite morphism f : X → Y is proper.

Proof. Given any morphism of varieties g : Z → Y , assertion ii) in Proposi-
tion 5.3.5 implies that the induced morphism X ×Y Z → Z is finite. This is thus
closed by assertion 1) in Proposition 5.3.6, which shows that f is proper. �

We mention the following converse to Corollary 5.3.7: every proper morphism
with finite fibers is finite. This is a deeper result that we will only prove later (see
Corollary 14.1.8).

The following proposition gives another property of finite morphisms that we
have seen for affine varieties.

Proposition 5.3.8. If f : X → Y is a finite, surjective morphism of algebraic
varieties, then for every closed subset Z of X, we have

dim
(
f(Z)

)
= dim(Z).

Moreover, if Z is irreducible, then

codimY

(
f(Z)

)
= codimX(Z).

Proof. This can be deduced from the properties in Proposition 5.3.6 as in the
proof of Corollary 3.2.10. �

Example 5.3.9. If L1 and L2 are disjoint linear subspaces of Pn, with dim(L1)+
dim(L2) = n−1, then the projection of Pn onto L2, with center L1 is the morphism
π : Pn r L1 −→ L2 such that π(p) is the intersection of L2 with the linear span
〈L1, p〉 of L1 and p. In order to see that this is indeed a morphism, let’s apply an
element of PGLn+1(k) to Pn in order to have

L1 = (x0 = . . . = xr = 0) and L2 = (xr+1 = . . . = xn = 0).

We consider the isomorphism Pr ' L2 given by

[u0, . . . , ur]→ [u0, . . . , ur, 0, . . . , 0].

Note that if p = [a0, . . . , an] ∈ Pn r L1, then the linear span of L1 and p is the set

{[λa0, . . . , λar, br+1, . . . , bn] | λ ∈ k∗, br+1, . . . , bn ∈ k}.

We thus see that the map π : Pn r L1 → Pr is given by

π
(
[a0, . . . , an]

)
= [a0, . . . , ar]

and it is now straightforward to check that π is a morphism.
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Let us show that if X is a closed subvariety of Pn such that X ∩ L1 = ∅,
then the induced morphism πX : X → L2 is finite. This is an easy consequence of
the fact that proper morphisms with finite fibers are finite, since the hypothesis
implies that πX has finite fibers: the fiber over a point q ∈ L2 lies in the linear
span 〈L1, q〉 of L1 and q, which has dimension equal to dim(L1) + 1; if this is not
finite, then its intersection with the hyperplane L1 ⊆ 〈L1, q〉 would be non-empty
by Corollary 4.2.12. However, we will give a direct argument for the finiteness of
πX , since we haven’t proved yet the fact that proper morphisms with finite fibers
are finite.

After a linear change of coordinates as above, we may assume that

π : Pn r L1 → Pr, πX
(
[a0, . . . , an]

)
= [a0, . . . , ar].

Note that π is the composition of (n−r) maps, each of which is the projection from
a point onto a hyperplane. Indeed, if

πi : Pr+i r {[0, . . . , 0, 1]} → Pr+i−1, πi
(
[u0, . . . , ur+i]

)
= [u0, . . . , ur+i−1]

for 1 ≤ i ≤ n − r, then it is clear that π = π1 ◦ . . . ◦ πn−r. Since a composition
of finite morphisms is finite, we see that we only need to prove our assertion when
r = n− 1.

It is enough to show that if Ui = (xi 6= 0) ⊆ Pn−1, then for each i, with
0 ≤ i ≤ n− 1, the inverse image π−1

X (Ui) is affine and the induced homomorphism

(5.3.3) O(Ui)→ O
(
π−1
X (Ui)

)
is a finite homomorphism. The fact that π−1

X (Ui) is affine is clear, since this is equal

to D+
X(xi), hence it is affine by Proposition 4.2.9. Moreover, by Proposition 4.2.10,

we can identify the homomorphism (5.3.3) with

(5.3.4) k[x0, . . . , xn−1](xi) = k

[
x0

xi
, . . . ,

xn−1

xi

]
→ (SX)(xi),

where SX is the homogeneous coordinate ring of X. Since (SX)(xi) is generated

by
xj

xi
, with 0 ≤ j ≤ n, in order to show that (5.3.4) is a finite homomorphism, it

is enough to show that each
xj

xi
∈ (SX)(xi) is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This

is clear if j ≤ n − 1, hence we only need to consider xn

xi
. By hypothesis, we have

[0, . . . , 0, 1] 6∈ X. Therefore there is a homogeneous polynomial f , say of degree
d, in the ideal IX corresponding to X such that xdn appears in f with nonzero
coefficient. If d = 0, then X is empty, in which case the assertion to prove is trivial.

If d > 0, we may assume that f = xdn+
∑d
i=1 gi(x0, . . . , xn−1)xd−in . Dividing by xdi ,

we thus conclude that(
xn
xi

)d
+

d∑
i=1

gi

(
x0

xi
, . . . ,

xn−1

xi

)
= 0 in (SX)(xi),

hence xn

xi
is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This gives our assertion.

In particular, we see that if X is a projective d-dimensional variety, then there
is a finite morphism X → Pd. Indeed, if X is a closed subvariety of Pn different
from Pn, by projecting from a point not in X we obtain a finite morphism X → Y ,
where Y is a d-dimensional subvariety of Pn−1. By iterating this construction we
obtain a finite morphism X → Pd.
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Proposition 5.3.10. Let f : X → Y be a dominant morphism of irreducible
varieties. If dim(X) = dim(Y ), then there is a non-empty open subset V of Y such
that the induced morphism f−1(V ) → V is finite (in this case, one says that f is
generically finite).

Note that the converse also holds by Proposition 5.3.8.

Proof of Proposition 5.3.10. We may clearly replace Y by an affine open
subset and X by the inverse image of this subset, in order to assume that Y is
an affine variety. In fact, we may assume that X is affine as well. Indeed, let
us choose an affine open subset U of X and suppose that we know the assertion
in the proposition for the induced morphism U → Y . In other words, we know
that there is a non-empty open subset V of Y , such that the induced morphism
g : U ∩ f−1(V )→ V is finite. Note that if Z = f(X r U), then

dim(Z) ≤ dim(X r U) < dim(X) = dim(Y ),

hence Z is a proper closed subset of Y . If we take V ′ = V r Z, then V ′ is non-
empty and the induced morphism g−1(V ′) = U ∩ f−1(V ′)→ V ′ is finite. However,
it follows from the definition of X ′ that f−1(V ′) ⊆ U , which implies that V ′ satisfies
the requirement in the proposition.

Suppose now that both X and Y are affine varieties, and consider the homo-
morphism

f# : A = O(Y )→ O(X) = B

corresponding to f . Note that this is injective since f is dominant. Let k(Y ) =
Frac(A) be the field of rational functions of Y . The assumption that dim(X) =
dim(Y ) implies that Frac(B) is algebraic, hence finite, over Frac(A) by Corol-
lary 3.3.9. Noether’s Normalization lemma thus implies that B ⊗A k(Y ) is a finite
k(Y )-algebra. Let b1, . . . , br ∈ B be generators of B as a k-algebra. Since each bi
is algebraic over k(Y ), we see that there is fi ∈ A such that bi

1 is integral over Afi .

This implies that if f =
∏
i fi, then each bi

1 is integral over Af , hence Af → Bf
is a finite homomorphism. Therefore V = DY (f) satisfies the assertion in the
proposition. �

Definition 5.3.11. If f : X → Y is a dominant, generically finite morphism
of irreducible varieties, then the field extension k(X)/k(Y ) is algebraic and finitely
generated, hence finite. Its degree is the degree of f , denoted deg(f).

We end this section by introducing another class of morphisms.

Definition 5.3.12. A morphism of algebraic varieties f : X → Y is affine if
for every affine open subset V ⊆ Y , its inverse image f−1(V ) is affine.

The next proposition shows that, in fact, it is enough to check the property in
the definition for an affine open cover of the target. In particular, this implies that
every morphism of affine varieties is affine.

Proposition 5.3.13. Let f : X → Y be a morphism of algebraic varieties. If
there is an open cover Y = V1 ∪ . . . ∪ Vr, with each Vi affine, such that all f−1(Vi)
are affine, then f is an affine morphism.

Proof. The argument follows as in the proof of Proposition 5.3.2. �
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5.4. Semicontinuity of fiber dimension for proper morphisms

Our goal in this section is to prove the following semicontinuity result for the
dimensions of the fibers of a proper morphism.

Theorem 5.4.1. If f : X → Y is a proper morphism of algebraic varieties, then
for every non-negative integer m, the set

{y ∈ Y | dim
(
f−1(y)

)
≥ m}

is closed in Y .

This is an immediate consequence of the following more technical statement,
but which is valid for an arbitrary morphism.

Proposition 5.4.2. If f : X → Y is a morphism of algebraic varieties, then
for every non-negative integer m, the set Xm consisting of those x ∈ X such that
the fiber f−1

(
f(x)

)
has an irreducible component of dimension ≥ m passing through

x, is closed.

Proof. Arguing by Noetherian induction, we may assume that the assertion
in the proposition holds for every f |Z , where Z is a proper closed subset of X. If
X is not irreducible and X(1), . . . , X(r) are the irreducible components of X, we

know that each X
(j)
m is closed in X(j), hence in X. Since

Xm =

r⋃
j=1

X(j)
m ,

we conclude that Xm is closed.
Therefore we may and will assume that X is irreducible. Of course, we may

replace Y by f(X) and thus assume that Y is irreducible and f is dominant. In
this case, if m ≤ dim(X) − dim(Y ), then Xm = X by Theorem 3.4.1, hence we
are done. On the other hand, it follows from Theorem 3.4.2 that there is an open
subset V of Y such that if y ∈ V , then every irreducible component of f−1(y) has
dimension equal to dim(X) − dim(Y ). We deduce that if m > dim(X) − dim(Y )
and we put Z = X r f−1(V ), then Z is a proper closed subset of X such that
Xm = Zm. Since Zm is closed in Z, hence in X, by the inductive assumption, we
are done. �

Proof of Theorem 5.4.1. With the notation in the proposition, we have

{y ∈ Y | dim
(
f−1(y)

)
≥ m} = f(Xm).

Since Xm is closed and f is proper, it follows that f(Xm) is closed. �

Remark 5.4.3. If f : X → Y is an arbitrary morphism of algebraic varieties,
we can still say that the subset

{y ∈ Y | dim
(
f−1(y)

)
≥ m}

is constructible in Y . Indeed, with the notation in Proposition 5.4.2, we see that
this set is equal to f(Xm). Since Xm is closed in X by the proposition, its image
f(Xm) is constructible by Theorem 3.5.3.

Note that also the set

{y ∈ Y | dim
(
f−1(y)

)
= m}

is constructible in Y , being the difference of two constructible subsets.
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5.5. An irreducibility criterion

The following result is an useful irreducibility criterion.

Proposition 5.5.1. Let f : X → Y be a morphism of algebraic varieties. Sup-
pose that Y is irreducible and that all fibers of f are irreducible, of the same dimen-
sion d (in particular, f is surjective). If either one of the following two conditions
holds:

a) X is pure-dimensional;
b) f is closed,

then X is irreducible, of dimension d+ dim(Y ).

We will be using the proposition for proper morphisms f , so that condition b)
will be automatically satisfied.

Proof of Proposition 5.5.1. We will show that in general–that is, without
assuming a) or b)– the following assertions hold:

i) There is a unique irreducible component of X that dominates Y , and
ii) Every irreducible component Z of X is a union of fibers of f . Its dimension

is equal to dim
(
f(Z)

)
+ d.

Let X = X1∪ . . .∪Xr be the irreducible decomposition of X. For every y ∈ Y ,
we put Xy = f−1(y), and (Xj)y = Xy ∩Xj . Since Xy =

⋃r
j=1(Xj)y, and since Xy

is irreducible, it follows that for every y, there is j such that Xy = (Xj)y.
For every i, let Ui := Xi r

⋃
j 6=iXj . This is a nonempty open subset of X.

Note that if y ∈ f(Ui), then Xy can’t be contained in (Xj)y for any j 6= i. It follows
that

(5.5.1) Xy = (Xi)y for all y ∈ f(Ui).

Note that some X` has to dominate Y : since f is surjective, we have Y =⋃
j f(Xj), and since Y is irreducible, we see that there is ` such that Y = f(X`).

In this case we also have Y = f(U`), and Theorem 3.4.2 implies that there is an
open subset V of Y contained in f(U`). We deduce from (5.5.1) that Xy = (X`)y
for every y ∈ V , hence for all j 6= `, we have Xj r X` ⊆ f−1(Y r V ). Therefore

Xj = Xj rX` is contained in f−1(Y r V ) (which is closed). We conclude that Xj

does not dominate Y for any j 6= `.
On the other hand, it follows from Theorems 3.4.1 and 3.4.2 that for every i,

the following hold

α) dim(Xi)y ≥ dim(Xi)− dim
(
f(Xi)

)
for every y ∈ f(Xi) and

β) There is an open subset Wi in f(Xi) such that for all y ∈ Wi we have

dim(Xi)y = dim(Xi)− dim
(
f(Xi)

)
.

Since Wi∩f(Ui) 6= ∅, it follows from β) and (5.5.1) that d = dim(Xi)−dim
(
f(Xi)

)
for every i. Furthermore, for every y ∈ f(Xi), we know by α) that (Xi)y is a closed
subset of dimension d of the irreducible variety Xy of dimension d. Therefore
Xy = (Xi)y for all y ∈ f(Xi), which says that each Xi is a union of fibers of f .
Therefore assertions i) and ii) hold.

In particular, it follows from i) and ii) that if i 6= `, then f(Xi) is a proper
subset of Y , and

dim(Xi) = d+ dim(f(Xi)) < d+ dim(Y ) = dim(X`).
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If X is pure-dimensional, then we conclude that X is irreducible.
Suppose now that f is a closed map. Since f(X`) is closed, it follows that

f(X`) = Y . We have seen that X` is a union of fibers of f , hence X` = X.
Therefore X is irreducible also in this case. �

Example 5.5.2. Consider the incidence correspondence between points and
hyperplanes in Pn, defined as follows. Recall that (Pn)∗ is the projective space
parametrizing the hyperplanes in Pn. We write [H] for the point of (Pn)∗ corre-
sponding to the hyperplane H. Consider the following subset of Pn × (Pn)∗:

Z =
{(
p, [H]

)
∈ Pn × (Pn)∗ | p ∈ H

}
.

Note that if we take homogeneous coordinates x0, . . . , xn on Pn and y0, . . . , yn on
(Pn)∗, then Z is defined by the condition

∑n
i=0 xiyi = 0. It is the straightforward

to see, by considering the products of the affine charts on Pn and (Pn)∗, that Z
is a closed subset of Pn × (Pn)∗. The projections on the two components induce
morphisms π1 : Z → Pn and π2 : Z → (Pn)∗. For every [H] ∈ (Pn)∗, we have
π−1

2 ([H]) ' H, hence all fibers of π2 are irreducible, of dimension n−1. Since (Pn)∗

is irreducible, it follows from Proposition 5.5.1 that Z is irreducible, of dimension
2n − 1. Note that the picture is symmetric: for every p ∈ Pn, the fiber π−1

1 (p)
consists of all hyperplanes in Pn that contain p, which is a hyperplane in (Pn)∗.

5.6. Flat morphisms

We begin by reviewing the concept of a flat module. Recall that if M is a
module over a commutative ring A, then the functor M ⊗A− from the category of
A-modules to itself, is right exact. The module M is flat if, in fact, this is an exact
functor. Given a ring homomorphism φ : A → B, we say that φ is flat (or that B
is a flat A-algebra) if B is flat as an A-module.

Example 5.6.1. The ring A is flat as an A-module, since A ⊗A M ' M for
every A-module M .

Example 5.6.2. A direct sum of flat A-modules is flat, since tensor product
commutes with direct sums and taking a direct sum is an exact functor. It follows
from the previous example that every free module is flat. In particular, every vector
space over a field is flat.

Example 5.6.3. If (Mi)i∈I is a filtered direct system of flat A-modules, then
M = lim−→

i∈I
Mi is a flat A-module. Indeed, since the tensor product commutes with

direct limits, for every injective morphism of A-modules N1 ↪→ N2, the induced
morphism

N1 ⊗AM → N2 ⊗AM
can be identified with the direct limit of the injective morphisms

N1 ⊗Mi → N2 ⊗AMi.

Since a filtered direct limit of injective morphisms is injective, we obtain our asser-
tion.

Example 5.6.4. If M is a flat A-module, then for every non-zero-divisor a ∈ A,
multiplication by a is injective on A, and after tensoring with M , we see that
multiplication by a is injective also on M . In particular, if A is a domain, then M
is torsion-free.



108 5. PROPER, FINITE, AND FLAT MORPHISMS

The converse holds if A is a PID: every torsion-free A-module is flat. Indeed,
M is the filtered direct limit of its finitely generated submodules, which are free
A-modules, being finitely generated and torsion-free over a PID. Since every filtered
direct limit of flat modules is flat, we conclude that M is flat.

Example 5.6.5. For every ring A and every multiplicative system S ⊆ A,
the A-algebra S−1A is flat. Indeed, for every A-module N , we have a canonical
isomorphism

S−1A⊗A N ' S−1N

and the functor taking N to S−1N is exact.

We do not discuss the more subtle aspects of flatness, which we do not need at
this point, and whose treatment is better handled using the Tor functors. We only
collect in the next proposition some very easy properties that we need in order to
define flatness for morphisms of algebraic varieties.

Proposition 5.6.6. Let M be an A-module.

i) If M is flat, then for every ring homomorphism A → B, the B-module
M ⊗A B is flat.

ii) If B → A is a flat homomorphism and M is flat over A, then M is flat
over B.

iii) If p is a prime ideal in A and M is an Ap-module, then M is flat over A
if and only if it is flat over Ap.

iv) If B → A is a ring homomorphism, then M is flat over B if and only if
for every prime (respectively, maximal) ideal p in A, the B-module Mp is
flat.

Proof. The assertion in i) follows from the fact that for every B-module N ,
we have a canonical isomorphism

(M ⊗A B)⊗B N 'M ⊗A N.
Similarly, the assertion in ii) follows from the fact that for every B-module N , we
have a canonical isomorphism

N ⊗B M ' (N ⊗B A)⊗AM.

With the notation in iii), note that if M is a flat Ap-module, since Ap is a flat
A-algebra, we conclude that M is flat over A by ii). The converse follows from the
fact that if N is an Ap-module, then we have a canonical isomorphism

N ⊗Ap
M ' N ⊗Ap

(Ap ⊗AM) ' N ⊗AM.

We now prove iv). Suppose first that M is flat over B and let p be a prime
ideal in A. We deduce that Mp is flat over B from the fact that for every B-module
N , we have a canonical isomorphism

N ⊗B Mp ' (N ⊗B M)⊗A Ap.

Conversely, suppose that for every maximal ideal p in A, the B-module Mp is flat.
Given an injective map of B-modules N ′ ↪→ N , we see that for every maximal ideal
p, the induced homomorphism

N ′ ⊗B Mp ' (N ′ ⊗B M)p → (N ⊗B M)p ' N ⊗B Mp

is injective. This implies the injectivity of

N ′ ⊗B M → N ⊗B M
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by Corollary C.3.4. �

Remark 5.6.7. If φ : A→ B is a flat homomorphism of Noetherian rings and
p is a prime ideal in A, then for every minimal prime ideal q containing pB, we
have φ−1(q) = p. Indeed, it follows from assertion i) in Proposition 5.6.6 that the
morphism A/p → B/pB is flat. It then follows from Example 5.6.4 that if a is
a nonzero element in A/p, then its image in B/pB is a non-zero-divisor, hence it
can’t lie in a minimal prime ideal (see Proposition E.2.1). This gives our assertion.

We now define flatness in our geometric context. We say that a morphism
of varieties f : X → Y is flat if it satisfies the equivalent conditions in the next
proposition.

Proposition 5.6.8. Given a morphism of varieties f : X → Y , the following
conditions are equivalent:

i) For every affine open subsets U ⊆ X and V ⊆ Y such that U ⊆ f−1(V ),
the induced homomorphism OY (V )→ OX(U) is flat.

ii) There are affine open covers X =
⋃
i Ui and Y =

⋃
i Vi such that for all i,

we have Ui ⊆ f−1(Vi) and the induced homomorphism OY (Vi)→ OX(Ui)
is flat.

iii) For every point x ∈ X, if y = f(x), then the homomorphism OY,y → OX,x
is flat.

Proof. We begin by showing that ii)⇒iii). Given x and y as in iii) and covers
as in ii), we choose i such that x ∈ Ui, in which case y ∈ Vi. Note that x corresponds
to a maximal ideal p in OX(Ui) and y corresponds to the inverse image q of p in
OY (Vi). Since

B = OY (Vi)→ A = OX(Ui)

is flat, we conclude that Aq is B-flat by property iv) in Proposition 5.6.6. It follows
that Ap is flat over Bq by property ii) in the same proposition.

Since the implication i)⇒ii) is trivial, in order to complete the proof it is enough
to show iii)⇒i). Let U and V be affine open subsets as in i). Given the induced
homomorphism

B = OY (V )→ OX(U) = A,

it follows from iii) that for every maximal ideal p in A, if its inverse image in B
is q, then the induced homomorphism Bq → Ap is flat. Assertion iii) in Proposi-
tion 5.6.6 implies that Ap is flat over B for every p, in which case assertion iv) in
the proposition implies that A is flat over B. �

Remark 5.6.9. The argument for the implication ii)⇒iii) in the proof of the
above proposition shows that more generally, if f : X → Y is a flat morphism, then
for every irreducible closed subset V ⊆ X, if W = f(V ), then the induced ring
homomorphism OY,W → OX,V is flat.

Example 5.6.10. Every open immersion i : U ↪→ X is flat: indeed, it is clear
that property iii) in the above proposition is satisfied.

Example 5.6.11. If X and Y are varieties, then the projection maps p : X ×
Y → X and q : X × Y → Y are flat. Indeed, by choosing affine covers of X
and Y , we reduce to the case when both X and Y are affine. In this case, since
O(Y ) is a free k-module, it follows from assertion i) in Proposition 5.6.6 that
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O(X × Y ) ' O(X) ⊗k O(Y ) is flat over O(X). This shows that p is flat and
the assertion about q follows similarly.

Remark 5.6.12. A composition of flat morphisms is a flat morphism. Indeed,
this follows from definition and property ii) in Proposition 5.6.6.

Remark 5.6.13. If f : X → Y is flat and W ⊆ Y is an irreducible, closed
subset such that f−1(W ) 6= ∅, then for every irreducible component V of f−1(W ),

we have f(V ) = W . Indeed, we may replace X and Y by suitable affine open
subsets that intersect V and W , respectively, to reduce to the case when both X
and Y are affine. In this case the assertion follows from Remark 5.6.7.

Example 5.6.14. A morphism f : X → A1 is flat if and only if every irreducible
component ofX dominates A1. The “only if” part follows from the previous remark.
For the converse, note that under the hypothesis, for every affine open subset U
of X, the k[x]-module OX(U) is torsion-free: if a nonzero u ∈ k[x] annihilates
v ∈ OX(U), it follows that every irreducible component of U on which v does not
vanish is mapped by f in the zero-locus of u, a contradiction. We then deduce that
f is flat using Example 5.6.4.

Our goal is to prove two geometric properties of flat morphisms. We begin with
the following generalization of Proposition 1.6.6.

Theorem 5.6.15. If f : X → Y is a flat morphism between algebraic varieties,
then f is open.

The proof will make use of the following openness criterion.

Lemma 5.6.16. Let W be a subset of a Noetherian topological space Y . The set
W is open if and only if whenever Z ⊆ Y is a closed irreducible subset of Y such
that W ∩ Z 6= ∅, then W contains nonempty open subset of Z.

Proof. The “only if” part is clear, so we only need to prove the converse.
Arguing by Noetherian induction, we may assume that the assertion holds for all
proper closed subspaces of Y . Let Y1, . . . , Yr be the irreducible components of Y .
We may assume that W is nonempty, and suppose that W contains a point y in
some Yi. By hypothesis, there is a nonempty open subset U ⊆ Yi such that U ⊆W .
After replacing U by U r

⋃
j 6=i Yj , we may assume that U ∩ Yj = ∅ for every j 6= i,

in which case U is open in Y .
Note that Y r U is a proper closed subset of Y . Moreover, W r U ⊆ Y r U

satisfies the same hypothesis as W : if Z ⊆ Y r U is an irreducible closed subset
such that (W r U) ∩ Z 6= ∅, then W contains a nonempty open subset of Z, hence
the same holds for W rU . By induction, we conclude that W rU is open in Y rU .
This implies that W is open, since

Y rW = (Y r U) r (W r U)

is closed in Y r U , hence in Y . �

Proof of Theorem 5.6.15. If U is an open subset of X, we may replace f
by its restriction to U , which is still flat. Therefore we only need to show that f(X)
is open in Y and it is enough to show that f(X) satisfies the condition in the lemma.
Suppose that W is an irreducible closed subset of Y such that f(X)∩W 6= ∅. If V
is an irreducible component of f−1(W ), then V dominates W by Remark 5.6.13.
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In this case, the image of V in W contains an open subset of W by Theorem 3.4.2.
This completes the proof. �

Our second main property of flat morphisms will follow from the following

Proposition 5.6.17. (Going Down for flat homomorphisms) If φ : A → B is
a flat ring homomorphism, then given prime ideals p1 ⊆ p2 in A and q2 in B such
that φ−1(q2) = p2, there is a prime ideal q1 ⊆ q2 such that φ−1(q1) = p1.

Proof. As we have seen in the proof of Proposition 5.6.8, the fact that φ is
flat implies that the induced homomorphism Ap2

→ Bq2
is flat. After replacing φ

by this homomorphism, we may thus assume that (A, p2) and (B, q2) are local rings
and φ is a local homomorphism. In this case every prime ideal in B is contained in
q2. Since the prime ideals in B lying over p1 are in bijection with the prime ideals
in (Ap1

/p1Ap1
)⊗A B, it is enough to show that this ring is not the zero ring. This

is a consequence of the following more general lemma below. �

Lemma 5.6.18. If φ : (A,m) → (B, n) is a flat local homomorphism of local
rings, then the following hold:

i) For every A-module M , we have M ⊗A B = 0 if and only if M = 0.
ii) For every morphism of A-modules u : M → N , we have u = 0 if and only

if u⊗A idB = 0. In particular, φ is injective.
iii) Given two maps of A-modules

M ′
u−→M

v−→M ′′

with v ◦ u = 0, the above sequence is exact if and only if the induced
sequence

M ′ ⊗A B
u⊗idB−−−−→M ⊗A B

v⊗idB−−−−→M ′′ ⊗A B

is exact.

Proof. In order to prove i), note that if u ∈M is nonzero and I = AnnA(u),
then I ⊆ m and Au ' A/I. We thus have an inclusion A/I ↪→M and the flatness
assumption implies that the induced morphism B/IB = A/I ⊗ B → M ⊗A B is
injective. Since IB ⊆ n, it follows that B/IB is nonzero, hence M⊗AB is nonzero.

If u : M → N is a morphism of A-modules, since M is flat, we have

Im(u⊗A idB) ' Im(u)⊗A B,

hence by i), Im(u ⊗A idB) = 0 if and only if Im(u) = 0. We thus obtain the first
assertion in ii), and the second one follows by taking u to be the multiplication on
A with an element a ∈ A.

The assertion in iii) follows from the one in i), using the fact that since B is
flat over A, we have an isomorphism

ker(v ⊗ idB)/Im(u⊗ idB) '
(
ker(v)/Im(u)

)
⊗A B.

�

Proposition 5.6.19. If φ : A → B is a ring homomorphism that satisfies the
Going-Down property in the previous proposition, then for every prime ideal q, if
we put p = φ−1(q), then

dim(Bq/pBq) ≤ dim(Bq)− dim(Ap).
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Proof. Let r = dim(Bq/pBq) and s = dim(Ap). We can choose prime ideals
ps ( . . . ( p0 = p in A and qr ( . . . ( q0 = q in B, with pB ⊆ qr. Applying the
Going-Down property successively, we obtain a sequence of prime ideals p′s ⊆ . . . ⊆
p′0 ⊆ qr such that φ−1(p′i) = pi for 0 ≤ i ≤ s. In particular, we have p′i 6= p′i+1 for
0 ≤ i ≤ s− 1 (however, we might have p′0 = qs). From the sequence of prime ideals
in B

p′s ( . . . ( p′1 ( qr ( . . . ( q0 = q,

we conclude that dim(Bq) ≥ r + s. �

By combining the above two propositions, we obtain the following consequence
in our geometric setting:

Theorem 5.6.20. If f : X → Y is a flat morphism between two algebraic vari-
eties, W is an irreducible closed subset of Y such that f−1(W ) 6= ∅, then for every
irreducible component V of f−1(W ), we have

codimX(V ) = codimY (W ).

Proof. Note first that V dominates W (see Remark 5.6.13). We apply Propo-
sition 5.6.19 for the flat morphism

OY,W → OX,V ,

which satisfies the Going-Down property by Proposition 5.6.17. Since V is an
irreducible component of f−1(W ), we obtain the inequality

codimX(V ) ≥ codimY (W ).

In order to prove the opposite inequality, let X ′ be an irreducible component
of X containing V and such that codimX(V ) = codimX′(V ). If Y ′ is an irreducible

component of Y that contains f(X ′), then X ′ dominates Y ′ by Remark 5.6.13. We
can thus apply Theorem 3.4.1 to deduce

codimX(V ) = codimX′(V ) ≤ codimY ′(W ) ≤ codimY (W ).

This completes the proof of the theorem. �

Remark 5.6.21. Let f : X → Y be a flat morphism. If X ′ is an irreducible com-
ponent of X, then there is an irreducible component Y ′ of Y such that f(X ′) ⊆ Y ′.
In this case, it is clear that X ′ is an irreducible component of f−1(Y ′), and thus X ′

dominates Y ′ by Remark 5.6.13. In particular, such Y ′ is unique. Conversely, given
any irreducible component Y ′ of Y such that f−1(Y ′) 6= ∅, then every irreducible
component X ′ of f−1(Y ′) is an irreducible component of X. Indeed, if X ′ ( X ′′,
for some irreducible component X ′′ of X, then there is an irreducible component
Y ′′ of Y such that f(X ′′) ⊆ Y ′′. Since X ′ dominates Y ′ by Remark 5.6.13, it
follows that Y ′ ⊆ Y ′′, hence Y ′ = Y ′′. This contradicts the fact that X ′ is an
irreducible component of f−1(Y ′).

Definition 5.6.22. We say that a morphism f : X → Y is flat, of relative
dimension n, if it is flat and for every irreducible component X ′ of X, if Y ′ is the
irreducible component of Y such that f(X ′) ⊆ Y ′, then dim(X ′) = dim(Y ′) + n.

Remark 5.6.23. Of course, if f : X → Y is a flat morphism between irreducible
varieties, then f is flat, of relative dimension n, where n = dim(X)− dim(Y ).
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Corollary 5.6.24. If f : X → Y is a flat morphism, of relative dimension n,
then for every irreducible closed subset W of Y such that f−1(W ) 6= ∅, and every
irreducible component V of f−1(W ), we have

dim(V ) = dim(W ) + n.

In particular, every non-empty fiber of f has pure dimension n.

Proof. Note that by Theorem 5.6.20, we have

codimX(V ) = codimY (W )

Suppose now that X ′ is an irreducible component of X containing V and such
that codimX′(V ) = codimX(V ). If Y ′ is the irreducible component of Y such that
f(X ′) ⊆ Y ′, then we have

dim(W ) = dim(Y ′)− codimY ′(W ) ≥ dim(Y ′)− codimY (W )

= dim(X ′)− n− codimX(V ) = dim(X ′)− n− codimX′(V ) = dim(V )− n.
Similarly, if Y ′′ is an irreducible component of Y containing W and such that
codimY ′′(W ) = codimY (W ), and if X ′′ is an irreducible component of f−1(Y ′′)
that contains V , then we have

dim(V ) = dim(X ′′)−codimX′′(V ) ≥ dim(X ′′)−codimX(V ) = dim(Y ′′)+n−codimY (W )

= dim(Y ′′) + n− codimY ′′(W ) = dim(W ) + n.

By combining the two inequalities, we obtain the equality in the corollary. �

Remark 5.6.25. Note that if f : X → Y is a flat morphism such that every
non-empty fiber of f has pure dimension n, then f is flat, of relative dimension n.
Indeed, if X ′ is an irreducible component of X and Y ′ is the irreducible component
of Y that contains f(X ′), then there is an open subset U of Y ′ such that for every
y ∈ U , f−1(y)∩X ′ is an irreducible component of f−1(y). We thus conclude using
Theorem 3.4.2 that dim(X ′) = dim(Y ′) + n.





CHAPTER 6

Smooth varieties

In this chapter we introduce an important local property of points on algebraic
varieties: smoothness. We begin by describing a fundamental construction, the
blow-up of a variety along an ideal (in the case of an affine variety). We then
define the tangent space of a variety at a point and use it to define smooth points.
We make use of the blow-up of the variety at a smooth point to show that the
local ring of a smooth point is a domain. After discussing some general properties
of smooth varieties, we prove Bertini’s theorem on general hyperplane sections of
smooth projective varieties and end the chapter by introducing smooth morphisms
between smooth varieties.

6.1. Blow-ups

In this section we discuss the blow-up of an affine variety along an ideal. We
will later globalize this construction, after having at our disposal coherent sheaves
of ideals and the global MaxProj construction.

Let X be an affine variety, with A = O(X), and let I ⊆ A be an ideal.

Definition 6.1.1. The Rees algebra R(A, I) is the N-graded k-subalgebra

R(A, I) =
⊕
m∈N

Imtm ⊆ A[t].

Since A is reduced, it follows that A[t] is reduced, hence so is R(A, I). Similarly,
if X is irreducible, then A[t] is a domain, hence so is R(A, I).

Note that R(A, I) is finitely generated and, in fact, it is generated by its degree
1 component: if I = (a1, . . . , ar), then a1t, . . . , art generate R(A, I). We can thus
apply to R(A, I) the MaxProj construction discussed in Section 4.3. Note that the
degree 0 component is equal to A.

Definition 6.1.2. The blow-up of X along I is the morphism

f : MaxProj
(
R(A, I)

)
→ X.

We will typically assume that I is nonzero, since otherwise MaxProj
(
R(A, I)

)
is

empty. We collect in the next proposition some basic properties of this construction.

Proposition 6.1.3. Let X be an affine variety, with A = O(X), and let I ⊆ A
be a nonzero ideal. If Z is the closed subset of X defined by I and f : X̃ → X is
the blow-up of X along I, then the following hold:

i) The morphism f is an isomorphism over X r Z.

ii) The inverse image f−1(Z) is locally defined in X̃ by one equation, which is
a non-zero-divisor. In particular, every irreducible component of f−1(Z)

has codimension 1 in X̃.

115
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iii) If X is irreducible, then X̃ is irreducible and f is a birational morphism.
iv) More generally, if Z does not contain any irreducible component of X,

by mapping X ′ to f(X ′), we get a bijection between the irreducible com-

ponents of X̃ and those of X, such that the corresponding varieties are
birational.

Proof. In order to prove the assertion in i), it is enough to show that if a ∈ A
is such that DX(a) ∩ V (I) = ∅ (which implies a ∈

√
I, hence Ia = Aa), then the

induced morphism f−1
(
DX(a)

)
→ DX(a) is an isomorphism. Since f−1

(
DX(a)

)
=

MaxProj
(
R(A, I)a) (see Remark 4.3.17) and R(A, I)a ' R(Aa, Ia), we see that it

is enough to show that if I = A, then f is an isomorphism. However, in this case

X̃ = MaxProj(A[t]) = MaxSpec(A)×P0

by Proposition 4.3.12, with f being the projection on the first component. This is
clearly an isomorphism.

In order to prove ii), note that f−1(Z) = V
(
I ·R(A, I)

)
. Let us choose gener-

ators a1, . . . , an of I and consider the affine open cover

X̃ =

n⋃
i=1

D+

X̃
(ait).

Note that by Propositions 4.3.15 and 4.3.16, we have

D+
X(ait) ' MaxSpec

(
R(A, I)(ait)

)
.

Since the ideal I · R(A, I)(ait) is generated by a1
1 , . . . ,

an
1 and

aj
1 = ai

1 ·
ajt
ait

for

1 ≤ j ≤ n, we conclude that I · R(A, I)(ait) is generated by ai
1 . Finally, note that

ai
1 ∈ R(A, I)(ait) is a non-zero divisor: if ai

1 ·
h

ami t
m = 0 for some h ∈ R(A, I)m,

then there is q ≥ 1 such that haqi = 0 in A, hence h
ami t

m = 0 in R(A, I)(ait). This

gives the first assertion in ii) and the second one follows from the Principal Ideal
theorem (see also Remark 3.3.6).

The assertion in iii) is clear: we have seen that in this case X̃ is irreducible and
f is an isomorphism over the nonempty closed subset X r Z.

Suppose now that X1, . . . , Xr are the irreducible components of X and that Z

does not contain any of the Xi. It follows from i) that X̃i := f−1(Xi r Z) is an

irreducible component of X̃ such that f induces a birational morphism X̃i → Xi.

Since f is proper (see Corollary 5.1.10), the image f(X̃i) is closed, hence f(X̃i) =
Xi.

Moreover, we have

X̃ ⊆ f−1(Z) ∪
r⋃
i=1

X̃i.

On the other hand, no irreducible component of f−1(Z) can be an irreducible

component of X̃, since we can find, on a suitable affine chart, a non-zero-divisor
that vanishes on f−1(Z) (see Remark 3.3.6). We thus conclude that

X̃ =

r⋃
i=1

X̃i,

completing the proof of iv). �
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Example 6.1.4. Suppose that I = m is the maximal ideal defining a non-
isolated point x ∈ X = MaxSpec(A), hence Z = {x}. It follows from Remark 4.3.18
that f−1(Z) is the closed subset associated to the ideal m ·R(A,m). Note that

R(A,m)/m ·R(A,m) =
⊕
i≥0

mi/mi+1 =: grm(A).

Note that if X1, . . . , Xr are the irreducible components of X that contain x, then the

corresponding irreducible components of X̃ are precisely those that meet f−1(Z).
Since f−1(Z) is locally defined by a non-zero-divisor, we conclude that

dim
(
f−1(Z)

)
= max

i
{dim(Xi)} − 1 = dim(OX,x)− 1.

Since

f−1(Z) ' MaxProj
(
grm(A)/J

)
,

where J is the nil-radical of grm(A), we conclude using Proposition 4.2.11 that

dim
(
grm(A)

)
= dim(OX,x).

Example 6.1.5. With the above notation, suppose that X = An, hence A =
k[x1, . . . , xn], and I = (x1, . . . , xn). We thus have a surjective homomorphism

φ : A[y1, . . . , yn]→ R(A, I), φ(yi) = xit for 1 ≤ i ≤ n,

inducing a closed immersion

ι : X̃ ↪→ X ×Pn−1

of varieties over X. Note that if J is the ideal in A[y1, . . . , yn] generated by all dif-

ferences xiyj−xjyi, for i 6= j, then J ⊆ ker(φ), hence ι(X̃) is contained in V (J). On
the other hand, we have seen in Exercise 5.1.13 that V (J) is an irreducible variety,

of dimension n. We thus conclude that ι gives an isomorphism of X̃ with V (J). In
particular, our old definition for the blow-up of the affine space at the origin agrees
with the new one. For a generalization of this example, see Example 6.3.24 below.

Definition 6.1.6. Suppose that X is an irreducible affine variety, Z is a proper

closed subset of X, and f : X̃ → X is the blow-up of X along I. If Y is any closed
subvariety of X such that no irreducible component of Y is contained in Z, then

the strict transform (or proper transform) of Y in X̃ is given by

Ỹ := f−1(Y r Z).

Remark 6.1.7. With the notation in the above definition, we have an induced

morphism Ỹ → Y that can be identified with the blow-up of Y along the ideal
J = I · O(Y ). Indeed, if B = O(Y ), then the surjection A → B induces a graded,
surjective homomorphism of k-algebras:

R(A, I)→ R(B, J).

This induces by Proposition 4.3.11 a commutative diagram

MaxProj
(
R(B, J)

)
g

��

j // MaxProj
(
R(A, I)

)
f

��
Y

i // X,
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where i and j are closed immersions. By Proposition 6.1.3, g maps birationally

each irreducible component of Ỹ onto a corresponding irreducible component of Y ,
which implies that the image of j is, indeed, the strict transform of Y .

Example 6.1.8. In order to give some intuition about the blow-up, we discuss
the strict transform of a curve in A2 under the blow-up at one point. Let us begin,
more generally, with the computation of the strict transform of a hypersurface in
An under the blow-up at one point, where n ≥ 2. Suppose that Y is a hypersurface
in An, with corresponding radical ideal defined by the non-zero polynomial f ∈
k[x1, . . . , xn]. Given a point p ∈ Y , the multiplicity multp(Y ) of Y (or of f) at p is
the largest j ≥ 1 such that f ∈ mjp, where mp is the maximal ideal corresponding

to p. Let π : Ãn → An be the blow-up of An at p. After a suitable translation, we
may assume that p = 0. We can thus write

f = fm + fm+1 + . . .+ fd,

where each fi is homogeneous of degree i, and fm 6= 0, so that mult0(Y ) = m.

Recall that by Example 6.1.5, we know that Ãn is the subset of An ×Pn−1 given
by the equations xiyj = xjyi, for 0 ≤ i, j ≤ n, where y1, . . . , yn are the homogeneous

coordinates on Pn−1. Consider the chart Ui on Ỹ given by yi 6= 0. Note that in
this chart we have xj = xi

yj
yi

for j 6= i, hence Ui ' An, with coordinates u1, . . . , un

such that π#(xi) = ui and π#(xj) = uiuj for j 6= i. If E = π−1(0), then E ∩ Ui is
defined by ui = 0.

The inverse image π−1(Y ) is defined in Ui by

π#(f) = f(u1ui, . . . , ui, . . . , unui)

= umi ·
(
fm(u1, . . . , 1, . . . , un)+ui·fm+1(u1, . . . , 1, . . . , un)+. . .+um−di fd(u1, . . . , 1, . . . , un)

)
.

Since the polynomial

f̃ := fm(u1, . . . , 1, . . . , un)+ui·fm+1(u1, . . . , 1, . . . , un)+. . .+um−di fd(u1, . . . , 1, . . . , un)

defines a hypersurface in Ui that does not contain E ∩ Ui, it follows that its zero-

locus defines Ỹ ∩ Ui. In fact, since the homomorphism k[x1, . . . , xn]xi
→ O(Ui)ui

is an isomorphism, it is easy to deduce that f̃ is square-free, hence it generates the

ideal of Ỹ ∩ Ui.
Let us specialize now to the case n = 2. In this case fm is a homogeneous

polynomial of degree d, which can thus be written as fm =
∏m
j=1 `j , where each `j

is a linear form (we use the fact that k is algebraically closed, hence every polynomial
in one variable is the product of degree 1 polynomials). The lines through the origin
defined by the factors of fm are the tangents to X at 0. Note that the lines through
0 in A2 are parametrized by P1 = π−1(0).

We claim that after the blow-up, the points of intersection of the strict trans-

form Ỹ with E correspond precisely to the tangent lines to X at 0. Indeed, if we

consider for example the chart U1, note that the points of Ỹ ∩E∩U1 are defined by
u1 = 0 = fm(1, u2). It follows that if fm =

∏m
j=1(ajx1 + bjx2), then the points of

Ỹ ∩E ∩U1 are precisely the points [bj ,−aj ] ∈ E with bj 6= 0. Similarly, the points

of Ỹ ∩ E ∩ U2 are precisely the points [bj ,−aj ] ∈ E with aj 6= 0. This proves our
claim. In fact, this is not just a set-theoretic correspondence: tangents that appear

with multiplicity > 1 in fm translate to tangency conditions between Ỹ and E at
the corresponding point. We will return to this phenomenon at a later point.



6.2. THE TANGENT SPACE 119

6.2. The tangent space

We begin with the following general observation. If (R,m) is a local Noetherian
ring, then m/m2 is a finite-dimensional vector space over the residue field K =
R/m. It follows from Nakayama’s lemma that dimK m/m2 is the minimal number
of generators for the ideal m (see Remark C.1.3).

In this section we are interested in the case when (X,OX) is an algebraic
variety, p ∈ X is a point, and we consider the local ring OX,p, with maximal ideal
mp. Recall that in this case the residue field is the ground field k.

Definition 6.2.1. The tangent space of X at p is the k-vector space

TpX := (mp/m
2
p)
∗ = Homk(mp/m

2
p, k).

The following proposition explains the terminology in the above definition.
Note that TpX does not change if we replace X by an affine open neighborhood of
p. In particular, we may assume that X is affine and choose a closed immersion
X ↪→ An.

Proposition 6.2.2. If X is a closed subvariety of An with corresponding rad-
ical ideal IX ⊆ k[x1, . . . , xn], then TpX is isomorphic to the linear subspace of kn

defined by the equations
n∑
i=1

∂f

∂xi
(p)xi = 0 for all f ∈ IX .

Moreover, it is enough to only consider those equations corresponding to a system
of generators of IX .

In the case of a closed subset X of An, we will refer to the linear subspace in
the proposition as the embedded tangent space in the affine space.

Proof of Proposition 6.2.2. Let f1, . . . , fr be a system of generators of IX .
In this case, if p = (a1, . . . , an), we have

OX,p = OAn,p/(f1, . . . , fr) and mp = (x1 − a1, . . . , xn − an)OAn,p/(f1, . . . , fr).

Therefore we have

OX,p/m2
p = k[x1, . . . , xn]/(x1 − a1, . . . , xn − an)2 + (f1, . . . , fr).

On the other hand, for every f ∈ k[x1, . . . , xn], we have

f ≡ f(p) +

n∑
i=1

∂f

∂xi
(p) · (xi − ai) mod (x1 − a1, . . . , xn − an)2.

We thus see that mp/m
2
p is the quotient of the vector space over k with basis

ei = xi − ai for 1 ≤ i ≤ n, by the subspace generated by
n∑
i=1

∂f

∂xi
(p)ei for f ∈ (f1, . . . , fr).

This immediately gives the first assertion in the proposition.
Note now that if g ∈ (f1, . . . , fr) and we write g =

∑r
j=1 hjfj , then it follows

from the product rule and the fact that fj(p) = 0 for all j that
n∑
i=1

∂g

∂xi
(p)xi =

r∑
j=1

hj(p) ·
n∑
i=1

∂fj
∂xi

(p)xi.
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The last assertion in the proposition follows. �

Remark 6.2.3. If f : X → Y is a morphism of varieties and p ∈ X, we obtain
a local homomorphism of local rings

φ : OY,f(p) −→ OX,p.

This induces a k-linear morphism

mf(p)/m
2
f(p) −→ mp/m

2
p

and by taking duals, we obtain a k-linear map dfp : TpX → Tf(p)Y . It is easy to
see that this definition is functorial: if g : Y → Z is another morphism, then

dgf(p) ◦ dfp = d(g ◦ f)p.

Remark 6.2.4. If Y is a closed subvariety of the variety X and if i : Y → X
is the inclusion, then for every p ∈ Y , the linear map dip : TpY → TpX is injective.
This follows from the fact that the homomorphism OX,p → OY,p is surjective and
therefore the induced map mX,p/m

2
X,p → mY,p/m

2
Y,p is surjective, where mX,p ⊆

OX,p and mY,p ⊆ OY,p are the corresponding maximal ideals.
Note that if Y if if a closed subvariety of An and i : Y ↪→ An is the inclusion,

then the embedded tangent space of Y at p is the image of dip, where we identify
in the obvious way TpA

n to kn.

Remark 6.2.5. If X and Y are closed subvarieties of Am and An, respectively,
and if f = (f1, . . . , fn) : X → Y , then via the isomorphisms given by Proposi-
tion 6.2.2, the linear map dfp is induced by the linear map km → kn given with

respect of the standard bases by the Jacobian matrix
(
∂fi
∂xj

(p)
)

. Indeed, by func-

toriality, it is enough to check this when X = Am and Y = An. Let x1, . . . , xm be
the coordinate functions on Am and y1, . . . , yn the coordinate functions on An. If
p = (a1, . . . , am), then the maximal ideals defining p and f(p) are

mp = (x1 − a1, . . . , xm − am) and mf(p) =
(
y1 − f1(p), . . . , yn − fn(p)

)
.

Moreover, the map mf(p) → mp maps yi − fi(p) to fi − fi(p) and Taylor’s formula
shows that

fi − fi(p)−
m∑
j=1

∂fi
∂xj

(p)(xj − aj) ∈ m2
p,

which implies, after taking duals, our assertion.

In the case of a closed subvariety of a projective space, we also have an embed-
ded tangent space: this time, it is a linear subpace of the projective space. This
is defined as follows. Suppose that X is a closed subset of Pn, with corresponding
radical homogeneous ideal IX . Given a point p = [u0, . . . , un] ∈ X, the projective
tangent space of X at p, that we will denote by TpX, is the linear subspace of Pn

defined by the equations
n∑
i=0

∂f

∂xi
(u0, . . . , un)xi = 0,

where f varies over the homogeneous elements in IX . Note first that since f is
homogeneous, if we replace (u0, . . . , un) by (λu0, . . . , λun), for some λ ∈ k∗, then
the equation gets multiplied by λ. Note also that it is enough to consider a system
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of homogeneous generators of IX : if f =
∑r
j=1 gjfj , with fj ∈ IX , then we get

using the product rule and the fact that fj(u0, . . . , un) = 0 for all j

n∑
i=0

∂f

∂xi
(u0, . . . , un)xi =

r∑
j=1

gj(u0, . . . , un) ·
n∑
i=0

∂fj
∂xi

(u0, . . . , un)xi.

Finally, we note that TpX contains the point p: this is a consequence of Euler’s
identity, which says that if f is homogeneous, of degree d, then∑

i=0

xi
∂f

∂xi
= d · f.

The terminology is justified by the following

Proposition 6.2.6. Let X be a closed subvariety of Pn and p ∈ X. If i is
such that p ∈ Ui = (xi 6= 0) and if we identify Ui with An is the usual way, then
TpX ∩Ui is the image of the embedded tangent space in An for X ∩Ui at p by the
translation mapping 0 to p.

Proof. In order to simplify the notation, let us assume that i = 0. In this case,
we may assume that (u0, . . . , un) = (1, u1, . . . , un). Note that the ideal of X ∩ Ui
in k[x1, . . . , xn] is generated by f(1, x1, . . . , xn), where f varies over a set of homo-
geneous generators of IX (see Exercise 4.2.14). Fix such f and let g(x1, . . . , xn) =

f(1, x1, . . . , xn). Therefore we have ∂g
∂xi

(u1, . . . , un) = ∂f
∂xi

(1, u1, . . . , un). On the
other hand, it follows from Euler’s identity that

∂f

∂x0
(1, u1, . . . , un) = −

n∑
i=1

ui ·
∂f

∂xi
(1, u1, . . . , un).

This implies that

∂f

∂x0
(1, u1, . . . , un) +

n∑
i=1

∂f

∂xi
(1, u1, . . . , un)xi =

n∑
i=1

∂g

∂xi
(u1, . . . , un) · (xi − ui).

This implies the assertion in the proposition. �

Exercise 6.2.7. Given varieties X and Y , for every x ∈ X and y ∈ Y , the
projections X × Y → X and X × Y → Y induce a linear map

T(x,y)(X × Y )→ TxX × TyY.

Show that this is an isomorphism.

6.3. Smooth algebraic varieties

Let X be an algebraic variety. Given a point p ∈ X, recall that we put
dimpX := dim(OX,p). This is the largest dimension of an irreducible component
of X that contains p (see Remark 3.3.14), and also the codimension of {p} in X.
Our first goal is to show that dimk TpX ≥ dimpX.

More generally, we will get a similar statement for the localization of a finite
type k-algebra at a prime ideal. This applies, in particular, for the local ring
(OX,V ,mV ) of X at an irreducible closed subset V . Note that in this case the
residue field is the field of rational functions on V .
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Proposition 6.3.1. For every local ring (R,m) that is the localization of a
k-algebra of finite type at a prime ideal, we have

dim(R) ≤ dimK m/m2,

where K = R/m.

Proof. Suppose that R = Ap, where A is a k-algebra of finite type and p is

a prime ideal in A. Note that if I is the nil-radical of A and R = R/I · R, then
R is local, with maximal ideal m = m/I · R, and the same residue field. Since
dim(R) = dim(R), while

dimK m/m2 = dimK m/(m2 + I ·R) ≤ dimK m/m2,

we see that that it is enough to prove the assertion when A is reduced. Let X be
an affine variety with O(X) = A and let V be the irreducible closed subset defined
by p.

Recall that by Nakayama’s lemma, if r = dimK m/m2, then m is generated by
r elements. This implies that there is f ∈ A r p such that pAf is generated by r
elements. After replacing A by Af , we may thus assume that p is generated by r
elements. In this case, Corollary 3.3.7 implies dim(R) = codimX(V ) ≤ r, giving
the assertion in the proposition. �

Definition 6.3.2. A point p ∈ X is nonsingular (or smooth) if dimpX =
dimk TpX. Otherwise, it is singular. The variety X is nonsingular (or smooth) if
all its points are nonsingular points.

Given an irreducible, closed subset V ⊆ X, we say that X is nonsingular at V
if dim(OX,V ) = dimk(V ) mV /m

2
V . We will see later that this is equivalent with the

fact that some point p ∈ V is a nonsingular point.

Example 6.3.3. It is clear that every affine space An is a smooth variety.
Since a projective space has an open cover by affine spaces, it follows that every
projective space is a smooth variety.

Example 6.3.4. Let X be a hypersurface in An, defined by the radical ideal
(f) ⊆ k[x1, . . . , xn]. Since dimp(X) = n − 1 for every p ∈ X, it follows from
definition and Proposition 6.2.2 that the set of singular points in X is the zero
locus of the ideal

(f, ∂f/∂x1, . . . , ∂f/∂xn).

In particular, we see that the set of smooth points is open in X. A generalization
of this fact will be given in Theorem 6.3.7 below.

Remark 6.3.5. Since Krull’s Principal Ideal theorem holds in every Noetherian
ring, the inequality in Proposition 6.3.1 also holds for arbitrary Noetherian local
rings. A Noetherian local ring for which the inequality is an equality is a regular
ring.

Definition 6.3.6. For every regular local ring (R,m), a regular system of pa-
rameters is a minimal set of generators of m. Note that since R is regular, the
length of such a system is equal to dim(R). If X is a variety and p ∈ X is a smooth
point, we say that some regular functions f1, . . . , fn defined in a neighborhood of
p give a regular system of parameters at p if their images in OX,p give a regular
system of parameters.

The following is the main result of this section
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Theorem 6.3.7. For every variety X, the set Xsm of smooth points p ∈ X is
a dense open subset.

The complement of the smooth locus Xsm is the singular locus Xsing of X. We
prove the theorem, assuming the following proposition, and then give the proof of
the proposition.

Proposition 6.3.8. If p ∈ X is a nonsingular point, then the local ring OX,p
is a domain (that is, p lies on a unique irreducible component of X).

Proof of Theorem 6.3.7. In order to prove the assertion, we may assume
that X is irreducible. Indeed, if X1, . . . , Xr are the irreducible components of X,
then it follows from Proposition 6.3.8 that no point on the intersection of two
distinct components is nonsingular. It thus follows that if X ′i = Xir

⋃
j 6=iXj , then

Xsm =

r⋃
i=1

(X ′i)sm.

Therefore it is enough to know the assertion for irreducible varieties.
Suppose now that X is irreducible and let r = dim(X). If X =

⋃
i Ui is an

affine open cover, it is enough to show that each set Xsm ∩ Ui = (Ui)sm is open
and nonempty. Therefore we may and will assume that X is a closed subset of an
affine space An. If f1, . . . , fm are generators of the ideal defining X, then it follows
from definition and Proposition 6.2.2 that a point q ∈ X is a nonsingular point if

and only if the rank of the Jacobian matrix
(
∂fi
∂xj

(q)
)

is ≥ n − r. This is the case

if and only if one of the (n − r)-minors of the matrix
(
∂fi
∂xj

)
does not vanish at q,

condition that defines an open subset of X.
In order to prove that Xsm is nonempty, we may replace X by a birational

variety. By Proposition 1.6.13, we may thus assume that X is an irreducible hy-
persurface in Ar+1. Let f ∈ k[x1, . . . , xr+1] be the irreducible polynomial that
generates the prime ideal corresponding to X. As we have seen, for a point q ∈ X,
we have q ∈ Xsm if and only there is i such that ∂f

∂xi
(q) 6= 0. If Xsm = ∅, then ∂f

∂xi

vanishes on X for 1 ≤ i ≤ r + 1. Therefore ∂f
∂xi
∈ (f) for all i. If degxi

(f) = di,

then we clearly have degxi

(
∂f
∂xi

)
< di, hence ∂f

∂xi
∈ (f) implies that ∂f

∂xi
= 0. Since

this holds for every i, we conclude that char(k) = p > 0 and f ∈ k[xp1, . . . , x
p
n].

Since k is perfect, being algebraically closed, we conclude that f = gp for some
g ∈ k[x1, . . . , xr+1], contradicting the fact that f is irreducible. �

We now turn to the proof of Proposition 6.3.8. This will be a consequence of
the following useful fact about smooth points. Let X be a variety and p ∈ X a
smooth point. We put R = OX,p and let m be the maximal ideal in R. Since p
is a smooth point, if n = dim(R), then we can choose generators a1, . . . , an for m.
Note that R/m = k and the classes a1, . . . , an ∈ m/m2 give a k-basis. Consider the
graded k-algebra homomorphism

φ : k[x1, . . . , xn]→
⊕
i≥0

mi/mi+1

that maps each xi to ai. Since the right-hand side is generated by m/m2, it is clear
that φ is surjective.
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Proposition 6.3.9. If p ∈ X is a smooth point, then morphism φ defined above
is an isomorphism.

Proof. Let U be an affine open neighborhood of p and let A = O(U). If n ⊆ A
is the maximal ideal corresponding to x, then R = An and m = nAn. Note that⊕

i≥0

mi/mi+1 = grn(A),

hence this ring has dimension n by Example 6.1.4. Since φ is a surjective homo-
morphism and k[x1, . . . , xn] is a domain of dimension n, it follows that φ is an
isomorphism. �

Proof of Proposition 6.3.8. Let R = OX,p and m the maximal ideal of R.
We know, by Proposition 6.3.9, that the ring S =

⊕
i≥0 m

i/mi+1 is a domain. We

now show that this implies that R is a domain. Suppose that a, b ∈ R r {0} are
such that ab = 0. It follows from Krull’s Intersection theorem (see Theorem C.4.1)
that there are i and j such that a ∈ mi r mi+1 and b ∈ mj r mj+1. In this case,
since S is a domain, we conclude that ab 6∈ mi+j+1, a contradiction. Therefore R
is a domain. �

Remark 6.3.10. It follows from Proposition 6.3.8 that every connected compo-
nent of a smooth variety is irreducible. Because of this, when dealing with smooth
varieties, one can easily reduce to the case when the variety is irreducible.

Remark 6.3.11. The same line of argument can be used to prove a stronger
statement: if A is a k-algebra of finite type, but non-necessarily reduced, and m is
a maximal ideal in A such that Am is a regular local ring, then Am is a domain.
Indeed, let I be the nil-radical of A and A = A/I, m = m/I. After possibly
replacing A by the localization at a suitable element not in m, we may assume
that m is generated by n elements, where n = dim(Am) = dim(A). Consider the
following two surjective morphisms:

A/m[x1, . . . , xn]
φ−→ grm(A)

ψ−→ grm(A).

By Example 6.1.4, we have

dim
(
grm(A

)
= n,

which implies that ψ ◦φ is an isomorphism, which implies that φ is injective, hence
an isomorphism. The argument in the proof of Proposition 6.3.8 now implies that
Am is a domain.

Remark 6.3.12. Suppose that f ∈ k[x1, . . . , xn] is a non-constant polynomial
such that there is no point p ∈ An, with

f(p) = 0 =
∂f

∂xi
(p) for 1 ≤ i ≤ n.

In this case f generates a radical ideal and the corresponding hypersurface in An is
smooth. Indeed, note that if g is a non-constant polynomial such that g2 divides f ,
then for every p ∈ V (g), we have f(p) = 0 and ∂f

∂xi
= 0 for all i, a contradiction. The

fact that the hypersurface defined by f is smooth now follows from Example 6.3.4.
A similar assertion holds in the projective setting, with an analogous argument:

if F ∈ k[x0, . . . , xn] is a homogeneous polynomial of positive degree such that there
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is no point p ∈ Pn with

F (p) = 0 =
∂F

∂xi
(p) for 0 ≤ i ≤ n,

then the ideal (F ) is radical and it defines a smooth hypersurface in Pn. Moreover,
in this case we see that if n ≥ 2, then this hypersurface is irreducible: indeed, two
irreducible components would have non-empty intersection by Corollary 4.2.12 and
any point on the intersection would be a singular point by Proposition 6.3.8.

Exercise 6.3.13. Show that if X and Y are algebraic varieties, the points
x ∈ X and y ∈ Y are smooth if and only if (x, y) is a smooth point of X × Y .

Exercise 6.3.14. Suppose that G is an algebraic group which has a transitive
algebraic action on the variety X. Show that X is smooth. Deduce that every
algebraic group is a smooth variety.

Example 6.3.15. If V is an irreducible, closed subset of X, with codimX(V ) =
1, then X is smooth at V if and only if the maximal ideal of OX,V is principal, that
is, OX,V is a DVR (for an elementary discussion of DVRs, see Section C.5).

Example 6.3.16. Let H be a hyperplane in Pn and X a closed subvariety of
H. Given a point p ∈ PnrH, the projective cone over X with vertex p is the union
Cp(X) of the lines joining p with the points on X. Note first that this is a closed
subvariety of Pn.

In order to see this, after applying a suitable transformation in PGLn+1(k),
we may assume that H = (xn = 0) and p = [0, . . . , 0, 1], and use the isomorphism
Pn−1 → H, given by [u0, . . . , un−1] → [u0, . . . , un−1, 0], to identify Pn−1 and H.
In this case,

Cp(X) = {p} ∪ {[u0, . . . , un] ∈ Pn | [u0, . . . , un−1] ∈ X} .

It is now clear that Cp(X) is closed in Pn; in fact, if IX ⊆ k[x0, . . . , xn−1] is the
homogeneous ideal corresponding to X, then the ideal of Cp(X) is IX ·k[x0, . . . , xn].
Note that if U is the affine chart U = (xn 6= 0) ' An, then Cp(X)∩U is isomorphic
to the affine cone over X.

We claim that p is a smooth point of Cp(X) if and only if X is a linear subspace
of H. Indeed, p is a smooth point of Cp(X) if and only if 0 is a smooth point of
the affine cone C(X) over X. Note that the embedded tangent cone to C(X) at
0 is defined by the linear polynomials in the ideal IX of X; in other words, this is
equal to the smallest vector subspace of kn containing C(X). This has the same
dimension as C(X) if and only if C(X) is a linear space.

In the remainder of this section we give some further properties of smooth
points.

Proposition 6.3.17. Let X be an algebraic variety and Y a closed subvariety,
with x ∈ Ysm, such that there is an affine open neighborhood U of x in X, and
f1, . . . , fr ∈ O(U) satisfying the following conditions:

i) We have IU (Y ∩ U) = (f1, . . . , fr), and
ii) The subvariety Y ∩ U of U is irreducible, of codimension r.

In this case x is a smooth point on X.
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Note that since x is a smooth point of Y , it follows from Proposition 6.3.8 that
x lies on a unique irreducible component of Y . Therefore after possibly replacing
U by a smaller open subset, we can always assume that Y ∩ U is irreducible.

Proof of Proposition 6.3.17. Let R = OX,x and R be the local rings at

x of X and Y , respectively. If m and m are the maximal ideals in R and R, then
m = m/(f1,x, . . . , fr,x), where we denote by fi,x the image of fi in R. It follows
that

m/m2 = m/m2 + (f1,x, . . . , fr,x),

hence dimk TxY ≥ dimk TxX − r. Since we clearly have

dim(OX,x) ≥ codimX(Y ) + dim(OY,x) = r + dim(OY,x),

we conclude that dim(OX,x) ≥ dimk TxX and thus x is a smooth point of X. �

Remark 6.3.18. An important special case of the above proposition is that of
a hypersurface: suppose that X is an algebraic variety and Y is a closed subvariety
of X such that for some point x ∈ Y and for some affine open neighborhood U ⊆ X
of x, we have IU (Y ∩U) = (f), for some non-zero divisor f ∈ O(U). In this case, if
x is a smooth point of Y , then x is a smooth point of X. Indeed, note that in this
case the fact that Y ∩ U has codimension 1 in U follows from Theorem 3.3.1 and
Remark 3.3.6.

Corollary 6.3.19. If X is a variety and V is an irreducible closed subset of
X such that X is nonsingular at V , then V ∩Xsm 6= ∅.

We will see in Corollary 6.3.23 below that the converse also holds. This is a
special case of a result due to Auslander-Buchsbaum and Serre, saying that if R is
a regular local ring, then for every prime ideal p in R, the localization Rp is regular
(see [Eis95, Chapter 19]).

Proof of Corollary 6.3.19. Let r = dim(OX,V ). By assumption, the
maximal ideal in OX,V is generated by r elements. After possibly replacing X
by a suitable affine open subset meeting V , we may assume that X is affine and
that IX(V ) is generated by r elements f1, . . . , fr. By Theorem 6.3.7, we can find a
point x ∈ Ysm. We then deduce from Proposition 6.3.17 that x is a smooth point
also on X, hence Y ∩Xsm 6= ∅. �

Proposition 6.3.20. Let p be a smooth point on a variety X. If f1, . . . , fr are
regular functions defined in an open neighborhood of p, vanishing at p, and whose
images in m/m2 are linearly independent, where m is the maximal ideal in OX,p,
then there is an affine open neighborhood U of x such that the following conditions
hold:

i) We have f1, . . . , fr ∈ O(U).
ii) We have a closed subvariety Y of X with IU (Y ∩ U) = (f1, . . . , fr).
ii) The subvariety Y is smooth at p and dimp(Y ) = dimp(X)− r.

Proof. We begin by choosing an affine open neighborhood U of p such that
fi ∈ O(U) for all i and let Y be the closure in X of the zero-locus in U of f1, . . . , fr.
Since p lies on a unique irreducible component of X by Proposition 6.3.8, we may
assume, after possibly shrinking U , that X is irreducible, and let n = dim(X).
Let R = OX,p and R = R/(f1,p, . . . , fr,p), where fi,p is the image of fi in R.

If we denote by m and m the maximal ideals in R and R, respectively, then by
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assumption, the classes of f1,p, . . . , fr,p in m/m2 are linearly independent, hence

dimk m/m
2 = n − r. On the other hand, it follows from Corollaries 3.3.7 and

3.3.13 that dim(R) ≥ n − r. We thus conclude that dimk m/m
2 ≤ dim(R) and it

follows from Proposition 6.3.1 that this is an equality, hence R is a regular local
ring. We also see that dim(R) = n − r. Since R is a regular ring, it follows
from Remark 6.3.11 that R is a reduced ring, hence after replacing U by a smaller
neighborhood of p, we may assume that f1, . . . , fr generate a radical ideal in O(U),
hence (f1, . . . , fr) = IU (Y ∩ U). Since R is a regular ring, it follows that Y is
smooth at p, with dimp(Y ) = dimp(X)− r. �

The next result describes the behavior of smooth closed subvarieties of a smooth
variety.

Proposition 6.3.21. Let X be an algebraic variety and Y a closed subvariety
of X. If p ∈ Y is a point that is smooth on both Y and X, then after replacing X
with a suitable affine open neighborhood of p, the ideal I = IX(Y ) is generated by
r elements, where r = dimp(X) − dimp(Y ) (in fact, these elements can be chosen
such that their images in OX,p are part of a regular system of parameters). If this
holds, then the r generators of I induce an isomorphism

R/I[x1, . . . , xr] '
⊕
j≥0

Ij/Ij+1 =: grI(R).

In particular, for every m ≥ 1, the R/I-module Im/Im+1 is free.

Proof. Note first that by Proposition 6.3.8, the point p lies on unique irre-
ducible components of X and Y , hence we may assume that both X and Y are
irreducible. We may and will assume that X is affine, with O(X) = R, and Y is
defined by I = IX(Y ). Let m be the maximal ideal in R corresponding to p. By
assumption, we can write

(6.3.1) r = dimk TpX − dimk TpY.

It follows from (6.3.1) that

dimk(IRm + m2Rm)/m2Rm = r.

We can thus find r elements that are part of a regular system of parameters of
Rm and which lie in IRm. After possibly replacing X by a smaller affine open
neighborhood of x, we may assume, in addition, that these elements are the im-
ages f1,p, . . . , fr,p in Rm of f1, . . . , fr ∈ I. It follows from Proposition 6.3.20 that
after possibly replacing X by a suitable open neighborhood of p, we may assume
that f1, . . . , fr generate the ideal of a closed subvariety Z, smooth, irreducible, of
dimension equal to dim(X) − r. Since Y ⊆ Z, it follows that Y = Z, which gives
the first assertion in the proposition.

The second assertion is trivial if I = 0, hence we assume r > 0. We have a
surjective homomorphism

φ : R/I[x1, . . . , xr] −→ grI(R)

that maps each xi to the class of fi in I/I2. Note now that

(6.3.2) dim
(
grI(R)

)
≥ dim(R).
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Indeed, it follows from Proposition 6.1.3 that the blow-up g : X̃ → X of X along I
is a birational morphism and g−1(Y ) has all irreducible components of codimension

1 in X̃. If J is the nil-radical of grI(R), then

g−1(Y ) ' MaxProj
(
grI(R)/J

)
,

which gives by Remark 4.3.19

dim
(
grI(R)

)
= dim

(
grI(R)/J)

)
≥ dim

(
MaxProj

(
grI(R)/J

))
+ 1 = dim(X).

Since R/I[x1, . . . , xr] is a domain of dimension equal to dim(X), we conclude that
φ is an isomorphism, completing the proof of the proposition. �

Corollary 6.3.22. If X is a smooth variety and Y,Z ⊆ X are irreducible
closed subsets, then every irreducible component W of Y ∩ Z satisfies

codimX(W ) ≤ codimX(Y ) + codimX(Z).

Proof. The idea is similar to the one used when X = An (cf. Exercise 3.3.21).
We may replace X by its unique irreducible component that contains W , and thus
assume that X is irreducible. Let n = dim(X). Consider the diagonal ∆X ⊆ X×X.
Note that we have an isomorphism

Y ∩ Z ' (Y × Z) ∩∆X ,

hence we may consider W as an irreducible component of the right-hand side. Since
X is smooth of dimension n and X ×X is smooth of dimension 2n, it follows from
the proposition that we can find a non-empty affine open subset U ⊆ X ×X such
that U ∩W 6= ∅, and we have f1, . . . , fn ∈ O(U) such that

∆X ∩ U = {x ∈ U | f1(x) = . . . = fn(x) = 0}.
We deduce that W ∩ U is an irreducible component of

{x ∈ (Y × Z) ∩ U | f1(x) = . . . = fn(x) = 0},
and therefore Corollary 3.3.7 implies that codim(Y×Z)∩U (W ∩ U) ≤ n. Using
Corollary 3.3.13, this gives dim(W ) ≥ dim(Y ) + dim(Z)− n, and further

codimX(W ) ≤ codimX(Y ) + codimX(Z).

�

Corollary 6.3.23. If V is an irreducible closed subset of the algebraic variety
X such that V ∩Xsm 6= ∅, then X is smooth at V .

Proof. After replacing X by an irreducible component of Xsm that meets
V , we may assume that X is smooth and irreducible. Furthermore, it follows from
Theorem 6.3.7 that there is an open subset U of X such that U∩V is smooth. After
replacing X by U , we may assume that V is smooth, too. Furthermore, it follows
from Proposition 6.3.21 that we may assume that X is affine, with R = O(X), and
the prime ideal p defining V has the property that p/p2 is a free R/p-module, of
rank r = codimX(V ). In this case dimk(V ) pRp/p

2Rp = r, hence X is smooth at
V . �

Example 6.3.24. If X = MaxSpec(A) is a smooth variety and f : X̃ → X is the
blow-up of X along the radical ideal I, defining the smooth closed subvariety Y of

X, then X̃ is smooth. Indeed, note first that after covering X by suitable affine open
subsets, we may assume that X and Y are irreducible and, by Proposition 6.3.21,
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that I is generated by r = codimX(Y ) elements f1, . . . , fr. In this case, we can

explicitly describe X̃ by equations, as follows.
The surjection

φ : A[y1, . . . , yr]→ R(A, I), φ(yi) = fit for 1 ≤ i ≤ r

induces a closed immersion

ι : X̃ ↪→ X ×Pr−1

of varieties over X. Note that if J is the ideal generated by all differences fiyj−fjyi,
for i 6= j, then J ⊆ ker(φ), hence ι maps X̃ inside V (J). We will show that in fact
ι(X) = V (J).

Note first that the morphism g : V (J) → X is an isomorphism over X r Y .
Indeed, we have (

A[y1, . . . , yr]/J
)
fi
' Afi [yi],

and therefore the inverse image of D(fi) in V (J) is isomorphic to

MaxProj
(
Afi [yi]

)
' MaxSpec(Afi).

We now show that V (J) is a smooth subvariety of X × Pr−1, of codimension
r − 1. This is clear at the points lying over X r Y , so that we consider a point
q =

(
p, [u1, . . . , ur]

)
∈ V (J) lying over Y , hence f1(p) = . . . = fr(p) = 0. Let i be

such that ui 6= 0 and consider the open subset Ui = X ×D+
Pr−1(xi) ⊆ X × Pr−1.

The intersection V (J)∩Ui is the zero-locus of the ideal generated by fj − fi yjyi , for

j 6= i. Let m be the ideal defining q. Note that we can write

fj − fi
yj
yi

= fj −
uj
ui
fi +

(
yj
yi
− uj
ui

)
fi.

Since
(
yj
yi
− uj

ui

)
fi ∈ m2 and the classes of fj− uj

ui
fi in m/m2, for j 6= i, are linearly

independent, it follows from Proposition 6.3.20 that q is a smooth point of V (J),

and the codimension of X̃ in X ×Pr−1 around q is r − 1.

We can now see that V (J) is irreducible, and thus it is equal to ι(X̃). Indeed,

every irreducible component of V (J) different from g−1(X r Y ) must be contained
in g−1(Y ) = Y ×Pr−1. However, we have seen that every irreducible component of
V (J) has dimension equal to dim(X) > dim(Y ) + r−1, hence it can’t be contained
in Y ×Pr−1.

We thus conclude that X̃ is smooth and is defined in X ×Pr−1 by the ideal J .

Definition 6.3.25. Given a smooth variety X and two smooth closed subva-
rieties Y and Z of X, recall that for every p ∈ Y ∩ Z, we may consider TpY and
TpZ as linear subspaces of TpX. We say that Y and Z intersect transversely if, for
every p ∈ Y ∩ Z, we have

codimTpX(TpY ∩ TpZ) = codimp
X(Y ) + codimp

X(Z)

(note that p lies on unique irreducible components X ′ and Y ′ of X and Y , re-
spectively, and we put codimp

X(Y ) = codimX′(Y
′); a similar definition applies for

codimp
X(Z)). The condition can be equivalently formulated as follows: for every

p ∈ Y ∩ Z, we have

TpY + TpZ = TpX.
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Proposition 6.3.26. If X is a smooth variety and Y , Z are smooth closed
subvarieties of X that intersect transversely, then Y ∩ Z is smooth, and for every
p ∈ Y ∩ Z, we have

codimp
X(Y ∩ Z) = codimp

X(Y ) + codimp
X(Z) and

Tp(Y ∩ Z) = TpY ∩ TpZ.
Moreover, for every affine open subset U of X, we have

IU (Y ∩ Z ∩ U) = IU (Y ∩ U) + IU (Z ∩ U).

Proof. Let r = codimp
X(Y ) and s = codimp

X(Z). It follows from Proposi-
tion 6.3.21 that if U is a suitable irreducible affine open neighborhood of p, then
IU (Y ∩ U) is generated by r elements and IU (Z ∩ U) is generated by s elements.
Consider the ideal

J = IU (Y ∩ U) + IU (Z ∩ U)

that defines the closed subset Y ∩ Z. Since J is generated by r + s elements, it
follows from Corollaries 3.3.7 and 3.3.13 that every irreducible component of Y ∩Z
has dimension ≥ dimp(X) − (r + s). On the other hand, we have Tp(Y ∩ Z) ⊆
Tp(Y ) ∩ Tp(Z), hence by assumption

dimk Tp(Y ∩ Z) ≤ dimp(X)− (r + s).

This implies that p is a smooth point of Y ∩ Z and Tp(Y ∩ Z) = TpY ∩ TpZ.
In fact we can do better: it is easy to see, by translating the above argument

algebraically, that if m ⊆ O(U) = R is the maximal ideal corresponding to p, then

dimk m/m
2 + J ≤ dimp(X)− (r + s) ≤ dim

(
Rm/JRm

)
.

This implies that Rm/JRm is a regular local ring, hence reduced by Remark 6.3.11.
Therefore Jm =

(
IU (Y ∩U) + IU (Z ∩U)

)
m

for every point in Y ∩Z, which implies

the last assertion in the proposition (see, for example, Corollary C.3.3 ). �

We end this section by stating one of the most useful results in algebraic ge-
ometry. Given an irreducible algebraic variety X, a resolution of singularities of X

is a proper, birational morphism f : X̃ → X, with X̃ a smooth, irreducible variety.
One can ask for more properties (for example, one can ask that f is projective, in
a sense that we will define later, which implies in particular that if X is projective

or quasi-projective, then X̃ has the same property; one can also ask for f to be an
isomorphism over Xsm). The following celebrated result is due to Hironaka.

Theorem 6.3.27. If char(k) = 0, then every irreducible variety X over k has
a resolution of singularities.

Remark 6.3.28. In fact, Hironaka’s theorem is more precise: suppose, for
simplicity, that X has a closed immersion in a smooth variety Y (for example, any
quasi-projective variety satisfies this condition). In this case the theorem says that
there is a sequence of morphisms

Yr
fr−→ Yr−1 −→ . . . −→ Y1

f1−→ Y0 = Y

with the following properties:

i) Each fi, with 1 ≤ i ≤ r, is the blow-up along a smooth variety Zi−1

(hence, by induction, all Yi are smooth).
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ii) For every i, with 1 ≤ i ≤ r, the strict transform Xi−1 of X on Yi−1 is not
contained in Zi−1 (so that the next strict transform Xi is defined).

iii) The strict transform Xr of X on Yr is smooth.

Exercise 6.3.29. Consider the following curves in A2:

X = V (x2 − y3), Y = V
(
y2 − x2(x+ 1)

)
, and Z = V (x2 − y5).

Show that if π : Ã2 → A2 is the blow-up of the origin, then the strict transforms X̃

and Ỹ of X and Y , respectively, are smooth; the strict transform Z̃ of Z has one
singular point and by blowing that up, the resulting strict transform is smooth.

6.4. Bertini’s theorem

Recall that the hyperplanes in Pn are parametrized by a projective space (Pn)∗.
We will be using the following terminology: if Z is an irreducible variety, we say that
a property holds for a general point z ∈ Z if there is an open subset U of Z such that
the property holds for all z ∈ U . Note that if we have two such properties, then they
both hold for a general point in Z: this follows from the fact that the intersection of
two nonempty open subsets is again a nonempty open subset. This terminology is
particularly convenient when the points of Z parametrize some geometric objects,
as is the case with (Pn)∗.

Given a projective variety X ⊆ Pn, one is often interested in the following type
of statement: if X has a certain property, then for a general hyperplane H in Pn,
the intersection X ∩H still has the same property. In this section we prove such a
result for smoothness.

Theorem 6.4.1 (Bertini). If X ⊆ Pn is a smooth variety, then for a general
hyperplane H in Pn, the subvarieties X and H of Pn intersect transversely; in
particular, the intersection X ∩H is smooth, and if X has pure dimension d, then
X ∩H has pure dimension d− 1.

Proof. We may assume that X is irreducible: indeed, if we know this, then
for every connected component of X, we find a corresponding open subset of (Pn)∗.
The intersection of these open subsets then satisfies the conclusion in the theorem.
From now on we assume that X is irreducible, and let d = dim(X).

Note that for every hyperplane H in Pn and every p ∈ H, we have TpH = H.
It follows from Proposition 6.2.6 that H and X do not intersect transversely if and
only if there is p ∈ X ∩H such that TpX ⊆ H. Consider the set

Z :=
{(
p, [H]

)
∈ X × (Pn)∗ | Tp(X) ⊆ H

}
.

We claim that Z is closed in X × (Pn)∗. In order to check this, let f1, . . . , fr be
homogeneous generators for the ideal IX of X in Pn. The linear subspace TpX at
a point p ∈ X is defined by the linear equations

n∑
j=0

∂fi
∂xj

(p)xj = 0 for 1 ≤ i ≤ r.

By assumption, for every p ∈ X, the rank of the matrix
(
∂fi
∂xj

(p)
)
i,j

is n− d. The

hyperplane H defined by
∑n
j=0 ajxj = 0 contains TpX if and only if the rank of
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the matrix 
a0 a1 . . . an

∂f1
∂x0

(p) ∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)

. . . . . . . . . . . .
∂fr
∂x0

(p) ∂fr
∂x1

(p) . . . ∂fr
∂xn

(p)


is ≤ n− d. Equivalently, all (n− d+ 1)-minors of this matrix must be 0, and it is
clear that it is enough to only consider those minors involving the first row. Each
of these conditions is of the form

n∑
j=0

ajgj(p) = 0

for some homogeneous polynomials g0, . . . , gn, all of the same degree. It is now
straightforward to check (for example, by covering each of X and (Pn)∗ by the
standard affine charts) that the subset Z is closed in X × (Pn)∗. In particular, Z
is a projective variety.

The projections onto the two components induce two morphisms π1 : Z → X
and π2 : Z → (Pn)∗. For every p ∈ X, consider the fiber π−1

1 (p). This is identified
with the subset of (Pn)∗ consisting of all hyperplanes containing Tp(X). This is a
linear subspace of dimension n − d − 1. Indeed, since X is smooth, of dimension
d, the linear subspace Tp(X) of Pn has dimension d. After choosing suitable
coordinates, we may assume that this is given by xd+1 = . . . = xn = 0. In this
case, the hyperplane with equation

∑n
i=0 aixi = 0 contains Tp(X) if and only if

a0 = . . . = ad = 0; this is thus a linear subspace in (Pn)∗ of codimension d+ 1.
Therefore we conclude from Corollary 3.4.3 that

dim(Z) = dim(X) + (n− d− 1) = n− 1.

In this case, the morphism π2 : Z → (Pn)∗ can’t be dominant. Its image is thus
a proper closed subset of (Pn)∗ and if U is the complement of this image, we see
that for every hyperplane H in Pn with [H] ∈ U , X and H intersect transversely,
and therefore Proposition 6.3.26 implies that X ∩ H is a smooth variety of pure
dimension d− 1 (of course, if d = 0, this simply means that X ∩H is empty). �

Remark 6.4.2. It follows from the above proof that even if X ⊆ Pn is a
subvariety with finitely many singular points, for a general hyperplane H in Pn,
the intersection X ∩H is still smooth. Indeed, with the notation in the proof, we
still have that the fiber π−1

1 (p), for p ∈ X, has dimension ≤ n − d − 1 (in fact,
one can get a better bound at the singular points). We thus still have the bound
dim(Z) ≤ n − 1, which implies that Z does not dominate (PN )∗. Since a general
hyperplane does not contain any of the singular points of X, we deduce that such
a hyperplane intersects Xsm transversally, and therefore X ∩H is smooth.

Remark 6.4.3. There are several other versions of Bertini’s theorem. One
which is often useful says that if X ⊆ Pn is an irreducible closed subvariety, with
dim(X) ≥ 2, then for a general hyperplane H ⊆ Pn, the intersection X∩H is again
irreducible (see [Jou83] for this and related results). Another useful version, due
to Kleiman, concerns smoothness in the case when instead of a closed subvariety of
Pn one deals with an arbitrary morphism X → Pn (this, however, works only over
a ground field of characteristic 0). We will prove this result in Proposition 13.2.21.
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6.5. Smooth morphisms between smooth varieties

In this section we discuss the notion of smooth morphism between smooth
varieties. We will later return to this concept, to consider the case of arbitrary
varieties.

Definition 6.5.1. A morphism f : X → Y between smooth algebraic varieties
is smooth at a point x ∈ X if the linear map

dfx : TxX → Tf(x)Y

is surjective. The morphism f is smooth if it is smooth at every point.

Given a morphism of smooth varieties f : X → Y , for every irreducible compo-
nent X ′ of X there is a unique irreducible component Y ′ of Y such that f(X ′) ⊆ Y ′.
We can thus easily reduce to the case of morphisms between smooth, irreducible
varieties.

Proposition 6.5.2. If f : X → Y is a smooth morphism between the smooth,
irreducible varieties X and Y , then f is dominant and for every y ∈ f(X), the
fiber f−1(y) is smooth, of pure dimension dim(X) − dim(Y ). Moreover, for every
x ∈ f−1(y), we have

Tx
(
f−1(y)

)
= ker(dfx : TxX → Tf(x)Y ).

Proof. By Theorem 3.4.1, we know that every irreducible component of f−1(y)
has dimension ≥ dim(X) − dim(Y ). Moreover, the inequality is strict if f is not
dominant.

On the other hand, the composition

f−1(y)
i
↪→ X

f−→ Y

where i is the inclusion map can also be factored as

f−1(y) −→ {y} ↪→ Y.

This implies that the restriction of dfx to Tx
(
f−1(y)

)
⊆ TxX is zero, hence Tx

(
f−1(y)

)
is contained in the kernel of dfx. Since dfx is surjective, it follows that

dimk Tx
(
f−1(y)

)
≤ dimk ker(dfx) = dimk TxX − dimk Tf(x)Y = dim(X)− dim(Y ).

Since dimx

(
f−1(y)

)
≤ dimk Tx

(
f−1(y)

)
, we thus conclude that this is, in fact, an

equality. This implies that f is dominant, Tx
(
f−1(y)

)
= ker(dfx), and f−1(y) is

smooth at x, of dimension dim(X)− dim(Y ). �

Example 6.5.3. Consider the morphism f : A1 → A1 given by f(t) = t2,
where we assume that char(k) 6= 2. For every point t ∈ A1, the map

TtA
1 = k → k = Tf(t)A

1

is given by multiplication by 2t (see Remark 6.2.5). It follows that f is smooth at
every point t 6= 0, but it is not smooth at 0.

Definition 6.5.4. A morphism of smooth varieties f : X → Y is étale at x ∈ X
if it is smooth at x and dimxX = dimf(x) Y . The morphism is étale if it is étale at
every point.



134 6. SMOOTH VARIETIES

An important result in this setting is the Generic Smoothness theorem, saying
that if char(k) = 0, then for every dominant morphism of smooth varieties f : X →
Y , there is a non-empty open subset U ⊆ Y such that the induced morphism
f−1(U)→ U is smooth (see Theorem 13.2.18).

Remark 6.5.5. The hypothesis on the characteristic in the Generic Smoothness
theorem is essential. If char(k) = p, note that the morphism f : A1 → A1 given by
f(t) = tp is not smooth at any point.

Remark 6.5.6. The Generic Smoothness theorem is the analogue of Sard’s
theorem in differential topology. Note that by combining it with Proposition 6.5.2,
we conclude that if f : X → Y is a dominant morphism of smooth, irreducible
algebraic varieties over an algebraically closed field of characteristic 0, then there
is a non-empty open subset U of Y such that for every y ∈ Y , the fiber f−1(y) is
smooth.



CHAPTER 7

The Grassmann variety and other examples

In this chapter we discuss various geometric examples related to the Grassmann
variety. In the first section we construct this variety and discuss several related
constructions, such as the Plücker embedding and the incidence correspondence.
In the second section we discuss flag varieties, while in the third section we give a
resolution of singularities for the generic determinantal variety. We next consider
the parameter space for projective hypersurfaces and discuss linear subspaces on
such hypersurfaces. In the last section we treat the variety of nilpotent matrices.

7.1. The Grassmann variety

Let V = kn and let r be an integer with 0 ≤ r ≤ n. In this section we describe
the structure of algebraic variety on the set G(r, n) parametrizing the r-dimensional
linear subspaces of V . These are the Grassmann varieties. Given an r-dimensional
linear subspace W of V , we denote by [L] the corresponding point of G(r, n).

This is trivial for r = 0 or r = n: in this case G(r, n) is just a point. The
first non-trivial case that we have already encountered is for r = 1: in this case
G(r, n) = Pn−1. A similar description holds for r = n−1: hyperplanes in kn are in
bijection with lines in (kn)∗ ' kn, hence these are again parametrized by a Pn−1

(cf. Exercise 4.2.18).
We now proceed with the description in the general case. Given an r-dimensional

linear subspaceW of kn, choose a basis u1, . . . , ur ofW . By writing ui = (ai,1, . . . , ai,n)
for 1 ≤ i ≤ r, we obtain a matrix A = (ai,j) ∈ Mr,n(k). Note that we have an
action of GLr(k) on Mr,n(k) given by left multiplication. Choosing a different basis
of W corresponds to multiplying the matrix on the left by an element of GLr(k).
Moreover a matrix in Mr,n(k) corresponds to some r-dimensional linear subspace in
kn if and only if it has maximal rank r. We can thus identify G(r, n) with the quo-
tient set U/GLr(k), where U is the open subset of Mr,n(k) consisting of matrices
of rank r.

For every subset I ⊆ {1, . . . , n} with r elements, let UI be the open subset of U
given by the non-vanishing of the r-minor on the columns indexed by the elements
of I. Note that this subset is preserved by the GLr(k)-action and let VI be the
corresponding subset of G(r, n). We now construct a bijection

φI : VI →Mr,n−r(k) = Ar(n−r).

In order to simplify the notation, say I = {1, . . . , r}. Given any matrix A ∈ UI , let
us write it as A = (A′, A′′) for matrices A′ ∈ Mr,r(k) and A′′ ∈ Mr,n−r(k). Note
that by assumption det(A′) 6= 0. In this case there is a unique matrix B ∈ GLr(k)
such that B · A = (Ir, C), for some matrix C ∈ Mr,n−r(k) (namely B = (A′)−1,
in which case C = (A′)−1 · A′′). Therefore every matrix class in VI is the class of

135
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a unique matrix of the form (Ir, C), with C ∈ Mr,n−r(k). This gives the desired

bijection between V{1,...,r} → Ar(n−r), and a similar argument works for every VI .
We put on each VI the topology and the sheaf of functions that make the

above bijection an isomorphism in T opk. We need to show that these glue to give
on G(r, n) a structure of a prevariety: we need to show that for every subsets I and
J as above, the subset φI(VI ∩ VJ) is an open subset of Ar(n−r) and the map

(7.1.1) φJ ◦ φ−1
I : φI(VI ∩ VJ)→ φJ(VI ∩ VJ)

is a morphism of algebraic varieties (in which case, by symmetry, it is an isomor-
phism). In order to simplify the notation, suppose that I = {1, . . . , r}. It is then
easy to see that if #(I ∩ J) = `, then φI(VI ∩ VJ) ⊆ Ar(n−r) is the principal affine
open subset defined by the non-vanishing of the (r− `)-minor on the rows indexed
by those i ∈ I r J and on the columns indexed by those j ∈ J r I. Moreover, the
map (7.1.1) is given by associating to a matrix C the r × n matrix M = (Ir, C),
multiplying it on the left with the inverse of the r × r-submatrix of M on the
columns in J to get M ′, and then keeping the r × (n− r) submatrix of M ′ on the
columns in {1, . . . , n}r J . It is clear that this is a morphism.

We thus conclude that G(r, n) is an object in T opk. In fact, it is a prevariety,
since it is covered by open subsets isomorphic to affine varieties. In fact, since
each VI is isomorphic to an affine space, it is smooth and irreducible, and since
we have seen that any two VI intersect, we conclude that G(r, n) is irreducible by
Exercise 1.3.17. Furthermore, since each VI has dimension r(n − r), we conclude
that dim

(
G(r, n)

)
= r(n− r). We collect these facts in the following proposition.

Proposition 7.1.1. The Grassmann variety G(r, n) is a smooth, irreducible
prevariety of dimension r(n − r), that has a cover by open subsets isomorphic to
Ar(n−r).

Example 7.1.2. If r = 1, the algebraic variety G(1, n) is just Pn−1, described
via the charts Ui = (xi 6= 0) ' An−1.

Example 7.1.3. If r = n − 1, the algebraic variety G(n − 1, n) has an open
cover

G(n− 1, n) = U1 ∪ . . . ∪ Un.
For every i, we have an isomorphism An−1 ' Ui such that (λ1, . . . , λi−1, λi+1, . . . λn)
is mapped to the hyperplane generated by {ej + λjei | j 6= i}. This is the hyper-
plane defined by the equation e∗i −

∑
j 6=i λje

∗
j = 0. We thus see that the variety

structure on G(n − 1, n) is the same one as on (Pn−1)∗, which is isomorphic to
Pn−1 (cf. Exercise 4.2.18).

Our next goal is to show that, in fact, G(r, n) is a projective variety. Note that
if W is an r-dimensional linear subspace of V = kn, then ∧rW is a 1-dimensional
linear subspace of ∧rV ' kd, where d =

(
n
r

)
. If e1, . . . , en is the standard basis of kn,

then we have a basis of ∧rV given by the eI = ei1 ∧ . . .∧ eir , where I = {i1, . . . , ir}
is a subset of {1, . . . , n} with r-elements (and where, in order to write eI , we order
the elements i1 < . . . < ir). We correspondingly denote the coordinates on the
projective space of lines in ∧rV by xI .

Proposition 7.1.4. The map f : G(r, n) → Pd−1 that maps [W ] to [∧rW ] is
a closed immersion. In particular, G(r, n) is a projective variety.
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The embedding in the above proposition is the Plücker embedding of the Grass-
mann variety.

Proof of Proposition 7.1.4. If W ⊆ V is an r-dimensional linear subspace
described by the matrix A, then f

(
[W ]

)
∈ Pd−1 is given in the above homogeneous

coordinates by the r-minors of A. In particular, we see that the inverse image of
the affine chart WI = (xI 6= 0) is the affine open subset VI ⊆ G(r, n).

In order to complete the proof, it is enough to show that for every I, the induced
map VI →WI is a morphism and the corresponding ring homomorphism

(7.1.2) O(WI)→ O(VI)

is surjective. The argument is the same for all I, but in order to simplify the
notation, we assume I = {1, . . . , r}. Note that the map VI → WI gets identified

to Mr,n−r(k)→ A(n
r)−1, than maps a matrix B to all r-minors of (Ir, B), with the

exception of the one on the first r columns. In particular, we see that this map is a
morphism. By choosing r− 1 columns of the first r ones and an additional column
of the last (n − r) ones, we obtain every entry of B as an r-minor as above. This
implies that the homomorphism (7.1.2) is surjective. �

Remark 7.1.5. The algebraic group GLn(k) acts on kn and thus acts onG(r, n)
by g · [W ] = [g ·W ]. Note that if W is described by the matrix A ∈Mr,n(k), then
g ·W is described by A · gt. It is straightforward to see that this is an algebraic
action. Since any two linear subspaces can by mapped one to the other by a linear
automorphism of kn, we see that the GLn(k)-action on G(r, n) is transitive.

Remark 7.1.6. If W is an r-dimensional linear subspace of V = kr, then we
have an induced surjection V ∗ →W ∗, whose kernel is an (n−r)-dimensional linear
subspace of (kn)∗ ' kn. In this way we get a bijection G(r, n) → G(n − r, n) and
it is not hard to check that this is, in fact, an isomorphism of algebraic varieties.

Remark 7.1.7. Given an arbitrary n-dimensional vector space V over k, let
G(r, V ) be the set of r-dimensional linear subspace of V . By choosing an isomor-
phism V ' kn, we obtain a bijection G(r, V ) ' G(r, n) and we put on G(r, V ) the
structure of an algebraic variety that makes this an isomorphism. Note that this is
independent of the choice of isomorphism V ' kr: for a different isomorphism, we
have to compose the map G(r, V )→ G(r, n) with the action on G(r, n) of a suitable
element in GLn(k).

Remark 7.1.8. It is sometimes convenient to identify G(r, n) with the set of
(r − 1)-dimensional linear subspaces in Pn−1.

Notation 7.1.9. Given a finite-dimensional k-vector space V , we denote by
P(V ) the projective space parametrizing hyperplanes in V . Therefore the homoge-
neous coordinate ring of P(V ) is given by the symmetric algebra Sym•(V ). With
this notation, the projective space parametrizing the lines in V is given by P(V ∗).

We end this section by discussing the incidence correspondence for the Grass-
mann variety and by giving some applications. More applications will be given in
the next sections.

Consider the set of r-dimensional linear subspaces in Pn, parametrized by
G = G(r + 1, n+ 1). The incidence correspondence is the subset

Z =
{(
q, [V ]

)
∈ Pn ×G | q ∈ V

}
.
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Note that this is a closed subset of Pn × G. Indeed, if we represent [W ] by the
matrix A = (ai,j)0≤i≤r+1,0≤j≤n, then

(
[b0, . . . , bn], [W ]

)
lies in Z if and only if the

rank of the matrix

B =


b0 b1 . . . bn
a0,0 a0,1 . . . a0,n

. . . . . . . . . . . .
ar,0 ar,1 . . . ar,n


is ≤ r + 1. This is the case if and only if all (r + 2)-minors of B vanish. By
expanding along the first row, we can write each such minor as

∑
j∈I bjδj , where

I ⊆ {0, . . . , n} is the subset with r+ 2 elements determining the minor and each δj
is a suitable minor of A. Consider the closed immersion

Pn ×G i
↪→ Pn ×PN j

↪→ PM ,

where i is given by i(u, v) =
(
u, φ(v)

)
, with φ being the Plücker embedding, and j is

the Segre embedding. It follows from the above discussion that via this embedding,
Z is the inverse image of a suitable linear subspace of PM , and therefore it is closed
in Pn ×G. Since both Pn and G are projective varieties, we conclude that Z is a
projective variety.

The projections onto the two components induce the morphisms π1 : Z → Pn

and π2 : Z → G. It follows from the definition that for every [W ] ∈ G, we have
π−1

2

(
[W ]

)
'W .

Exercise 7.1.10. Show that the morphism π2 : Z → G is locally trivial, with
fiber1 Pr.

Since all fibers of π2 are irreducible, of dimension r, we conclude from Propo-
sition 5.5.1 that Z is irreducible, of dimension

dim(Z) = r + dim(G) = r + (r + 1)(n− r).

(we use here the fact that G is irreducible and Z is a projective variety).
Given a point q ∈ Pn, the fiber π−1(q) ⊆ G consists of all r-dimensional

linear subspaces of Pn containing q (equivalently, these are the (r+ 1)-dimensional
linear subspaces of kn+1 containing a given line). These are in bijection with the
Grassmann variety G(r, n).

Exercise 7.1.11. Show that the morphism π1 : Z → Pn is locally trivial, with
fiber G(r, n).

We use the incidence correspondence to prove the following

Proposition 7.1.12. Let X ⊆ Pn be a closed subvariety of dimension d and
let G = G(r + 1, n+ 1). If we put

Mr(X) =
{

[W ] ∈ G |W ∩X 6= ∅},

then the following hold:
i) The set Mr(X) is a closed subset of G, which is irreducible if X is irreducible.
ii) We have dim

(
Mr(X)

)
= dim(G)− (n− r − d) for 0 ≤ r ≤ n− d.

1Given a variety F , we say that a morphism f : X → Y is locally trivial, with fiber F , if there
is an open cover Y = U1∪ . . .∪Ur such that for every i, we have an isomorphism f−1(Ui) ' Ui×F
of varieties over Ui.
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Proof. Using the previous notation, note that Mr(X) = π2

(
π−1

1 (X)
)
, hence

Mr(X) is closed, since X is closed and π2 is a closed map (recall that Z is a
projective variety). Consider now the morphism π−1

1 (X) → X induced by π1.
Since all fibers are irreducible, of dimension r(n− r) (being isomorphic to G(r, n)),
and π−1

1 (X) is a projective variety, we deduce from Proposition 5.5.1 that if X is
irreducible, then π−1

1 (X) is irreducible, with

dim
(
π−1

1 (X)
)

= dim(X) + r(n− r).

The irreducibility of π−1(X) implies the irreducibility of π2

(
π−1

1 (X)
)
.

It is clear that if X = X ∪ . . .∪Xs is the irreducible decomposition of X, then
we have Mr(X) = Mr(X1)∪ . . .∪Mr(Xs). Therefore, in order to prove ii), we may
assume that X is irreducible. We claim that the morphism π−1

1 (X)→Mr(X) has
at least one finite, non-empty fiber. Using Theorems 3.4.1 and 3.4.1, this implies
that

dim
(
Mr(X)

)
= dim

(
π−1

1 (X)
)

= d+ r(n− r).
hence

codimG

(
Mr(X)

)
= (r + 1)(n− r)− d− r(n− r) = n− r − d.

We thus only need to find an r-dimensional linear subspace that intersects X in a
nonempty, finite set. This is easy to see and we leave the argument as an exercise
for the reader. �

Exercise 7.1.13. Consider the Grassmann varietyG = G(r+1, n+1) parametriz-
ing the r-dimensional linear subspaces in Pn. Show that if Z is a closed subset of
G, then the set

Z̃ :=
⋃

[V ]∈Z

V ⊆ Pn

is a closed subset of Pn, with dim(Z̃) ≤ dim(Z) + r.

Exercise 7.1.14. Show that if X and Y are disjoint closed subvarieties of Pn,
then the join J(X,Y ) ⊆ Pn, defined as the union of all lines in Pn joining a point
in X and a point in Y , is a closed subset of Pn, with

dim
(
J(X,Y )

)
≤ dim(X) + dim(Y ) + 1.

7.2. Flag varieties

In this section we define flag varieties and prove some basic properties. Let V
be a vector space over k, with dimk V = n and let 1 ≤ `1 < . . . < `r ≤ n. A flag
of type (`1, . . . , `r) in V is a sequence of linear subspaces V1 ⊆ V2 ⊆ · · · ⊆ Vr ⊆ V ,
where dimk(Vi) = `i. A complete flag is a flag of type (1, 2, . . . , n).

The flag variety Fl`1,...,`r (V ) parametrizes flags in V . In other words, this is
the set

Fl`1,...,`r (V ) := {(V1, . . . , Vr) ∈ G(`1, V )× · · · ×G(`r, V ) | V1 ⊆ · · · ⊆ Vr}.

In particular, the complete flag variety Fl(V ) = Fl1,...,n(V ) parametrizes complete
flags in V .

Proposition 7.2.1. The subset Fl`1,...,`r (V ) of G(`1, V ) × · · · × G(`r, V ) is
closed, hence Fl`1,...,`r (V ) is a projective variety.
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Proof. The assertion is trivial for r = 1, hence we may assume r ≥ 2. For i
with 1 ≤ i ≤ r − 1, consider the map

πi,i+1 : G(`1, V )× · · · ×G(`r, V )→ G(`i, V )×G(`i+1, V )

given by the projection on the factors i and i+ 1. It is clear that

Fl`1,...,`r (V ) =

r−1⋂
i=1

π−1
i,i+1

(
Fl`i,`i+1

(V )
)
,

hence it s enough to prove the assertion in the proposition when r = 2.
Let us fix a basis e1, . . . , en on V . Consider now the set M1×M2 ⊆M`1,n(k)×

M`2,n(k) consisting of pairs of matrices of maximal rank. Let Z be the subset of
M1 ×M2 consisting of matrices (A,B) with the property that the linear span of
the rows of A is contained in the linear span of the rows of B. Recall that we have
morphisms

M1 → G(`1, V ) and M2 → G(`2, V )

such that the product map M1×M2 → G(`1, V )×G(`2, V ) maps Z onto Fl`1,`2(V ).
Note that Z is closed in M1 ×M2. Indeed, a pair

(
(ai,j , (bi,j)

)
lies in Z if and

only if the rank of the matrix (ci,j)1≤i≤`1+`2,1≤j≤n given by

ci,j = ai,j for i ≤ `1 and ci,j = bi−`1,j for `1 + 1 ≤ i ≤ `1
has rank ≤ `2. Using now the description of G(`1, V ) and G(`2, V ) in terms of
charts arising by covering M1 and M2 by corresponding open subsets, it is now
easy to see that Fl`1,`2(V ) is closed in G(`1, V )×G(`2, V ). �

Recall that the group GL(V ) of linear automorphisms of V has an induced
action on each G(`, V ) and it is clear that the product action on G(`1, V ) × · · · ×
G(`r, V ) induces an algebraic action of GL(V ) on Fl`1,...,`r (V ). This action is
clearly transitive: given any two flags of type (`1, . . . , `r), we can find an invertible
linear automorphism of GL(V ) that maps one to the other (for example, choose
for each flag a basis of V such that the ith element of the flag is generated by the
first `i elements of the basis, and then choose a linear transformation that maps
one basis to the other). By Exercise 6.3.14, we conclude that Fl(`1, . . . , `r)(V ) is a
smooth variety.

Example 7.2.2. If e1, . . . , en is a basis of n and Vi is the linear span of e1, . . . , ei,
then the stabilizer of the point on the complete flag variety corresponding to V1 ⊆
. . . ⊆ Vn is the subgroup B ⊆ GL(V ) ' GLn(k) of upper-triangular matrices.

It is clear that if r = 1, then Fl`1(V ) = G(`1, V ). Suppose now that r ≥ 2. For
every (`1, . . . , `r) as above the projection

G(`1, V )× · · · ×G(`r, V ) −→ G(`1, V )× · · · ×G(`r−1, V )

onto the first (r − 1) components induces a morphism

Fl`1,...,`r (V ) −→ Fl`1,...,`r−1
(V ).

The fiber over a point corresponding to the flag (V1, . . . , Vr−1) is isomorphic to
the Grassmann variety G(`r − `r−1, V/Vr−1), hence it is irreducible, of dimension
(`r − `r−1)(n − `r). Arguing by induction on r and using Proposition 5.5.1, we
obtain the following:
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Proposition 7.2.3. If V is an n-dimensional vector space over k, then for ev-
ery (`1, . . . , `r), the flag variety Fl`1,...,`r (V ) is an irreducible variety, of dimension∑r
i=1 `i(`i+1 − `i), where `r+1 = n. In particular, the complete flag variety Fl(V )

is an irreducible variety of dimension n(n−1)
2 .

7.3. A resolution of the generic determinantal variety

Fix positive integers m and n and a non-negative integer r ≤ min{m,n}. Recall
that if we identify the space Mm,n(k) of m×n matrices with entries in k with Amn

in the obvious way, we have a closed subset Mr
m,n(k) of Amn consisting of those

matrices of rank ≤ r. Two cases are trivial: if r = 0, then Mr
m,n(k) = {0}, and if

r = min{m,n}, then Mr
m,n(k) = Mm,n(k).

If we denote the coordinates on Amn by xi,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
then Mr

m,n(k) is defined by the vanishing of all (r+ 1)-minors of the matrix (xi,j).
We have already seen that Mr

m,n(k) is irreducible in Exercise 1.4.27. We will give
another argument for this, that allows us to also compute the dimension of this
variety. In fact, we will give a resolution of singularities for Mr

m,n(k).
As usual, we identify Mm,n(k) with Homk(kn, km). Consider the following

subset of Amn ×G(n− r, n):

Y = {(A, [W ]) ∈ Amn ×G(n− r, n) |W ⊆ ker(A)}.

We first show that Y is a closed subset of Amn ×G(n − r, n). Consider the affine
open cover G(n− r, n) by subsets VI ' A(n−r)r described in Section 7.1. Suppose,
as usual, that I = {1, . . . , r}. If B ∈ M(n−r)r(k) represents the linear subspace W
and if M = (In−r, B), then (A, [W ]) ∈ Y if and only if A ·M t = 0. We thus see
that Y ∩ (Amn × VI) is the zero-locus of the homogeneous degree 2 polynomials
given by writing the entries of A ·M t in terms of the entries of A and M . We thus
conclude that Y is a closed subset of Amn ×G(n− r, n)

The projections onto the two components induce maps π1 : Y → Amn and
π2 : Y → G(n−r, n). Note that since G(n−r, n) is a projective variety, π1 is a proper
morphism. Its image consists of that A ∈Mm,n(k) such that dimk ker(A) ≥ n− r:
this is precisely Mr

m,n(k).
Let us consider the fiber of π2 over a point [W ] ∈ G(n − r, n). This is iden-

tified to the set of all A ∈ Mm,n(k) that vanish of W , which is isomorphic to
Hom(kn/W, km) ' Arm. In fact we can say more: π1 is locally trivial, with fiber
Arm. Indeed, for every subset with r elements I ⊆ {1, . . . , n}, we have an isomor-
phism of varieties over VI :

π−1
1 (VI) ' VI ×Arm.

In order to see this, let us assume that I = {1, . . . , r}. Via the identification
VI ' Mn−r,r(k), the intersection Y ∩ (Mm,n(k) × VI) consists of pairs of matrices
A = (ai,j) (of size m× n) and B = (bp,q) (of size (n− r)× r) such that

ai,` +

r∑
j=1

ai,n−r+jb`,j = 0 for 1 ≤ i ≤ m, 1 ≤ ` ≤ n− r.

It is then clear that by mapping the pair(
(ai,j)1≤i≤m,1≤j≤n, (bp,q)

)
to

(
(ai,j)1≤i≤m,n−r+1≤j≤n, (bp,q)

)
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we obtain the desired isomorphism. Since G(n−r, n) is smooth, this clearly implies
that Y is smooth. We also see that Y is irreducible via the general lemma below.
Finally, it follows from Theorem 3.4.2 that

dim(Y) = dim
(
G(n− r, n)

)
+mr = (n− r)r +mr = (m+ n)r − r2.

Lemma 7.3.1. If F is an irreducible algebraic variety and f : X → Y is a
morphism of algebraic varieties that is locally trivial with fiber F , and such that Y
is irreducible, then X is irreducible.

Proof. Consider a cover Y = V1 ∪ . . . ∪ Vi, with each Vi a nonempty open
subset of Y such that f−1(Vi) is isomorphic to Vi × F as a variety over Vi. In
particular, since Y is irreducible, each Vi is irreducible, and therefore Vi × F is
irreducible. Moreover, using again the irreducibility of Y we see that Vi ∩ Vj 6= ∅
for every i and j. Therefore

f−1(Vi) ∩ f−1(Vj) ' (Vi ∩ Vj)× F
is nonempty, and we conclude that X is irreducible using Exercise 1.3.17. �

Since Mr
m,n(k) is the image of Y, we get another proof for the fact that Mr

m,n(k)

is irreducible. Note that if U = Mr
m,n(k) rMr−1

m,n (k), then for every A ∈ U , there

is a unique point in Y mapping to A, namely
(
A, [ker(A)]

)
. By Theorem 3.4.2,

we conclude that dim
(
Mr
m,n(k)

)
= dim(Y), hence the codimension of Mr

m,n(k) in
Mm,n(k) is

mn− (m+ n)r + r2 = (m− r)(n− r).
In fact, we will show that π2 is an isomorphism over U ; in particular, it is

birational. We need to show that the inverse map U → f−1(U) is a morphism.
Of course, since f−1(U) is a locally closed subvariety of Amn × G(n − r, n) it is
enough to show that the map taking A ∈ U to ker(A) ∈ G(n− r, n) is a morphism.
We cover U by the subsets UΛ,Γ, where Λ ⊆ {1, . . . ,m} and Γ ⊆ {1, . . . , n} are
subsets with r elements, and where UΛ,Γ is the subset of Mr

m,n(k) consisting of
those matrices A such that the minor on the rows in Λ and on the columns in Γ is
nonzero. We will show that each map UΛ,Γ → G(n− r, n) is a morphism.

In order to simplify the notation, let us assume that Λ = {1, . . . , r} and Γ =
{n−r+1, . . . , n}. Let A ∈ UΛ,Γ. Note that in this case, if e1, . . . , en is the standard
basis of kn, then A(en−r+1), . . . , A(en) are linearly independent, hence

ker(A) + 〈en−r+1, . . . , en〉 = kn.

This implies that ker(A) ∈ V{1,...,n−r}. Moreover, if ker(A) is described by the
matrix (bp,q)1≤p≤n−r,1≤q≤r, then the bp,q are determined by the condition

A(ep) = −
n∑

q=n−r+1

bp,qA(eq).

It thus follows easily from Cramer’s rule that if A = (ai,j) ∈ UΛ,Γ, then we can
write each bp,q as

bp,q =
Rp,q(A)

δ(A)
,

where Rp,q is a polynomial in the ai,j , while δ(A) = det(ai,j)1≤i≤r,n−r+1≤j≤n. This
completes the proof of the fact that π2 is birational. We collect the results we proved
in this section in the following proposition
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Proposition 7.3.2. The closed subset Mr
m,n(k) of Mm,n(k) is irreducible, of

codimension (m − r)(n − r), and the morphism π2 : Y → Mr
m,n(k) is a resolution

of singularities.

7.4. Linear subspaces on projective hypersurfaces

We consider a projective space Pn and let S be its homogeneous coordinate ring.
Recall that a hypersurface in Pn is a closed subvariety of Pn whose correspond-
ing radical homogeneous ideal is of the form (F ), for some nonzero homogeneous
polynomial of positive degree. If deg(F ) = d, then the hypersurface has degree d.

We begin by constructing a parameter space for hypersurfaces of degree d. Note
that two polynomials F and G define the same hypersurface if and only if there is
λ ∈ k∗ such that F = λG. Let PNd be the projective space parametrizing lines in
the vector space Sd, hence Nd =

(
n+d
n

)
−1. We consider on PNd the coordinates yα,

where α = (α0, . . . , αn) has |α| :=
∑
i αi = d; therefore the point [cα]α corresponds

to the hypersurface defined by
∑
α cαx

α, where xα = xα0
0 · · ·xαn

n . Therefore the set
Hd is parametrized by a subset of the projective space PNd consisting of classes
of homogeneous polynomials F ∈ Sd such that the ideal (F ) is radical. We will
denote by [H] the point of Hd corresponding to the hypersurface H ⊆ Pn.

Lemma 7.4.1. The subset Hd ⊆ PNd is a non-empty open subset.

Proof. Note that given F ∈ Sd, the ideal (F ) is not reduced if and only if
there is a positive integer e and a homogeneous polynomial G ∈ Se such that G2

divides F . For every e such that 0 < 2e ≤ d, consider the map

αe : PNe ×PNd−2e → PNd

that maps
(
[G], [H]

)
to [G2H]. It is straightforward to see that this is a morphism.

Since the source is a projective variety, it follows that the image of αe is closed.
Since Hd is equal to

PNd r
⋃

1≤e≤bd/2c

Im(αe),

we see that this set is open in PNd . In order to see that it is non-empty, it is enough
to consider f ∈ Sd which is the product of d distinct linear forms. �

Remark 7.4.2. We have seen in Theorem 6.4.1 that if X ⊆ Pn is a smooth
variety of pure dimension r, then for a general hyperplene H ⊆ Pn, the intersection
X ∩ H is smooth, of pure dimension r − 1. The same assertion holds if we take
H a general hypersurface in Pn, of degree d. Indeed, if νd : Pn ↪→ PNd is the dth

Veronese embeddings, then the intersections X∩H is isomorphic to the intersection
νd(X)∩L, where L ⊆ PNd is the hyperplane corresponding to H. We thus conclude
by applying Bertini’s theorem to νd(X).

By applying the above remark to the case X = Pn, we see that a general
hypersurface H ⊆ Pn of degree d is smooth. The following proposition makes this
more precise.

Proposition 7.4.3. The subset Singd ⊆ Hd consisting of singular hypersur-
faces is an irreducible closed subset, of codimension 1.
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Proof. Let Y be the subset of PNd consisting of pairs
(
p, [F ]

)
such that

(7.4.1) F (p) = 0 and
∂F

∂xi
(p) = 0 for 0 ≤ i ≤ n.

It is straightforward to see that Y is a closed subset of Pn ×PNd ; in particular, it
is a projective variety. Let α : Y → Pn and β : Y → PNd be the maps induced by
the two projections.

We claim that for every p ∈ Pn, the fiber α−1(p) ↪→ PNd is a linear subspace,
of codimension n + 1. Indeed, we may choose coordinates on Pn such that p =
[1, 0, . . . , 0]. In this case, the conditions in (7.4.1) are equivalent with the fact that

the coefficients of xd0, x
d−1
0 x1, . . . , x

d−1
0 xn are equal to 0, which gives our claim.

In particular, all fibers of α are irreducible, of the same dimension. Since α
is proper, we deduce using Proposition 5.5.1 that Y is irreducible, and Proposi-
tion 3.4.2 gives

dim(Y) = Nd − 1.

Since β is a closed map, it follows that its image is a closed, irreducible subset
of PNd . In order to conclude the proof of the proposition, it is enough to find a
singular hypersurface, with only finitely many singular points. Indeed, this implies
via Theorem 3.4.1 that dim

(
β(Y)

)
= dim(Y) = Nd − 1. Since

Singd = β(Y) ∩Hd,

it follows that Singd is closed in Hd, and being a non-empty open subset of β(Y),
it is irreducible, of dimension Nd − 1.

In order to construct a hypersurface that satisfies the required condition, it
is enough to consider g ∈ k[x0, . . . , xn−1] homogeneous, of degree d, defining a
smooth hypersurface in Pn−1. Such g exists by Remark 7.4.2. For an explicit
example, when char(k) 6 |d, one can take

g =

n−1∑
i=0

xdi .

For any such example, if we consider g as a polynomial in k[x0, . . . , xn], it defines a
hypersurface in Pn that has precisely one singular point, namely [0, . . . , 0, 1]. This
completes the proof of the proposition. �

Example 7.4.4. Let us describe the hypersurfaces of degree 2 (the quadrics)
in Pn. For simplicity, let us assume that char(k) 6= 2. Any non-zero homogeneous
polynomial F ∈ k[x0, . . . , xn] of degree 2 can be written as

F =
∑
i,j

ai,jxixj , with ai,j = aj,i for all i, j.

The rank of F is the rank of the symmetric matrix (ai,j) (note that if we do a linear
change of variables, this rank does not change).

Since k is algebraically closed, it follows that after a suitable linear change of
variables, we can write

(7.4.2) F =

r∑
i=0

x2
i ,
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in which case rank(F ) = r+1 ≥ 1. This can be deduced from the structure theorem
for symmetric bilinear forms over a field, but one can also give a direct argument:
we leave this as an exercise for the reader.

Given the expression in (7.4.2), note that (F ) is radical if and only if r ≥ 1
and (F ) is prime if and only if r ≥ 2. It follows from the above description that
a quadric is either smooth (precisely when r = n) or the projective cone over a
quadric of lower dimension.

For example, a quadric in P3 is either a smooth quadric, or a cone over a
smooth conic (quadric in P2) or a union of 2 planes. After a suitable change of
variables, a smooth quadric in P3 has equation x0x3 +x1x2 = 0. This is the image
of the Segre embedding

P1 ×P1 → P3,
(
[u0, u1], [v0, v1]

)
→ [u0u1, u0v1, u1v0, u1v1].

We next construct the universal hypersurface over Hd. In fact, for many pur-
poses, it is more convenient to work with the whole space PNd instead of restricting
to Hd (this is due to the fact that PNd is complete, while Hd is not). Define

Zd :=
{(
p, [F ]

)
∈ Pn ×PNd | F (p) = 0

}
.

It is easy to see that via the composition of closed embeddings

Pn ×PNd
νd×1
↪→ PNd ×PNd

β
↪→ PM ,

where νd is the dth Veronese embedding and β is the Segre embedding, Zd is the
inverse image of a hyperplane, hence it is a closed subset of Pn ×PNd .

Note that the projections onto the two components induce two morphisms

φ : Zd → Pn and ψ : Zd → PNd .

Since Pn and PNd are projective varieties, we deduce that both φ and ψ are proper
morphisms. It follows from definition that for every [H] ∈ Hd, we have ψ−1

(
[H]
)

=
H.

On the other hand, for every p ∈ Pn, the fiber φ−1(p) consists of the classes of
those F ∈ Sd such that F (p) = 0. This is a hyperplane in PNd . We deduce from
Proposition 5.5.1 that Zd is irreducible, of dimension Nd + n− 1.

We now turn to linear subspaces on projective hypersurfaces. Given r < n, let
G = G(r+1, n+1) be the Grassmann variety parametrizing the r-dimensional linear
subspaces in Pn. Consider the incidence correspondence I ⊆ PNd × G consisting
of pairs

(
[F ], [Λ]

)
such that F vanishes on Λ.

We first show that I is closed in PNd ×G. Suppose that we are over the open
subset V = V{1,...,r} ' A(r+1)(n−r) of G, where a subspace Λ is described by the
linear span of the rows of the matrix

1 0 . . . 0 a0,r+1 . . . a0,n

0 1 . . . 0 a1,r+1 . . . a1,n

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 ar,r+1 . . . ar,n

 .
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The hypersurface corresponding to c = (cα), which is defined by fc =
∑
α cαx

α

contains the subspace corresponding to the above matrix if and only if

fc

x0, . . . , xr,
∑

0≤i≤r

ai,r+1xi, . . . ,
∑

0≤i≤r

ai,nxi

 = 0 in k[x0, . . . , xr].

We can write

(7.4.3) fc

x0, . . . , xr,
∑

0≤i≤r

ai,r+1xi, . . . ,
∑

0≤i≤r

ai,nxi

 =
∑
β

Fβ(a, c)xβ ,

where the sum is running over those β = (β0, . . . , βr) with
∑
i βi = d. Note that

each Fβ is a polynomial in the ai,j and cα variables, homogeneous of degree 1 in
the cα’s. With this notation, I ∩ (PNd × V ) is the zero-locus in PNd × V of the
ideal generated by all Fβ ; in particular, it is a closed subset. The equations over
the other charts in G are similar.

In particular, we see that I is a projective variety. Let π1 : I → PNd and
π2 : I → G be the morphisms induced by the projections onto the two factors.

Definition 7.4.5. For every hypersurfaceH of degree d in Pn, the Fano variety
of r-planes in H, denoted Fr(H), is the fiber π−1

1

(
[H]
)

of π1, parametrizing the
r-dimensional linear subspaces contained in H. .

Proposition 7.4.6. The projective variety I is irreducible, of dimension

(r + 1)(n− r) +

(
n+ d

d

)
−
(
r + d

d

)
− 1.

Proof. Consider the morphism π2 : I → G. By Proposition 5.5.1, it is enough
to show that every fiber π−1

(
[Λ]
)

is isomorphic to a linear subspace of PNd , of

codimension
(
r+d
d

)
. In order to see this, we may assume that Λ is defined by

xr+1 = . . . = xn = 0. It is clear that a polynomial f vanishes on Λ if and only if all
coefficients of the monomials in x0, . . . , xr in f vanish; this gives a linear subspace
of codimension

(
r+d
d

)
. �

Exercise 7.4.7. Given a smooth quadric X in P3, we have 2 families of lines
on X: choose coordinates such that X is given by x0x3 − x1x2 = 0, hence X is
the image of the Segre embedding ι : P1 × P1 ↪→ P3. One family of lines is given
by
(
ι(P1 × {q})

)
q∈P1 and the other one is given by

(
ι({p} ×P1)

)
p∈P1 . Show that

these are all the lines on X; deduce that the Fano variety of lines on X has two
connected components, each of them isomorphic to P1.

Example 7.4.8. Consider lines on cubic surfaces: that is, we specialize to the
case when n = 3 = d and r = 1. Note that in this case I is an irreducible variety
of dimension 19, the same as the dimension of the projective space parametrizing
homogeneous polynomials of degree 3 in S = k[x0, x1, x2, x3]. We claim that the
morphism π1 : I → P19 is surjective; in other words, every hypersurface in P3 which
is the zero-locus of a degree 3 homogeneous polynomial contains at least one line.
In order to see this, it is enough to exhibit such a hypersurface that only contains
finitely many lines (this follows from Theorem 3.4.1). At least for char(k) 6= 3, such
an example is given by the Fermat cubic surface below.
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Example 7.4.9. Suppose that char(k) 6= 3 and let X be the Fermat surface in
P3 defined by the equation

x3
0 + x3

1 + x3
2 + x3

3 = 0.

Of course, if char(k) = 3, then the zero locus of this polynomial is the hyperplane
x0 + x1 + x2 + x3 = 0, which contains infinitely many lines.

Up to reordering the variables, every line L ⊆ X can be given by equations of
the form

x0 = αx2 + βx3 and x1 = γx2 + δx3,

for some α, β, γ, δ ∈ k. This line lies on X if and only if

(αx2 + βx3)3 + (γx2 + δx3)3 + x3
2 + x3

3 = 0 in k[x2, x3].

This is equivalent to the following system of equations:

α3 + γ3 = −1, α2β + γ2δ = 0, αβ2 + γδ2 = 0, and β3 + δ3 = −1.

If α, β, γ, δ are all nonzero, then it follows from the third equation that

γ = −αβ2δ−2,

and plugging in the second equation, we get

α2β + α2β4δ−4 = 0,

which implies β3 = −δ3, contradicting the fourth equation.
Suppose now, for example, that α = 0. We deduce from the second equation

that γδ = 0. Moreover, γ3 = −1 by the first equation, hence δ = 0 and β3 = −1
by the fourth equation. We thus get in this way the 9 lines with the equations

x0 = βx3 and x1 = γx2,

where β, γ ∈ k are such that β3 = −1 = γ3. After permuting the variables, we
obtain 2 more sets of lines on X, hence in total we have 27 lines.

We next discuss hypersurfaces that contain linear spaces of small codimension.

Proposition 7.4.10. We consider hypersurfaces in Pn of degree d ≥ 2.

i) If X is a smooth such hypersurface containing a linear subspace Λ ⊆ Pn

of dimension r, then r ≤ n−1
2 .

ii) If Λ ⊆ Pn is a linear subspace of dimension r ≤ n−1
2 , then a general

hypersurface containing Λ is smooth.

Proof. After a suitable choice of coordinates on Pn, we may assume that Λ
is the linear subspace defined by

xr+1 = . . . = xn = 0.

Suppose that X is the hypersurface defined by a homogeneous polynomial F , of
degree d. If X contains Λ, then we can write

(7.4.4) F =

n−r∑
i=1

xr+ifi,

for some fi ∈ k[x0, . . . , xn], homogeneous of degree d− 1. For every i, with 1 ≤ i ≤
n− r, consider the homogeneous polynomials of degree d− 1

gi(x0, . . . , xr) = fi(x0, . . . , xr, 0, . . . , 0).
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If n− r ≤ r, then a repeated application of Corollary 4.2.12 implies that there is a
point [u0, . . . , ur] ∈ Pr such that

gi(u0, . . . , ur) = 0 for 1 ≤ i ≤ n− r.
In other words, there is a point p ∈ Λ such that fi(p) = 0 for all 1 ≤ i ≤ n− r. In
this case, it follows from (7.4.4) that F (p) = 0 and ∂F

∂xj
(p) = 0 for 0 ≤ j ≤ n, hence

p is a singular point of X. We thus deduce that if X is smooth, then n− r ≥ r+ 1,
giving i).

Suppose now that r ≤ n−1
2 and consider the subset W of PNd consisting of

those [F ] such that Λ is contained in the zero-locus (F = 0). This consists of those
[F ] such that F ∈ (xr+1, . . . , xn), which is a linear subspace in PNd , of codimension(
r+d
d

)
. Let U be the subset of W consisting of those [F ] such that there is no p ∈ Pn,

with

(7.4.5) F (p) = 0 =
∂F

∂xi
(p) for 0 ≤ i ≤ n.

Note that such F generates a radical ideal (see Remark 6.3.12) and the correspond-
ing degree d hypersurface contains Λ and is smooth. We need to show that U is
open and non-empty.

As in Proposition 7.4.3, we consider the set YW of pairs (p, [F ]) ∈ Pn ×W
such that (7.4.5) holds. This is a closed subset of Pn ×W , hence it is a projective
variety. Let α : YW → Pn and β : YW →W be the morphisms induced by the two
projections. Since U = Wrβ(YW ), it follows that U is open in W , and it is enough
to show that β(YW ) 6= W .

We now describe the fiber α−1(p) for p ∈ Pn. Suppose first that p ∈ Λ.
We may choose coordinates such that p = [1, 0, . . . , 0]. The conditions in (7.4.5)

are equivalent with the fact that the coefficients of xd0, x
d−1
0 x1, . . . , x

d−1
0 xn in F

are 0. Since F ∈ (xr+1, . . . , xn), we see that α−1(p) ↪→ W is a linear subspace
of codimension n − r. Suppose now that p 6∈ Λ, in which case we may choose
coordinates such that p = [0, . . . , 0, 1], in which case the conditions in (7.4.5) are
equivalent with the fact that the coefficients of xdn, x

d−1
n xn−1, . . . , x

d−1
n x0 are 0. We

thus see that in this case α−1(p) ↪→ W is a linear subspace of codimension n + 1.
We deduce from Corollary 3.4.3 that

dim
(
α−1(Λ)

)
= dim(Λ) + dim(W )− (n− r) = dim(W ) + (2r − n)

and

dim
(
α−1(Pn r Λ)

)
= dim(Pn r Λ) + dim(W )− (n+ 1) = dim(W )− 1.

Since by assumption we have 2r − n ≤ −1, we deduce that dim(YW ) = dim(W )−
1, hence dim

(
β(YW )

)
≤ dim(YW ) < dim(W ). This completes the proof of the

proposition. �

7.5. The variety of nilpotent matrices

Fix a positive integer n and let

Nn = {A ∈Mn(k) | A is nilpotent}.
The case n = 1 is trivial (N1 consists of one point), hence from now on we will
assume that n ≥ 2.

Recall that a matrix A ∈ Mn(k) is nilpotent if and only if An = 0. Since
the entries of An are homogeneous polynomials of degree n in the entries of A, it
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follows that Nn is a closed subset of Mn(k), preserved by the standard k∗-action
on Mn(k). Note that there are nonzero nilpotent matrices (we use here the fact
that n ≥ 2). It follows that we have a non-empty projective variety N proj

n in the

projective space P ' Pn2−1 of lines in Mn(k), such that Nn is the affine cone over
N proj
n .

In fact, we can define Nn by only n equations. Indeed, a matrix A is nilpotent
if and only if its characteristic polynomial det(A − λI) is equal to (−λ)n. If we
write

det(A− λI) =

n∑
i=0

(−1)ipi(A)λi,

then pn(A) = 1 and for each i, with 0 ≤ i ≤ n − 1, pi(A) is a homogeneous
polynomial of degree n− i in the entries of A. We thus see that Nn is the zero-locus
of the ideal (p0, . . . , pn−1).

Our next goal is to show that Nn is irreducible and compute its dimension. For
this, it is a bit more convenient to work with the corresponding projective variety
N proj
n .

The key observation is the following: a matrix A ∈ Mn(k) is nilpotent if and
only if there is a complete flag of subspaces

V1 ⊆ V2 ⊆ . . . ⊆ Vn = V,

with dimk(Vi) = i and A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n (where we put V0 = 0). Indeed,
it is clear that if we have such a flag, then An = 0. Conversely, if An = 0, let
Wi = An−i(kn). It follows from definition that

W0 = 0 ⊆W1 ⊆ . . . ⊆Wn = kn

and A(Wi) ⊆ Wi−1 for 1 ≤ i ≤ n. If we refine this sequence of subspaces to a
complete flag, this flag will satisfy the required conditions.

Motivated by this, we define

Z =
{(

[A], (V1, . . . , Vn)
)
∈ P× Fl(kn) | A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n

}
(where in the above formula we make the convention that V0 = {0}). We leave it
as an exercise for the reader to check that Z is a closed subset of P × Fl(kn). In
particular, we see that Z is a projective variety. The projections of P×Fl(kn) onto
the two components induce proper morphisms

π1 : Z → P and π2 : Z → Fl(kn).

Let us consider the fiber of π2 over a flag V• = (V1, . . . , Vn). If we choose a
basis e1, . . . , en such that each Vi is generated by e1, . . . , ei, it follows that π−1

2 (V•)
is isomorphic to the the subvariety of P consisting of classes of nonzero strictly

upper-triangular matrices, hence it is isomorphic to P
n(n−1)

2 −1. Since Fl(kn) is

irreducible, of dimension n(n−1)
2 , it follows from Proposition 5.5.1 that Z is an

irreducible variety, of dimension n2 − n− 1.
Consider now the morphism π1 : Z → P, whose image is N proj

n . This implies
that N proj

n is irreducible. We next show that over a non-empty open subset of
N proj
n , each fiber of π1 consists of just one point. Note that if A ∈ Mn(k) is a

nilpotent matrix, then its rank is ≤ n − 1. Let Uproj
n be the open subset of N proj

n

consisting of matrices of rank n − 1. Note that this is a non-empty subset: for
example, the nilpotent matrix (ai,j) with a`,`−1 = 1 for 2 ≤ ` ≤ n and all other ai,j
equal to 0 has rank n− 1. We note that if [A] ∈ Uproj

n , then π−1
(
[A]
)

has only one
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element: if (V1, . . . , Vn) is a flag in kn such that A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n, then
Vi = An−i(V ) for all i. Indeed, the condition on the flag implies that An−i(kn) ⊆ Vi
and the condition on the rank of A implies easily, by descending induction on i,
that dimk A

n−i(kn) = i. Therefore An−i(kn) = Vi for 1 ≤ i ≤ n.
Since π1 has finite fibers over Un, we deduce from Theorem 3.4.2 that

dim(N proj
n ) = dim(Z) = n2 − n− 1.

We thus conclude that Nn is an irreducible variety of dimension n2 − n.

Remark 7.5.1. In fact, the above construction, but done for the affine cone
Nn, gives a resolution of singularities of Nn. Indeed, let

W =
{(
A, (V1, . . . , Vn−1)

)
∈Mn(k)× Fl(kn) | A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n

}
.

One can check that the projection onto the second component induces a morphism

π2 : W → Fl(kn) that is locally trivial, with fiber A
n(n−1)

2 . In particular, it follows
that W is smooth, irreducible, of dimension n2 − n. The projection onto the first
component induces a proper, surjective morphism π1 : W → Nn. In order to see
that this is birational, note that if

Un = {A ∈ Nn | rk(A) = n− 1},
then the induced morphism π−1

1 (Un)→ Un is an isomorphism, whose inverse maps
A to

(
A, (An−1(kn), . . . , A(kn), kn)

)
.

Remark 7.5.2. One can see that the ideal (p0, . . . , pn−1) ⊆ O
(
Mn(k)

)
is a

radical ideal, but we do not pursue this here, since the argument involves some
deeper facts of commutative algebra than we have used so far.



CHAPTER 8

Coherent sheaves on algebraic varieties

In algebra, when one is interested in the study of rings, modules naturally
appear: for example, as ideals and quotient rings. Because of this, it is more
natural to study the whole category of modules over the given ring. This method
becomes even more powerful with the introduction of cohomological techniques,
since by working in the category of modules over a given ring, we can construct
derived functors of familiar functors like Hom and the tensor product. Our goal
in this chapter is to introduce objects that in the context of arbitrary varieties
extend what (finitely generated) modules over a ring are in the case of an affine
variety: these are the quasi-coherent (respectively, the coherent) sheaves. This
will provide us with the language to treat in later chapters global objects, such as
divisors, vector bundles, and projective morphisms. We begin with some general
constructions for sheaves of R-modules, then discuss sheaves of OX -modules, and
then introduce quasi-coherent and coherent sheaves. In particular, we use these
to globalize the MaxSpec and MaxProj constructions. In the last section of this
chapter we describe coherent sheaves on varieties of the form MaxProj(S).

8.1. General constructions with sheaves

In this section we discuss several general constructions involving sheaves. We
fix a commutative ring R and consider presheaves and sheaves of R-modules. Im-
portant examples are the cases when R = Z or R is a field. Given a topological
space X, we denote by PshRX and ShRX the categories of presheaves, respectively
sheaves, of R-modules on X. However, when R is understood, we simply write
PshX and ShX .

8.1.1. The sheaf associated to a presheaf. Let R be a fixed commuta-
tive ring and consider a topological space X. We show that the inclusion functor
PshX ↪→ ShX has a left adjoint. Explicitly, this means that for every presheaf F
on X, we have a sheaf F+, together with a morphism of presheaves φ : F → F+

that satisfies the following universal property: given any morphism of presheaves
ψ : F → G, where G is a sheaf, there is a unique morphism of sheaves α : F+ → G
such that α ◦ φ = ψ. In other words, φ induces a bijection

HomShX
(F+,G) ' HomPshX

(F ,G).

Note that the universal property implies that given any morphism of presheaves
u : F → G, we obtain a unique morphism of sheaves u+ : F+ → G+ such that the
diagram

151
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F

u

��

// F+

u+

��
G // G+

is commutative.
Given a presheaf F , for every open subset U ⊆ X we define F+(U) to consist

of all maps t : U →
⊔
x∈U Fx that satisfy the following properties:

i) We have t(x) ∈ Fx for all x ∈ U .
ii) For every x ∈ U , there is an open neighborhood Ux ⊆ U of x and s ∈
F(Ux), such that t(y) = sy for all y ∈ Ux.

Note that since each Fx is an R-module, addition and scalar multiplication of
functions makes each F+(U) an R-module. We also see that restriction of functions
induces for every open subsets U ⊆ V a map F+(V ) → F+(U) that make F+ a
presheaf of R-modules. In fact, it is straightforward to check that F+ is a sheaf:
this is a consequence of the local characterization of the sections of F+. We have
a morphism of presheaves of R-modules φ : F → F+ that maps s ∈ F(U) to the
map U →

⊔
x∈U Fx that takes x to sx.

Let’s check the universal property: consider a morphism of presheaves ψ : F →
G, where G is a sheaf. Given t ∈ F+(U), it follows from definition that we can cover
U by open subsets Ui and we have si ∈ F(Ui) such that for every i and every y ∈ Ui,
we have t(y) = (si)y ∈ Fy. This implies that the sections t′i := ψ(si) ∈ G(Ui) have
the property that (t′i)y = (t′j)y for all y ∈ Ui ∩ Uj . Using the fact that G is a
sheaf, we first see that t′i|Ui∩Uj = t′j |Ui∩Uj for all i and j, and then that there is
a unique t′ ∈ G(U) such that t′|Ui = t′i for all i. We then define α(t) = t′. It is
straightforward to see that this gives a morphism of sheaves α : F+ → G such that
α ◦ φ = ψ and that in fact α is the unique morphism of sheaves with this property.

Remark 8.1.1. It is straightforward to check, using the definition, that if F is
a sheaf, then the canonical morphism φ : F → F+ is an isomorphism.

Remark 8.1.2. For every presheaf F and every x ∈ X, the morphism φ : F →
F+ induces an isomorphism φx : Fx → F+

x . The inverse map is defined as follows.
Given an element u ∈ F+

x represented by
(
U, t ∈ F+(U)

)
, by hypothesis we have

an open neighborhood Ux of x and s ∈ F(Ux) such that t(y) = sy for all y ∈ Ux.
We define τ(u) = sx ∈ Fx and leave it as an exercise for the reader to check that
this is well-defined and that τ gives an inverse of φx.

Remark 8.1.3. Wherever we mention stalks in this section, the same results
hold, with analogous proofs, for the stalks at irreducible closed subsets of the given
topological space. For simplicity, we only give the statements at points of X,
since this is sufficient for the study of sheaves on topological spaces; however, in
the setting of algebraic varieties it is sometimes convenient to also consider more
general stalks (corresponding to localizing a ring to a possibly non-maximal prime
ideal).

Remark 8.1.4. It is clear from definition that if U is an open subset of X,
then we have a canonical isomorphism

(F|U )+ ' F+|U .
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Example 8.1.5. If F is a sheaf and G is a subpresheaf of F , then the inclusion
morphism i : G ↪→ F induces a morphism of sheaves j : G+ → F . This gives an
isomorphism of G+ with the subsheaf F ′ of F such that for an open subset U of
X, F ′(U) consists of those s ∈ F(U) such that for every x ∈ U , there is an open
neighborhood Ux ⊆ U of x such that s|Ux

lies in G(Ux). Indeed, it is easy to see
that F ′ is a subsheaf of F and j induces a morphism of sheaves α : G+ → F ′ such
that for all x ∈ X, the induced morphism G+

x → F ′x is an isomorphism; therefore α
is an isomorphism (see Exercise 2.1.20).

Example 8.1.6. If M is any R-module, then we have the constant presheaf
on X that associates M to every open subset of X, the restriction maps being
the identity maps. The associated sheaf is the constant sheaf MX associated to
M (though we sometimes drop the subscript, when it is clear that we refer to the
sheaf and not to the module M). If X has the property that every open subset is
a union of open connected subsets (for example, this is the case for an algebraic
variety), then Γ(U,MX) can be identified with the set of maps U → M that are
constant on every connected open subset of U .

8.1.2. Kernels and cokernels. Let R be a fixed commutative ring and X
a fixed topological space. We first note that for every two sheaves F and G, the
set of morphisms HomShX

(F ,G) is an R-module. In particular, we have a zero
morphism. We also note that composition of morphisms of sheaves is bilinear.

Given finitely many sheaves F1, . . .Fn on X, we define F1 ⊕ . . .⊕Fn by

(F1 ⊕ . . .⊕Fn)(U) := F1(U)⊕ . . .⊕Fn(U),

with the restriction maps being induced by those for each Fi. It is straightforward
to see that this is a sheaf. We have canonical sheaf morphisms Fi → F1⊕ . . .⊕Fn
that make F1 ⊕ . . .⊕Fn the coproduct of F1, . . .Fn and we have sheaf morphisms
F1 ⊕ . . .⊕Fn → Fi that make F1 ⊕ . . .⊕Fn the product of F1, . . . ,Fn. Note that
for every x ∈ X we have a canonical isomorphism

(F1 ⊕ . . .⊕Fn)x ' (F1)x ⊕ . . .⊕ (Fn)x,

due to the fact that filtered direct limits commute with finite direct sums.
We now show that the category ShX has kernels. Given a morphism of sheaves

φ : F → G, define for an open subset U of X

ker(φ)(U) := ker
(
φU : F(U)→ G(U)

)
.

The restriction maps of F induce restriction maps for ker(φ) that make ker(φ) a
presheaf and it is straightforward to see that it is a sheaf (in fact, a subsheaf of F).
It is an easy exercise to see that the inclusion morphism i : ker(φ) ↪→ F is a kernel
of φ: this means that φ ◦ i = 0 and for every morphism of sheaves u : F ′ → F such
that φ ◦ u = 0, there is a unique morphism of sheaves v : F ′ → ker(φ) such that
u = i◦ v. Note that since filtered inductive limits are exact functors, it follows that
for every x ∈ X, we have

ker(φ)x ' ker(Fx → Gx).

We now define the cokernel of a morphism of sheaves of R-modules φ : F → G.
For every open subset U of X, define

c̃oker(φ)(U) := coker
(
φU : F(U)→ G(U)

)
.
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It is straightforward to see that the restriction maps of G induce restriction maps

for c̃oker(φ) which make it a presheaf. We define

coker(φ) := c̃oker(φ)+.

Note that the composition map p

G → c̃oker(φ)→ coker(φ)

is a cokernel of φ; this means that p ◦ φ = 0 and for every morphism of sheaves
u : G → G′ such that u◦φ = 0, there is a unique morphism of sheaves v : coker(φ)→
G′ such that v ◦ p = u (this follows using the corresponding property of cokernels
of morphsms of R-modules and the universal property of the sheaf associated to
a presheaf). Finally, we note that since filtering direct limits are exact and since
passing to the associated sheaf preserves the stalks, for every x ∈ X we have a
canonical isomorphism

coker(φ)x ' coker(Fx → Gx).

If F ′ is a subsheaf of F , we define F/F ′ as the cokernel of the inclusion mor-
phism F ′ ↪→ F . It follows that for every x ∈ X, we have a short exact sequence

0→ F ′x → Fx → (F/F ′)x → 0.

The image Im(φ) of a morphism of sheaves φ : F → G is defined as the kernel
of

G → coker(φ).

Using the universal property of the kernel and of the cokernel, we obtain a canonical
morphism

(8.1.1) F/ker(φ)→ Im(φ).

This is an isomorphism: this follows by considering the induced morphisms at
the levels of stalks, using the fact that a morphism of sheaves α : A → B is an
isomorphism if and only if αx : Ax → Bx is an isomorphism for every x ∈ X
(see Exercise 2.1.20). The existence of kernels and cokernels, together with the

fact that the canonical morphism (8.1.1) is an isomorphism mean that ShRX is an
Abelian category.

Example 8.1.7. Given a morphism of sheaves φ : F → G, the image Im(φ) is
the subsheaf of G described as follows: for every open subset U ⊆ X, the subset
Im(φ)(U) ⊆ G(U) consists of those s ∈ G(U) such that for every x ∈ U , there is an
open neighborhood Ux ⊆ U of x, such that s|Ux

lies in the image of F(Ux)→ G(Ux).
This follows from Example 8.1.5.

A morphism of sheaves φ : F → G is injective if ker(φ) = 0. Equivalently, for
every open subset U of X, the morphism F(U)→ G(U) is injective; moreover, this
holds if and only if φx : Fx → Gx is injective for every x ∈ X. In this case, φ gives
an isomorphism of F with a subsheaf of G.

The morphism of sheaves φ : F → G is surjective if coker(φ) = 0, or equivalently,
Im(φ) = G (in this case we say that G is a quotient of F). Equivalently, for every
x ∈ X, the morphism Fx → Gx is surjective. However, this does not imply that
for an open subset U of X, the morphism F(U) → G(U) is surjective. What we
can say in this case is that for every s ∈ G(U) and every x ∈ U , there is an open
neighborhood Ux ⊆ U of x such that s|Ux

lies in the image of F(Ux)→ G(Ux).
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As in any Abelian category, we can consider exact sequences: given morphisms

F ′ u−→ F v−→ F ′′,
this is exact if Im(u) = ker(v); equivalently, for every x ∈ X, the sequence of
R-modules

F ′x → Fx → F ′′x
is exact.

In particular, the sequence

0 −→ F ′ u−→ F v−→ F ′′ −→ 0

is exact if and only if v is surjective and u gives an isomorphism F ′ ' ker(v);
equivalently, u is injective and v induces an isomorphism coker(u) ' F ′′. Moreover,
this is equivalent with the fact that for every x ∈ X, the sequence of R-modules

0 −→ F ′x −→ Fx −→ F ′′x −→ 0

is exact. Note that in this case, for every open subset U of X, the induced sequence

0 −→ F ′(U) −→ F(U) −→ F ′′(U)

is exact. In other words, the functor Γ(U,−) is left exact. However, in general this
is not an exact functor.

Remark 8.1.8. Given morphisms of sheaves

(8.1.2) F ′ → F → F ′′,
if B is a basis of open subsets of X such that for every U ∈ B, the sequence

(8.1.3) F ′(U)→ F(U)→ F ′′(U)

is exact, then (8.1.2) is exact. Indeed, for every x ∈ X, if we take the direct limit of
the sequences (8.1.3) over those U ∈ B, with x ∈ U , we conclude that the sequence

F ′x → Fx → F ′′x
is exact.

8.1.3. The sheaf Hom. If F and G are sheaves of R-modules on X, then
for every open subset U of X, we may consider the R-module HomShU

(F|U ,G|U ).
If φ : F|U → G|U is a morphism of sheaves and V ⊆ U is an open subset, then
we clearly get an induced morphism φ|V : F|V → G|V . We thus get a presheaf of
R-modules denoted HomR(F ,G). In fact, this is a sheaf: this follows from the fact
that morphisms of sheaves can be uniquely patched together (see Exercise 2.1.22).

8.1.4. The functor f−1. Recall that if f : X → Y is a continuous map, then
we have the functor f∗ : ShRX → Sh

R
Y such that

Γ(V, f∗F) = Γ
(
f−1(V ),F

)
for every open subset V ⊆ Y.

A special case is that when Y is a point, in which case this functor gets identified
with Γ(X,−).

Like the special case of the functor Γ(X,−), the functor f∗ is left-exact. Indeed,
given an exact sequence of sheaves on X

0→ F ′ → F → F ′′ → 0

and an open subset V in Y , the corresponding sequence

0→ F ′
(
f−1(V )

)
→ F

(
f−1(V )

)
→ F ′′

(
f−1(V )

)
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is exact.
We now construct a left adjoint of this functor. Given a sheaf of R-modules G

on Y , consider the presheaf G̃ on X given by

G̃(U) := lim−→
f(U)⊆V

G(V ),

where the direct limit is over the open subsets V of Y containing f(U), ordered by
reverse inclusion. Note that if U1 ⊆ U2, then for every open subset V in Y such
that f(U2) ⊆ V , we also have f(U1) ⊆ V , which induces a restriction map

G̃(U2)→ G̃(U1)

and it is easy to see that these maps make G̃ a presheaf. We define f−1(G) := G̃+.
If φ : G → G′ is a morphism of sheaves on Y , then for every open subset U of

X, we have a morphism of R-modules

lim−→
f(U)⊆V

φV : lim−→
f(U)⊆V

G(V )→ lim−→
f(U)⊆V

G′(V )

and these give a morphism of presheaves G̃ → G̃′. This in turn induces a morphism
of sheaves f−1(G)→ f−1(G′). This is compatible with composition of morphisms,
hence we get a functor

f−1 : ShRY → Sh
R
X .

Note that for every sheaf G on Y and every x ∈ X, we have canonical isomor-
phisms

f−1(G)x ' G̃x ' lim−→
x∈U

lim−→
f(U)⊆V

G(V ) ' lim−→
f(x)∈V

G(V ) ' Gf(x).

This immediately implies that f−1 is an exact functor.

Remark 8.1.9. With the above notation, note that for every open subset V of
Y , we have a canonical morphism

Γ(V,G)→ Γ
(
f−1(V ), G̃)→ Γ

(
f−1(V ), f−1(G)

)
,

where the first map comes from the direct limit definition of the R-module in the
middle and the fact that f

(
f−1(V )

)
⊆ V .

Example 8.1.10. Note that if U is an open subset of X and i : U ↪→ X is the
inclusion, then we have a canonical isomorphism i−1(F) ' F|U .

An important property is that the pair (f−1, f∗) is an adjoint pair of functors.
This means that for every sheaves of R-modules F on X and G on Y , we have a
canonical isomorphism

HomShX

(
f−1(G),F

)
' HomShY

(
G, f∗(F)

)
.

Indeed, giving a morphism of sheaves f−1(G) → F is equivalent to giving a mor-

phism of presheaves G̃ → F , which is equivalent to giving for every open subsets
U ⊆ X and V ⊆ Y such that f(U) ⊆ V morphisms of R-modules

G(V )→ F(U)

that are compatible with the maps induced by restriction. Because of this com-
patibility, it is enough to give such maps when U = f−1(V ), and such a family
of maps compatible with the restriction maps is precisely a morphism of sheaves
G → f∗(F).
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8.2. Sheaves of OX-modules

Suppose now that (X,OX) is a ringed space, that is, X is a topological space
and OX is a sheaf of commutative rings on X. Our main example will be that when
X is an algebraic variety and OX is the sheaf of regular functions on X, but it is
more natural to develop the notions that we need here in the general framework.

Definition 8.2.1. A sheaf of OX-modules (or, simply, OX-module) is a sheaf
of Abelian groups F such that for every open subset U of X we have an OX(U)-
module structure on F(U), and these structures are compatible with restriction
maps, in the sense that for every open sets V ⊆ U , we have

(a · s)|V = a|V · s|V for all a ∈ OX(U) and s ∈ F(U).

If F is a presheaf, instead of a sheaf, we call it a presheaf of OX-modules.
A morphism of sheaves (or presheaves) of OX -modules F → G is a morphism

of sheaves (respectively, presheaves) of Abelian groups such that for every open
subset U of X, the map F(U)→ G(U) is a morphism of OX(U)-modules. We write
HomOX

(F ,G) for the set of such morphisms. It is clear that the OX -modules form
a category that we will denote OX -mod.

Example 8.2.2. The sheaf OX has an obvious structure of OX -module.

Example 8.2.3. If F is an OX -module and U is an open subset of X, with
OU = OX |U , then F|U is an OU -module.

Remark 8.2.4. It is easy to see that a sheaf (presheaf) of OX -modules is
the same as a sheaf (respectively, presheaf) of Abelian groups F , together with a
morphism of sheaves (respectively, presheaves)

OX → HomZ(F ,F).

This easily implies that if OX = R, for a ring R, then giving a sheaf of OX -modules
is equivalent to giving a sheaf of R-modules.

Remark 8.2.5. Note that every OX -module F is in particular an OX(X)-
module. Indeed, for every open subset U of X, the restriction map OX(X) →
OX(U) induces an OX(X)-module structure on F(U). We get in this way a functor

from OX -mod to ShOX(X)
X .

Remark 8.2.6. It follows easily from definition that if F is a presheaf of OX -
modules, then for every x ∈ X, the stalk Fx has a canonical structure of OX,x-
module. More generally, if V is an irreducible, closed subset of X, then FV has a
canonical structure of OX,V -module.

Remark 8.2.7. Note that if F and G are sheaves of OX -modules, then

HomOX
(F ,G) ⊆ HomZ(F ,G)

is a subgroup. In fact, it follows from Remark 8.2.5 that HomOX
(F ,G) has a natural

OX(X)-module structure.
Moreover, we have a subsheaf

HomOX
(F ,G) ⊆ HomZ(F ,G),

whose sections over an open subset U ⊆ X consist of the morphisms of OU -modules
F|U → G|U . Since each HomOU

(F|U ,G|U ) is an OX(U)-module, we see that
HomOX

(F ,G) becomes naturally an OX -module.
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Note that for every OX -module G, we have a canonical isomorphism of OX(X)-
modules

HomOX
(OX ,F) ' F(X), φ→ φX(1)

and therefore an isomorphism of OX -modules

HomOX
(OX ,F) ' F .

Remark 8.2.8. For every OX -module F , the functor HomOX
(F ,−) gives a left

exact functor from the category of OX -modules to the category of R-modules (the
left exactness follows immediately from the definition of the kernel). Similarly, the
functor HomOX

(F ,−) gives a left exact functor from the category of OX -modules
to itself (this follows by using the previous assertion for every open subset U of X).

Remark 8.2.9. It is clear that if F1, . . . ,Fn are sheaves of OX -modules, then
F1 ⊕ . . .⊕Fn has a natural structure of OX -module such that with respect to the
obvious maps, it is both the coproduct and the product of the Fi.

Remark 8.2.10. It follows immediately from Remark 8.2.6 that if F is a
presheaf of OX -modules, then F+ has an induced structure of sheaf of OX -modules
such that the canonical map F → F+ is a morphism of presheaves of OX -modules.
Moreover, this satisfies an obvious universal property with respect to morphisms
to sheaves of OX -modules.

Remark 8.2.11. It follows from definitions and the previous remark that if
φ : F → G is a morphism of OX -modules, then ker(φ), coker(φ), and Im(φ) carry
natural OX -module structures. In particular, ker(φ) and coker(φ) are the kernel,
respectively the cokernel, of φ in the category of OX -modules. Moreover, the iso-
morphism of sheaf of Abelian groups

F/ ker(φ)→ Im(φ)

is now an isomorphism in the category of OX -modules. Therefore OX -mod is an
Abelian category.

The notions of injective and surjective morphisms of OX -modules are defined
as in the case of sheaves of R-modules. We also have a notion of OX-submodule,
which is an OX -module that is also a subsheaf. In particular, a sheaf of ideals is
an OX -submodule of OX .

Example 8.2.12. The following notion will play an important role later: an
OX -module F is locally free (which, for us, always means of finite rank) if for every
x ∈ X, there is an open neighborhood U of x such that we have an isomorphism

F|U ' O⊕nU .

If the integer n does not depend on x, then we say that F has rank n.

Exercise 8.2.13. Show that if (Mi)i∈I in an inverse system of OX -modules,
then the inverse limit lim←−

i∈I
Mi can be constructed as follows. For every open subset

U of X, consider the OX(U)-module

M(U) := lim←−
i∈I
Mi(U).
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If V ⊆ U , then the inverse limit of the restriction maps induce a restriction map
M(U) → M(V ) and these maps make M an OX -module. Moreover, for every
j ∈ I, the projection

lim←−
i∈I
Mi(U)→Mj(U)

defines a morphism of OX -modules M → Mj and M, together with these mor-
phisms, is the inverse limit of (Mi)i∈I .

Exercise 8.2.14. Show that if (Mi)i∈I is a direct system of OX -modules, then
the direct limit lim−→

i∈I
Mi can be constructed as follows. For every open subset U ⊆ X,

consider the OX(U)-module

M(U) := lim−→
i∈I
Mi(U).

If V is an open subset of U , then the direct limit of the restriction maps induces
a restriction map M(U) → M(V ) and these maps make M a presheaf of OX -
modules. Moreover, for every j ∈ I, the canonical morphismsMj(U)→ lim−→

i∈I
Mi(U)

give a morphism of presheaves Mj →M.

i) Show that the compositionsMj →M→M+ makeM+ the direct limit
of the direct system (Mi)i∈I .

ii) Deduce that for every x ∈ X, we have a canonical isomorphism

(lim−→
i∈I
Mi)x ' lim−→

i∈I
Mi,x.

8.2.1. Multilinear algebra for OX-modules. Operations like tensor prod-
uct, exterior, and symmetric products have analogues for OX -modules. If F and
G are OX -modules, the we can consider the presheaf that associates to an open
subset U of X, the OX(U)-module

F(U)⊗OX(U) G(U).

If V is an open subset of U , the restriction map

F(U)⊗OX(U) G(U)→ F(V )⊗OX(V ) G(V )

is the tensor product of the restriction maps of F and G. The associated sheaf is
the tensor product of F and G, and it is denoted by F ⊗OX

G. It is easy to see that
we have a bilinear map of sheaves

F ⊕ G → F ⊗OX
G

that satisfies the same universal property in OX -mod as the usual tensor product
in the category of R-modules.

While the sections of F ⊗OX
G over some U are not vert explicit, the stalks of

this sheaf are easier to understand. In fact, using the fact that a presheaf and its
associated sheaf have the same stalks, and the fact that tensor product commutes
with direct limits, we obtain for every x ∈ X a canonical isomorphsim

(8.2.1) (F ⊗OX
G)x ' lim−→

U3x
F(U)⊗OX(U) G(U) ' Fx ⊗OX,x

Gx.

Similarly, given an OX -module F and a non-negative integer m, we define OX -
modules ∧mF and Symm(F) by taking the sheaf associated to the presheaf that
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maps an open subset U to ∧mOX(U)F(U), respectively to Symm
OX(U)F(U). Again,

for every x ∈ X, we have canonical isomorphisms

(∧mF)x ' ∧mOX,x
Fx and

(
Symm(F)

)
x
' Symm

OX,x
(Fx).

Similar isomorphisms hold for the stalks at irreducible closed subsets of X.

Exercise 8.2.15. Show that for every OX -modules F , M, and N , we have a
functorial isomorphism of OX -modules

HomOX
(F ⊗OX

M,N ) ' HomOX

(
M,HomOX

(F ,N )
)
.

In particular, by taking global sections, we see that the functor F ⊗OX
− is the left

adjoint of the functor HomOX
(F ,−).

8.2.2. Push-forward and pull-back for OX-modules. A morphism of
ringed spaces (X,OX) → (Y,OY ) is given by a pair (f, f#), where f : X → Y
is a continuous map and f# : OY → f∗OX is a morphism of sheaves of rings. By
a slight abuse, f# is sometimes dropped from the notation and the morphism is
simply denoted by f . The main example for us is that given by a morphism of
algebraic varieties. A special feature in this case is that f# is determined by the
continuous map f .

Note that morphisms of ringed spaces can be composed: if f : (X,OX) →
(Y,OY ) and g : (Y,OY )→ (Z,OZ) are morphisms of ringed spaces, with associated
morphisms of sheaves of rings

f# : OY → f∗OX and g# : OZ → g∗OY ,
then the composition (X,OX)→ (Z,OZ) is given by the continuous map g ◦ f and
the morphism of sheaves of rings

OZ
g#−→ g∗OY

g∗(f
#)−→ g∗(f∗OX).

It is easy to see that in this way the ringed spaces form a category.
Let f : X → Y be a morphism of ringed spaces. If F is an OX -module, we see

that for every open subset V of Y , the Abelian group

Γ
(
V, f∗(F)

)
= Γ

(
f−1(V ),F

)
is a module over Γ

(
f−1(V ),OX

)
, hence via the given homomorphism Γ(V,OY )→

Γ
(
f−1(V ),OX) it becomes a module over Γ(V,OV ). This makes f∗(F) an OY -

module. We thus obtain a left exact functor, the push-forward functor

f∗ : OX -mod→ OY -mod.

We now construct a left adjoint of this functor, the pull-back. Recall that
we have a left adjoint f−1 for the corresponding functor between the categories
of sheaves of Abelian groups. Note also that by the adjointness of (f−1, f∗) the
structure morphism OY → f∗(OX) corresponds to a morphism of sheaves of rings
ψ : f−1(OY ) → OX . It is straightforward to see that if G is an OY -module, then
f−1(G) has a natural structure of f−1(OY )-module. We put

f∗(G) := f−1(G)⊗f−1(OY ) OX
and this has a natural structure of O-module. Again, it is not easy to describe
the sections of f∗(G) over an open subset of X, but for every x ∈ X, we have a
homomorphism OY,f(x) → OX,x induced by f# and a canonical isomorphism

(8.2.2) f∗(G)x ' Gf(x) ⊗OY,f(x)
OX,x.
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Since the functor −⊗OY,f(x)
OX,x is right-exact, it follows that the functor f∗ is right

exact. More generally, if V is an irreducible, closed subset of X and W = f(V ),
then for every OY -module G, we have a canonical isomorphism

f∗(G)V ' GW ⊗OY,W
OX,V .

Example 8.2.16. It follows from definition that for every morphism of ringed
spaces f : (X,OX)→ (Y,OY ), we have f∗(OY ) = OX . It is also straightforward to
see that if M1, . . . ,Mn are OY -modules, we have a canonical isomorphism

f∗(M1 ⊕ . . .⊕Mn) ' f∗(M1)⊕ . . .⊕ f∗(Mn).

This easily implies that if E is a locally free OY -module (of rank r), then f∗(E) is
locally free (of rank r).

Example 8.2.17. If U is an open subset of X and OU = OX |U , then we
have a morphism of ringed spaces i : (U,OU ) → (X,OX), where i : U → X is the
inclusion and the morphism of sheaves OX → i∗OU maps φ ∈ OX(V ) to φ|U∩V .
The corresponding morphism i−1OX = OU → OU is the identity, so that we have
a canonical isomorphism i∗(F) ' F|U for every OX -module F . In particular, in
this case the functor i∗ is exact.

Example 8.2.18. If f : X → Y is a flat morphism of algebraic varieties, then
the functor f∗ is exact. This follows from the fact that for every OY -module G and
every x ∈ X we have the isomorphism (8.2.2) and OX,x is a flat OY,f(x)-module.

Proposition 8.2.19. The pair of functors (f∗, f∗) is an adjoint pair, that is,
for every OX-module F and every OY -module G, we have a natural isomorphism
of Abelian groups

HomOX

(
f∗(G),F

)
' HomOX

(
G, f∗(F)

)
.

Proof. The assertion follows easily from the fact that (f−1, f∗) is an adjoint
pair of functors between the corresponding categories of sheaves of Abelian groups,
together with the universal property of the tensor product. �

Remark 8.2.20. The push-forward and pull-back functors are compatible with
compositions of morphisms of ringed spaces: if f : X → Y and g : Y → Z are
morphisms of ringed spaces, then for every OX -modules F and every OZ-module
G, we have

(g ◦ f)∗(F) = g∗
(
f∗(F)

)
and a natural isomorphism

(g ◦ f)∗(G) ' f∗
(
g∗(G)

)
.

Indeed, the first assertion follows directly from definition, and the second one follows
from the fact that both functors (g ◦ f)∗ and f∗ ◦ g∗ are left adjoints of (g ◦ f)∗.

Remark 8.2.21. Given a morphism of ringed spaces f : X → Y , for every
OY -module F and every open subset V of Y , we have an induced morphism of
OY (V )-modules

Γ(V,F)→ Γ
(
f−1(V ), f−1(F)

)
→ Γ

(
f−1(V ), f∗(F)

)
,

where the first map is the one given in Remark 8.1.9 and the second map is induced
by the canonical morphism f−1(F)→ f−1(F)⊗f−1(OY ) OX . We will refer to this
as the pull-back of sections of F . This operation is compatible, in an obvious sense,
with composition of morphisms.
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Notation 8.2.22. If Y is a closed subvariety of X with i : Y ↪→ X the inclusion,
and F is an OX -module, we often write F|Y for i∗(F).

We now show that the pull-back is compatible with multilinear operations. For
example, we have the following:

Proposition 8.2.23. If F and G are OY -modules, then we have a natural
isomorphism

f∗(F ⊗OY
G) ' f∗(F)⊗OX

f∗(G).

Proof. Note first that if M and N are OX -modules, we have a canonical
morphism of OY -modules

(8.2.3) f∗(M)⊗OY
f∗(N )→ f∗(M⊗OX

N )

defined as follows. Let S be the presheaf of OY -modules such that for an open
subset V of Y , we have

S(V ) = f∗(M)(V )⊗OY (V ) f∗(N )(V ) =M
(
f−1(V )

)
⊗OY (V ) N

(
f−1(V )

)
and T the presheaf of OX -modules such that for an open subset U of X, we have

T (U) =M(U)⊗OX(U) N (U).

It thus follows from definition that

M⊗OX
N = T + and f∗(M)⊗OY

f∗(N ) = S+.

It is clear that we have a morphism of OY -modules

S → f∗(T )

which for an open subset V ⊆ Y is given by the canonical morphism

M
(
f−1(V )

)
⊗OY (V ) N

(
f−1(V )

)
→M

(
f−1(V )

)
⊗OX(f−1(V )) N

(
f−1(V )

)
.

mapping u ⊗OY (V ) v → u ⊗OX(f−1(V )) v. By composing this with the morphism

f∗(T ) → f∗(T +), we obtain a morphism S → f∗(T +) and since the target is a
sheaf, this corresponds to a unique morphism of OY -modules

S+ → f∗(T +)

which is the morphism in (8.2.3).
Note now that the adjoint property of (f∗, f∗) gives canonical morphisms

α : F → f∗
(
f∗(F)

)
and β : G → f∗

(
f∗(G)

)
. We thus obtain the following com-

position

F ⊗OX
G → f∗

(
f∗(F)

)
⊗OX

f∗
(
f∗(G)

)
→ f∗

(
f∗(F)⊗OY

f∗(G)
)
,

where the first morphism is α ⊗ β and the second morphism is given by (8.2.3).
Using the fact that (f∗, f∗) is an adjoint pair, this corresponds to a morphism of
OX -modules

(8.2.4) f∗(F ⊗OY
G) −→ f∗(F)⊗OX

f∗(G).

In order to complete the proof, it is enough to show that this is an isomorphism
and this follows if we show that it induces an isomorphism at the level of stalks (see
Exercise 2.1.20). This is a consequence of the formulas in (8.2.1) and (8.2.2). �

Remark 8.2.24. A similar argument shows that if F is an OY -module, then
for every non-negative integer m, we have canonical isomorphisms

f∗
(
Symm(F)

)
' Symm

(
f∗(F)

)
and f∗(∧mF) ' ∧mf∗(F).
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8.2.3. OX-algebras. A commutative OX-algebra is a sheaf of commutative
rings A on X, together with a morphism of sheaves of rings OX → A. Note that
in this case, every A-module has an induced OX -module structure. A morphism of
(commutative) OX -algebras A → B is a morphism of sheaves such that for every
open subset U , the map A(U)→ B(U) is a morphism of OX(U)-algebras.

One example that will come up is the symmetric algebra of an OX -module F .
This is defined as

Sym•(F) :=
⊕
m≥0

Symm(F).

For every open subset U of X we have a multiplication map

Symp
(
F(U)

)
⊗OX(U) Symq

(
F(U)

)
→ Symp+qF(U).

This gives a morphism of presheaves and by passing to the associated sheaves, we
obtain a morphism of sheaves

Symp(F)⊗OX
Symq(F)→ Symp+q(F).

By putting these together, we obtain an OX -algebra structure on Sym•(F). As in
the case of modules over a ring, this satisfies the following universal property: for
every commutative OX -algebra A, the inclusion F ↪→ Sym•(F) induces a bijection

HomOX−alg

(
Sym•(F),A) ' HomOX−mod(F ,A).

8.3. Quasi-coherent sheaves on affine varieties

We now introduce quasi-coherent sheaves in the setting of affine varieties. We
will see that these correspond to modules over the coordinate ring of the affine
variety.

We begin with a general proposition about constructing sheaves in the presence
of a suitable basis of open subsets. We will use it for the principal affine open subsets
of an affine variety and later, for the principal affine open subsets of varieties of
the form MaxProj(S). We state it for OX -modules, but the reader will see that a
similar statement holds in other settings (for example, for sheaves of R-algebras).

Let (X,OX) be a ringed space and P a family of open subsets of X that satisfies
the following two properties:

i) Every open subset of X is a union of subsets in P (that is, P gives a basis
of open subsets), and

ii) For every U, V ∈ P, we have U ∩ V ∈ P.

We define a P-sheaf of OX -modules on X to be a map α that associates to every
U ∈ P an OX(U)-module α(U) and to every inclusion U ⊆ V a map α(V )→ α(U),
s→ s|U , such that

(a · s)|U = a|U · s|U for every a ∈ OX(V ), s ∈ α(V ).

These restriction maps are supposed to satisfy the usual compatibility conditions.
Furthermore, the map α should satisfy the following gluing condition: for every
cover U =

⋃
i∈I Ui, with U and Ui in P, and for every family (si)i∈I , with si ∈

α(Ui) for all i, such that si|Ui∩Uj
= sj |Ui∩Uj

for all i and j, there is a unique
s ∈ α(U) such that s|Ui = si for all i. If α and β are P-sheaves of OX -modules,
a morphism g : α → β associates to every U ∈ P a morphism of OX(U)-modules
gU : α(U)→ β(U) and these are compatible with the restriction maps in the obvious
sense. It is clear that P-sheaves form a category.
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Proposition 8.3.1. The functor from the category of sheaves of OX-modules
to the category of P-sheaves of OX-modules, given by only recording the information
for the open subsets in P, is an equivalence of categories.

Proof. Given a P-sheaf of OX -modules α, we define a corresponding sheaf
Fα, such that for an open subset W ⊆ X, we let Fα(W ) be the kernel of the map∏
U∈P;U⊆W

α(U)→
∏

U,V ∈P;U,V⊆W

α(U ∩ V ), (sU )U → (sU |U∩V − sV |U∩V )U,V .

Component-wise addition makes this an Abelian group and we get a structure of
OX(U)-module by putting

a · (sU )U = (a|U · sU )U for all a ∈ OX(W ), (sU )U ∈ Fα(U).

Note that if W ′ ⊆W , then we have a restriction map given by

(sU )U → (sV )V ,

where the second tuple is indexed by those V that lie inside W ′. It is clear that this
is compatible with scalar multiplication and makes Fα a presheaf of OX -modules.
Moreover, it is a straightforward (though somewhat tedious) to check that the
glueing condition on α implies that Fα is a sheaf.

Suppose now that g : α→ β is a morphism of P-sheaves of OX -modules. Given
any open subset W of X, we have a commutative diagram∏

U∈P;U⊆W α(U)

∏
U gU

��

// ∏
U,V ∈P;U,V⊆W α(U ∩ V )

∏
U,V gU∩V

��∏
U∈P;U⊆W β(U) // ∏

U,V ∈P;U,V⊆W β(U ∩ V ),

which induces a morphism of OX(U)-modules Fα(U) → Fβ(U). It is straightfor-
ward to check that these maps are compatible with the restriction maps and that
in this way we get a functor from the category of P-sheaves of OX -modules to
the category of sheaves of OX -modules. Checking that this is an inverse of the
functor in the statement of the proposition is an easy exercise that we leave for the
enthusiastic reader. �

Suppose now that (X,OX) is an affine variety and A = OX(X). We consider
the set P consisting of the principal affine open subsets of X. Recall that DX(f)∩
DX(g) = DX(fg). Let M be an A-module. Given any U ∈ P, say U = DX(f), we
put

α(U) := Mf .

Note that if DX(f) ⊇ DX(g), then V (f) ⊆ V (g), hence
√

(f) ⊇
√

(g). We thus
have a localization morphism Af → Ag and a corresponding canonical morphism of
Af -modules Mf →Mg. In particular, we see that α(U) only depends on U (up to
a canonical isomorphism) and that we have restriction maps that satisfy the usual
compatibility relations. The next lemma allows us to apply Proposition 8.3.1 to

conclude that we have a sheaf of OX -modules on X, that we denote M̃ , such that
for every f ∈ A, we have a canonical isomorphism

Γ
(
DX(f), M̃

)
'Mf .
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Lemma 8.3.2. If X is an affine variety, with A = O(X), and M is an A-
module, then for every cover

DX(f) =
⋃
i∈I

DX(gi),

the sequence

0 −→Mf −→
∏
i∈I

Mgi −→Mgigj

is exact.

Proof. The proof is similar to the proof of Proposition 1.4.7. After replacing
X by DX(f) and M by Mf , we may assume that f = 1. The condition X =⋃
i∈I DX(gi) is equivalent to the fact that the ideal (gi | i ∈ I) is the unit ideal.

The injectivity of the map M →
∏
i∈IMgi is clear: if u ∈M is such that u

1 = 0 in
Mgi for all i, then there is mi such that gmi

i ∈ AnnA(u). Since the elements gmi
i

generate the unit ideal, it follows that AnnA(u) = A, hence u = 0.
Suppose now that we have ui ∈Mgi for all i ∈ I, such that for all i, j ∈ I, the

images of ui and uj in Mgigj coincide. Note first that we may assume that I is finite.
Indeed, we may choose a finite subset J ⊆ I such that (gi | i ∈ J) = A. If we can
find u ∈M such that u

1 = ui ∈Mgi for all i ∈ J , then it follows that u
1 = ui ∈Mgi

also for all i ∈ I. Indeed, DX(gi) =
⋃
j∈J DX(gigj), and we deduce using the first

part of the proof that it is enough to show that u
1 and ui have the same image in

Mgigj for all j ∈ J . This is a consequence of the fact that u
1 = uj ∈ Mgj and the

fact that by hypothesis, ui and uj have the same image in Mgigj .
Suppose now that I is finite and let us write

ui =
vi
gni
i

for all i ∈ I.

After replacing each gi by a suitable power, we may assume that ni = 1 for all i.
The condition that ui and uj have the same image in Mgigj implies that

(gigj)
qi,j (gjvi − givj) = 0 for some qi,j .

After replacing one more time each gi by a suitable power, we may assume that
givj = gjvi for all i and j. In this case, if we write 1 =

∑
i∈I aigi and take

u =
∑
i∈I aivi ∈M , we have u

1 = ui ∈Mgi for all i. Indeed, we have

giu =
∑
j∈I

ajgiuj =
∑
j∈I

ajgjui = ui.

This completes the proof of the lemma. �

Example 8.3.3. With the above notation, the sheaf Ã is the structure sheaf
OX . This follows from the fact that for every f ∈ A, the canonical morphism
OX(X)f → OX

(
DX(f)

)
is an isomorphism.

Remark 8.3.4. If F = M̃ , then for every irreducible, closed subset V ⊆ X, we
have a canonical isomorphism

FV 'Mp,

where p ⊆ A is the prime ideal corresponding to V . Indeed, it follows from definition
that

FV = lim−→
V ∩DX(f)6=∅

F
(
DX(f)

)
= lim−→
f 6∈p

Mf 'Mp.



166 8. COHERENT SHEAVES ON ALGEBRAIC VARIETIES

Given a morphism of A-modules φ : M → N , for every f ∈ A, we have an
induced morphism of Af -modules Mf → Nf and these satisfy the obvious com-
patibility conditions with respect to inclusions of principal affine open subsets. By

Proposition 8.3.1, we thus get a morphism of sheaves φ̃ : M̃ → Ñ such that over
every DX(f), this is given by Mf → Nf . It is clear that in this way we get a
functor from the category of A-modules to the category of OX -modules.

Definition 8.3.5. Let X be an affine variety and A = OX(X). A quasi-

coherent sheaf on X is an OX -module isomorphic to M̃ , for some A-module M .
The sheaf is coherent if, in addition, M is a finitely generated A-module. The
category of quasi-coherent (or coherent) sheaves on X is a full subcategory of the
category of OX -modules on X.

Remark 8.3.6. It is clear from definition that ifM is a quasi-coherent (coher-
ent) sheaf on the affine variety X, then for every f ∈ O(X), the sheaf M|DX(f) is

again quasi-coherent (respectively, coherent). In fact, if M' M̃ , then M|DX(f) '
M̃f .

Remark 8.3.7. Note that if X is an affine variety, with A = OX(X), and
f ∈ A, then for every OX -module M, the restriction map M(X) → M

(
DX(f)

)
induces a morphism of Af -modules

(8.3.1) M(X)f →M
(
DX(f)

)
.

These morphisms are compatible with the restriction maps, hence by Proposi-
tion 8.3.1, we obtain a canonical morphism of OX -modules

M̃(X)→M.

This is an isomorphism if and only if M is quasi-coherent if and only if for every
f ∈ A, the canonical morphism

M(X)f →M
(
DX(f)

)
is an isomorphism.

Proposition 8.3.8. Let X be an affine variety, with A = O(X).

i) If (Mi)i∈I are A-modules, then⊕̃
i∈I

Mi '
⊕
i∈I

M̃i.

ii) The functor mapping M to M̃ , from the category of A-modules to the
category of quasi-coherent OX-modules is exact.

iii) For every morphism of quasi-coherent (coherent) sheaves φ : M→N , the
sheaves ker(φ), coker(φ), and Im(φ) are quasi-coherent (respectively, co-
herent). In particular, the categories of quasi-coherent (coherent) sheaves
are Abelian subcategories of the category of OX-modules.

iv) Every quasi-coherent subsheaf or quotient sheaf of a coherent sheaf is co-
herent.

v) The functor in i) gives an equivalence of categories with inverse Γ(X,−);
the latter functor is thus exact on quasi-coherent OX-modules.
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Proof. Under the assumption in i), each inclusion

Mj ↪→
⊕
i∈I

Mi

induces a morphism of OX -modules

M̃j →
⊕̃
i∈I

Mi,

and by the universal property of direct sum, a morphism

(8.3.2)
⊕
i∈I

M̃i →
⊕̃
i∈I

Mi.

We show that it is an isomorphism by showing that it induces an isomorphism at
the level of stalks. If x ∈ X corresponds to the maximal ideal m, then it follows
from Exercise 8.2.14 and Remark 8.3.4 that we have a canonical isomorphism(⊕

i∈I
M̃i

)
x

'
⊕
i∈I

(Mi)m

and similarly, a canonical isomorphism(⊕̃
i∈I

Mi

)
x

'

(⊕
i∈I

Mi

)
m

'
⊕
i∈I

(Mi)m,

where the second isomorphism follows from the fact that localization commutes
with direct sums. Via these isomorphisms, the morphism induced by (8.3.2) for the
stalks at x is the identity, which completes the proof of i).

We now consider ii). Given an exact sequence of A-modules

M ′ →M →M ′′,

for every x ∈ X, if m is the maximal ideal of A corresponding to x, we have an
exact sequence of Am-modules

M ′m →Mm →M ′′m.

By Remark 8.3.4, this shows that the sequence

M̃ ′ → M̃ → M̃ ′′

is exact, proving the assertion in ii).

We next show that if φ : M̃ → Ñ is a morphism of OX -modules and u =
φX : M → N is the induced morphism on the spaces of global sections, then φ = ũ.
Since φ is a morphism of sheaves, it follows that for every f ∈ A, the diagram

M

��

φX // N

��
Mf

φDX (f)

// Nf

is commutative. Since φDX(f) is a morphism of Af -modules, it follows that φDX(f)

is the morphism induced by u via localization. We deduce that φ = ũ, since they
induce the same morphisms on the principal affine open subsets.
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Since the functor mapping M to M̃ is exact, we can now conclude that

ker(φ) ' k̃er(u), coker(φ) ' ˜coker(u), and Im(φ) ' Ĩm(u).

This gives the assertion in iii) for quasi-coherent sheaves. The assertion for coherent
sheaves, as well as the one in iv), now follows from the fact that a submodule or a
quotient module of a finitely generated A-module is finitely generated (recall that
A is a Noetherian ring).

By construction, for every A-module M , we have a canonical isomorphism

Γ(X, M̃) 'M . This implies that given any two A-modules M and N , the canonical
map

HomA(M,N)→ HomOX
(M̃, Ñ)

is injective. Since we have already seen that this map is surjective, it follows that

the functor mapping M to M̃ is fully faithful, hence it gives an equivalence between
the category of A-modules and the category of quasi-coherent OX -modules. Since
it is clear that the functor Γ(X,−) gives an inverse, this completes the proof of the
proposition. �

The following result compares certain operations on modules to the correspond-
ing ones for sheaves.

Proposition 8.3.9. Let X be an affine variety and A = OX(X).

i) If M and N are A-modules, then

M̃ ⊗A N ' M̃ ⊗OX
Ñ .

ii) If M is an A-module, then for every non-negative integer p, we have

∧̃pM ' ∧pM̃ and ˜Symp(M) ' Symp(M̃).

iii) If M and N are A-modules, with M finitely generated, then

˜HomA(M,N) ' HomOX
(M̃, Ñ).

Proof. In order to prove i), note first that by the definition of the tensor
product of two OX -modules, we have a canonical morphism of A-modules:

u : M ⊗A N → Γ(X, M̃ ⊗OX
Ñ) =: T.

Consider now the composition φ

M̃ ⊗A N → T̃ → M̃ ⊗OX
Ñ ,

where the first morphism is ũ and the second one is that given in Remark 8.3.7.
In order to prove the assertion in i), it is enough to show that this induces an
isomorphism at the level of stalks. By Remark 8.3.4, the stalk of the left-hand side
at a point x corresponding to the maximal ideal m is

(M ⊗A N)⊗A Am 'Mm ⊗Am
Nm,

while the stalk at x of the right-hand side is isomorphic by (8.2.1) to

M̃x ⊗OX,x
Ñx 'Mm ⊗Am

Nm.

Via these isomorphisms, the morphism φx is the identity, which completes the proof
of i). The argument for ii) is entirely similar.
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Let us prove iii). Note first that by Proposition 8.3.8, the canonical morphism

HomA(M,N)→ HomOX
(M̃, Ñ) = Γ

(
X,HomOX

(M̃, Ñ)
)

is an isomorphism. Therefore we are done if we show that HomOX
(M̃, Ñ) is quasi-

coherent. However, for every f ∈ A, we have a corresponding isomorphism

HomAf
(Mf , Nf )→ HomODX (f)

(M̃ |DX(f), Ñ |DX(f)) = Γ
(
DX(f),HomOX

(M̃, Ñ)
)
,

hence it is enough to show that for every multiplicative system S in A, the canonical
morphism

(8.3.3) HomA(M,N)⊗A S−1A→ HomS−1A(S−1M,S−1N)

is an isomorphism. It is clear that this is the case if M is a free module of finite
rank. The general case follows by taking an exact sequence

F1 → F0 →M → 0,

with F0 and F1 free A-modules of finite rank (we use here the fact that M is a
finitely generated A-module and A is Noetherian) and by noting that both sides of
(8.3.3) are left exact functors in M , hence we have a commutative diagram with
exact rows

0 // HomA(M,N)⊗A S−1A

��

// HomA(F0, N)⊗A S−1A

��

// HomA(F1, N)⊗A S−1A

��
0 // HomS−1A(S−1M,S−1N) // HomS−1A(S−1F0, S

−1N) // HomS−1A(S−1F1, S
−1N).

Since the second and the third vertical maps are isomorphisms, the first one is an
isomorphism, too. �

Proposition 8.3.10. Let f : X → Y be a morphism of affine algebraic varieties
and

f# : A = O(Y )→ O(X) = B

the corresponding homomorphism of k-algebras.

i) If M is an B-module, then f∗(M̃) ' M̃ , where on the right-hand side M
is considered as an A-module via f#.

ii) If N is an A-module, then f∗(Ñ) ' Ñ ⊗A B.

Proof. Note that by definition we have

(8.3.4) Γ
(
Y, f∗(M̃)

)
= Γ(X, M̃) 'M,

with the A-module structure induced by f#. Therefore in order to prove i) it is

enough to show that f∗(M̃) is quasi-coherent. Furthermore, in order to show this,
it is enough to see that for every a ∈ A, the canonical morphism

(8.3.5) Γ
(
Y, f∗(M̃)

)
a
→ Γ

(
DY (a), f∗(M̃)

)
is an isomorphism. However, since f−1

(
DY (a)

)
= DX

(
f#(a)

)
, we have by defini-

tion

(8.3.6) Γ
(
DY (a), f∗(M̃)

)
' Γ

(
DX(f#(a)), M̃

)
'Mf#(a).

By combining (8.3.4) and (8.3.6), we deduce that (8.3.6) is an isomorphism.
The proof of ii) is entirely analogous to that of assertion i) in Proposition 8.3.9;

we leave it as an exercise for the reader. �
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8.4. Quasi-coherent sheaves on arbitrary varieties

We now globalize the previous discussion, by considering quasi-coherent and
coherent sheaves on arbitrary algebraic varieties.

Proposition 8.4.1. Given an algebraic variety X and an OX-module M, the
following are equivalent:

i) For every affine open subset U ⊆ X, the restriction M|U is a quasi-
coherent sheaf.

ii) For every affine open subset U ⊆ X and for every f ∈ OX(U), the canon-
ical morphism

(8.4.1) Γ(U,M)f → Γ
(
DU (f),M

)
is an isomorphism.

iii) There is an affine open cover X = U1 ∪ . . . ∪ Un such that M|Ui is a
quasi-coherent sheaf for 1 ≤ i ≤ n.

Moreover, the equivalence between i) and iii) holds if we replace “quasi-coherent”
by “coherent”

A quasi-coherent sheaf on X is an OX -module M that satisfies the equivalent
conditions i)-iii) in the above proposition. The OX -module M is coherent if it
satisfies the equivalent conditions i) and iii), with “quasi-coherent” replaced by
“coherent”.

Proof. The equivalence between i) and ii) is a consequence of the definition
of quasi-coherent sheaves on affine varieties. Since the implication i)⇒iii) is trivial,
it is enough to prove iii)⇒ii). It follows from Remark 8.3.6 that for every principal
affine open subset V of one of the Ui, the restrictionM|V is quasi-coherent. Given
an affine open subset U of X, we can cover U by subsets that are principal affine
open subsets with respect to both U and one of the Ui (see Lemma 5.3.3). We are
thus reduced to proving the following assertion. Suppose that X is an affine variety,
with O(X) = A, and f ∈ A. If f1, . . . , fr ∈ A are such that X =

⋃r
i=1DX(fi) and

M|DX(fi) is quasi-coherent for every i, then the canonical morphism

Γ(X,M)f → Γ
(
DX(f),M

)
is an isomorphism. Consider the following commutative diagram with exact rows:

0 // Γ(X,M)f

u

��

// ∏r
i=1 Γ

(
DX(fi),M

)
f

v

��

// ∏r
i,j=1 Γ

(
DX(fifj),M

)
f

w

��
0 // Γ

(
DX(f),M) // ∏r

i=1 Γ
(
DX(ffi),M

)
// ∏r

i,j=1 Γ
(
DX(ffifj),M

)
.

Since each M|DX(fi) is quasi-coherent, it follows that both v and w are isomor-
phisms, hence u is an isomorphism.

The equivalence between i) and iii) for coherent sheaves follows from the fact
that if X is an affine variety, f1, . . . , fr ∈ A = O(X) are such that they generate
the unit ideal, and M is an A-module such that each Mfi is finitely generated as
an Afi-module, then M is a finitely generated A-module (see Corollary C.3.5). �

Example 8.4.2. For every algebraic variety X, the structure sheaf OX is co-
herent. This follows from Example 8.3.3.
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Remark 8.4.3. If M is a coherent sheaf, then it follows from Remark 8.3.4
that for every irreducible, closed subset V of X, the OX,V -module MV is finitely
generated.

We denote by Qcoh(X) and Coh(X) the full subcategories of the category of
OX -modules consisting of the quasi-coherent, and respectively coherent, sheaves on
X.

Proposition 8.4.4. Let X be an algebraic variety.

i) If (Mi)i∈I are quasi-coherent sheaves on X, then
⊕

i∈IMi is quasi-
coherent; moreover, this is coherent if all Mi are coherent and I is finite.

ii) If φ : M → N is a morphism of quasi-coherent (coherent) sheaves, then
ker(α), coker(α), and Im(α) are quasi-coherent (respectively, coherent).
In particular, Qcoh(X) and Coh(X) are Abelian categories.

iii) If M is a quasi-coherent subsheaf or quotient of the coherent sheaf N ,
then M is coherent.

iv) If M and N are quasi-coherent (coherent) sheaves on X, then M⊗OX
N

is quasi-coherent (respectively, coherent).
vi) IfM is a quasi-coherent (coherent) sheaf on X, then ∧pM and Symp(M)

are quasi-coherent (respectively, coherent) for every non-negative integer
p.

vii) If M is a coherent sheaf and N is quasi-coherent (coherent), then the
sheaf HomOX

(M,N ) is quasi-coherent (respectively, coherent).

Proof. The assertions regarding quasi-coherence follow immediately from Propo-
sitions 8.3.8 and 8.3.9. The ones regarding coherence follow from the fact that all
operations involved preserve finitely generated modules. The only assertion that is
not entirely obvious is the one concerning vii): if M and N are finitely generated
modules over a Noetherian ring A, then HomA(M,N) is finitely generated. In order
to see this, we choose a surjective morphism A⊕n →M , which induces an injective
morphism

HomA(M,N) ↪→ HomA(A⊕n, N) ' N⊕n.
Therefore HomA(M,N) is finitely generated, as a submodule of the finitely gener-
ated A-module N⊕n. �

We now discuss the behavior of quasi-coherence and coherence via push-forward
and pull-back.

Proposition 8.4.5. Let f : X → Y be a morphism of algebraic varieties.

i) If M is a quasi-coherent (coherent) sheaf on Y , then f∗(M) is a quasi-
coherent (respectively, coherent) sheaf on X.

ii) If N is a quasi-coherent sheaf on X, then f∗(N ) is a quasi-coherent sheaf
on Y .

Proof. Let us prove i). For every x ∈ X, we may choose an affine open
neighborhood V of f(x) and an affine open neighborhood U ⊆ f−1(V ) of x. Let
g : U → V be the morphism induced by f . It follows from Proposition 8.3.10 that

if M|V ' M̃ , then f∗(M)|U ' g∗(M|V ) is isomorphic to the sheaf associated to
the OX(U)-module M ⊗OY (V ) OX(U). Therefore f∗(M) is quasi-coherent if M
is quasi-coherent. Moreover, if M is coherent, then f∗(M) is coherent, since M
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finitely generated over OY (V ) implies that M ⊗OY (V ) OX(U) is finitely generated
over OX(U).

Suppose now thatN is a quasi-coherent sheaf onX. Given an affine open subset
W ⊆ Y , we need to show that f∗(N )|W is quasi-coherent. If h : f−1(W ) → W is
the induced morphism, then it is clear that

f∗(N )|W ' h∗(N|f−1(W )).

It follows that we may replace f by h and thus assume that Y is affine.
Consider a cover X = U1 ∪ . . .∪Ur, with Ui affine open subsets in X. Since X

is separated, each intersection Ui ∩ Uj is again an affine open subset. If we denote
by αi : Ui ↪→ X and αi,j : Ui∩Uj ↪→ X the inclusions, then N being a sheaf implies
that we have an exact sequence of OX -modules:

0→ N →
⊕
i

(αi)∗(N|Ui)→
⊕
i,j

(αi,j)∗(N|Ui∩Uj ).

Since f∗ is an exact functor, we obtain an exact sequence of OY -modules:

0→ f∗(N )→
⊕
i

(f ◦ αi)∗(N|Ui
)→

⊕
i,j

(f ◦ αi,j)∗(N|Ui∩Uj
).

The second and third term are quasi-coherent by Proposition 8.3.10, and we deduce
that f∗(N ) is quasi-coherent using assertion ii) in Proposition 8.4.4. �

Remark 8.4.6. In general, it is not true that if f : X → Y is a morphism of
algebraic varieties and N is a coherent sheaf on X, then f∗(N ) is a coherent sheaf
on Y . For example, if X = A1 and Y is a point, then f∗(OX) corresponds to the
k-vector space k[x], which is not finitely generated. An important finiteness result
that we will prove later says that if f is a proper morphism, then f∗(N ) is coherent
for every coherent sheaf N on X.

Example 8.4.7. One easy case in which the push-forward of any coherent sheaf
is coherent is that of a finite morphism: in this case the assertion follows directly
from Proposition 8.3.10. In particular, this applies to any closed immersion.

Remark 8.4.8. If f : X → Y is an affine morphism of algebraic varieties, then
the functor f∗ is exact on the category of quasi-coherent OX -modules. Indeed,
given an exact sequence of quasi-coherent OX -modules

0→ F ′ → F → F ′′ → 0,

it is enough to show that for every affine open subset V of Y , the induced sequence

0→ Γ
(
V, f∗(F ′)

)
→ Γ

(
V, f∗(F)

)
→ Γ

(
V, f∗(F ′′)

)
→ 0

is exact. This follows from the fact that f−1(V ) is affine and thus the functor
Γ
(
f−1(V ),−

)
is exact on the category of quasi-coherent sheaves.

The following exercise shows that if f : X → Y is a finite morphism, then the
functor f∗ between the corresponding categories of coherent sheaves has a right
adjoint.

Exercise 8.4.9. Let f : X → Y be a finite morphism.
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i) Show that for every coherent (quasi-coherent) sheaf G on Y , there is a
coherent (respectively, quasi-coherent) sheaf f !(G) on X such that we
have an isomorphism

f∗
(
f !(G)

)
' HomOY

(
f∗(OX),G

)
.

Moreover, show that in this way we get a functor f ! from Coh(Y ) to
Coh(X) (and similarly, from Qcoh(Y ) to Qcoh(X)).

ii) Show that for every quasi-coherent sheaf F on X and every quasi-coherent
sheaf G on Y , we have a functorial isomorphism

f∗HomOX

(
F , f !(G)

)
' HomOY

(
f∗(F),G

)
.

iii) Deduce that the functor f ! : Coh(Y )→ Coh(X) is the right adjoint of the
functor f∗ : Coh(X)→ Coh(Y ) (and similarly for the functors between the
categories of quasi-coherent sheaves).

We end this section by extending some familiar constructions of ideals to the
setting of coherent sheaves. We fix an algebraic variety X.

Definition 8.4.10. For every sheaf of Abelian groups F on X, the support of
F is the subset

Supp(F) := {x ∈ X | Fx 6= 0}.
If Y = Supp(F), we also say that F is supported on Y .

Proposition 8.4.11. IfM is a coherent sheaf on X, then Supp(M) is a closed
subset of X; in fact, if U is an affine open subset of X, then Supp(M) ∩ U is the
zero-locus of AnnOX(U)M(U).

Proof. Of course, it is enough to prove the last assertion. SinceM|U ' M̃ , for
some finitely generated OX(U)-module M , it is enough to check that for a maximal
(or prime) ideal p in OX(U), we have AnnOX(U)(M) ⊆ p if and only if Mp 6= 0.

If u1, . . . , ur ∈ M form a system of generators, then AnnR(M) =
⋂r
i=1 AnnR(ui),

hence

AnnR(M) ⊆ p if and only if AnnR(ui) ⊆ p for some i,

which is the case if and only if some ui

1 ∈ Mp is non-zero. This completes the
proof. �

Definition 8.4.12. Given a coherent ideal I ↪→ OX , the co-support or zero-
locus V (I) of I is the support of the coherent sheaf OX/I. It follows from the
above proposition that if U is an affine open subset of X, then V (I)∩U is the zero
locus of I(U) ⊆ OX(U).

Definition 8.4.13. Given an OX -moduleM on X, its annihilator AnnOX
(M)

is the subsheaf of OX given by

Γ
(
U,AnnOX

(M)
)

:= AnnOX(U)M(U)

for every open subset U of X. It is straightforward to check that this is, indeed, an
ideal sheaf of OX .

Proposition 8.4.14. If M is a coherent sheaf on X, then AnnOX
(M) is a

coherent ideal and for every irreducible closed subset V ⊆ X, we have

AnnOX
(M)V ' AnnOX,V

(MV ).
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Proof. Both assertions follow from the fact that taking the annihilator of a
finitely generated module commutes with localization: if M is a finitely generated
A-module and S ⊆ A is a multiplicative system, then the canonical morphism

S−1AnnA(M)→ AnnS−1AS
−1M

is an isomorphism. This is straightforward to check. �

Remark 8.4.15. Note that for every coherent sheaf M, the zero-locus of
AnnOX

(M) is equal to Supp(M).

Definition 8.4.16. If I is a coherent sheaf of ideals in OX , then the radical
rad(I) of I is the sheaf given by

Γ
(
U, rad(I)

)
= rad

(
Γ(U, I)

)
⊆ Γ(U,OX).

It is straightforward to see that rad(I) is an ideal sheaf of OX .

Remark 8.4.17. It is easy to see that if I is an ideal in a ring A and S is a
multiplicative system in A, then

rad(S−1I) = S−1
(
rad(I)

)
.

This implies that if I is a coherent ideal sheaf, the sheaf rad(I) is coherent, and
for every irreducible, closed subset V ⊆ X, we have

rad(I)V = rad(IV ) ⊆ OX,V .

Remark 8.4.18. If i : Y ↪→ X is a closed immersion, the canonical morphism
of sheaves φ : OX → i∗(OY ) is surjective; indeed, for every affine open subset
U ⊆ X, the corresponding homomorphism OX(U) → OY

(
i−1(U)

)
is surjective.

We get an ideal sheaf I, which is the kernel of φ (equivalently, this can be described
as AnnOX

i∗(OY )). Since i∗(OY ) is coherent (see Example 8.4.7), it follows from
Proposition 8.4.4 that I is coherent. Note that for every affine open subset U of
X, we have, by definition

I(U) = IU
(
i(Y ) ∩ U

)
.

This applies, in particular, if Y is a closed subvariety of X and i is the inclusion;
in this case we write IY/X for I.

Example 8.4.19. Given a point x ∈ X, we consider the ideal Ix defining x,
and put k(x) := OX/Ix. Note that if U is an affine open neighborhood of x, with

A = OX(U) and m ⊆ A the maximal ideal corresponding to x, then k(x) = Ã/m
(it is thus not surprising that we use the same notation for this sheaf as we do for
the residue field of OX,x). Of course, we have

Γ
(
U, k(x)

)
= k if x ∈ U,

and Γ
(
U, k(x)

)
= 0, otherwise. In the former situation, the OX(U)-module struc-

ture is given by

f · λ = f(x)λ for f ∈ OX(U), λ ∈ k.
Note that if ix : {x} ↪→ X is the inclusion, we can also describe k(x) as (ix)∗k.

Remark 8.4.20. If Y is a closed subvariety of X and I = IY/X , then it follows
from definition that Y = V (I). Conversely, if I is any coherent ideal sheaf on X
and Y = V (I), then IY/X = rad(I). This is clear, by considering the sections over
affine open subsets of X.
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Remark 8.4.21. If F is a sheaf of Abelian groups on a topological space X
and i : Y ↪→ X is the inclusion map of a closed subset such that Fx = 0 for all
x ∈ X r Y , then the canonical morphism F → i∗

(
i−1(F)

)
is an isomorphism (it is

enough to check that we have isomorphisms at the level of stalks).
Suppose now that X is an algebraic variety and i : Y ↪→ X is the inclusion map

of a closed subvariety. If F is a coherent sheaf on X such that Supp(F) ⊆ Y , then
the canonical morphism F → i∗

(
i−1(F)

)
is an isomorphism. In general, this is not

very useful, since i−1(F) is not an OY -module.
In practice, a more useful fact is that F has a filtration by coherent sheaves

such that the successive quotients are the push-forward of coherent sheaves on Y .
Indeed, if I is the radical ideal in OX corresponding to Y , then Ir · F = 0 for some
r ≥ 1. If we consider the filtration

0 = Fr ⊆ Fr−1 ⊆ . . . ⊆ F1 ⊆ F0 = F ,
where Fj = Ij · F , then each Fj/Fj+1 is annihilated by I, hence it is equal to
i∗(Gj), for a coherent OY -module Gj .

Suppose now that M is a quasi-coherent sheaf and M1, . . . ,Mr are quasi-
coherent subsheaves of M.

Definition 8.4.22. The sum
∑r
i=1Mi is the sheaf associated to the presheaf

that maps an open subset U ⊆ X to
r∑
i=1

Mi(U) ⊆M(U).

Remark 8.4.23. Equivalently,
∑r
i=1Mi is the image of the morphism of sheaves

r⊕
i=1

Mi →M.

In particular, it is quasi-coherent (coherent) if M and all Mi are quasi-coherent
(respectively, coherent) by Proposition 8.4.4.

Definition 8.4.24. The intersection
⋂r
i=1Mi is the sheaf that associates to

an open subset U ⊆ X the OX(U)-module
r⋂
i=1

Mi(U) ⊆M(U)

(it is straightforward to see that this is a subsheaf of M).

Remark 8.4.25. If M and all Mi are quasi-coherent, then
⋂r
i=1Mi is quasi-

coherent. Indeed, arguing by induction, it is enough to show this when r = 2. In
this case, it follows from Proposition 8.4.4 using the fact thatM1∩M2 is the kernel
of the canonical morphism

M1 → (M1 +M2)/M2.

If, in addition, some Mj is coherent, then
⋂n
i=1Mi is coherent, as a subsheaf of

Mj .

Definition 8.4.26. If X is an algebraic variety and I1 and I2 are coherent
ideals ofOX , then the product I1·I2 is the ideal ofOX which is the sheaf correspond-
ing to the presheaf that associates to an open subset U the ideal I1(U) · I2(U) ⊆
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OX(U). Note that multiplication gives a canonical morphism I1 ⊗OX
I2 → OX ,

whose image is, by definition, I1 · I2. We deduce that I1 · I2 is a coherent sheaf of
ideals and for every affine open subset U of X, we have

Γ(U, I1 · I2) = Γ(U, I1) · Γ(U, I2).

Definition 8.4.27. Suppose that f : X → Y is a morphism of algebraic vari-
eties and I is a coherent sheaf of ideals on Y . The image of the induced morphism

f∗(I)→ f∗(OY ) = OX
is a coherent sheaf of ideals on X, that we denote I · OX .

Remark 8.4.28. With the notation in the above definition, note that we have

(8.4.2) V (I · OX) = f−1
(
V (I)

)
.

Indeed, it is enough to check this in a neighborhood of each x ∈ X. Let us choose
an affine open neighborhood V ⊆ Y of f(x) and then an affine open neighbor-
hood U ⊆ f−1(V ) of x. In this case, it follows from the description of f∗(I) in
Proposition 8.3.10 that

Γ(U, I · OX) = Γ(V, I) · OX(U),

and we deduce the equality in (8.4.2) from Proposition 1.4.23.

One of the draw-backs of requiring the structure sheaves on our varieties to be
sheaves of functions is that in performing certain geometric operations (for example,
in intersecting closed subvarieties or, more generally, taking the inverse image of a
closed subset via a morphism) we lose some information. In order to remedy this,
we will keep track of what happens to the ideal sheaves when performing these
operations. For example, if f : X → Y is a morphism and W is a closed subvariety
of Y , then the ideal sheaf IW/Y ·OX contains more information than its zero-locus,

the geometric inverse image f−1(W ).

Exercise 8.4.29. Show that if Y is a closed subvariety of X and i : Y ↪→ X is
the inclusion, then the map F → i∗(F) gives an equivalence of categories between
Qcoh(Y ) (or Coh(Y )) and the full subcategory of Qcoh(X) (respectively, Coh(X))
consisting of those F such that IY/X ⊆ AnnOX

(F).

Exercise 8.4.30. Show that if M is a quasi-coherent sheaf on an algebraic
variety X, we have f ∈ OX(X), and DX(f) = {x ∈ X | f(x) 6= 0}, then the
restriction map Γ(X,M)→ Γ

(
DX(f),M

)
induces an isomorphism

Γ(X,M)f → Γ
(
DX(f),M

)
.

Hint: you can argue as in the proof of Proposition 2.3.15.

8.5. Locally free sheaves

Let X be an algebraic variety. Recall that an OX -module M is locally free if
there is an open cover X =

⋃
i∈I Ui such that M|Ui

' O⊕riUi
for all i. If ri = r

for all i, then we say that F has rank r. Note that a locally free OX -module M
is coherent: this is an immediate consequence of assertion i) in Proposition 8.4.4
and Example 8.4.2. We note that if X is connected and M is locally free, then
it has a well-defined rank. Indeed, for every r, the set of points x ∈ X such that
M|U ' O⊕rU in some neighborhood U of x, is open in X. Since these sets are
disjoint and X is connected, it follows that all but one of them is empty.
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Proposition 8.5.1. If X is an affine variety with A = O(X), and M is a
finitely generated A-module, then the following assertions are equivalent:

i) The coherent sheaf M̃ is locally free.
ii) For every prime ideal p in A, the Ap-module Mp is free.
iii) For every maximal ideal p in A, the Ap-module Mp is free.
iv) The A-module M is projective.

Proof. Note first that M is projective if and only if Mp is projective for
every prime (maximal) ideal p in A. Indeed, if we consider a surjective morphism
φ : F → M , with F free, φ splits if and only if M is projective. On the other
hand, we claim that φ splits if and only if it splits after localizing at every prime
(maximal) ideal: the splitting condition is equivalent with the fact that the induced
morphism

HomA(M,F )→ HomA(M,M)

is surjective, and since M is finitely generated over a Noetherian ring, for every
prime ideal p, we have

HomAp
(Mp, Fp) ' HomA(M,F )⊗A Ap and

HomAp
(Mp,Mp) ' HomA(M,M)⊗A Ap.

The claim then follows since a morphism is surjective if and only if it induces
a surjective morphism after localizing at each prime (maximal) ideal (see Corol-
lary C.3.4). Note also that a finitely generated module over a local ring is projective
if and only if it is free (see Proposition C.2.1). This proves the equivalence of ii),
iii), and iv) above. Since the implication i)⇒ii) is clear, it is enough to prove ii)⇒i).

Suppose that Mp is a free Ap-module for some prime ideal p. We can choose a
basis of Mp of the form u1

1 , . . . ,
ur

1 ∈Mp. If we consider the morphism

φ : A⊕r →M, φ(ei) = ui,

then φp is an isomorphism. Since both ker(φ) and coker(φ) are finitely generated,
this implies that there is f 6∈ p such that ker(φ)f = 0 = coker(φ)f , hence φ induces
an isomorphism after tensoring with Af . We thus have

M̃ |DX(f) ' O⊕rDX(f).

�

Remark 8.5.2. The proof of the implication ii)⇒i) in the above proposition
gives the following stronger statement: if F is a coherent sheaf on the algebraic
variety X and V ⊆ X is an irreducible closed subset such that FV ' O⊕rX,V , then

there is an open subset U of X such that U ∩V 6= ∅ and F|U ' O⊕rU . In particular,
the locally free locus of F

{x ∈ X | Fx is free over OX,x}

is an open subset of X and for an irreducible, closed subset V of X, the OX,V -
module FV is free if and only if V intersects the locally free locus of F .

Example 8.5.3. Given any coherent sheaf F on the variety X, if X1, . . . , Xr

are the irreducible components of X, then each local ring OX,Xi = k(Xi) is a field,
hence FXi

is a free OX,Xi
-module. We deduce from the previous remark that there

is an open dense subset U of X such that F|U is locally free.



178 8. COHERENT SHEAVES ON ALGEBRAIC VARIETIES

Definition 8.5.4. For every coherent sheaf F on X and for every x ∈ X, the
fiber of F at x is

F(x) := Fx/mFx,
where m ⊆ OX,x is the maximal ideal in OX,x. Note that if ix : {x} ↪→ X is the
inclusion, we have

F(x) ' i∗x(F)

(where we identify, as usual, a sheaf over a point with its global sections). It is clear
that F(x) is a finite-dimensional k-vector space, whose dimension is equal to the
minimal number of generators of Fx by Nakayama’s lemma (see Remark C.1.3).

More generally, if V is an irreducible closed subset of X, we put

F(V ) := FV /mFV ,

where m ⊆ OX,V is the maximal ideal. This is a finite-dimensional vector space
over k(V ).

The definition is functorial: given a morphism of sheaves φ : F → G, for every
irreducible closed subset V of X, we have an induces k(V )-linear map

F(V ) → G(V ).

Exercise 8.5.5. Show that if f : X → Y is a morphism of algebraic varieties
and F is a coherent sheaf on Y , then for every point x ∈ X, we have a canonical
isomorphism

f∗(F)(x) ' F(f(x)).

The following criterion for a coherent sheaf to be locally free is often useful.

Proposition 8.5.6. Given a coherent sheaf F on X, the following are equiva-
lent:

i) The sheaf F is locally free, of rank r.
ii) For every irreducible, closed subset V of X, we have dimk(V ) F(V ) = r.
iii) For every x ∈ X, we have dimk F(x) = r.

Proof. If F is locally free, of rank r, then for every irreducible closed subset
V , we can find an open subset U , with U ∩ V 6= ∅, such that F|V ' O⊕rV , hence

FV ' O⊕rX,V , and thus dimk(V ) F(V ) = r. Therefore it is enough to show that if
dimk F(x) = r for every x ∈ X, then F is locally free, of rank r. Given x ∈ X, we

need to find an open neighborhood U of x such that F|U ' O⊕rU . After replacing X
by an affine neighborhood of x, we may assume that X is affine, with A = OX(X),

and F = M̃ , for some finitely generated A-module M . If m is the maximal ideal
corresponding to x, it follows by assumption that we have a surjective morphism

A⊕rm →Mm.

After replacing X by DX(f), for some f 6∈ m, we may assume that we have a
surjective morphism

φ : A⊕r →M,

and let N be its kernel. For every maximal ideal n of A, the minimal number of
generators of Mn is r, hence after tensoring the short exact sequence

0→ Nn → A⊕rn →Mn → 0
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with An/nAn, we see that Nn ⊆ n ·A⊕rn . This implies that

N ⊆
⋂
n

n ·A⊕r = 0,

where we use the fact that the intersection of all maximal ideals in A is 0. �

Proposition 8.5.7. Given an exact sequence

0→ F ′ → F → F ′′ → 0

of OX-modules, with F ′′ locally free, for every OX-module G, the sequence

0→ F ′ ⊗OX
G → F ⊗OX

G → F ′′ ⊗OX
G → 0

is exact. In particular, for every x ∈ X, we have an exact sequence of k-vector
spaces:

0→ F ′(x) → F(x) → F ′′(x) → 0.

Proof. It is enough to show that for every x ∈ X the induced sequence of
stalks

0→ F ′x ⊗OX,x
Gx → Fx ⊗OX,x

Gx → F ′′x ⊗OX,x
Gx → 0

is exact. However, by assumption we know that we have an exact sequence

0→ F ′x → Fx → F ′′x → 0;

moreover, this is split, since F ′′x is a free OX,x-module. This implies that by ten-
soring with Gx, the sequence is again split exact. The last assertion about fibers
follows by taking G to be the sheaf k(x). �

Corollary 8.5.8. Given an exact sequence

0→ F ′ → F → F ′′ → 0

of coherent sheaves on X, with F ′′ locally free, then F ′ is locally free if and only
if F ′′ is locally free. Moreover, if two of F ′, F , and F ′′ have a well-defined rank,
then the third one does, and

rank(F ′) + rank(F ′′) = rank(F).

Proof. After replacing X by each of its connected components, we may as-
sume that X is connected. By the proposition, for every x ∈ X we have a short
exact sequence

0→ F ′(x) → F(x) → F ′′(x) → 0,

hence

dimk F(x) = dimk F ′(x) + dimk F ′′(x).

The assertion then follows from Proposition 8.5.6. �

We will use the term vector bundle on X as a synonym for locally free sheaf. A
line bundle is a locally free sheaf of rank 1. A vector bundle of rank r is trivial if
it is isomorphic to O⊕rX .

Definition 8.5.9. Given two vector bundles E and F , a morphism of sheaves
E → F is a morphism of vector bundles if the map

x→ rank
(
E(x) → F(x)

)
is constant on each connected component of X.
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Proposition 8.5.10. If φ : E → F is a morphism of vector bundles, then
coker(φ), Im(φ), and ker(φ) are vector bundles.

Proof. By right exactness of the tensor product, for every x ∈ X, we have an
exact sequence

E(x) → F(x) → coker(φ)x → 0

and using the fact that φ is a morphism of vector bundles, we conclude that the
map x→ dimk coker(φ)x is constant on the connected components of X. Therefore
coker(φ) is locally free by Proposition 8.5.7. Using the exact sequences

0→ Im(φ)→ F → coker(φ)→ 0

and
0→ ker(φ)→ E → Im(φ)→ 0,

we deduce using Corollary 8.5.7 first that Im(φ) is locally free and then that ker(φ)
is locally free. �

Exercise 8.5.11. Given a vector bundle E , a subbundle of E is a subsheaf F of
E , which is a vector bundle, and such that the inclusion map F ↪→ E is a morphism
of vector bundles. Show that a subsheaf F of E is a subbundle if and only if it is a
vector bundle and for all x ∈ X, the induced map F(x) → E(x) is injective.

Example 8.5.12. Note that the composition of two morphisms of vector bun-
dles might not be a morphism of vector bundles. Suppose for example that X = A1,
with corresponding ring k[x]. The morphisms

k[x]
φ−→ k[x]⊕2 ψ−→ k[x]

given by
φ(f) =

(
xf, (1− x)f

)
and ψ(f, g) = f

give morphisms of vector bundles, but the composition does not.

Remark 8.5.13. Several of the operations that we defined preserve locally free
sheaves:

i) IfM1, . . . ,Mr are locally free sheaves on X (with rank(Mi) = mi), then
M1 ⊕ . . .⊕Mr is locally free (of rank m1 + . . .+mr).

ii) If E and F are locally free sheaves on X (of ranks e and f , respectively),
then E ⊗OX

F is locally free (of rank ef).
iii) If E is a locally free sheaf on X (of rank m), then Symp(E) and ∧pE

are locally free, for every p ≥ 0 (with rank
(
Symp(E)

)
=
(
m+p−1
m−1

)
and

rank
(
∧p E

)
=
(
m
p

)
, with the convention that this is 0 for p > m).

All assertions follow, for example, by considering the stalks, using Proposition 8.5.1,
and the fact that all these operations take free modules to free modules of corre-
sponding ranks.

Definition 8.5.14. For every coherent sheaf E on X, we define its dual

E∨ := HomOX
(E ,OX).

Remark 8.5.15. It follows from Proposition 8.4.4 that if E is coherent, then
E∨ is coherent. The map taking E to E∨ thus gives a contravariant functor from
the category of coherent sheaves on X to itself. Moreover, if E is locally free (of
rank r), then E∨ has the same property: if E|U ' O⊕rU , then

E∨|U ' HomOU
(O⊕rU ,OU ) ' OrU .
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Remark 8.5.16. For every coherent sheaves E and F , given (φ, s) ∈ E∨(U) ×
F(U), we obtain a morphism E|U → F|U that maps a ∈ E(V ) to φV (a) · s|V . This
induces a natural morphism

(8.5.1) E∨ ⊗F → HomOX
(E ,F).

It is straightforward to see that this is an isomorphism if either E or F is locally
free; in particular, if both E and F are locally free, then HomOX

(E ,F) is locally
free.

Remark 8.5.17. For every coherent sheaf E , we have a canonical morphism
of sheaves OX → HomOX

(E , E) corresponding to the identity morphism 1E ∈
HomOX

(E , E). If E is a line bundle, this is an isomorphism (consider the induced
morphism at the level of stalks). By combining this with the previous remark, we
thus see that if E is a line bundle, then we have a canonical isomorphism

OX ' E ⊗ E∨.

Remark 8.5.18. For every coherent sheaf E , we have a canonical morphism of
OX -modules

(8.5.2) E → (E∨)∨

that maps s ∈ E(U) to the morphism evs : HomOU
(E|U ,OU ) → OU , that for an

open subset V ⊆ U , maps φ ∈ HomOV
(E|V ,OV ) to φV (s|V ). Of course, if U is

an affine open subset such that E|U ' M̃ , where M is a module over A = OX(U),
then the above morphism is induced by the canonical morphism of A-modules

M → HomA

(
Hom(M,A), A

)
.

This is an isomorphism if M is a finitely generated, free A-module, which implies
that (8.5.2) is an isomorphism if E is locally free.

Remark 8.5.19. Given a short exact sequence of coherent sheaves

0→ F ′ → F → F ′′ → 0,

with F ′′ locally free, and a coherent sheaf G, the induced sequences

0→ HomOX
(G,F ′)→ HomOX

(G,F)→ HomOX
(G,F ′′)→ 0

and
0→ HomOX

(F ′′,G)→ HomOX
(F ,G)→ HomOX

(F ′,G)→ 0

are exact. Indeed, on any affine open subset, the original exact sequence corresponds
to an exact sequence of modules; since the third module is projective, the sequence is
split. It follows that after applying either of the functors Hom(G,−) or Hom(−, G),
the resulting sequence is still exact.

An important way to describe a vector bundle of rank r is via transition func-
tions. Suppose that E is locally free, of rank r, and let us choose a finite open cover
U = (Ui)i∈I of X and trivializations (that is, isomorphisms) φi : E|Ui

→ O⊕rUi
. In

this case, for every i, j ∈ I, we have isomorphisms

φi,j = φi ◦ φ−1
j : O⊕rUi∩Uj

→ O⊕rUi∩Uj

that satisfy the following compatibility relations (known as cocycle condition):

i) φi,i = Id for all i ∈ U .
ii) φi,j ◦ φj,k = φi,k on Ui ∩ Uj ∩ Uk, for all i, j, k ∈ I.
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Note that a morphism of sheaves O⊕rUi∩Uj
→ O⊕rUi∩Uj

is given by a matrix a ∈
Mr

(
OX(Ui ∩ Uj)

)
. This is an isomorphism if and only if the matrix is invertible,

that is, det(a) ∈ OX(Ui ∩ Uj) is invertible. The isomorphisms (φi,j)i,j∈I (or the
corresponding matrices (ai,j)i,j∈I) are the transition functions associated to this
cover and choice of trivializations. In fact, these transition functions can be used
in order to identify the isomorphism class of a vector bundle, as follows.

Given a finite open cover U = (Ui)i∈I ofX, a refinement of U is given by another
such cover V = (Vj)j∈J , together with a map α : J → I, such that Vj ⊆ Uα(j) for all
j ∈ J . Given a family of invertible matrices ai1,i2 that satisfy the cocycle condition
and a refinement V = (Vj)j∈J with α : J → I, as above, we obtain a new family
of matrices aj1,j2 = aα(j1),α(j2)|Vj1∩Vj2

, which again satisfies the cocycle condition.
We will refer to this operation as passing to a refinement. Given two families of
matrices that satisfy the cocycle condition, corresponding to two covers U1 and U2,
in order to compare them we may always pass to a common refinement V.

Exercise 8.5.20. Let X be an algebraic variety.

i) Show that given a finite open cover U = (Ui)i∈I and a family of invertible
matrices ai,j ∈ Mr

(
OX(Ui ∩ Uj)

)
, for i, j ∈ I, that satisfy the cocycle

condition, there is a vector bundle E of rank r, unique up to a canoni-
cal isomorphism, with associated transition functions with respect to the
cover U given by (ai,j)i,j∈I .

ii) Given two such families of matrices a and a′, corresponding to possibly
two different covers, the corresponding vector bundles are isomorphic if
and only if they are cohomologous, in the following sense: after passing
to a common refinement, both families of matrices are taken with respect
to the same cover U = (Ui)i∈I , and for every i ∈ I, there is an invertible
matrix bi ∈Mr

(
OX(Ui)

)
such that

ai,j = a′i,j · bi · b−1
j on Ui ∩ Uj , for all i, j ∈ I.

Example 8.5.21. Let us denote by O∗X the subsheaf of OX such that O∗X(U)
consists of the invertible elements in OX(U) (hence O∗X is a sheaf of Abelian groups
with respect to multiplication). A line bundle L is described by a finite open cover
U = (Ui)i∈I of X and a family of functions ai,j ∈ O∗X(Ui ∩ Uj), which satisfy
the cocycle condition. Note that for a positive integer m, the line bundle L⊗m is
described by the family (ami,j)i,j∈I , while the dual L∨ is described by the family

(a−1
i,j )i,j∈I . Given such a family of transition functions, the space of global sections

Γ(X,L) is isomorphic to{
(fi)i ∈

∏
i∈I
OX(Ui) | ai,jfj = fi on Ui ∩ Uj for all i, j ∈ I

}
.

We end this section by introducing an important invariant of an algebraic va-
riety, its Picard group.

Definition 8.5.22. Let X be an algebraic variety. The Picard group of X,
denoted Pic(X), is the set of isomorphism classes of line bundles on X, with the
multiplication given by tensor product. Since the tensor product is associative and
commutative, the operation on Pic(X) satisfies these two properties. Moreover, we
have an identity element given by (the isomorphism class of) OX , and every L has
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an inverse given by L−1 := L∨ (see Remark 8.5.17). We thus see that Pic(X) is an
Abelian group.

Remark 8.5.23. For every morphism of algebraic varieties f : X → Y and
every locally free sheaf E on Y , the pull-back f∗(E) is locally free on X (see Exam-
ple 8.2.16). Moreover, since for every x ∈ X, we have a canonical isomorphism

f∗(E)(x) ' E(f(x)),

it follows that the pull-back of a morphism of vector bundles is again a morphism
of vector bundles.

In particular, we obtain a group homomorphism

f∗ : Pic(Y )→ Pic(X), L → f∗(L).

Note that this is compatible with composition of morphisms: if g : Y → Z is another
morphism of algebraic varieties, then (g ◦ f)∗ = f∗ ◦ g∗ (see Remark 8.2.20).

Example 8.5.24. If E is a vector bundle on X, then the determinant det(E) of
E is obtained by taking on each connected component of X, the top exterior power
of E . This is a line bundle on X.

Remark 8.5.25. If E is a vector bundle of rank r on X, then we have a mor-
phism of OX -modules

∧pE ⊗OX
∧r−pE → ∧rE = det(E), u⊗ v → u ∧ v.

By considering local trivializations, we see that this induces an isomorphism

∧p(E∨) ' (∧pE)∨ ' ∧r−pE ⊗OX
det(E)−1.

At this point we don’t have the tools to compute the Picard group in any non-
trivial examples. We will return to this topic in the next chapter, after discussing
divisors.

Exercise 8.5.26. Let E be a locally free sheaf on the algebraic variety Y .

i) Show that if f : X → Y is a dominant morphism, then the map

Γ(Y, E)→ Γ
(
X, f∗(E)

)
given by pull-back of sections is injective.

ii) In particular, if Y is irreducible, then for every non-empty open subset
V ⊆ Y , the restriction map

Γ(Y, E)→ Γ(V, E)

is injective.

Exercise 8.5.27. Show that if F is a coherent sheaf on X, then F is invertible
(that is, there is a coherent sheaf G such that F ⊗ G ' OX) if and only if F is a
line bundle.

Exercise 8.5.28. Show that if f : X → Y is a morphism of algebraic varieties,
then for every locally free sheaf E on Y and for every OX -module F on X, we have
a canonical isomorphism

f∗
(
f∗(E)⊗OX

F
)
' E ⊗OY

f∗(F)

(this is known as the projection formula).
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Exercise 8.5.29. Consider an exact sequence of vector bundles on the algebraic
variety X:

0→ E ′ → E → E ′′ → 0.

i) For every p ≥ 0 and for every 0 ≤ i ≤ p, let Fi be the image of the
composition

Si(E ′)⊗OX
Sp−i(E)→ Si(E)⊗OX

Sp−i(E)→ Sp(E).

Show that for every 0 ≤ i ≤ p, we have a sequence of subbundles of Sp(E)

0 = Fp+1 ↪→ Fp ↪→ Fp−1 ↪→ . . . ↪→ F0 = Sp(E)

and we have canonical isomorphisms

Fi/Fi+1 ' Si(E ′)⊗OX
Sp−i(E ′′) for 0 ≤ i ≤ p.

ii) Similarly, show that for every p ≥ 0 and 0 ≤ i ≤ p, we have a sequence of
subbundles

0 = Gp+1 ↪→ Gp ↪→ . . . ↪→ G0 = ∧pE
such that we have canonical isomorphisms

Gi/Gi+1 ' ∧iE ′ ⊗OX
∧p−iE ′′ for 0 ≤ i ≤ p.

In particular, we have a canonical isomorphism

det(E) ' det(E ′)⊗OX
det(E ′′).

8.6. The MaxSpec and MaxProj constructions

In this section we use quasi-coherent sheaves in order to globalize the MaxSpec
and MaxProj constructions. This will allow us to describe varieties that are affine
or projective over another variety. We also discuss one important class of affine
morphisms, the geometric vector bundles.

8.6.1. Affine morphisms and quasi-coherent sheaves of algebras. Let
X be an algebraic variety. All OX -algebras considered in this subsection will be
commutative.

Definition 8.6.1. An OX -algebra A is quasi-coherent or coherent if it is so
with respect to the induced OX -module structure. A finitely generated quasi-
coherent OX -algebra is a quasi-coherent OX -algebra such that for every affine open
subset U of X, the OX(U)-algebra A(U) is finitely generated. Similarly, a quasi-
coherent OX -algebra is reduced if A(U) is a reduced ring for every affine open subset
U .

Remark 8.6.2. Arguing as in the proof of Proposition 2.3.16, we see that if
A is a quasi-coherent sheaf of OX -algebras, in order to check that it is finitely
generated, it is enough to find an affine open cover X = U1 ∪ . . . ∪ Un such that
A(Ui) is a finitely generated OX(Ui)-algebra for all i. Note that since OX(Ui) is a
finitely generated k-algebra, then A(Ui) is finitely generated as an OX(Ui)-algebra
if and only if it is finitely generated as a k-algebra.

Exercise 8.6.3. Show that if A is a quasi-coherent OX -algebra, then the fol-
lowing are equivalent:

i) For every open subset U ⊆ X, the ring A(U) is reduced.
ii) The OX -algebra A is reduced.
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iii) There is an affine open cover X = U1∪ . . .∪Ur such that A(Ui) is reduced
for all i.

Consider a morphism of algebraic varieties f : Y → X. The canonical mor-
phism OX → f∗(OY ) makes f∗(OY ) an OX -algebra, which is quasi-coherent by
Proposition 8.4.5. Moreover, it is clearly reduced. If f is an affine morphism, then
f∗(OY ) is a finitely generated OX -algebra: for every affine open subset U ⊆ X, the
inverse image f−1(U) is an affine variety, hence

Γ
(
U, f∗(OY )

)
= Γ

(
f−1(U),OY

)
is a finitely generated k-algebra, and therefore a finitely generated OX(U)-algebra.

Note that if g : Z → X is another variety over X, then for every morphism
φ : Z → Y of varieties over X (recall that this means that we have f ◦ φ = g), we
have a canonical morphism OY → φ∗(OZ), and by pushing this forward via f , we
get a canonical morphism of OX -algebras

f∗(OY )→ f∗
(
φ∗(OZ)

)
= g∗(OZ).

We get in this way a contravariant functor Φ from the category of varieties over
X that are affine over X (that is, the structure morphism to X is affine) to the
category of finitely generated, reduced, quasi-coherent OX -algebras.

Our next goal is to construct an inverse functor. Given a finitely gener-
ated, reduced, quasi-coherent OX -algebra A, we will construct an algebraic variety
MaxSpec(A), together with an affine morphism

πX : MaxSpec(A)→ X.

If X is an affine variety, then A(X) is a finitely generated OX(X)-algebra, and
therefore a finitely generated k-algebra; the variety we consider is MaxSpec

(
A(X)

)
and the morphism πX is the one corresponding to the canonical homomorphism
OX(X) → A(X). We note that if U is an affine open subset of X, then the
following commutative diagram

MaxSpec
(
A(U)

)
πU

��

i // MaxSpec
(
A(X)

)
πX

��
U

j // X

is Cartesian, where j is the inclusion and i corresponds to the ring homomorphism
OX(X)→ OX(U). In other words, the canonical morphism of varieties over U

φ : MaxSpec
(
A(U)

)
→ π−1

X (U)

is an isomorphism. This is clear if U = DX(f) is a principal affine open subset of X,
since in this case the canonical homomorphism A(X)f → A(U) is an isomorphism.
In the general case, we write U = U1 ∪ . . . ∪ Ur, with Ui = DX(fi) for 1 ≤ i ≤ r.
Note that since Ui = DU (fi|U ), it follows that we have an isomorphism

φ−1
(
π−1
X (Ui)

)
= π−1

U (Ui) ' MaxSpec
(
A(Ui))

such that the restriction of φ to φ−1
(
π−1
X (Ui)

)
gets identified to the canonical

morphism
MaxSpec

(
A(Ui)

)
→ π−1

X (Ui)

of varieties over Ui, which we have seen that it is an isomorphism. Therefore φ is
an isomorphism.
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Suppose now that X is an arbitrary variety. For every affine open subset
U ⊆ X, we consider the morphism

πU : MaxSpec
(
A(U)

)
→ U.

If V is another affine open subset, then U ∩ V is again an affine open subset
(see Proposition 2.5.5) and the above discussion shows that we have a canonical
isomorphism

φU,V : π−1
U (U ∩ V )→ π−1

V (U ∩ V ).

It is straightforward to check that these isomorphisms satisfy the required com-
patibilities such that by Exercise 2.3.12 we obtain a prevariety Y =MaxSpec(A).
Moreover, we can glue the morphisms πU to a morphism πX : Y → X such that for
every affine open subset U ⊆ X, we have an isomorphism

π−1
X (U) ' MaxSpec

(
A(U)

)
.

Note thatMaxSpec(A) is a variety: since X is a variety, it follows from Propo-
sition 2.5.14 that it is enough to show that πX is a separated morphism. This is a
consequence of the fact that for every affine open subset U of X, the inverse image
π−1
X (U) is affine, hence separated (see Example 2.5.13).

It is clear that πX is an affine morphism. Moreover, it follows from the con-
struction that

(πX)∗(OY ) ' A.

Exercise 8.6.4. Show that if U is an open subset of X, then we have an
isomorphism of varieties over U

MaxSpec(A|U ) ' (πX)−1(U).

If φ : A → B is a morphism of finitely generated, reduced OX -algebras, then
for every affine open subset U ⊆ X, we have a morphism of finitely generated
OX(U)-algebras A(U)→ B(U), inducing a morphism

MaxSpec
(
B(U)

)
→ MaxSpec

(
A(U)

)
over U . These glue together to give a morphism

MaxSpec(B)→MaxSpec(A)

of varieties over X. We thus obtain a contravariant functor MaxSpec from the
category of finitely generated, reduced, quasi-coherent OX -algebras to the category
of varieties over X that are affine over X.

Exercise 8.6.5. Show that that the two functors Φ andMaxSpec give inverse
anti-equivalences of categories.

Remark 8.6.6. IfA is a reduced, finitely generated, quasi-coherentOX -algebra,
then the morphism MaxSpec(A)→ X is finite if and only if A is a coherent OX -
module.

Consider an arbitrary variety over X given by g : Z → X. Given a morphism
f : Z → Y = MaxSpec(A) of varieties over X, we have a canonical morphism
OY → f∗(OZ), and by pushing forward via πX , a morphism of OX -algebras

A ' (πX)∗(OY )→ (πX)∗
(
f∗(OZ)

)
= g∗(OZ).
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Remark 8.6.7. For every variety over X given by g : Z → X, the above map

(8.6.1) HomVar/X

(
Z,MaxSpec(A)

)
→ HomOX−alg

(
A, g∗(OZ)

)
is a bijection. Note that if X is a point, then this is just Proposition 2.3.14. The
proof in the general case follows by covering X by affine open subsets and using
Proposition 2.3.14. We leave the details as an exercise for the reader. We note that
by the adjoint property of g∗ and g∗, the set on the right-hand side of (8.6.1) is in
natural bijection with HomOZ−alg

(
g∗(A),OZ

)
.

Exercise 8.6.8. Let X be an algebraic variety. If A is a quasi-coherent OX -
algebra, then a quasi-coherent A-module is an A-module, which is quasi-coherent
when considered with the induced OX -module structure. Show that if f : Y → X
is an affine morphism, then by mapping a quasi-coherent OY -moduleM to f∗(M),
we obtain an equivalence of categories between the quasi-coherent sheaves on Y
and the quasi-coherent f∗(OY )-modules on X.

8.6.2. Locally free sheaves vs. geometric vector bundles. We now in-
troduce the geometric counterpart for the notion of locally free sheaf. Let X be an
algebraic variety.

Definition 8.6.9. A geometric vector bundle on X is a variety over X

π : E → X

such that each fiber E(x) := π−1(x) has a structure of vector space over k and E
is locally trivial over X in the following sense: there is an open cover X =

⋃
i∈I Ui

and for every i an isomorphism of varieties over Ui:

φi : π
−1(Ui) ' Ui × kri

with the property that for every x ∈ Ui, the induced isomorphism E(x) → kri is
k-linear. If dimxE(x) = r for all x ∈ X, then E has rank r.

Remark 8.6.10. Note that for every geometric vector bundle E and every r,
the set of points x ∈ X such that dimk E(x) = r is open in X. Since for different
values of r, we get disjoint sets, it follows that the map x→ dimk E(x) is constant
on the connected components of X.

Definition 8.6.11. We consider the category Vect(X), whose objects are geo-
metric vector bundles on X; the morphisms1 in this category are the morphisms of
varieties over X that are k-linear on fibers over the points x ∈ X. In particular, we
can talk about isomorphisms of geometric vector bundles. A vector bundle of rank
r is trivial if it is isomorphic to X × kr, with the obvious k-vector space structure
on the fibers.

Our main goal is to show that the category of geometric vector bundles is
equivalent to the category of locally free sheaves. We now construct two functors
between the two categories. Suppose first that E is a geometric vector bundle on
X, given by π : E → X. A section of E over an open subset U ⊆ X is a morphism
s : U → E such that π

(
s(x)

)
= x for every x ∈ U . For every such U , we define

E(U) to consist of all sections of E over U . It is clear that if V is an open subset
of U , then we have a map E(U) → E(V ) given by restriction and this makes E a

1We do not call these morphisms of geometric vector bundles, as that notion has a different
meaning, see Remark 8.6.13.
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sheaf (of sets, for now). In fact, we can put an OX(U)-module structure on E(U)
such that E is a locally free OX -module: for this, we use the addition and scalar
multiplication in each fiber of E to define

(s1 + s2)(x) = s1(x) + s2(x) and (f · s)(x) = f(x) · s(x)

for every s, s1, s2 ∈ E(U) and f ∈ OX(U). In order to see that as defined s1+s2 and
fs are morphisms of algebraic varieties, we consider an open cover X =

⋃
i∈I Ui

such that we have isomorphisms π−1(Ui) ' Ui × kr. These isomorphisms clearly
induce bijections

E(U ∩ Ui) ' OX(U ∩ Ui)⊕r

that, with the above operations, become isomorphisms of OX(U ∩ Ui)-modules.
This easily implies that the operations on E(U) are well-defined and E becomes in
this way an OX -module. The fact that it is locally free follows from the fact that
E|Ui

' O⊕rUi
.

If f : E → F is a morphism in Vect(X), and E and F are the sheaves of sections
of E and F , respectively, then we have a morphism of OX -modules E → F that
maps s to f ◦s. In this way we have a functor from Vect(X) to the full subcategory
of Coh(X) consisting of locally free sheaves.

We now construct a functor going in the reverse direction. Given a locally free
sheaf E on X, consider the corresponding symmetric algebra

Sym•(E) =
⊕
m≥0

Symm(E).

Note that if U is an open subset of X such that E|U ' O⊕rU , then Sym•E|U '
OU [x1, . . . , xr]. In particular, we see that Sym•E is a reduced, finitely generated
OX -algebra. The geometric vector bundle associated to E is

V(E) :=MaxSpec
(
Sym•(E)

) π−→ X.

If U is an open subset such that

(8.6.2) E|U ' O⊕rU ,

then we have an isomorphism

π−1(U) 'MaxSpec
(
OU [x1, . . . , xr]

)
' U ×Ar

of varieties over U . Using this isomorphism, we can put a k-vector space structure
on each fiber of π. It is straightforward to see that this is independent of the choice
of isomorphism (8.6.2). We thus see that π : V(E)→ X is a geometric vector bundle
on X.

This construction gives a contravariant functor: if E → F is a morphism of
locally free sheaves, we get a morphism of OX -algebras

Sym•(E)→ Sym•(F)

and thus a morphism in Vect(X)

V(F)→ V(E).

We claim that the sheaf of sections of V(E) is canonically isomorphic to E∨.
Indeed, a section s : U → E is the same as a morphism U → E of varieties over X,
where U is a variety over X via the inclusion j : U ↪→ X. Using Remark 8.6.7, we
can identify this set with the set of morphisms of OU -algebras

Sym•(E|U ) ' j∗
(
Sym•E)→ OU ,
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which is identified via the universal property of the symmetric algebra with the set
of morphisms of OU -modules, E|U → OU , hence to E∨|U . This proves our claim.

Exercise 8.6.12. Show that the functor from Vect(X) to the full subcategory
of Coh(X) consisting of locally free sheaves, which maps a geometric vector bundle
to the corresponding sheaf of sections, is an equivalence of categories; its inverse is
the functor mapping E to V(E∨).

Remark 8.6.13. Let π : E → X be a geometric vector bundle and E the corre-
sponding sheaf of sections. Given any x ∈ X and any open neighborhood U of x,
we have a map

E(U)→ E(x), s→ s(x).

This induces a map Ex → E(x) and finally a k-linear map E(x) → E(x). This is an
isomorphism, as can be seen by restricting to an open neighborhood U of x such
that π−1(U) ' U × kr.

This implies that if φ : E → F is a morphism of locally free sheaves, then this
is a morphism of vector bundles if and only if the corresponding morphism

f : V(E∨)→ V(F∨)

has the property that the map

x→ rank
(
V(E∨)(x) → V(F∨)(x)

)
is constant on the connected components of X.

Example 8.6.14. Given n ≥ 1, let us consider again the blow-up of An+1 at
the origin (see Example 5.1.13):

Bl0(An+1) :=
{(
P, `
)
∈ An+1 ×Pn | P ∈ `

}
.

The first projection is the blow-up map of An+1. Let us consider now the morphism
q : Bl0(An+1) → Pn induced by the second projection f : An+1 × Pn → Pn. We
claim that q gives a geometric vector bundle of rank 1, in fact a subbundle of
the trivial rank (n + 1) bundle given by f . Indeed, each fiber q−1

(
[`]
)

is a one-

dimensional linear subspace of f−1
(
[`]
)
' kn+1. Moreover, if x0, . . . , xn are the

coordinates on An+1 and y0, . . . , yn are the homogeneous coordinates on Pn, and
Ui = (yi 6= 0), then we have an isomorphism

q−1(Ui) =

{(
x0, . . . , xn), [y0, . . . , yn]

)
| yi 6= 0, xj = xi ·

yj
yi

for all j

}
' k × Ui

mapping
(
(x0, . . . , xn), [y0, . . . , yn]

)
to
(
xi, [y0, . . . , yn]

)
. This proves our claim.

The geometric vector bundle given by q is the tautological subbundle on Pn. The
sheaf of sections of this bundle is denoted OPn(−1) and its dual by OPn(1), while
the corresponding mth tensor powers (for m > 0) are denoted by OPn(−m) and
OPn(m), respectively. Using the above trivializations, we see that the transition
functions of OPn(−1) are given by (yi/yj)i,j .

Let us compute, using this, Γ
(
Pn,OPn(m)

)
. It follows from Example 8.5.21

that for every m ∈ Z, the transition functions of OPn(m) are (ymj /y
m
i )i,j and thus

Γ
(
Pn,OPn(m)

)
'

{
(s0, . . . , sn) ∈

n∏
i=0

Γ(Ui,OPn) | si =
ymj
ymi

sj for all i, j

}
.
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Using the isomorphism

Γ(Ui,OPn) ' k[y0, . . . , yn](yi)

for 0 ≤ i ≤ n, we see that giving a tuple (s0, . . . , sn) as above is equivalent to giving
s ∈ k[y0, . . . , yn]y0···yn homogeneous of degree m, such that for all i, we have

si =
s

ymi
∈ k[y0, . . . , yn]yi .

By writing s = P
Q , with P,Q ∈ k[y0, . . . , yn] relatively prime, we see that the

condition is that Q divides a suitable power of yi for all i, hence s ∈ k[y0, . . . , yn]m.
We thus conclude that

Γ
(
Pn,OPn(m)

)
' k[y0, . . . , yn]m,

where the right-hand side is 0 for m < 0. We thus have

dimk Γ
(
Pn,OPn(m)

)
=

(
m+ n

n

)
for m ≥ 0

(the formula for the number of monomials of fixed degree in n + 1 variables fol-
lows easily by induction on n). The line bundle OPn(1) and its restriction to the
subvarieties of Pn will play an important role in later chapters.

8.6.3. Projective morphisms. Suppose now that S is an N-graded OX-
algebra, that is, S is an OX -algebra that has a decomposition

S =
⊕
m∈N

Sm,

where Si · Sj ⊆ Si+j for all i, j ∈ N. Suppose also that S is reduced and quasi-
coherent. We assume, in addition, that S0 and S1 are coherent, and that the
S0-algebra S is generated by S1; this means that for every affine open subset U of
X, the S0(U)-algebra S(U) is generated by S1(U), In particular, we see that S is a
finitely generated OX -algebra.

Exercise 8.6.15. Show that if S is an N-graded, quasi-coherent OX -algebra,
then S is generated as an S0-algebra by S1 if and only if the canonical morphism

Sym•S0(S1)→ S

is surjective. Deduce that if X = U1∪ . . .∪Un is an affine open cover, this condition
holds if and only if each S0(Ui)-algebra S(Ui) is generated by S1(Ui).

Remark 8.6.16. It is easy to see that since S0 and S1 are coherent and S is
generated over S0 by S1, all Sm are coherent OX -modules.

Under the above assumptions, we construct a variety over X

π : MaxProj(S)→ X,

as follows. For every affine open subset U of X, we consider the composition

πU : MaxProj
(
S(U)

)
→ MaxSpec

(
S0(U)

)
→ U,

where the second morphism is the finite morphism induced by the homomorphism
OX(U) → S0(U). Arguing as in § 8.6.1, we see that if V ⊆ U are affine open
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subsets, then we have a Cartesian diagram

MaxProj
(
S(V )

)
πV

��

i // MaxProj
(
A(U)

)
πU

��
V

j // U.

In particular, given any affine open subsets U1, U2 ⊆ X, we have a canonical iso-
morphism

π−1
U1

(U1 ∩ U2) ' π−1
U2

(U1 ∩ U2)

of varieties over U1∩U2. We can thus glue the projective varieties MaxProj
(
S(U)

)
,

where U varies over the affine open subsets of X, to obtain an algebraic prevariety
MaxProj(S), and the morphisms πU glue to give a morphism π : MaxProj(S)→
X.

In fact,MaxProj(S) is an algebraic variety: by Proposition 2.5.14, it is enough
to show that π is a separated morphism. This is a consequence of the fact that
for every affine open subset U of X, the inverse image π−1

X (U) is isomorphic to
MaxProj

(
S(U)

)
, hence it is separated (see Example 2.5.13).

Definition 8.6.17. A morphism of algebraic varieties f : Y → X is projective
if there is an OX -algebra S as above, such that Y is isomorphic to MaxProj(S),
as varieties over X.

Remark 8.6.18. Note that every projective morphism π : Y → X is proper:
this follows from the fact that we can cover X by finitely many affine open subsets
U1, . . . , Un and π−1(Ui) → Ui is proper (see assertion v) in Proposition 5.1.4 and
Corollary 5.1.11).

Example 8.6.19. Note that every finite morphism f : X → Y is projective.
Indeed, it is straightforward to check that X is isomorphic toMaxProj

(
f∗(OX)[x]

)
as varieties over Y .

Example 8.6.20. An important example is given by the blow-up of X with
respect to a coherent ideal I. In this case, the OX -algebra we consider is

S :=
⊕
m≥0

Imtm ⊆ OX [t].

Note that if π : MaxProj(S) → X is the corresponding morphism and U ⊆ X is
an affine open subset, then the induced morphism π−1(U)→ U is the one that we
discussed in § 6.1.

Example 8.6.21. Another example is provided by projective bundles. If E is
a locally free sheaf on the algebraic variety X, then the corresponding projective
bundle is

P(E) =MaxProj
(
Sym•(E)

)
.

In particular, if E = O⊕(n+1)
Y , then we obtain P(E) = Pn × Y =: Pn

Y .

We will discuss projective morphisms in more detail in Chapter 11.
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8.7. The cotangent sheaf

In this section we construct the cotangent sheaf of an algebraic variety. As
we will see, this is a vector bundle of the appropriate rank if and only if X is
smooth. More generally, we will construct a relative version of the cotangent sheaf,
associated to a morphism X → Y . We will use this later in order to characterize
the smoothness of an arbitrary morphism.

We first treat the affine case. In fact, we do this under very general assumptions
on the rings involved.

Definition 8.7.1. Let R be a commutative ring, A a commutative R-algebra,
and M an A-module. An R-derivation from A to M is a map D : A → M such
that

i) D is a morphism of R-modules, and
ii) For every a, b ∈ A, we have the Leibniz rule

D(ab) = aD(b) + bD(a).

The set of such derivations will be denoted by DerR(A,M). It is easy to see that this
is an A-submodule of HomR(A,M), where the A-module structure on HomR(A,M)
is induced by the one on M .

Remark 8.7.2. In the presence of condition ii), condition i) above is equivalent
to the fact that D is a morphism of Abelian groups such that

D(λ · 1) = 0 for every λ ∈ R.

Remark 8.7.3. If f : M → N is a morphism of A-modules, we obtain an
induced morphism of A-modules

DerR(A,M)→ DerR(A,N), D → f ◦D.
This shows that DerR(A,−) gives a covariant functor from the category of A-
modules to itself.

Proposition 8.7.4. The functor DerR(A,−) is representable, that is, there
is an A-module ΩA/R, together with an R-derivation d = dA/R : A → ΩA/R such
that for every R-derivation D : A→ M , there is a unique morphism of A-modules
φ : ΩA/R →M such that φ ◦ d = D; in other words, dA/R induces an isomorphism
of A-modules

HomA(ΩA/R,M) ' DerR(A,M).

Of course, like every object representing a functor, the A-module ΩA/R is
unique, up to a canonical isomorphism that commutes with the derivation dA/R;
this is the module of Kähler differentials of A over R.

Proof of Proposition 8.7.4. Let ΩA/R be the quotient of the freeA-module
generated by the symbols d(a), for a ∈ A, by the A-submodule generated by the
following elements:

i) d(a) + d(a′)− d(a+ a′) for a, a′ ∈ A,
ii) λ · d(a)− d(λa) for λ ∈ R, a ∈ A, and
iii) d(ab)− a · d(b)− b · d(a) for a, b ∈ A.

We define dA/R : A → ΩA/R by mapping each a ∈ A to d(a). It is clear from the
definition that dA/R is an R-derivation and it is straightforward to check that it
satisfies the required universal property. �
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Remark 8.7.5. It is clear from definition that ΩA/R is generated as an A-
module by {dA/R(a) | a ∈ A}. In fact if (ai)i∈I is a family of elements of A
that generate A as an R-algebra, then {dR/A(ai) | i ∈ I} generate ΩA/R: indeed,
the Leibniz rule implies that every element of the form dA/R(ai1 · . . . · air ) lies in
the linear span of dA/R(ai1), . . . , dA/R(air ). In particular, we see that if A is an
R-algebra of finite type, then ΩA/R is a finitely generated A-module.

Example 8.7.6. If A = R[x1, . . . , xn], then ΩR/A is a free A-module, with
generators dx1, . . . , dxn. Indeed, we have already seen that dx1, . . . , dxn generate
ΩR/A. In order to see that they form a basis, consider for every i the derivation

∂xi
: A→ A, f → ∂f

∂xi.
.

It is clear that the induced morphism of A-modules φ : ΩA/R → A maps dxi to
1 and dxj to 0 for all j 6= i. This easily implies that dx1, . . . , dxn are linearly
independent. Note that dA/R is thus given by

dA/R(f) =

n∑
i=1

∂f

∂xi
dxi

for all f ∈ A.

The now prove some general properties of modules of Kähler differentials.

Proposition 8.7.7. Let A be an R-algebra as above. If S is a multiplicative
system in A, then we have a canonical isomorphism of A-modules

S−1ΩA/R ' ΩS−1A/R.

Proof. Consider an arbitrary S−1A-module M and let i : A → S−1A be the
canonical homomorphism. Note that for every R-derivation D : A → M , there is
a unique R-derivation D′ : S−1A → M such that D′ ◦ i = D: this is given by the
“quotient rule”:

D′
(a
s

)
=

1

s
D(a)− a

s2
D(s).

This implies that the canonical morphism

HomS−1A(ΩS−1A/R,M) ' DerR(S−1A,M) −→

DerR(A,M) ' HomA(ΩA/R,M) ' HomS−1A(S−1ΩA/R,M)

that maps D to D ◦ i, is an isomorphism. Since this holds for all M , we obtain the
isomorphism in the proposition. �

Proposition 8.7.8. If A and B are R-algebras, then we have a canonical
isomorphism of A⊗R B modules

ΩA/R ⊗R B ' ΩA⊗RB/B .

Proof. Let j : A → A ⊗R B be given by j(a) = a ⊗ 1. Note that for every
A⊗R B-module M , the canonical morphism

DerB(A⊗R B,M)→ DerR(A,M),

that maps D to D ◦ j, is an isomorphism. This immediately implies that the
morphism of A⊗R B-modules

ΩA/R ⊗R B → ΩA⊗RB/B , dA/R(a)⊗ b→ dA⊗RB/B(a⊗ b)
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is an isomorphism. �

The following two propositions contain two exact sequences that are very useful
for computing modules of Kähler differentials.

Proposition 8.7.9. Given a morphism φ : A → B of R-algebras, there is an
exact sequence

ΩA/R ⊗A B
α−→ ΩB/R

β−→ ΩB/A −→ 0,

where α
(
dA/R(a) ⊗ b

)
= b · dB/R

(
φ(a)

)
and β

(
dB/R(b)

)
= dB/A(b) for all a ∈ A

and b ∈ B.

Proof. Given any B-module M , it is straightforward to see that the sequence

0 −→ DerA(B,M)
uM−→ DerR(B,M)

vM−→ DerR(A,M),

in which uM is the inclusion and vM (D) = D ◦ φ, is exact. Since uM and vM
are natural in M , it follows easily from the universal property of the module of
Kähler differentials that the maps α and β as in the proposition are well defined,
such that HomB(β,M) = uM and HomB(α,M) = vM for all M . Since applying
HomR(−,M) to the sequence in the proposition is exact for all M , it is well-known
(and easy to see) that the original sequence is exact. �

Example 8.7.10. It is clear that for every ring A, we have ΩA/A = 0, hence
Proposition 8.7.7 implies that if S is a multiplicative system in the ring A, then
ΩS−1A/A = 0. If B is an S−1A-algebra, we deduce from Proposition 8.7.9 that the
canonical morphism

ΩB/A → ΩB/S−1A

is an isomorphism.

Proposition 8.7.11. If φ : A→ B is a surjective morphism of R-algebras, with
ker(φ) = I, then we have an exact sequence

I/I2 δ−→ ΩA/R ⊗A B
α−→ ΩB/R −→ 0,

where α is the morphism defined in the previous proposition and δ(a) = dA/R(a)⊗1
for every a ∈ I.

Proof. Note that since φ is surjective, every derivation B →M over A, where
M is a B-module, is 0. Therefore ΩB/A = 0. Given such M , we define

wM : DerR(A,M)→ HomB(I/I2,M)

such that wM (D) maps a to D(a) ∈M for every a ∈ I. Note that if a, b ∈ I, then

D(ab) = φ(a) ·D(b) + φ(b) ·D(a) = 0,

hence wM is well-defined. Moreover, wM (D) = 0 if and only if D(I) = 0; equiva-
lently, D = D ◦φ for a (unique) D ∈ DerR(B,M). This says that we have an exact
sequence:

0 −→ DerR(B,M)
vM−→ DerR(A,M)

wM−→ HomB(I/I2,M).

Arguing as in the proof of the previous proposition, we deduce that there is a map
δ given by the formula in our statement and which makes the sequence exact. �
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Example 8.7.12. Suppose thatB is a finitely generatedR-algebra. Let b1, . . . , bn
be generators of B as an R-algebra and consider the surjective homomorphism
φ : A = R[x1, . . . , xn]→ B given by φ(xi) = bi for all i. By Example 8.7.6, ΩA/R is
a free A-module with basis dx1, . . . , dxn, and we deduce using Proposition 8.7.11
that ΩB/R is the B-module generated by db1, . . . , dbn, with relations

n∑
i=1

φ

(
∂f

∂xi

)
dbi.

Exercise 8.7.13. Show that if L/K is a finite field extension, then L/K is
separable if and only if ΩL/K = 0.

We now globalize the above results in our geometric setting. In order to show
that the modules of Kähler differentials define a quasi-coherent sheaf on X, we
make use of the following general result.

Lemma 8.7.14. Let X be an algebraic variety. Suppose that for every affine
open subset U ⊆ X, we have an OX(U)-module α(U) and for every inclusion V ⊆ U
of such subsets we have a restriction map α(U) → α(V ), which is a morphism of
OX(U)-modules, and these maps satisfy the usual compatibility conditions. If for
every affine open subset U ⊆ X and for every f ∈ OX(U), the induced morphism
α(U)f → α

(
DU (f)

)
is an isomorphism, then there is a quasi-coherent sheaf F on

X, unique up to a canonical isomorphism, such that for every affine open subset U of
X, we have an isomorphism F(U) ' α(U), and these isomorphisms are compatible
with the restriction maps.

Proof. For every affine open subset U ⊆ X, we consider the quasi-coherent

sheaf FU = α̃(U) on U . Note that if V ⊆ U are two such subsets, then the
morphism α(U)→ α(V ) induces a morphism

α(U)⊗OX(U) OX(V )→ α(V )

that corresponds to the morphism of OV -modules

τV,U : FU |V → FV .
The compatibility of the restriction maps for α implies that if W is an affine open
subset of V , then

(8.7.1) τW,V ◦ τV,U |W = τW,U .

The hypothesis implies that τV,U is an isomorphism if V is a principal affine open
subset of U . By covering any V by such open subsets and using (8.7.1), we see that
τV,U is always an isomorphism.

If U1 and U2 are any affine open subsets of X, we obtain isomorphisms

FU1
|U1∩U2

' FU1∩U2
' FU2

|U1∩U2

and these are compatible in the obvious sense. We can thus apply Exercise 2.1.23
to construct a sheaf F , together with isomorphisms F|U ' FU for every affine open
subset U of X. Checking the fact that this satisfies the required condition, as well
as the uniqueness of F , is straightforward. �

Remark 8.7.15. Given a morphism of algebraic varieties f : X → Y , instead
of considering on X all affine open subsets, we may consider only those affine open
subsets U ⊆ X such that there is an affine open subset W of Y such that f(U) ⊆W .
The statement of the above lemma holds also in this case, with the same proof.
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Remark 8.7.16. Suppose that F is a presheaf of OX -modules on the algebraic
variety X with the property that for every affine open subset U of X and every
f ∈ OX(U), the induced morphism

F(U)f → F
(
DU (f)

)
is an isomorphism. In this case, the associated sheaf F+ is quasi-coherent and
for every affine open subset U of X, the induced morphism F(U) → F+(U) is an
isomorphism. Indeed, we apply Lemma 8.7.14 to construct a quasi-coherent sheaf
G such that for affine open subsets U of X, we have isomorphisms compatible with
the restriction maps F(U) ' G(U). It is straightforward to see that we have a
unique morphism of presheaves of OX -modules F → G that on affine open subsets
is given by the above isomorphisms. This implies that for every x ∈ X, the induced
morphism Fx → Gx is an isomorphism, and thus the induced morphism of sheaves
F+ → G is an isomorphism.

Lemma 8.7.17. If j : U → V is an open immersion of affine varieties and if
φ : A→ B is the corresponding k-algebra homomorphism, then ΩB/A = 0.

Proof. It is enough to show that for every maximal ideal n in B, we have
ΩB/A ⊗B Bn = 0. Since j is an open immersion, if m = φ−1(n), then the in-
duced morphism Am → Bn is an isomorphism. Using Proposition 8.7.7 and Exam-
ple 8.7.10, we conclude that

ΩB/A ⊗B Bn ' ΩBn/A ' ΩBn/Am
= 0.

�

Given a morphism of algebraic varieties f : X → Y and affine open subsets
U ⊆ X and W ⊆ Y such that f(U) ⊆ W , we consider the OX(U)-module
ΩOX(U)/OY (W ). Note that this does not depend on W : if we have an affine
open subset W ′ ⊇ W , then by applying Proposition 8.7.9 for the morphisms
O(W ′)→ O(W )→ O(X), together with Lemma 8.7.17, we see that the canonical
morphism

ΩO(X)/O(W ′) → ΩO(X)/O(W )

is an isomorphism.
If V is an affine open subset of U , then Proposition 8.7.9 gives a canonical

morphism
ΩO(U)/O(W ) → ΩO(V )/O(W ).

If V = DU (f), then the induced morphism

(ΩO(U)/O(W ))f → ΩO(V )/O(W )

is an isomorphism by Proposition 8.7.7. We can thus apply Lemma 8.7.14 (in the
formulation given in Remark 8.7.15), to conclude that we have a quasi-coherent
sheaf ΩX/Y on X such that for U and W as above, we have an isomorphism

ΩX/Y |U ' ΩOX(U)/OY (W ).

Since for such U and W , the OY (W )-algebra OX(U) is finitely generated, it follows
from Remark 8.7.5 that ΩX/Y is a coherent OX -module. We note that Proposi-
tion 8.7.7 also implies that given any x ∈ X, we have an isomorphism

(ΩX/Y )x ' ΩOX,x/OY,f(x)

(and a similar isomorphism for arbitrary irreducible, closed subsets of X).
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Definition 8.7.18. The sheaf ΩX/Y is the relative cotangent sheaf of X over
Y . If Y is a point, then we obtain the cotangent sheaf of X, that we simply denote
by ΩX . The tangent sheaf of X is the dual TX := Ω∨X (we note that in general, it
is not the case that ΩX is the dual of TX). For p ≥ 0, the sheaf of p-differentials
of X is the sheaf ∧pΩX .

Exercise 8.7.19. Show that if X and Y are algebraic varieties and p : X×Y →
X and q : X × Y → Y are the two projections, then there is an isomorphism

ΩX×Y ' p∗(ΩX)⊕ q∗(ΩY ).

Propositions 8.7.9 and 8.7.11 immediately give the following global statements.

Proposition 8.7.20. Given two morphisms of algebraic varieties f : X → Y
and g : Y → Z, the following hold:

i) We have an exact sequence of OX-modules

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0.

ii) If f is a closed immersion, with corresponding coherent ideal sheaf I ⊆
OX , then we have an exact sequence

I/I2 → f∗(ΩY/Z)→ ΩX/Z → 0.

Definition 8.7.21. If Y is a closed subvariety of X, with corresponding ideal
I = IY/X , the conormal sheaf of Y in X is I/I2. This is a sheaf on X whose anni-

hilator contains I, hence we consider it as a sheaf on Y . Its dualHomOY
(I/I2,OY )

is the normal sheaf NY/X .

Remark 8.7.22. If f : X → Y is a morphism of algebraic varieties, then the
canonical morphism f∗(ΩY )→ ΩX induces for every p ≥ 0 a morphism f∗(ΩpY )→
ΩpX . We thus obtain a pull-back morphism for p-forms

Γ(Y,ΩpY )→ Γ(X,ΩpX), η → f∗(η)

given by the composition

Γ(Y,ΩpY )→ Γ
(
X, f∗(ΩpY )

)
→ Γ(X,ΩpX),

where the first map is the canonical pull-back of sections and the second map is
induced by the morphism described above. Of course, if p = 0, then this map is
just the pull-back of regular functions. For every p, if f is an open immersion,
this composition is given simply by restriction of sections. It is straightforward to
check that if g : Y → Z is another morphism and η ∈ Γ(Z,ΩpZ), then f∗

(
g∗(η)

)
=

(g ◦ f)∗(η).

The following proposition explains the name of ΩX .

Proposition 8.7.23. For every algebraic variety X and every x ∈ X, we have
a canonical isomorphism

(ΩX)(x) ' (TxX)∨.

Proof. Let R = OX,x, with maximal ideal m and residue field k. We have

(ΩX)∨(x) ' HomR(ΩR/k, k) ' Derk(R, k).

Note that since m annihilates k, it follows from the Leibniz rule that we have an
isomorphism

Derk(R, k) = Derk(R/m2, k).
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Since R/m2 = k + m/m2, it is straightforward to check that restriction to m/m2

induces an isomorphism

Derk(R/m2, k) ' Homk(m/m2, k) = TxX.

This completes the proof of the proposition. �

We deduce the following characterization of smooth varieties.

Proposition 8.7.24. An algebraic variety X is smooth if and only if ΩX is
locally free (in which case, it has rank n on an irreducible component of X of
dimension n).

Proof. Of course, we may assume that X is connected. If X is smooth and
dim(X) = n, then we know that X is irreducible, and by definition of smoothness
and Proposition 8.7.23, we conclude that

dimk(ΩX)(x) = n for every x ∈ X.

We then conclude that ΩX is locally free, of rank n, by Proposition 8.5.6.
Let us assume that, conversely, ΩX is locally free of rank n. By Theorem 6.3.7,

the smooth locus Xsm is dense in X. If we consider the restriction of ΩX to Xsm,
we deduce from what we have already proved that every irreducible component
of X has dimension n, hence dim(OX,x) = n for every x ∈ X. In this case, the
hypothesis on ΩX , together with Proposition 8.7.23 imply that every x ∈ X is a
smooth point. �

If X is a smooth variety, then ΩX is locally free, hence so is its dual TX .
Moreover, we have ΩX ' T∨X by Remark 8.5.18. The geometric tangent bundle is
the geometric vector bundle on X whose sheaf of sections is TX , namely V(ΩX);
similarly, the geometric cotangent bundle is V(TX).

Remark 8.7.25. Note that sections of the geometric tangent bundle are deriva-
tions of OX . Indeed, it follows from definition that a section over an affine open
subset U ⊆ X corresponds to an element of

Γ(U,Ω∨X) = HomO(U)

(
ΩO(U)/k,O(U)

)
' Derk

(
O(U),O(U)

)
.

Note also that if X is smooth, then each sheaf ΩpX is locally free by Re-
mark 8.5.13. If, in addition, X is irreducible of dimension n, the line bundle
ωX := ΩnX is the canonical line bundle of X. This line bundle governs governs
much of the geometry of X.

Proposition 8.7.26. If Y is a closed subvariety of X, with both X and Y
smooth, then the conormal sheaf of Y in X is a locally free sheaf on Y , and we
have an exact short exact sequence of vector bundles on Y

0→ TY → TX |Y → NY/X → 0.

Proof. It is clear that we may assume that both X and Y are irreducible.
Let I = IY/X . If r = codimX(Y ), then I/I2 is a locally free sheaf on Y , of rank r,
by Proposition 6.3.21. On the other hand, it follows from Proposition 8.7.20 that
we have an exact sequence

I/I2 φ−→ ΩX |Y
ψ−→ ΩY −→ 0.
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Since all terms are locally free, with

rank(I/I2) = rank(ΩX |Y )− rank(ΩY ),

it follows that φ induces a surjective morphism I/I2 → ker(ψ) between locally free
sheaves of the same rank, which is thus an isomorphism. Therefore φ is injective.
Applying HomOX

(−OX) to the above exact sequence, we obtain the exactness of
the sequence in the proposition. �

Corollary 8.7.27. If Y is a closed subvariety of X, with both X and Y
smooth, then

ωY ' ωX |Y ⊗OY
det(NY/X).

Proof. It follows from the proposition that we have an exact sequence

0→ N∨Y/X → ΩX |Y → ΩY → 0

and the assertion in the proposition follows by taking determinants (see Exer-
cise 8.5.29). �

Example 8.7.28. On the projective space Pn, we have a short exact sequence

0→ ΩPn → OPn(−1)⊕(n+1) → OPn → 0

(this is known as the Euler exact sequence).
Recall first that we have seen in Example 8.6.14 that we have a morphism of

vector bundles

OPn(−1) ↪→ O⊕(n+1)
Pn .

Since the cokernel is locally free, by dualizing this, we obtain a surjective morphism
of vector bundles

φ : O⊕(n+1)
Pn → OPn(1).

It is easy to see that via the isomorphism

H0
(
Pn,OPn(1)

)
' k[x0, . . . , xn]1

in Example 8.6.14, the morphism φ is given by (x0, . . . , xn). By tensoring with
OPn(−1), we obtain a surjective morphism

ψ : OPn(−1)⊕(n+1) → OPn .

In order to complete the proof, we need to give an isomorphism

ΩPn ' ker(ψ).

We define this on each of the charts Ui = (xi 6= 0), where x0, . . . , xn are the
homogeneous coordinates on Pn. We have Ui ' An, with coordinates yi = xj/xi
for j 6= i and ΩPn(Ui) is a free module over O(Ui), with basis {dyj | j 6= i}.
Recall that we have an isomorphism ρi : OPn(−1)|Ui

' OUi
such that for ` 6= i, the

composition

ρ`|Ui∩U`
◦ (ρi|Ui∩U`

)−1

is given by multiplication by x`/xi. If we write e0, . . . , en for the standard basis of
k⊕(n+1), then we have

Γ
(
Ui, ker(ψ)

)
=


n∑
j=0

ρ−1
i (fj)ej | f0, . . . , fn ∈ Γ(Ui,OPn),

n∑
j=0

xjfj = 0

 .
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This is a free O(Ui)-module, with basis

{ρ−1
i (1)ej − ρ−1

i (yj)ei | 0 ≤ j ≤ n, j 6= i}.
We thus have an isomorphism

τi : ΩPn |Ui → ker(ψ)|Ui , dyj → ρ−1
i (1)ej − ρ−1

i (yj)ei.

In order to complete the proof, we need to show that these morphisms are
compatible. Choose ` 6= i and let zj = xj/x` for j 6= `. Note that we have

dyj = d(xj/xi) = d(zj/zi) =
1

zi
dzj −

zj
z2
i

dzi forj 6= i, `

and

dy` = d(x`/xi) = d(1/zi) = − 1

z2
i

dzi.

It follows that if j 6= i, `, then dyj is mapped by τ` to

1

zi
·
(
ρ−1
` (1)ej − ρ−1

` (zj)e`
)
− zj
z2
i

·
(
ρ−1
` (1)ei − ρ−1

` (zi)e`
)

=
1

zi
·
(
ρ−1
` (1)ej −

zj
zi
ρ−1
` (1)ei

)
= ρ−1

i (1)ej − yjei.
We also see that dy` is mapped by τ` to

− 1

z2
i

·
(
ρ−1
` (1)ei − ρ−1

` (zi)e`
)

=
1

zi
·
(
ρ−1
` (1)e` − ρ−1

` (y`)ei
)

= ρ−1
i (1)e` − ρ−1

i (y`)ei.

This completes the proof.

Example 8.7.29. It follows from the above example and Exercise 8.5.29 that

ωPn ' OPn(−n− 1).



CHAPTER 9

Normal varieties and divisors

In the first section, we discuss normal varieties and prove some important
properties. In the second section we show that a smooth variety is locally factorial;
in particular, it is normal. In the remaining sections we introduce Weil divisors and
Cartier divisors and discuss their connection with the Picard group.

9.1. Normal varieties

Recall that an irreducible affine variety X is normal if the corresponding ring
O(X) is integrally closed. We want to extend the definition to arbitrary algebraic
varieties, not necessarily irreducible. We begin with the following lemma concerning
the behavior of integral closure under localization:

Lemma 9.1.1. Let R be an integral domain, with fraction field K, and R′ the
integral closure of R in K.

i) If S is a multiplicative system in R, then the integral closure of S−1R in
K is S−1R′.

ii) In particular, R is integrally closed in K if and only if Rp is integrally
closed in K for every prime (maximal) ideal p in R.

Proof. We first prove i). if u ∈ R′, then we can find a positive integer n and
a1, . . . , an ∈ R such that

un +

n∑
i=1

aiu
n−i = 0.

In this case, for every s ∈ S, we have(u
s

)n
+

n∑
i=1

ai
si
·
(u
s

)n−i
= 0,

hence u
s lies in the integral closure of S−1R.

Conversely, suppose that v ∈ K lies in the integral closure of S−1R. We can
thus find a positive integer n and bi ∈ S−1R such that

vn +

n∑
i=1

biv
n−i = 0.

We can find s ∈ S such that sv ∈ R and sbi ∈ R for all i, in which case we see that

(sv)n +

n∑
i=1

(sibi)(sv)n−i = 0,

hence sv ∈ R′ and thus v ∈ S−1R′. This completes the proof of i).
The assertion in ii) follows immediately from the fact that R = R′ if and only

if Rp = R′p for all prime (maximal) ideals p in R (see Corollary C.3.3). �

201



202 9. NORMAL VARIETIES AND DIVISORS

Proposition 9.1.2. Given an algebraic variety X, the following assertions are
equivalent:

i) For every affine open subset U ⊆ X and every connected component V of
U , V is irreducible and OX(V ) is integrally closed.

ii) There is an affine open cover X = U1 ∪ . . . ∪ Un such that each Ui is
irreducible and OX(Ui) is integrally closed.

iii) For every irreducible closed subset V of X, the local ring OX,V is an
integrally closed domain.

iv) For every point x ∈ X, the local ring OX,x is an integrally closed domain.

The variety X is normal if it satisfies the above equivalent conditions. Note
that for an irreducible affine variety, we recover our old definition.

Proof of Proposition 9.1.2. The implications i)⇒ii) and iii)⇒iv) are triv-
ial, while the implication ii)⇒iii) follows from the lemma. Suppose now that iv)
holds. If U is an affine open subset of X, we first deduce from iv) that every point
of U lies on a unique irreducible component of U ; in other words, the connected
components of U are irreducible. If V is such a connected component, then it fol-
lows from iv) that OX(V )p is integrally closed for every maximal ideal p of OX(V ),
hence OX(V ) is integrally closed by the lemma. This completes the proof. �

At this point, we don’t have many examples of normal varieties. An important
result is that smooth varieties are normal. The usual proof makes use of the fact
that regular rings are Cohen-Macaulay, a fact that we postpone until Chapter 12.
We give, instead, a different proof in the next section, which shows a stronger
assertion: the local rings of a smooth variety are UFDs.

We now discuss some important geometric properties of normal varieties. These
rely on the characterization of normal domains in Proposition E.5.1. We say that
an algebraic variety is smooth in codimension 1 if every irreducible component of
Xsing has codimension ≥ 2 in X.

Remark 9.1.3. Recall that by Corollaries 6.3.19 and 6.3.23, given an irre-
ducible closed subset V of X, we have V ⊆ Xsing if and only if the local ring OX,V
is not regular; if V has codimension 1, then this is the case if and only if OX,V is
not a DVR. It follows that X is smooth in codimension 1 if and only if for every
irreducible, closed subset V of X, of codimension 1, the local ring OX,V is a DVR.
We thus deduce from Proposition E.5.1 that every normal variety is smooth in
codimension 1 (note that the reduction to the case when X is affine and irreducible
is straightforward).

Proposition 9.1.4. If X is a normal variety and U is an open subset of X such
that codimX(X r U) ≥ 2, then for every locally free sheaf E on X, the restriction
map

Γ(X, E)→ Γ(U, E)

is an isomorphism.

Proof. We may assume that X is an irreducible affine variety and E = OX .
Indeed, assuming this case, we cover X by finitely many irreducible affine open
subsets Ui such that E|Ui

' O⊕riUi
for all i. It follows from the sheaf condition that
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the horizontal sequences in the following commutative diagram are exact:

0 // Γ(X, E) //

α

��

∏
i Γ(Ui, E) //

β

��

∏
i,j Γ(Ui ∩ Uj , E)

γ

��
0 // Γ(U, E) // ∏

i Γ(U ∩ Ui, E) // ∏
i,j Γ(U ∩ Ui ∩ Uj , E).

Since we know that β and γ are isomorphisms, it follows that α is an isomorphism
as well.

We assume from now on that X is affine, irreducible, with A = O(X), and
E = OX . The restriction map in the proposition is injective since U is a dense open
subset of X (otherwise we would have codimX(X rU) = 0). If φ ∈ OX(U), then φ
is a rational function on X. For every prime ideal p in A with codim(p) = 1, if V is
the corresponding irreducible closed subset of X, then the hypothesis on U implies
that V ∩ U 6= ∅; therefore φ ∈ Ap. Since A =

⋂
codim(p)=1Ap by Proposition E.5.1,

we conclude that φ ∈ A, completing the proof. �

Corollary 9.1.5. If X is an irreducible, normal variety and φ ∈ k(X) is a
rational function, with domain U , then every irreducible component of X r U has
codimension 1.

Proof. If V is an irreducible component of XrU with codimX(V ) ≥ 2, let V ′

be the union of the irreducible components of XrU different from V . In this case,
X r V ′ is an open subset of X (in particular, it is a normal variety), it contains U ,
and we deduce from the proposition that the restriction map

OX(X r V ′)→ OX(U)

is surjective. Therefore φ extends to X r V ′, contradicting the fact that U is the
domain of φ. �

The next proposition shows that if instead of considering rational maps to
A1, we consider rational maps to a complete variety, the opposite is true: the
complement of the domain has codimension ≥ 2.

Proposition 9.1.6. Let X be an irreducible normal variety (or, more generally,
a variety that is smooth in codimension 1).

i) For every rational map f : X 99K Y , where Y is a complete variety, if U
is the domain of f , then codimX(X r U) ≥ 2.

ii) More generally, given a rational map f : X 99K Y and a proper morphism
g : Y → Z such that the composition g ◦ f is a morphism, if U is the
domain of f , then codimX(X r U) ≥ 2.

Before giving the proof, we introduce one notion that is needed in the proof,
and which will play an important role in this chapter. Given an irreducible variety
X that is smooth in codimension 1 and an irreducible, closed subvariety V of X,
with codimX(V ) = 1, the local ring OX,V is a DVR. We denote by ordV the
corresponding discrete valuation of k(X) (see § C.5). Note that for φ ∈ k(X), we
have ordV (φ) ≥ 0 if and only if φ ∈ OX,V , that is, if and only if φ is defined on an
open subset that intersects V non-trivially.

We say that φ ∈ k(V ) has a pole along V if ordV (φ) < 0. This is the case if
and only if φ−1 is defined in an open subset U with U ∩ V 6= ∅ and φ−1|U∩V = 0.
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If ordV (φ) = −m, for a positive integer m, we say that φ has a pole of order m
along V ; similarly, if ordV (φ) = m > 0, we say that φ has a zero of order m along
V . Note that by Corollary 9.1.5, if X is normal, then for every φ ∈ k(X), the
complement of the domain of φ is a union of codimension 1 irreducible subvarieties:
these are precisely those V with ordV (φ) < 0.

Proof of Proposition 9.1.6. Of course, it is enough to prove the second
assertion. Note first that we may assume that f is dominant: indeed, we have a
closed subvariety Y ′ of Y such that f induces a dominant rational map X 99K Y ′

and we may replace g by the composition Y ′ ↪→ Y −→ Z. By the relative version
of Chow’s lemma (see Theorem 5.2.2), we can find a proper, birational morphism

h : Ỹ → Y such that the composition g ◦ h factors as

Ỹ
i
↪→ Z ×Pn p−→ Z

for some n, with p being the projection onto the first component and i a closed

immersion. Note that we may replace f by f̃ = h−1 ◦ f : if this is defined on
the complement of a closed subset of codimension ≥ 2, the same will hold for the

composition h ◦ f̃ = f . Moreover, it is enough to show that i ◦ f̃ satisfies the same
property. We can write i ◦ f = (g ◦ f, f1), for a rational map f1 : X 99K Pn. By
assumption, g ◦ f is a morphism, hence it is enough to show that f1 can be defined
on the complement of a closed subset of codimension ≥ 2. In other words, it is
enough to prove the assertion in i), with Y = Pn.

Note that we can find an open subset U of X and φ0, . . . , φn ∈ OX(U) not all
0, such that f is defined on U and

f(x) = [φ0(x), . . . , φn(x)] for all x ∈ U.
Indeed, given a point p in the domain of f , we can choose i such that f(p) lies in
the affine open subset Ui of Pn given by xi 6= 0. In this case, by taking U to be
the inverse image of Ui, we can find φ0, . . . , φn as above, with φi = 1.

We need to show that given any irreducible closed subset V ofX, with codimX(V ) =
1, V intersects the domain of f . Given such V , let j be such that

ordV (φj) = min{ordV (φ0), . . . , ordV (φn)}.
In particular, φj 6= 0. In this case, each rational function φi/φj is defined on an
open subset that intersects V . We can thus find such an open subset intersecting
V on which all φi/φj are defined and f is also defined on this open subset, given
by

x→
(
φ0

φj
(x), . . . ,

φn
φj

(x)

)
.

This completes the proof of the proposition. �

Remark 9.1.7. A special case of the above proposition says that if X is a
smooth curve and Y is a complete variety, then every rational map X 99K Y is a
morphism.

A nice feature of normality is that it can be arranged by a canonical operation.
The main ingredient is the following result about algebras of finite type over a field.

Theorem 9.1.8. Let A be an algebra of finite type over a field k, with A an
integral domain. If K is the fraction field of A and L is a finite field extension of
K, then the integral closure B of A in L is finite over A.
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Proof. We give the proof following [Eis95]. Note that since A is Noetherian,
it is enough to show that B is a submodule of a finitely generated A-module. In
particular, we may replace at any point L by a finite extension L′: if the integral
closure of A in L′ is finite over A, then so is B.

The first step in the proof is to show that we may assume that A is normal and
the field extension L/K is a separable extension. We apply Noether’s Normalization
lemma to find a subring R of A that is isomorphic to a polynomial ring k[x1, . . . , xn]
and such that A is finite over R. In this case, B is also the integral closure of R
in L, hence after replacing A by R, we may assume that A = k[x1, . . . , xn]. In
particular, A is normal, and K = k(x1, . . . , xn).

After possibly replacing L by a suitable finite extension, we may assume that
the extension L/K is normal. Let us show that we may assume that the extension
is also separable. If this is not separable, then let p = char(k) > 0, G = G(L/K),
and K ′ the subfield of L fixed by G. In this case the extension L/K ′ is separable
and K ′/K is purely inseparable. If we show that the integral closure A′ of A in K ′

is finite over A, then we only need to show that the integral closure of A′ in L is
finite over A′; since A′ is normal, this would complete the proof of the reduction
step. Since K ′/K is purely inseparable, we can find e > 0 such that for every
f ∈ K ′, we have fp

e ∈ K = k(x1, . . . , xn). We can thus find a finite extension k′ of

k such that K ′ ⊆ K ′′ = k′(x
1/pe

1 , . . . , x
1/pe

n ). Note that the integral closure of A in

K ′′ is k′[x
1/pe

1 , . . . , x
1/pe

n ] (indeed, this is a finite extension of k[x1, . . . , xn] and it is
a normal ring); this is clearly finite over A and since it contains A′, it follows that
A′ is finite over A.

We conclude that in order to complete the proof it is enough to treat the case
when A is normal and the extension L/K is separable. After possibly enlarging L,
we may assume that L/K is a Galois extension, with group G. Let σ1, . . . , σr be the
elements of G and let u1, . . . , ur ∈ L be a basis of L over K. After multiplying each
ui by a suitable element of A, we may assume that ui ∈ B for every i. In this case
we have σi(uj) ∈ B for all i, j and we consider the matrix M =

(
σi(uj)

)
∈Mr(B),

with D = det(M).
Note first that D 6= 0. Indeed, if D = 0, then there are λ1, . . . , λr ∈ L, not all 0,

such that (
∑r
i=1 λiσi) (uj) = 0 for all j. Hence

∑r
i=1 λiσi = 0. This can’t happen

since distinct field automorphisms of L are linearly independent over L. We recall
the argument: after relabeling the σi, we may assume that

∑s
i=1 λiσi = 0, with all

λi 6= 0, and that s is minimal with the property that we have such a relation. Note
that s ≥ 2. For every a, b ∈ L, we have

0 =

s∑
i=1

λiσi(ab) =

(
s∑
i=1

λiσi(a)σi

)
(b),

hence
r∑
i=1

λiσi(a)σi = 0.

Choose a such that σ1(a) 6= σ2(a) and note that we have

s∑
i=2

(
σ1(a)− σi(a)

)
λiσi = 0.

Since the coefficient of σ2 is non-zero, this contradicts the minimality of s.
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We thus have D 6= 0. Note that for every i, σi(D) is the determinant of a
matrix obtained by permuting the rows of M , hence σi(D) = ±D. This implies
that σi(D

2) = D2 for all i, hence D2 ∈ K.
We will show that B ⊆ 1

D2 ·
∑r
i=1A ·ui, which is a finitely generated A-module.

This would imply that B is finite over A, completing the proof. Given any u ∈ B,
we can write u =

∑r
j=1 αjuj , with αj ∈ K. In order to obtain our assertion, we

need to show that D2αj ∈ A for all j. Note that since u ∈ B, we have σi(u) ∈ B
for all i, hence

σi(u) =

r∑
j=1

σi(uj)αj ∈ B.

Since the matrix M · (α1, . . . , αr)
ᵀ has entries in B, after multiplying with the

classical adjoint of M , we deduce that D · αj ∈ B for all j. Since we have D ∈ B,
it follows that

D2αj ∈ B ∩K = A for all j,

where we use the fact that A is integrally closed in K. This completes the proof of
the theorem. �

Suppose now that X is an irreducible variety. For every affine open subset
U ⊆ X, consider the OX(U)-algebra A(U), given by the integral closure of OX(U)
in its field of fractions k(X). Given two such affine open subsets V ⊆ U , we have
an injective homomorphism OX(U) ↪→ OX(V ) (this is injective since V is dense in
U), which induces an injective homomorphism A(U) ↪→ A(V ). Moreover, it follows
from Lemma 9.1.1 that if U is as above and f ∈ OX(U), then the induced homomor-
phism A(U)f → A

(
DU (f)

)
is an isomorphism. It thus follows from Lemma 8.7.14

that A can be extended to a quasi-coherent sheaf (in fact, to an OX -algebra). In
fact, it follows from Theorem 9.1.8 that A is a coherent OX -module. Since A(U) is
reduced (in fact, a domain) for every affine open subset U , we can thus define the
normalization of X to be given by Xnorm = MaxSpec(A). Note that this comes
with a canonical morphism π : Xnorm → X which is a finite morphism.

Note that Xnorm is an irreducible variety. Indeed, if X is covered by the affine
open subsets U1, . . . , Un, then each π−1(Ui) is an irreducible variety and for every
i and j, we have

π−1(Ui) ∩ π−1(Uj) = π−1(Ui ∩ Uj) 6= ∅.

Moreover, it follows by construction that Xnorm is a normal variety and that π is
a birational morphism.

We have the following universal property of normalization:

Proposition 9.1.9. Let X be an irreducible variety and π : Xnorm → X the
normalization morphism. For every dominant morphism f : Z → X, with Z irre-
ducible and normal, there is a unique morphism g : Z → Xnorm such that π ◦g = f .

Proof. Suppose first that X is affine, with O(X) = A and let B denote
the integral closure of A in its field of fractions, so that O(Xnorm) = B. By
Proposition 2.3.14, f corresponds to a k-algebra homomorphism f# : A → OZ(Z)
and giving a morphism g as in the statement is equivalent to giving a k-algebra
homomorphism g# : B → OZ(Z), whose restriction to A is equal to f#. Since f is
a dominant morphism, we have a commutative diagram
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A

��

f#

// OZ(Z)

��
k(X)

j // k(Z)

in which the vertical maps are the natural inclusions. It is clear that if g# exists,
then it is given by the restriction of j to B, and existence is equivalent to the
condition j(B) ⊆ OZ(Z).

Consider an affine open cover Z = V1 ∪ . . . ∪ Vr. For every i, we have j(A) ⊆
O(Vi), and since B is integral over A and O(Vi) is normal, it follows that j(B) ⊆
O(Vi). Since this holds for every i, we conclude that j(B) ⊆ OZ(Z) =

⋂r
i=1OZ(Vi).

This proves the existence of g#.
The case when X is not necessarily affine, follows by taking an affine open

cover: the corresponding morphisms patch due to the uniqueness we have already
proved, giving existence, while uniqueness again follows since g has to induce the
field homomorphism j : k(X) ↪→ k(Z). �

Remark 9.1.10. IfX is a reducible variety, with irreducible componentsX1, . . . , Xn

and if Xnorm
i → Xi are the normalization morphisms, then we get a morphism

Xnorm :=

n⊔
i=1

Xnorm
i → X,

which is, by definition, the normalization of the reducible variety X.

Remark 9.1.11. The construction of the normalization can be generalized as
follows. Given an irreducible variety X and a finite field extension k(X) ↪→ K,
one constructs a finite morphism f : Y → X such that for every affine open subset
U of X, the homomorphism OX(U) ↪→ OY

(
f−1(U)

)
is the inclusion in the inte-

gral closure of OX(U) in K. This follows verbatim as in the construction of the
normalization. Note that the variety Y is normal, by construction.

Exercise 9.1.12. Show that if X is an irreducible normal variety and U is an
affine open subset of X, then every irreducible component of XrU has codimension
1 in X.

Exercise 9.1.13. Compute the normalization morphism for each of the follow-
ing varieties:

i) X is the curve in A2 given by x2 − y3 = 0.
ii) Y is the surface in A3 given by x2 − y2z = 0.

Exercise 9.1.14. Let f ∈ k[x1, . . . , xr, y1, . . . , ys] be an irreducible polynomial
of the form

f = xa11 · · ·xarr − y
b1
1 · · · ybss

for non-negative integers a1, . . . , ar, b1 . . . , bs. Let Z ⊆ Ar+s be the hypersurface
defined by f .

i) Show that if Z is smooth in codimension 1, then either ai ∈ {0, 1} for
1 ≤ i ≤ r or bj ∈ {0, 1} for 1 ≤ j ≤ s.
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ii) Show that conversely, if say ai ∈ {0, 1} for all i, then f is an irreducible
polynomial that defines a normal hypersurface Z in Ar+s. Hint: you
can show that O(Z) ' k[S] for an integral, finitely generated, saturated
semigroup S, and then use Proposition 1.7.30.

9.2. Smooth varieties are locally factorial

Definition 9.2.1. A variety X is locally factorial if for every x ∈ X, the local
ring OX,x is a UFD.

Remark 9.2.2. Since the localization of a UFD at a prime ideal is again a
UFD, it follows that if a variety X is locally factorial, then for every irreducible
closed subset V of X, the local ring OX,V is a UFD. However, we emphasize that
if X is a locally factorial, irreducible affine variety, it does not imply that O(X) is
a UFD.

The following is the main result of this section:

Theorem 9.2.3. Every smooth variety is locally factorial.

We note that it is a general theorem of Auslander and Buchsbaum that every
regular local ring is a UFD (see [Eis95, Theorem 19.19]). The proof in the general
case makes use of homological algebra techniques. We give a proof in our geometric
setting using completions, following [Mum88, Chapter III.7].

For the definitions and basic facts regarding completion, we refer to Appen-
dix G. Given a variety X and a point x ∈ X, we will be interested in the completion

ÔX,x of the local ring OX,x, with respect to the maximal ideal. This is a local ring

and we have a local, injective, flat homomorphism ψ : OX,x → ÔX,x.
While the local ring OX,x remembers properties of X in small, Zariski open

neighborhoods of x, the completion of this ring encodes properties of a “more local”
nature at x ∈ X. If we work over the complex numbers, we will see that we can
consider small neighborhoods of the point x in the classical topology and in this way,
we can identify points that are different from the algebraic point of view. A typical
example is that a smooth variety becomes a complex manifold and thus every point
has a neighborhood in the classical topology that is homeomorphic to an open ball
in the affine space of the same dimension. Over an arbitrary ground field, this can

be modeled algebraically by considering the completion ÔX,x. More generally, if X
is an affine variety with O(X) = R and Y is a closed subvariety defined by the ideal

I, then the completion R̂ of R with respect to I can be considered as an algebraic
analogue of a tubular neighborhood of Y in X.

A manifestation of the above point of view is the following

Proposition 9.2.4. Given a variety X over k and a smooth point x ∈ X, with

dim(OX,x) = d, we have an isomorphism of k-algebras ÔX,x ' k[[t1, . . . , td]].

Proof. Recall that if R = OX,x, with maximal ideal m, and if u1, . . . , ud ∈ m
form a minimal system of generators, then the smoothness of X at x implies that
the k-algebra homomorphism

φ : k[t1, . . . , td]→
⊕
i≥0

mi/mi+1, φ(tj) = uj ∈ m/m2

is an isomorphism (see Proposition 6.3.9). In order to simplify the notation, let
S = k[t1, . . . , td] and n = (t1, . . . , td) ⊆ S.
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We also consider, for every i ≥ 1, the k-algebra homomorphism

φi : S/n
i → R/mi, φi(tj) = uj modmi.

Note that we have a commutative diagram of k-vector spaces, with exact rows:

0 // ni/ni+1

��

// S/ni+1

φi+1

��

// S/ni

φi

��

// 0

0 // mi/mi+1 // R/mi+1 // R/mi // 0.

Since we know that the left-most vertical map is an isomorphism, arguing by in-
duction on i, we see that all φi are isomorphisms. By taking the inverse limit of
the φi, we obtain an isomorphism

k[[t1, . . . , td]] = lim←−S/n
i ' lim←−R/m

i = R̂.

�

Remark 9.2.5. The converse of the above proposition also holds: if x ∈ X is a

point with dim(OX,x) = n and such that ÔX,x ' k[[x1, . . . , xn]], then x is a smooth

point of X. Indeed, if (A,m, k) is a Noetherian local ring and Â is its completion,

then the maximal ideal of Â is mÂ and we have dimk m/m
2 = dimk mÂ/m

2Â. We
thus see that our hypothesis implies that dimk TxX = n, hence x is a smooth point
of X.

We also need the following lemma that deduces the UFD property of a local
Noetherian ring from that of its completion.

Lemma 9.2.6. If (A,m) is a local Noetherian ring and the completion Â of A
with respect to m is a UFD, then A is a UFD.

Proof. Note first that A is a domain, since Â is a domain, and the canonical

homomorhism ψ : A→ Â is injective. Since A is a Noetherian domain, in order to
check that it is a UFD it is enough to show that for every f, g ∈ A, the ideal

J = fA : gA = {h ∈ A | hg ∈ fA}
is principal (conversely, this condition holds in any UFD); see Proposition F.1.3.

We claim that since Â is flat over A, we have JÂ = fÂ : gÂ. Indeed, we have
an exact sequence of A-modules

0→ J → A
ν→ A/(f),

where ν(a) = ga, and by tensoring with Â and using the flatness of Â, we obtain
an exact sequence

0→ JÂ→ Â→ Â/fÂ.

This gives our claim.

Since Â is a UFD, it follows that JÂ is a principal ideal. Therefore we have

dimk JÂ/JmÂ = 1, where k = A/m = Â/mÂ. Using again the flatness of Â over
A, we see that we have an isomorphism

JÂ/JmÂ ' (J/mJ)⊗A Â ' Ĵ/mJ ' J/mJ,
where the second and the third isomorphisms follow from Corollary G.2.2 and,
respectively, Remark G.1.3. Therefore dimk(J/mJ) = 1, hence J is a principal
ideal by Nakayama’s lemma. �
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We can now prove the main result of this section (assuming the factoriality of
formal power series rings over a field).

Proof of Theorem 9.2.3. Given x ∈ X, with dim(OX,x) = d, it follows

from Proposition 9.2.4 that ÔX,x ' k[[t1, . . . , td]]. This ring is a UFD (for an
elementary proof of this fact, see [ZS75, Chapter VII, §1, Theorem 6]). We then
deduce that OX,x is a UFD by Lemma 9.2.6. �

9.3. Weil divisors and the class group

In this section we consider an irreducible variety X that is smooth in codimen-
sion 1 (for example, a normal variety).

9.3.1. Weil divisors and linear equivalence. A prime divisor on X is an
irreducible, codimension 1, closed subvariety V of X. The group Div(X) of Weil
divisors on X is the free Abelian group on the set of prime divisors of X; thus a
Weil divisor (or simply, a divisor) is a formal linear combination

D = n1D1 + . . .+ nrDr,

with each Di a prime divisor and ni ∈ Z. Such a divisor is effective if it is a linear
combination of prime divisors, with non-negative coefficients; in this case we write
D ≥ 0. Given divisors D and E, we write D ≥ E if D − E ≥ 0.

Given a non-zero rational function φ ∈ k(X), we obtain a corresponding divisor

div(φ) :=
∑
V

ordV (φ) · V,

where the sum is over all prime divisors on X (when X is not understood from
the context, we also write divX(φ)). Note that this is well-defined (in other words,
there are only finitely many such V with ordV (φ) 6= 0). Indeed, let U be an open
subset such that φ is defined on U and let U ′ = {x ∈ U | φ(x) 6= 0}. If V ∩U ′ 6= ∅,
then φ is an invertible element of OX,V , hence ordV (φ) = 0. Since there are only
finitely many codimension 1 irreducible closed subsets of XrU ′, we see that div(φ)
is well-defined.

Note that the map

div : k(X)∗ → Div(X)

is a group homomorphism. This follows from the fact that for every prime divisor
V on X and for every non-zero φ1, φ2 ∈ k(X), we have

ordV (φ1φ2) = ordV (φ1) + ordV (φ2).

A divisor of the form div(φ), for some φ ∈ k(X)∗, is a principal divisor. For two
divisors D and E, we say that D and E are linearly equivalent (and we write
D ∼ E) if D − E is a principal divisor. The quotient of Div(X) by the subgroup
PDiv(X) of principal divisors, is the class group Cl(X). We write [D] for the class
of the divisor D in Cl(X).

Remark 9.3.1. If X is a normal variety, then for every φ ∈ k(X)∗, we have
φ ∈ O(X) if and only if div(φ) ≥ 0. Indeed, the condition div(φ) ≥ 0 is equivalent
to the fact that if U is the domain of φ, then codimX(X r U) ≥ 2. However, in
this case it follows from Proposition 9.1.5 that φ ∈ O(X).

Applying this remark to both φ and φ−1, we see that div(φ) = 0 if and only if
φ ∈ O∗X(X), that is, φ is an invertible function on X.
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Proposition 9.3.2. If X is an irreducible normal affine variety, then Cl(X) =
0 if and only if A = O(X) is a UFD.

Proof. Note that A is a UFD if and only if every codimension 1 prime ideal
p in A is principal (see Proposition F.1.4). On the other hand, Cl(X) = 0 if and
only if every prime divisor is principal. This means that for every codimension 1
prime ideal p in O(X), with corresponding subvariety Y , there is a non-zero φ in
the fraction field K of A, such that div(φ) = Y . Note that since div(φ) is effective,
it follows from Remark 9.3.1 that φ ∈ O(X). The condition on φ is thus that
φ ·Ap = pAp, while φ 6∈ q for every codimension 1 prime ideal q 6= p.

If A is a UFD, then for every p as above, p is principal, and it is clear that if
p = (π), then div(π) is the prime divisor corresponding to p. Conversely, given a
codimension 1 prime ideal p, let us choose φ ∈ A such that φ ·Ap = pAp and φ 6∈ q,
for every codimension 1 prime ideal q 6= p. We claim that in this case p = (φ). It
is clear that we have φ ∈ p. Suppose now that u ∈ p. The hypothesis on φ says
that div(u/φ) ≥ 0, hence u ∈ (φ) by Remark 9.3.1. Therefore p = (φ), hence it is
principal, and we see that A is a UFD. �

Example 9.3.3. It follows from the above proposition that Cl(An) = 0.

Example 9.3.4. Consider the case X = Pn. Recall that if Y is an irreducible
closed subset of Pn of codimension 1, then the ideal of Y in Pn is generated by a
homogeneous polynomial f (see Exercise 9.3.1). We put deg(Y ) := deg(f). For a
divisor D =

∑r
i=1 niYi in Pn, we put deg(D) :=

∑r
i=1 ni · deg(Yi). It is clear that

we have a group homomorphism deg : Div(Pn) → Z. This is surjective: if H is a
hyperplane in Pn, then deg(H) = 1.

We claim that if D is a principal divisor, then deg(D) = 0. Indeed, if D =
div(φ), for a non-zero rational function φ on Pn, then we know that we can write φ =
F
G , where F,G ∈ S = k[x0 . . . , xn] are non-zero homogeneous polynomials of the
same degree. It is easy to check that if we consider the irreducible decompositions

F = cF · Fm1
1 · · ·Fmr

r and G = cG ·Gn1
1 · · ·Gns

s ,

with cF , cG ∈ k∗, then div(φ) =
∑r
i=1miV (Fi)−

∑s
j=1 njV (Gj), hence

deg
(
div(φ)

)
=

r∑
i=1

mi · deg(Fi)−
s∑
j=1

nj · deg(Gj) = deg(F )− deg(G) = 0.

We thus obtain an induced surjective group homomorphism

deg : Cl(Pn)→ Z.

We claim that this is an isomorphism. Indeed, it follows from the above discussion

that if D =
∑d
i=1 niV (fi), for irreducible homogeneous polynomials f1, . . . , fd, is

such that deg(D) = 0, then if we put

φ :=

∏
ni>0 f

ni
i∏

ni<0 f
−ni
i

,

then φ gives a rational function on Pn and div(φ) = D.

Example 9.3.5. Given a divisor D on X and an open subset U of X, we
define D|U as follows: if D =

∑r
i=1 niDi, then D|U =

∑
Di∩U 6=∅ niDi|U (note that

if Di∩U 6= ∅, then Di∩U is an irreducible, closed subvariety of U , of codimension 1).
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With this notation, if the irreducible components of X rU that have codimension
1 in X are Z1, . . . , Zs, then we have a short exact sequence

Zs
α−→ Cl(X)

β−→ Cl(U) −→ 0,

where

α(m1, . . . ,ms) = [m1Z1 + . . .+msZs] and β
(
[D]
)

= [D|U ].

It is clear that β ◦α = 0. Moreover, β is surjective: if Y1, . . . , Yr are irreducible
closed subsets of U , of codimension 1, and D =

∑r
i=1 niYi, then Y1, . . . , Yr are

irreducible, closed subsets of X of codimension 1, and if E =
∑r
i=1 niYi, then

β
(
[E]
)

= [D]. Finally suppose that F is a divisor on X such that for some φ ∈
k(X)∗, we have D|U ' divU (φ). In this case, we have

F − divX(φ) = −
s∑
i=1

ordZi
(φ),

hence [F ] lies in the image of α.

Example 9.3.6. Let Y be a hypersurface in Pn. If the irreducible components
of Y are Y1, . . . , Yr and deg(Yi) = di, then it follows from Examples 9.3.4 and 9.3.5
that Cl(Pn r Y ) ' Z/dZ, where d is the greatest common divisor of d1, . . . , dr.

Remark 9.3.7. Since we assume that X is smooth in codimension 1, it follows
from Example 9.3.5 that by restricting divisor classes to the smooth locus Xsm, we
get an isomorphism Cl(X)→ Cl(Xsm).

9.3.2. The sheaf associated to a Weil divisor. Suppose now that X is
a normal variety. To a divisor D on X, we associate a subsheaf OX(D) of the
constant sheaf k(X), as follows. For every open subset U of X, we put

Γ
(
U,OX(D)

)
= {0} ∪ {φ ∈ k(X)∗ | div(φ)|U +D|U ≥ 0}.

Explicitly, if D =
∑r
i=1 aiDi, then φ ∈ k(X) lies in Γ

(
U,OX(D)

)
if and only if

φ = 0 or ordV (φ) ≥ −ai for all V such that V ∩U 6= ∅. It is clear that the identity
on k(X) induces restriction maps such that OX(D) is a subsheaf of k(X). In fact,
it is an OX -submodule of k(X), since it is clear that if φ ∈ Γ

(
U,OX(D)

)
and

f ∈ OX(U), then fφ ∈ Γ
(
U,OX(D)

)
.

Example 9.3.8. If D = 0, then it follows from Remark 9.3.1 that OX(D) =
OX .

Remark 9.3.9. Note that if D ≥ E, then OX(E) ⊆ OX(D). In particular, it
follows from the previous remark that if E ≤ 0, then OX(E) is a subsheaf of OX .

Proposition 9.3.10. Let X be a normal variety. For every divisor D on X,
the sheaf OX(D) is coherent and its stalk at X is isomorphic to k(X).

Proof. Consider an open subset U of X and f ∈ OX(U). The morphism

Γ
(
U,OX(D)

)
f
→ Γ

(
V,OX(D)

)
,

where V = DU (f), is clearly injective since k(X) is a domain. In order to check
surjectivity, consider a non-zero φ ∈ Γ

(
V,OX(D)

)
. Since div(φ)|V +D|V is effective,

it follows that the only possible negative coefficients of D′ := div(φ)|U + D|U are
for the irreducible components W1, . . . ,Wr of V (f) ⊆ U . Let m be a non-negative
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integer such that for every i, the coefficient ofWi inD′ is≥ −m. Since ordWi
(f) ≥ 1

for all i, we conclude that

div(fmφ)|U +D|U ≥ 0,

hence fmφ ∈ Γ
(
U,OX(D)

)
. This shows that OX(D) is a quasi-coherent sheaf.

We now show that OX(D) is coherent. Let U be an affine open subset of X. If
Z1, . . . , Zr are the prime divisors in U that appear with positive coefficient in D|U ,
let g ∈

∏r
i=1 IU (Zi). For m� 0, we have D|U ≤ div(gm), hence

Γ
(
U,OX(D)

)
⊆ {0} ∪ {φ | div(φgm) ≥ 0} =

1

gm
· Γ(U,OX).

Therefore Γ
(
U,OX(D)

)
is a finitely generated Γ(U,OX)-module.

If D =
∑r
i=1 niVi and U = X r

⋃r
i=1 Vi, then it follows from definition that

OX(D)|U ' OU . In particular, the stalk of OX(D) at X is equal to k(X). �

Proposition 9.3.11. Let X be an irreducible, normal variety. For two divisors
D and E, we have OX(D) ' OX(E) if and only if D and E are linearly equivalent.

Proof. If D − E = div(φ), then we have an isomorphism OX(D) → OX(E),
given over every open subset U ⊆ X by multiplication by φ. Conversely, suppose
that we have an isomorphism α : OX(D)→ OX(E). Given a non-empty affine open
subset U , we claim that the isomorphism

αU : Γ
(
U,OX(D)

)
→ Γ

(
U,OX(E)

)
is given by multiplication with some unique non-zero φU ∈ k(X). In order to
show this, it is enough to show that for every two non-zero u, v ∈ Γ

(
U,OX(D)

)
,

we have αU (u)
u = αU (v)

v . This follows from the fact that αU is a morphism of
OX(U)-modules:

v · αU (u) = αU (uv) = u · αU (v).

This implies the existence of φU . The fact that φU is non-zero and unique follows
from the fact that k(X) is a domain and Γ

(
U,OX(D)

)
and Γ

(
U,OX(E)

)
are non-

zero (this, in turn, follows from the fact that the stalks of OX(D) and OX(E) at
k(X) are isomorphic to k(X)). Since any two non-empty open subsets U and U ′

of X intersect non-trivially, it follows that all φU are equal; we thus simply denote
this by φ.

By definition of φ, we know that for every affine open subset U of X and every
ψ ∈ k(X)∗, we have

div(ψ)|U +D|U ≥ 0 if and only if div(φψ)|U + E|U ≥ 0.

We will show that in this case we have D = E + div(φ). Given a prime divisor V ,
let aV and bV be the coefficients of V in D and E, respectively, In order to show
that aV = bV + ordV (φ) we may restrict to a suitable affine open subset of X and
thus assume that X is smooth, V is smooth and IX(V ) = (h), while D = aV V
and E = bV V . Note that ordV (h) = 1, hence by taking ψ = h−aV , we conclude
that bV + ordV (φ) − aV ≥ 0, and by taking ψ = h−bV −ordV (φ), we conclude that
aV − bV − ordV (φ) ≥ 0. Therefore aV = bV + ordV (φ), completing the proof. �

Remark 9.3.12. Note that for every two divisors D and E, multiplication in
k(X) induces a canonical morphism

OX(D)⊗OX
OX(E)→ OX(D + E).



214 9. NORMAL VARIETIES AND DIVISORS

9.3.3. Push-forward by finite maps. We now discuss the push-forward of
Weil divisors by finite, surjective morphisms. Let f : X → Y be a morphism of
irreducible varieties that are smooth in codimension 1. We assume that f is finite
and surjective. If V is a closed, irreducible subvariety of X of codimension 1,
then f(V ) is a closed, irreducible subvariety of Y , also of codimension 1. We put
deg
(
V/f(V )

)
for the degree of the induced map V → f(V ) (recall that this is the

degree of the field extension k
(
f(V )

)
/k(V ). We define a group homomorphism

f∗ : Div(X)→ Div(Y )

that maps each prime divisor V to deg
(
V/f(V )

)
· V .

Proposition 9.3.13. With the above notation, for every non-zero φ ∈ k(X),
we have

f∗
(
divX(φ)

)
= divY

(
Nk(X)/k(Y )(φ)

)
.

In particular, we get an induced morphism of Abelian groups f∗ : Cl(X)→ Cl(Y ).

Proof. The second assertion follows immediately from the first one, hence we
focus on this one. The assertion to prove is equivalent to the following: for every
irreducible, closed subvariety W of Y , of codimension 1, we have

(9.3.1)
∑

f(V )=W

ordV (φ) · deg(V/W ) = ordW
(
Nk(X)/k(Y )(φ)

)
,

where the sum on the left-hand side is over the irreducible, closed subvarieties V of
X, with f(V ) = W . After replacing Y by an open subset U that intersects W and
X by f−1(U), we may assume that X and Y are affine varieties, with A = O(Y )
and B = O(X). Moreover, after writing φ = b1

b2
, with b1, b2 ∈ B, we easily see that

we may assume that φ ∈ B. If p is the prime ideal in A corresponding to W , then
f induces a finite, injective ring homomorphism A ↪→ B, which in turn induces a
finite, injective ring homomorphism φ : Ap ↪→ Bp. The irreducible closed subsets V
in X, of codimension 1, with f(V ) = W are in bijection with the prime ideals q in
B that whose inverse image in A is p, and thus with the maximal ideals in Bp. By
assumption, Ap is a DVR and for every ideal q as above, the ring Bq is a DVRs,
hence

ordVi(φ) = `
(
Bqi/(φ)

)
,

where Vi = V (qi). The equality in (9.3.1) then follows from Proposition H.2.2. �

Remark 9.3.14. If V1 → V2 → V3 are finite, surjective morphisms of irreducible
varieties, it is clear from definition that

deg(V1/V3) = deg(V1/V2) · deg(V2/V3).

This implies that given two surjective, finite morphisms f : X → Y and g : Y →
Z of irreducible varieties, all of them being smooth in codimension 1, we have
(g ◦ f)∗ = g∗ ◦ f∗ as maps Div(X)→ Div(Z) (hence also as maps Cl(X)→ Cl(Z)).

Remark 9.3.15. One can define a push-forward for arbitrary proper, generi-
cally finite morphisms such that the assertions in Proposition 9.3.13 still hold, see
[Ful98, Chapter 1.4].
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9.4. Cartier divisors

9.4.1. Cartier divisors on normal varieties. If X is a normal variety, then
we distinguish on X a nice class of divisors such that the corresponding sheaves are
line bundles.

Definition 9.4.1. Given an irreducible, normal variety X, a divisor D on X is
a Cartier divisor if it is locally principal, that is, there is an open cover X =

⋃
i∈I Ui

of X such that D|Ui
is a principal divisor for all i. It is clear that the Cartier divisors

on X form a subgroup of Div(X), that we denote Cart(X).

Proposition 9.4.2. A divisor D on the irreducible, normal variety X is a
Cartier divisor if and only if OX(D) is a line bundle.

Proof. If D|U = divU (φ), then it follows from Proposition 9.3.11 that

OX(D)|U ' OU (D|U ) ' OU .

This shows that if D is a Cartier divisor, then OX(D) is a line bundle. Conversely,
suppose that OX(D) is a line bundle. In this case, around every point there is
an open neighborhood U such that OX(D)|U ' OU . In this case, it follows from
Proposition 9.3.11 that D|U is a principal divisor. �

Remark 9.4.3. We note that if D is a Cartier divisor and if on an open subset
U of X we have D|U = divU (φ), then OX(D)|U = 1

φ · OX ⊆ k(X). Indeed, given

an open subset V of U and ψ ∈ k(X) non-zero, we have div(ψ)|V +D|V ≥ 0 if and
only if φψ ∈ OX(V ).

It follows from Proposition 9.4.2 that we have a map Cart(X) → Pic(X) that
maps D to the isomorphism class of OX(D). The next lemma implies that this is
a group homomorphism.

Lemma 9.4.4. If D and E are Cartier divisors on the normal variety X, then
the canonical morphism

OX(D)⊗OX
OX(E)→ OX(D + E)

is an isomorphism.

Proof. It is enough to show that the morphism is an isomorphism on every
affine open subset U of X such that D|U and E|U are principal divisors. Let
us write D|U = divU (α) and E|U = divU (β), with α, β ∈ k(X)∗, in which case
D + E = divU (α · β). The morphism

Γ
(
U,OX(D)

)
⊗OX(U) Γ

(
U,OX(E)

)
→ Γ

(
U,OX(D + E)

)
maps φ⊗ ψ to φ · ψ. The assertion now follows from the fact that

Γ
(
U,OX(D)

)
=

1

α
· OX(U), Γ

(
U,OX(E)

)
=

1

β
· OX(U), and

Γ
(
U,OX(D + E)

)
=

1

αβ
· OX(U).

�
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If D is a principal divisor, then OX(D) ' OX , hence we get an induced homo-
morphism

Cart(X)/PDiv(X)→ Pic(X),

and Proposition 9.3.11 implies that this is injective. It is also surjective: we will
prove this in a more general context in Proposition 9.4.11 below.

Remark 9.4.5. Arguing as in the proof of Proposition 9.3.2, we see that every
Weil divisor on X is Cartier if and only if X is locally factorial. In particular, Weil
and Cartier divisors coincide on smooth varieties by Theorem 9.2.3.

Exercise 9.4.6. Let X be the affine cone over a smooth quadric surface in P3,
that is, X ⊆ A4 is defined by the equation x1x2 − x3x4 = 0.

i) Show that X is smooth in codimension 1 (in fact, it is normal, see Exer-
cise 9.1.14).

ii) Show that if L1 and L2 are the planes in X given by x1 = x3 = 0 and,
respectively x1 = x4 = 0, then L1 and L2 are prime divisors on X which
are not Cartier, but L1 + L2 is Cartier.

Exercise 9.4.7. Let X ⊆ A3 be the cone over the smooth conic in P2 with
equation x2 = yz = 0.

i) Show that X is smooth in codimension 1 (in fact, it is normal, see Exer-
cise 9.1.14).

ii) Show that if Y is the subset of X defined by x = y = 0, then Y is a prime
divisor which is not Cartier, but 2Y is Cartier.

9.4.2. Cartier divisors on arbitrary varieties. The notion of Cartier di-
visor, that we have encountered so far on normal varieties, admits an extension
to arbitrary varieties. For simplicity, though, we will only deal with irreducible
varieties.

Let X be an irreducible variety and consider the constant sheaf of Abelian
groups k(X) and its subsheaf O∗X . We have an exact sequence of sheaves of Abelian
groups

0→ O∗X → k(X)∗ → k(X)∗/O∗X → 0.

Definition 9.4.8. The group of Cartier divisors on X is the Abelian group

Cart(X) := Γ
(
X, k(X)∗/O∗X

)
.

We will see below that in fact, when X is a normal variety, we recover the definition
in the previous section.

By definition, a Cartier divisor is described by giving an open cover (Ui)i∈I of
X (which we can always assume to be finite) and φi ∈ k(X)∗ for every i ∈ I, such
that φi/φj is an invertible regular function on Ui ∩ Uj for every i and j. Given
another family (ψi)i∈I associated to the same cover, then the corresponding Cartier

divisors are equal if and only if each φi

ψi
is an invertible regular function on Ui. One

can compare two such sets of data, corresponding to two different finite covers, by
passing to a common refinement. We note that if D and D′ are defined by (φi)i∈I
and (ψi)i∈I , corresponding to the same cover (Ui)i∈I , then D + D′ is defined by
(φiψi)i∈I .
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Definition 9.4.9. The group of principal Cartier divisors is the image of the
canonical morphism

k(X)∗ = Γ
(
X, k(X)∗

)
→ Γ

(
X, k(X)∗/O∗X

)
= Cart(X).

We denote this by PCart(X).

To a Cartier divisor D we associate a line bundle OX(D), as follows. Suppose
that D is defined by an open cover (Ui)i∈I and the family (φi)i∈I of non-zero
rational functions. For every i, we have a subsheaf 1

φi
· OUi

⊆ k(X), which is

isomorphic to OUi
. Given any i and j, the rational function φi

φj
lies in O∗X(Ui∩Uj),

hence
1

φi
· OUi∩Uj

=
1

φj
· OUi∩Uj

.

We thus have a subsheaf OX(D) of the constant sheaf k(X) such that

OX(D)|Ui =
1

φi
· OUi .

Moreover, it follows from construction that OX(D) is a line bundle. It is straight-
forward to see that the sheaf OX(D) does not depend on the choice of cover (Ui)i∈I
and family (φi)i∈I that describes D.

Exercise 9.4.10. Let X be an irreducible variety.

i) Show that for every Cartier divisors D and E, we have an isomorphism

OX(D)⊗OX
OX(E)→ OX(D + E).

ii) Show that if D is a principal Cartier divisor, then we have an isomorphism
OX(D) ' OX .

iii) Deduce that we have a group morphism

(9.4.1) Cart(X)/PCart(X)→ Pic(X)

that maps the class of D to the (isomorphism class) of OX(D). Show that
this morphism is injective.

The next proposition shows that the morphism (9.4.1) is, in fact, an isomor-
phism.

Proposition 9.4.11. If X is an irreducible variety, then for every line bundle
L on X, there is a Cartier divisor D such that OX(D) ' L. We thus have an
isomorphism

Cart(X)/PCart(X) ' Pic(X).

Proof. Consider a finite affine open cover X = U1∪. . .∪Un, such that we have
for every i an isomorphism αi : L|Ui

→ OUi
. For every i and j, the isomorphism

αi|Ui∩Uj ◦ α−1
j |Ui∩Uj : OUi∩Uj → OUi∩Uj

is given by multiplication with an element αi,j ∈ O∗X(Ui ∩ Uj). Note that these
rational functions satisfy the cocycle condition

αi,j · αj,k = αi,k in k(X)

for all i, j, k, while φi,i = 1 for all i.
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For every i, with 1 ≤ i ≤ n, let φi = αi,1. Note that in this case, the cocycle
condition says that for every i and j, we have

φi
φj

=
αi,1
αj,1

= αi,j .

This implies that the family (φi)i∈I defines a Cartier divisor D and it is straight-
forward to see that OX(D) ' L. �

We now show that for normal varieties, our current definition agrees with the
previous one. More generally, if X is smooth in codimension one, then we define a
map α : Cart(X) → Div(X), as follows. If D is a Cartier divisor on X described
with respect to an open cover (Ui)i∈I by a family (φi)i∈I , then div(φi)|Ui∩Uj

=
div(φj)|Ui∩Uj (this follows from the fact that φi/φj ∈ O∗X(Ui ∩ Uj)). Therefore we
have a divisor α(D) on X such that D|Ui = div(φi)|Ui for all i ∈ I. It is easy to
see that the divisor α(D) is independent of the choice of open cover and family of
rational functions that describes D. It follows immediately from definitions that
we have the equality OX

(
α(D)

)
= OX(D) of subsheaves of k(X). It is also easy to

check that for every two Cartier divisors D and E, we have α(D+E) = α(D)+α(E),
hence α is a group homomorphism.

If X is a normal variety, then α is injective. Indeed, if D is as above and
α(D) = 0, then φi ∈ O∗X(Ui) for all i, hence D = 0. Moreover, a divisor is in the
image of α if and only if D is locally principal. Indeed, it is clear from definition
that α(D) is locally principal for every D ∈ Cart(X). Conversely, if E is a locally
principal divisor on X, then we can find an cover X =

⋃
i∈I Ui and for every i a

non-zero rational function φi such that E|Ui
= div(φi)|Ui

. In particular, we see
that div(φi)|Ui∩Uj = div(φj)|Ui∩Uj for every i and j, hence φi/φj ∈ O∗X(Ui ∩ Uj).
We thus see that the family (φi)i∈I defines a Cartier divisor D such that α(D) = E.
Therefore, via the isomorphism α, we may and will identify the Cartier divisors, as
defined in this section with those defined in the previous one.

Example 9.4.12. Since Pn is a smooth variety, every divisor on Pn is Cartier.
By Example 9.3.4, we thus conclude that

Pic(X) = Cl(X) ' Z.

Moreover, if H is a hyperplane in Pn, then OPn(H) generates Pic(X). Note that
the line bundle OPn(H) is isomorphic to the line bundle OPn(1) introduced in
Example 8.6.14 (and therefore, if Y is a divisor in Pn of degree d, then OPn(Y ) '
OPn(d)). In order to see this, note that if we consider the homogeneous coordinates
x0, . . . , xn on Pn and h ∈ k[x0, . . . , xn]1 is an equation ofH, then on the open subset
Ui = (xi 6= 0), we have H|Ui

= div(h/xi)|Ui
, and we thus have an isomorphism

φi : OX(H)|Ui
' OUi

given by multiplication by h/xi. It follows that the transition function φi|Ui∩Uj
◦

φ−1
j |Ui∩Uj is given by multiplication by xj/xi, hence we have the same transition

functions as for OPn(1) (see Example 8.6.14). This proves our assertion.

Remark 9.4.13. IfX is a smooth, irreducible variety, then we have seen that we
have a canonical isomorphism Cl(X) ' Pic(X). We deduce using Example 9.3.5
that if U is an open subset in X, then the restriction map Pic(X) → Pic(U) is
surjective, and it is an isomorphism if codimX(X r U) ≥ 2.
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9.4.3. Pull-back of Cartier divisors. We now describe a pull-back oper-
ation for Cartier divisors. Let f : X → Y be a dominant morphism between ir-
reducible varieties, so that we have an induced field extension ν : k(Y ) ↪→ k(X).
Using this, we obtain a morphism of sheaves of Abelian groups

f−1(k(Y )∗Y ) = k(Y )∗X → k(X)∗X ,

which induces the canonical morphism of sheaves f−1(O∗Y ) → O∗X . By taking the
quotient, we obtain a morphism of sheaves of Abelian groups

f−1
(
k(Y )∗/O∗Y

)
→ k(X)∗/O∗X .

Note that for every sheaf F on Y , we have a canonical map Γ(Y,F)→ Γ
(
X, f−1(F)

)
.

We thus obtain a morphism of Abelian groups given by the composition

f∗ : Cart(Y ) = Γ
(
Y, k(Y )∗/O∗Y

)
→ Γ

(
X, f−1(k(Y )∗/O∗Y )

)
→ Γ

(
X, k(X)∗/O∗X

)
= Cart(X).

This can be described explicitly as follows. If the Cartier divisor D on Y is described
by an open cover Y =

⋃
i∈I Ui and a family (φi)i∈I with φi ∈ k(Y )∗ such that

φi/φj ∈ O∗Y (Ui ∩ Uj) for all i and j, then f∗(D) is described with respect to the
open cover X =

⋃
i∈I f

−1(Ui) by the family
(
ν(φi)

)
i∈I .

It is clear from this explicit description that if D = divY (φ), then f∗(D) =
divX

(
ν(φ)

)
. We thus obtain an induced morphism of Abelian groups

f∗ : Cart(Y )/PCart(Y )→ Cart(X)/PCart(X).

In fact, it is straightforward to check that via the isomorphisms with the corre-
sponding Picard groups given by Proposition 9.4.11, this gets identified with the
morphism

Pic(Y )→ Pic(Y ), L → f∗(L).

Remark 9.4.14. It follows from the explicit description in terms of a cover
that if f : X → Y and g : Y → Z are dominant morphisms of irreducible varieties,
then for every Cartier divisor D on Z, we have

f∗
(
g∗(D)

)
= (g ◦ f)∗(D).

The following proposition gives a compatibility property between push-forward
and pull-back of divisors, known as the projection formula.

Proposition 9.4.15. If f : X → Y is a finite surjective morphism between
irreducible varieties, both of them being smooth in codimension 1, then for every
Cartier divisor D on Y , we have the following equality1 in Div(Y ):

f∗
(
f∗(D)

)
= deg(f) ·D.

Proof. It is enough to check the assertion locally on Y , so that we may assume
that D is a principal divisor, corresponding to φ ∈ k(Y )∗. If the degree of the field
extension k(X)/k(Y ) is n, then Nk(X)/k(Y )(φ) = φn, hence the equality in the
statement follows from Proposition 9.3.13. �

1On the left-hand side, we apply f∗ to the Weil divisor corresponding to f∗(D), while on the
right-hand side, we consider the Weil divisor corresponding to D.
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9.4.4. Effective Cartier divisors. We now consider those Cartier divisors
that are defined by regular functions. Let X be an irreducible algebraic variety.

Definition 9.4.16. A Cartier divisor on X is effective if, when described by
a family (φi)i∈I associated to an open cover X =

⋃
i∈I Ui, we have φi ∈ OX(Ui)

for all i ∈ I (note that this condition does not depend on the choice of cover and
family (φi)i∈I).

Remark 9.4.17. If X is a variety that is smooth in codimension 1 and D is an
effective Cartier divisor, then it is clear that the corresponding Weil divisor α(D)
is an effective divisor. If X is normal, the converse is also true, since in this case,
given an open subset U of X and φ ∈ k(X), we have φ ∈ OX(U) if and only if
ordV (φ) ≥ 0 for every codimension 1 irreducible subvariety V of X, with V ∩U 6= ∅.

We will often identify an effective Cartier divisor with a coherent sheaf on X,
as follows. A locally principal ideal of OX is a coherent ideal such that there is
an affine open cover X =

⋃
i∈I Ui, with each I(Ui) ⊆ OX(Ui) a principal non-zero

ideal.

Proposition 9.4.18. The map that associates to an effective Cartier divisor
D on X the sheaf OX(−D) gives a bijection between the effective Cartier divisors
on X and the locally principal ideals on X.

Proof. If D is given by an open cover X =
⋃
i∈I Ui, where we may assume

that all Ui are affine, and by a family (φi)i∈I , with φi ∈ OX(Ui), then

Γ
(
Ui,OX(−D)

)
= Γ(Ui,OX) · φi,

which is a non-zero principal ideal in Γ(Ui,OX). It follows that OX(−D) is a
locally principal ideal of OX . Conversely, if I ⊆ OX is a locally principal ideal and
X =

⋃
i∈I Ui is an affine open cover such that Γ(Ui, I) is the ideal of Γ(Ui,OX)

generated by fi, then for every i and j, we have fi/fj ∈ Γ(Ui ∩Uj ,O∗X). Therefore
(fi)i∈I defines an effective Cartier divisor on X. It is straightforward to see that
the two maps we defined are mutual inverses. �

Given an effective Cartier divisor D on X, we will denote by OD the quotient
of OX by OX(−D), so that we have an exact sequence

0→ OX(−D)→ OX → OD → 0.

We define the support Supp(D) of D as the closed subvariety V
(
OX(−D)

)
defined

by OX(−D).

Remark 9.4.19. We can define the pull-back of effective Cartier divisors in
a slightly more general setting than the pull-back of arbitrary Cartier divisors.
Suppose that f : X → Y is a morphism of irreducible varieties and D is an effective
Cartier divisor on Y . If OY (−D) · OX is a locally principal ideal, then we have
an effective Cartier divisor f∗(D) defined as follows: if D is defined on an affine
open subset V ⊆ Y by φ ∈ OY (V ), then f∗(D) is defined on any affine open subset
U ⊆ f−1(V ) by φ ◦ f |U . It is clear that if f is dominant, then this definition agrees
with the previous one.

Remark 9.4.20. In order to define effective Cartier divisors it is not necessary
to restrict to irreducible varieties. For example, from the point of view of ideal
sheaves, an effective Cartier divisor on an arbitrary variety is a coherent ideal that
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is locally generated by one element which is a non-zero divisor. In fact, also general
Cartier divisors can be defined on arbitrary varieties, but for the sake of simplicity,
we preferred to stick to irreducible varieties, which is the only setting in which we
will use Cartier divisors in these notes.

Example 9.4.21. Let X be an irreducible algebraic variety and I a non-zero

ideal on X. If π : X̃ → X is the blow-up along I, then the inverse image I · OX̃ is
a locally principal ideal. Indeed, by covering X with affine open subsets, we reduce
to the case when X is an affine variety. In this case the assertion was shown in the

proof of Proposition 6.1.3. We thus have an effective Cartier divisor E on X̃ (the
exceptional divisor of the blow-up) such that I · OX̃ = OX(−E).

Definition 9.4.22. Given any coherent sheaf F on the algebraic variety X and
an irreducible component V of Supp(F), the multiplicity of F along V is defined as
`OX,V

(FV ). By the assumption on V , the maximal ideal in OX,V is minimal over
Ann(FV ), hence FV is an OX,V -module of finite length (see Proposition H.1.5).

In particular, given a coherent ideal of OX , we may consider the multiplicity
of OX/I along each of the irreducible components of V (I). Note that if I is a
radical ideal, then each such multiplicity is 1 (however, the converse does not hold
in general, due to the possible presence of embedded associated primes).

Remark 9.4.23. If D is an effective Cartier divisor on the variety X which
is irreducible and smooth in codimension 1, then for every irreducible component
V of Supp(D), the multiplicity of OD along V is equal to the coefficient of V in
the Weil divisor associated to V . Note that if X is normal, then OX(−D) is a
radical ideal if and only if all coefficients of D are equal to 1 (indeed, note that if
the latter condition holds, then OX(−D) is the subsheaf of OX consisting of the
regular functions that vanish on Supp(D)); in this case, we say that D is reduced.

We now discuss a third point of view on effective Cartier divisors, as zero-loci
of sections of line bundles. Suppose first that X is an arbitrary algebraic variety
and L is a line bundle on X. Given a section s ∈ Γ(X,L), we have a morphism
OX → L that maps 1 to s. By tensoring this with L−1, we obtain a morphism
L−1 → OX , whose image is an ideal sheaf that we denote I(s).

In order to describe this ideal and the closed subset V (s) of X it defines, con-
sider an affine open subset U of X such that L|U ' OU . Via this isomorphism,
s|U corresponds to some f ∈ O(U). Moreover, we have an induced isomorphism
L−1|U ' OU , so that the morphism L−1|U → OU corresponding to s gets iden-
tified with the morphism OU → OU given by multiplication by f . Therefore the
restriction of IZ(s) to U is the ideal generated by f . In particular, we see that a
point x ∈ X lies in V (s) if and only if s(x) ∈ L(x) is 0. We will refer to V (s) as the
zero-locus of s.

From now on we assume that X is irreducible and s is non-zero. In this case,
the above local description of the morphism L−1 → OX associated to s shows
that this is an injective morphism and its image I(s) is a locally principal ideal,
corresponding to an effective Cartier divisor Z(s), whose support is V (s).

Proposition 9.4.24. If L is a line bundle on the irreducible variety X, then
the following hold:

i) For every non-zero s ∈ Γ(X,L), we have an isomorphism OX
(
Z(s)

)
' L.
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ii) Given two non-zero s, s′ ∈ Γ(X,L), we have Z(s′) = Z(s) if and only if
s′ = hs for some h ∈ O(X)∗.

iii) If D is an effective Cartier divisor such that OX(D) ' L, then there is a
non-zero s ∈ Γ(X,L) such that D = Z(s).

iv) If s1 ∈ Γ(X,L1) and s2 ∈ Γ(X,L2) are non-zero sections, for line bundles
L1 and L2, and if s1⊗ s2 ∈ Γ(X,L1⊗L2) is the tensor product of s1 and
s2, then Z(s1 ⊗ s2) = Z(s1) + Z(s2).

Proof. It follows from the definition that L−1 is isomorphic to the ideal
OX
(
− Z(s)

)
corresponding to Z(s). By taking duals, we get an isomorphism

L ' OX
(
Z(s)

)
, giving i). The assertion in ii) follows immediately from the local

description of Z(s).
Suppose now that D is an effective Cartier divisor and we have an isomorphism

α : OX(D) ' L. It follows from the definition of OX(D) that 1 ∈ k(X) is a global
section of this sheaf: if D is defined with respect to a cover X =

⋃
i∈I Ui by (φi)i∈I ,

by assumption φi ∈ OX(Ui), hence 1 ∈ 1
φi
OX(Ui). If we take s = α(1), then it is

straightforward to see that Z(s) = D. Finally, the assertion in iv) follows directly
from definition. �

Remark 9.4.25. If X is a complete variety, then we will see in Chapter 11 that
for every line bundle L on X, the k-vector space Γ(X,L) is finite dimensional. The
set of effective Cartier divisors D such that OX(D) ' L is the linear system |L|. It
follows from the above proposition that this can be identified with the projective
space parametrizing the lines in Γ(X,L). We will see in Chapter 11 that the linear
systems on a variety are closely related to the rational maps from that variety to
projective spaces.

Exercise 9.4.26. Show that if L is a line bundle on the irreducible, complete
variety X, such that Γ(X,L) 6= 0 and Γ(X,L−1) 6= 0, then L ' OX .

We end this section with some examples concerning class groups of products.

Example 9.4.27. If X and Y are irreducible varieties that are smooth in codi-
mension 1, then the same holds for X × Y . Indeed, it follows from Exercise 6.3.13
that (X × Y )sm = Xsm × Ysm, hence its complement in X × Y is(

(X rXsm)× Y
)
∪
(
X × (Y r Ysm)

)
,

whose codimension in X × Y is ≥ 2.
Let us denote by p : X × Y → X the first projection. Note that if V is a prime

divisor in X, then p−1(V ) = V × Y is a prime divisor in X × Y . We can thus
define a group homomorphism p∗ : Div(X)→ Div(X × Y ), by mapping

∑r
i=1 aiDi

to
∑r
i=1 aip

−1(Di).
We claim that this induces a group homomorphism Cl(X) → Cl(X × Y ). For

this, it is enough to show that if φ ∈ k(X) is a non-zero rational function, then
p∗
(
div(φ)

)
= div(φ ◦ p). In order to see this, let U ⊆ X be an open subset such

that φ ∈ O∗X(U). In this case φ ◦ p ∈ O∗X×Y (U × Y ), hence the only prime divisors
that appear with non-zero coefficient in div(φ ◦ p) are contained in (X r U) × Y ,
hence they are of the form V × Y , where V is an irreducible component of X r U
of codimension 1 in X. Our assertion thus follows if we show that for every such
V , we have

(9.4.2) ordV (φ) = ordV×Y (φ ◦ p) for every φ ∈ k(X) r {0}.
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For this, we may assume that both X and Y are affine, with coordinate rings A and
B, respectively. We may also assume that the ideal defining V in X is generated
by one element π. Note that the ideal in A ⊗k B defining V × Y is generated by
π ⊗ 1. In order to prove (9.4.2), we may clearly assume that φ ∈ A r {0}. If
r = ordV (φ), then we can write φ = πr · ψ, where ψ ∈ A r (π). We deduce that
ordV×Y (φ ⊗ 1) = r from the fact that (π) = {a ∈ A | a ⊗ 1 ∈ (π ⊗ 1)}, which is
straightforward to check.

It is clear that the above definition is compatible with the definition of pull-back
of Cartier divisors: if α : Cart(X)→ Div(X) is the canonical group homomorphism,
then for every Cartier divisor D on X, we have p∗

(
α(D)

)
= α

(
p∗(D)

)
.

Of course, if q : X × Y → Y is the second projection, then we have a similar
group homomorphism q∗ : Cl(Y )→ Cl(X × Y ). We claim that the homomorphism

(9.4.3) Cl(X)⊕ Cl(Y )→ Cl(X × Y ), (α, β)→ p∗(α) + q∗(β)

is injective. In order to check this, we may assume that both X and Y are smooth:
we have a commutative diagram

Cl(X)⊕ Cl(Y )

��

// Cl(X × Y )

��
Cl(Xsm)⊕ Cl(Ysm) // Cl(Xsm × Ysm),

and the vertical maps induced by restriction are isomorphisms by Example 9.3.5.
Note now that if X and Y are smooth, then the morphism (9.4.3) is identified with
the morphism

Pic(X)⊕ Pic(Y )→ Pic(X × Y ), (L,M)→ p∗(L)⊗OX
q∗(M).

Suppose that (L,M) lies in the kernel of this map, that is

(9.4.4) p∗(L)⊗OX
q∗(M) ' OX×Y .

Let x0 ∈ X and y0 ∈ Y be any points, and let us consider the closed immersions
i : X ↪→ X ×Y and j : Y ↪→ X ×Y given by i(x) = (x, y0) and j(y) = (x0, y). Note
that p ◦ i = idX and q ◦ j = idY , while both q ◦ i and p ◦ j are constant maps. We
thus see that by applying i∗ and j∗ to the isomorphism (9.4.4), we obtain L ' OX
and M' OY . This proves our claim.

Example 9.4.28. If X is an irreducible variety that is smooth in codimension
1 and p : X × An → X is the projection, then p∗ : Cl(X) → Cl(X × An) is an
isomorphism for every n ≥ 1. Indeed, we have seen in the previous example that
p∗ is injective. In order to prove surjectivity, arguing by induction on n, it is clear
that it is enough to consider the case n = 1. Let V be a prime divisor in X ×A1.
For every open subset U of X, if we show that [V ∩ (U × A1)] lies in the image
of Cl(U) → Cl(U × A1), then it follows from Example 9.3.5 that if Z1, . . . , Zr
are the irreducible components of X r U of codimension 1 in X, then there are
m1, . . . ,mr ∈ Z such that [V ] −

∑r
i=1mi[Zi ×A1] lies in the image of p∗. In this

case [V ] lies in the image of p∗.
In particular, we may assume that X is affine. We put A = O(X) and let q be

the ideal defining V in A[x]. We can also assume that p(V ) = X, since otherwise

we can take U = X r p(V ). Therefore q∩A = 0 and if K = Frac(A) = k(X), then
q ·K[x] = f ·K[x] for some nonzero f ∈ q. In particular, we have ordV (f) = 1. If
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q′ 6= q is a prime ideal in A[x] of codimension 1 such that f ∈ q′, then q′ ∩ A 6= 0
(otherwise the inclusion q · K[x] ⊆ q′ · K[x] implies q ⊆ q′, a contradiction). We
thus see that we can write div(φ) = V +

∑r
i=1miZi, with each [Zi] in the image of

p∗, hence [V ] also lies in the image of p∗. This completes the argument.

Example 9.4.29. Suppose that X is an irreducible variety which is smooth in
codimension 1. If p : X ×Pn → X and q : X ×Pn → Pn are the two projections,
then we claim that the induced morphism

τ : Cl(X)⊕ Z = Cl(X)⊕ Cl(Pn)→ Cl(X ×Pn), (a, b)→ p∗(a) + q∗(b)

is an isomorphism.
The injectivity of τ follows directly from Example 9.4.27. In order to show that

τ is surjective, consider a hyperplane H ⊆ Pn, so that U = Pn rH ' An. Given
any β ∈ Cl(X), it follows from Example 9.4.28 that we can write β|U = p∗0(α) for
some α ∈ Cl(X), where p0 : X×U → X is the projection onto the first component.
We thus deduce from Example 9.3.5 that there is m ∈ Z such that β − p∗(α) =
m · [X ×H] = q∗

(
m · [H]

)
. We thus conclude that τ is an isomorphism.



CHAPTER 10

Cohomology of coherent sheaves

10.1. Derived functors on the category of OX-modules

In this section we discuss the right derived functors of a left exact functor.
For the sake of concreteness, we only consider categories of sheaves of modules on a
ringed space, though it will be clear that everything we do generalizes in an obvious
way to arbitrary Abelian categories that have enough injective objects in the sense
of Definition 10.1.6 below.

10.1.1. Complexes of OX-modules. Let (X,OX) be a fixed ringed space
and let us consider the category OX -mod.

Definition 10.1.1. A complex of OX -modules is given by a sequence (F i)i∈Z
of OX -modules and maps of OX -modules

. . .→ F i−1 di−1

→ F i d
i

→ F i+1 → . . .

such that di ◦di−1 = 0 for all i. We typically denote a complex as above by F• and
we denote all di simply by d.

Given two complexes F• and G• as above, a morphism of complexes u : F• →
G• consists of a sequence of morphisms of OX -modules (ui)i∈Z, with ui : F i → Gi,
such that d ◦ ui = ui+1 ◦ d for all i. We have an obvious notion of composition of
morphisms and in this way we obtain the category of complexes of OX -modules.

Remark 10.1.2. We will encounter sometimes families (Fi)i∈Z with maps
d : Fi → Fi−1 such that d ◦ d = 0. This can be viewed as a complex, in the
above sense, if we use the following convention for lifting the indices: F i = F−i.

It is easy to see that the category of complexes is an Abelian category, with
kernels and cokernels defined component-wise. In particular, we may consider exact
sequences of complexes.

Definition 10.1.3. The cohomology functor Hi defined on the above category
of complexes and taking values in OX -mod is given by

Hi(F•) := ker(F i → F i+1)/Im(F i−1 → F i).

Note that a morphism u : F• → G• induces a morphism Hi(F•)→ Hi(G•), making
Hi into a functor. Whenever we use lower indexing for complexes, it is convenient
to put Hi = H−i

A basic ingredient in setting up derived functors is the following lemma:

Lemma 10.1.4. Given a short exact sequence of complexes

0 −→ E• u−→ F• v−→ G• −→ 0,

225
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we have a long exact sequence of OX-modules

. . . −→ Hi(E•) H
i(u)−→ Hi(F•) H

i(v)−→ Hi(G•) δ−→ Hi+1(E•) −→ . . . .

Moreover, the “connecting homomorphisms” δ are functorial, in an obvious sense,
with respect to morphisms of short exact sequences of complexes.

Proof. We only sketch the proof. Given s ∈ Γ
(
U,Hi(G•)

)
, we can choose

around each point x ∈ X, a section s(x) of ker(Gi → Gi+1) over an open neigh-
borhood U(x) ⊆ U of x, such that s(x) lifts s|U(x) Since vi is surjective, after

possibly shrinking U(x), we can find s̃(x) ∈ Γ
(
U(x),F i

)
such that vi

(
s̃(x)

)
=

s(x)|U(x). The hypothesis on s(x) and the fact that d ◦ vi = vi+1 ◦ d implies

that d
(
s̃(x)

)
= ui+1

(
t(x)

)
for a unique t(x) ∈ Γ

(
U(x), E i+1

)
. It is clear that

d
(
t(x)

)
∈ Γ

(
U(x), E i+2

)
is 0. While the sections t(x) do not glue, in general,

their images in Γ
(
U(x),Hi+1(E•)

)
agree on overlaps and thus define a section

δ(s) ∈ Γ
(
U,Hi+1(E•

))
. It is easy to see that the definition is independent of

all choices made and it gives a morphism of OX -modules δ : Hi(G•)→ Hi+1(E•).
Checking the exactness of the long sequence is a matter of diagram chasing.

Alternatively, it is enough to check exactness after passing to stalks, which reduces
the assertion to the case of modules over a fixed ring. We leave the details as an
exercise for the reader. �

Definition 10.1.5. Two morphisms of complexes u, v : E• → F• are homo-
topic, written u ≈ v if there is a sequence (θi)i∈Z of morphisms θi : E i → F i−1

such that ui − vi = d ◦ θi + θi+1 ◦ d for all i. This is an equivalence relation (it is
the congruence relation modulo those morphisms homotopic to 0). It is easy to see
that if u and v are homotopic, then Hi(u) = Hi(v) for all i ∈ Z.

Definition 10.1.6. Recall that if C is an Abelian category, an object Q of C
is injective if the functor HomC(−, Q) from C to the category of Abelian groups is
exact (as opposed to left exact, which is the case for general Q). The category C
has enough injectives if for every object A of C, there is an injective map (that is,
a map with 0 kernel) ι : A→ I, where I is injective.

Remark 10.1.7. It follows from the definition of injective objects and from the
universal property of a direct product that a direct product of injective objects is
again injective.

Remark 10.1.8. Given an exact sequence

0→ F ′ → F → F ′′ → 0,

with F ′ injective, by applying HomOX
(−,F ′), we see that the sequence is split.

Proposition 10.1.9. The category OX-mod has enough injectives.

Proof. We will make use of the following construction. For every point x ∈ X
and every OX,x-module A, we define an OX -module A(x) as follows. For an open
subset U of X, we put Γ

(
U,A(x)

)
= A if x ∈ U and Γ

(
U,A(x)

)
= 0 otherwise. The

restriction maps are either the identity maps or the 0 maps and the OX(U)-module
structure on Γ

(
U,A(x)

)
, when x ∈ U , is induced by the canonical homomorphism

OX(U)→ OX,x. It is straightforward to see that for every OX -moduleM, we have
a natural isomorphism

HomOX

(
M, A(x)

)
' HomOX,x

(Mx, A).
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In particular, this implies that if A is an injective OX,x-module, then A(x) is an
injective OX -module.

Given an arbitrary OX -moduleM, for every x ∈ X, we consider the stalkMx.
This is an OX,x-module and since the category of OX,x-modules has enough injec-
tives (see Proposition I.1.1), we can find an injective morphism of OX,x-modules
jx : Mx ↪→ Qx, where Qx is an injective OX,x-module. Since each OX -module Qx

is injective, it follows that the direct product
∏
x∈X Q

x(x) is injective, and we have
an injective morphism of OX -modules

M→
∏
x∈X

Qx(x), M(U) 3 s→
(
jx(sx)

)
.

This completes the proof of the proposition. �

Definition 10.1.10. A resolution of an OX -module F is given by a complex
I• with Iq = 0 for q < 0, together with a morphism of complexes F → I• (where
we think of F as a complex concentrated in degree 0) that induces an isomorphism
in cohomology; equivalently, the induced complex

0→ F → I0 → I1 → . . .

is exact. This is an injective resolution if, in addition, all OX -modules Ij are
injective.

The following result will allow us to construct derived functors.

Proposition 10.1.11. Let F and G be OX-modules.

i) There is an injective resolution F → I•.
ii) Given a morphism τ : F → G, a resolution F → A• and a morphism of

complexes G• → I•, where Ii = 0 for i < 0 and Ii is injective for all i,
there is a morphism of complexes u : A• → I• such that the diagram

F

τ

��

// A•

u

��
G // I•

is commutative.
iii) If u and v both satisfy the conclusion in ii), then they are homotopic.

Proof. In order to prove i), we begin by using Proposition 10.1.9 to find an
injective OX -module I0 and an injective morphism F ↪→ I0. If C is the cokernel of
this map, we use the same proposition to find an injective OX -module I1 and an
injective homomorphism C ↪→ I1. We thus have an exact sequence

0→ F → I0 → I1.

Continuing in this way we obtain the injective resolution I•.
For ii), we construct the morphisms ui : Ai → Ii recursively, as follows. Since

the morphism F → A0 is injective and I0 is an injective OX -module, we can find
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u0 : A0 → I0 such that the diagram

F

τ

��

φ // A0

u0

��
G // I0

is commutative. Since H1(A•) = 0, we have an injective morphism coker(φ) ↪→ A1.
On the other hand, u0 induces a morphism u0 : coker(φ) → I1, and since I1 is
injective, there is a morphism u1 : A1 → I1 such that the diagram

A0

u0

��

// A1

u1

��
I0 // I1

is commutative. Iterating this argument, we obtain the assertion in ii).
Finally, suppose that u and v both satisfy the condition in ii). We construct

recursively morphisms θi : Ai → Ii−1 for i ≥ 1 such that ui− vi = d ◦ θi + θi+1 ◦ d.
The assumption implies that u0 and v0 agree on the image of F → A0, hence
u0 − v0 induces a morphism coker(φ)→ I0. Using the injectivity of I0, we obtain
a morphism θ1 : A1 → I0 such that u0− v0 = θ1 ◦d. Note now that u1− v1−d ◦ θ1

vanishes on the image of A1 → A2, and thus induces induces a morphism from the
cokernel of this morphism to I1. Since H1(A•) = 0, this cokernel embeds in A2,
and the morphism has an extension as a morphism θ2 : A2 → I1 by the injectivity
of I2. We thus have θ2 ◦ d + d ◦ θ1 = u1 − v1. Iterating this argument, we obtain
u ≈ v. �

We will also need the following lemma about injective resolutions for OX -
modules in an exact sequence. This is what will allow us to apply Lemma 10.1.4
to obtain long exact sequences in cohomology.

Lemma 10.1.12. Given an exact sequence of OX-modules

0→ E → F → G → 0

and injective resolutions E → I• and G → J •, we can find a commutative diagram
of complexes

0 // E //

��

F //

��

G

��

// 0

0 // I• // Q• // J • // 0,

such that for every i, the sequence

0→ Ii → Qi → J i → 0

is split exact. In particular, the middle vertical arrow in the above commutative
diagram gives an injective resolution of F .

Proof. For every i ≥ 0, we put Qi = Ii ⊕J i and take the maps ui : Ii → Qi
and vi : Qi → J i to be the canonical injection and surjection, respectively. We
will show that we can find morphisms F → Q0 and Qi → Qi+1 for i ≥ 0 such
that we have a commutative diagram of complexes as in the lemma. We define
(α, β) : F → I0 ⊕ J 0, where β is the composition F → G → J 0 and α : F → I0



10.1. DERIVED FUNCTORS ON THE CATEGORY OF OX -MODULES 229

is an extension of the map E → I0 (we use here the fact that I0 is injective). We
thus obtain a commutative diagram

0 // E //

��

F //

��

G

��

// 0

0 // I0 // Q0 // J 0 // 0,

and an application of the 3× 3 lemma1 gives a short exact sequence

0→ coker(E → I0)→ coker(F → Q0)→ coker(G → J 0)→ 0.

We can now repeat the construction to obtain the commutative diagram of com-
plexes in the statement.

Finally, it is clear, by construction, that Qi is an injective OX -module for every
i ≥ 0. The fact that F → Q• is a resolution follows from Lemma 10.1.4. �

10.1.2. Right derived functors. Suppose now that F : C → D is a (covari-
ant) left exact functor2, where C and D are, respectively, the categories of OX -
modules and OY -modules, where (X,OX) and (Y,OY ) are two ringed spaces. Here
are the main examples for us.

Example 10.1.13. Suppose that OX is a sheaf of R-algebras, Y is a point and
OY (Y ) = R. In this case, we have the global sections functor

Γ(X,−) : OX -mod→ R-mod.

This is left exact.

Example 10.1.14. More generally, if f : (X,OX)→ (Y,OY ) is a morphism of
ringed spaces, we have the left exact functor

f∗ : OX -mod→ OY -mod.

Example 10.1.15. Suppose that OX is a sheaf of R-algebras. For every OX -
module F , we have the left exact functor

HomOX
(F ,−) : OX -mod→ R-mod.

Example 10.1.16. For every ringed space (X,OX), we have the left exact
functor

HomOX
(F ,−) : OX -mod→ OX -mod.

In order to measure the failure of a left exact functor F as above to be exact,
we extend F to a sequence of functors, as follows.

Definition 10.1.17. A δ-functor is a sequence of functors (F i)i≥0 from C to
D, together with the following data: for every short exact sequence in C

0 −→ A′ u−→ A v−→ A′′ −→ 0,

1Note that this also holds for OX -modules, as can be seen by considering the assertions for
the stalks at the points of X.

2All functors we consider are additive: a functor F between additive categories is additive if
for any two objects A and B, the corresponding map Hom(A,B)→ Hom

(
F (A), F (B)

)
is a group

homomorphism.
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we have “connecting morphisms” δ : F i(A′′) → F i+1(A′) for i ≥ 0, such that the
complex

. . . −→ F i(A′) F
i(u)−→ F i(A)

F i(v)−→ F i(A′′) δ−→ F i+1(A′) F
i+1(u)−→ . . .

is exact. Moreover, the connecting morphisms are required to be functorial: given
a morphism of short exact sequences

0 // A′ //

��

A //

��

A′′

��

// 0

0 // B′ // B // B′′ // 0,

for every i ≥ 0 we have a commutative diagram

F i(A′′) δ //

��

F i+1(A′)

��
F i(B′′) δ // F i+1(B′).

Definition 10.1.18. Given two δ-functors (Fi)i≥0 and (Gi)i≥0 from C to D,
a morphism of δ-functors is given by natural transformations (Fi → Gi)i≥0 such
that for every short exact sequence in C

0→ A′ → A→ A′′ → 0,

we have a commutative diagram

F i(A′′) δ //

��

F i+1(A′)

��
Gi(A′′) δ // Gi+1(A′′).

Note that in this case, by the functoriality of the transformations F i → Gi, we
have a morphism of long exact sequences.

The following is the fundamental result in the construction of derived functors.
We keep the above convention about the categories C and D (though the statement
generalizes immediately to the case when C and D are Abelian categories, with C
having enough injective objects).

Theorem 10.1.19. If F : C → D is a left exact functor, then there is a δ-functor
(RiF )i≥0 such that the following two conditions are satisfied:

i) We have a natural isomorphism R0F ' F , and
ii) RiF (I) = 0 for every injective object I ∈ C and every i ≥ 1.

Such a δ-functor is unique up to a unique isomorphism that corresponds to the
identity on R0F ' F . Moreover, if (Gi)i≥0 is any δ-functor and we have a natural
transformation F → G0, then there is a unique extension of this to a morphism of
δ-functors (RiF )i≥0 → (Gi)i≥0.

Proof. For every object A in C, we choose an injective resolution A → I•
and put

RiF (A) := Hi
(
F (I•)

)
.
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Given a morphism τ : A → B, if A → I• and B → J • are the chosen injec-
tive resolutions, then it follows from Proposition 10.1.11 that there is a morphism
u : I• → J • such that we have a commutative diagram

A //

τ

��

I•

u

��
B // J •.

We put RiF (τ) = Hi
(
F (u)

)
. Note that u is not unique, but if v is another such

morphism, then it follows from Proposition 10.1.11 that u ≈ v, hence F (u) ≈ F (v),
and thus F (u) and F (v) induce the same morphism in cohomology. Using this, it
is straightforward to see that as defined RiF is a functor. This also shows that
if A → I ′• is another injective resolution, then we have a canonical isomorphism
RiF (A) ' Hi

(
F (I ′•)

)
.

We now show that we can put on the sequence (RiF )i≥0 the structure of a
δ-functor. Suppose that we have an exact sequence

0→ A′ → A→ A′′ → 0

and that the chosen injective resolutions are A′ → I•, A → I•, and A′′ → I ′′•. It
follows from Lemma 10.1.12 that there is an injective resolution A → J • such that
we have a commutative diagram of complexes

0 // A′ //

��

A //

��

A′′

��

// 0

0 // I ′• // J • // I ′′• // 0,

such that for every i, the sequence

0→ I ′m → Jm → I ′′m → 0

is split. Since applying F preserves split exact sequences, we obtain a short exact
sequence of complexes

0→ F (I ′•)→ F (J •)→ F (I ′′•)→ 0,

and Lemma 10.1.4 gives a long exact sequence

. . . −→ RiF (A′) −→ Hi
(
F (J •)

)
−→ RiF (A′′) δ−→ Ri+1F (A′) −→ . . . .

Since we have a canonical isomorphism RiF (A) ' Hi
(
F (J •)

)
and since the con-

necting homomorphisms that we constructed are functorial with respect to mor-
phisms of short exact sequences, we see that (RiF )i≥0 form a δ-functor.

The fact that we have a functorial isomorphismR0F ' F follows from definition
and the fact that F is a left exact functor. In order to see that if Q is an injective
object in C, then RiF (Q) = 0 for i ≥ 1, we consider the injective resolution I• of
Q such that Q → I0 is the identity and Ii = 0 for i ≥ 1. In this case, the assertion
is clear.

Note now that the uniqueness of the sequence (RiF )i≥0 follows if we show that
properties i) and ii) imply the last assertion in the theorem. Given an object A ∈ C,
choose an exact sequence

0→ A→ I → B → 0,
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where I is injective. We thus obtain a commutative diagram

0 // F (A) //

��

F (I) //

��

F (B) //

��

R1F (A) // 0

0 // G0(A) // G0(I) // G0(B) // G1(A)

and since the top row is exact (we use here that R1F (I) = 0), we obtain an induced
morphism R1F (A)→ G1(A) that makes the square commutative. It is easy to see,
arguing as before, that this is independent of the choice of I and gives a natural
transformation of functors. We then argue by induction on i ≥ 1 to construct the
natural transformation RiF → Gi. Note that for i ≥ 1, we also obtain from the
above exact sequence the horizontal maps below

RiF (B)

��

// Ri+1F (A)

Gi(B) // Gi+1(A),

while the vertical map is given by the inductive assumption. Since the top horizontal
map is an isomorphism, it follows that we have a unique map Ri+1F (A)→ Gi+1(A)
that makes the square commutative. It is then not hard to see that the transfor-
mations (RiF → Gi)i≥0 constructed in this way give a morphism of δ-functors and
that this is the unique such morphism that extends F → G0. �

Remark 10.1.20. By inspecting the above proof, one notices that for the con-
struction of the morphism of δ-functors (RiF )i≥0 → (Gi)i≥0 we only needed the
fact that the sequence of functors (Gi)i≥0 associates to every short exact sequence
a complex (which does not have to be exact).

Example 10.1.21. If η : F → G is a natural transformation between left exact
functors, then it follows from Proposition 10.1.19 that we have unique natural
transformations ηi : RiF → RiG that give a morphism of δ-functors and such that
η0 gets identified with η. These transformations can be computed as follows: if A
is an object in C and A → I• is an injective resolution, then ηi(A) corresponds to
the morphism obtained by applying Hi(−) to the morphism of complexes F (I•)→
G(I•) induced by η. This can be checked either by comparing with the argument in
the proof of the proposition, or by showing that as described, we have a morphism
of δ-functors that coincides with η for i = 0.

Definition 10.1.22. The functor RiF in the above theorem is the ith right
derived functor of F .

In practice, one never uses injective resolutions to compute the derived functors.
A situation that occurs more often is to identify a special class of objects that can
be used to compute derived functors, as follows.

Definition 10.1.23. Given a left exact functor F : C → D as above, an object
M of C is F -acyclic if RiF (M) = 0 for all i ≥ 1.

Proposition 10.1.24. If F : C → D is a left exact functor and for an object A
in C we have a resolution A → M• such that all Mi are acyclic, then we have a
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canonical isomorphism
RiF (A) ' Hi

(
F (M•)

)
.

Proof. We argue by induction on i. The case i = 0 is clear, since

R0F (A) ' F (A) ' ker
(
F (M0)→ F (M1)

)
by the left exactness of F . For i ≥ 1, let A′ = coker(A ↪→ M0). Using the short
exact sequence

0→ A→M0 → A′ → 0

and the fact that M0 is F -acyclic, we obtain an exact sequence

(10.1.1) 0→ F (A)→ F (M0)→ F (A′)→ R1F (A)→ 0

and isomorphisms

(10.1.2) RpF (A′) ' Rp+1F (A) for p ≥ 1.

It follows from (10.1.1) that we have a canonical isomorphism

R1F (A) ' F (A′)/Im
(
F (M0)→ F (A′)

)
' H1

(
F (M•)

)
,

where the second isomorphism follows from the left exactness of F and the exact
sequence

0→ A′ →M1 →M2.

On the other hand, we have a resolution

0→ A′ →M1 →M2 → . . . ,

hence using (10.1.2) and induction, we see that if the assertion in the proposition
holds for i ≥ 1, it also holds for i+ 1. �

10.2. Cohomology of sheaves and higher direct images

The discussion in the previous section applies generally to left exact functors
between Abelian categories that have enough injective objects. We now specialize
to the functors on categories of sheaves that we are interested in.

10.2.1. Cohomology of sheaves. Let (X,OX) be a ringed space, where OX
is a sheaf of R-algebras (for example, we can always choose R = Z) and consider
the left exact global sections functor:

Γ(X,−) : OX -mod→ R-mod.

Its right-derived functors are denoted by Hi(X,−), for i ≥ 0. The R-modules
Hi(X,F) are the cohomology groups of F (in our setting, it might make more
sense to call them cohomology R-modules, but we prefer to follows the standard
terminology). Note that we have a functorial isomorphism Γ(X,−) ' H0(X,−).
Moreover, for every short exact sequence of OX -modules

0→ F ′ → F → F ′′ → 0,

we have a long exact sequence in cohomology

. . .→ Hi(X,F ′)→ Hi(X,F)→ Hi(X,F ′′)→ Hi+1(X,F ′)→ . . . .

Remark 10.2.1. It is clear that the Abelian groups underlying the Hi(X,F)
are independent of which R we choose.We can always take R = Γ(X,OX), which
shows that for every OX -module F , we have a natural Γ(X,OX)-module structure
on the cohomology groups Hi(X,F).
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Definition 10.2.2. An OX -module F is flasque if for every open subset U of
X, the restriction map

F(X)→ F(U)

is surjective.

Remark 10.2.3. It is clear from definition that if F is flasque, then its restric-
tion F|V to any open subset V , is again flasque.

As we will see, the flasque sheaves are Γ(X,−)-acyclic. We begin with a couple
of lemmas.

Lemma 10.2.4. Given a short exact sequence of OX-modules

0 −→ F ′ α−→ F β−→ F ′′ −→ 0,

with F ′ flasque, we have a short exact sequence

0 −→ F ′(X) −→ F(X) −→ F ′′(X) −→ 0.

Proof. We only need to show that for every s ∈ F ′′(X), there is t ∈ F(X)
such that β(t) = s. Consider the set P consisting of pairs (U, tU ), where U is an
open subset of X and tU ∈ F(U) is such that β(tU ) = s|U . We order the elements
of P by putting (U, φU ) ≤ (V, φV ) if U ⊆ V and φU = φV |U . It is clear that
any totally ordered subset of P has a supremum (given by taking the union of
the corresponding open subsets and by gluing the corresponding sections of F).
By Zorn’s lemma, we may thus choose a maximal element (W,φW ). In order to
complete the proof, it is enough to show that if W 6= X, then the pair (W,φW ) is
not maximal.

Suppose that x ∈ X rW . By the surjectivity of β, we can choose an open
neighborhood V of x and tV ∈ F(V ) such that β(tV ) = s|V . In particular, we
have β(tW |V ∩W ) = β(tV |V ∩W ), and thus tW |V ∩W − tV |V ∩W = α(t′), for some t′ ∈
F ′(V ∩W ). Since F ′ is flasque, we can find t′′ ∈ F ′(X) such that t′′|V ∩W = t′. After
replacing tV by tV +α(t′′|V ), we see that we may assume that φU |U∩V = φV |V ∩W .
If we take W ′ = W ∪ V , there is a unique tW ′ ∈ F(W ′) such that tW ′ |W = tW and
tW ′ |V = tV . It is then clear that β(tW ′) = s|W ′ , this contradicts the maximality of
(W, tW ). �

Corollary 10.2.5. Given a short exact sequence of OX-modules

0→ F ′ → F → F ′′ → 0,

with F ′ flasque, we have F flasque if and only if F ′′ is flasque.

Proof. Since F ′ is flasque, the restriction F ′|U is flasque too, and we deduce
from Lemma 10.2.4 that we have a commutative diagram with exact rows

0 // F ′(X)

α

��

// F(X)

β

��

// F ′′(X) //

γ

��

0

0 // F ′(U) // F(U) // F ′′(U) // 0,

in which the vertical maps are given by restriction. Since α is surjective by assump-
tion, it follows that β is surjective if and only if γ is surjective. �
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Exercise 10.2.6. Let U be an open subset of X and i : U ↪→ X the inclusion
map. For an OU -module G on U , we consider the presheaf of OX -modules G0,
defined as follows: Γ(V,G0) = G(V ) if V ⊆ U and Γ(V,G0) = 0, otherwise (with
the non-zero restriction maps given by those for G). The extension by 0 of G is the
OX -module i!(G) associated to G0.

i) Show that for x ∈ X, we have i!(G)x ' Gx if x ∈ U and i!(G)x = 0,
otherwise. In particular, the map taking G to i!(G) is an exact functor
from the category of OU -modules to that of OX -modules.

ii) Show that for everyOX -module F on X, we have a functorial isomorphism

HomOU
(G,F|U ) ' HomOX

(
i!(G),F).

In other words, (i!, i
∗) is an adjoint pair.

iii) In particular, for every OX -module F , we have a canonical morphism
i!(F|U )→ F . Show that this is injective.

Lemma 10.2.7. Every injective OX-module is flasque.

Proof. Let U be an open subset of X and let I be an injective OX -module.
We need to show that the restriction map I(X)→ I(U) is surjective.

We use the definition in the above exercise. Note that for every OX -module F ,
we have a canonical isomorphism

HomOX

(
i!(OU ),F

)
' HomOU

(OU ,F|U ) ' F(U).

Since I is an injective OX -module, the inclusion i!(OU ) ↪→ OX induces a surjective
map

I(X) = HomOX
(OX , I)→ HomOX

(
i!(OU ), I) ' I(U),

which is the map given by restriction. This completes the proof. �

Proposition 10.2.8. If M is a flasque OX-module, then Hi(X,M) = 0 for
all i ≥ 1. In particular, for every OX-module F , if F →M• is a flasque resolution
(that is, all Mi are flasque OX-modules), then we have a canonical isomorphism

Hi(X,F) ' Hi
(
Γ(X,M•)

)
.

Proof. Consider an injective resolution M→ I•. If M′ = coker(M→ I0),
then we have a short exact sequence

0→M→ I0 →M′ → 0.

SinceM is flasque and I0 is injective (hence flasque, by Lemma 10.2.7), we conclude
thatM′ is flasque by Corollary 10.2.5. On the other hand, the long exact sequence
in cohomology associated to the above short exact sequence gives

(10.2.1) Hi(X,M′) ' Hi+1(X,M) for i ≥ 1, and

(10.2.2) H1(X,M) = coker
(
Γ(X, I0)→ Γ(X,M′)

)
= 0,

where the last equality in (10.2.2) follows from the fact that M is flasque, by
Lemma 10.2.4. We thus have the vanishing in the statement for i = 1 and the
assertion for i ≥ 2 follows by induction using (10.2.1). The last assertion in the
proposition now follows from Proposition 10.1.24. �
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Example 10.2.9. While it is basically impossible to write down an explicit
injective resolution of an OX -module F , it is very easy to write down a flasque
resolution. In fact, we obtain a canonical such resolution, as follows. Given an
OX -module F , let M0 be given by

Γ(U,M0) :=
∏
x∈U
Fx,

with the restriction maps being given by projections onto the corresponding fac-
tors. Note that Γ(U,M0) is a module over OX(U), where f ∈ OX(U) acts via
(fx)x∈U . This makesM0 an OX -module, which is clearly flasque. Finally, we have
an injective morphism

F →M0, s→ (sx)x∈U .

We can then iterate this construction for coker(F → M0) and we thus obtain a
flasque resolution F →M•. It is clear that this is a functorial construction.

Remark 10.2.10. Note that the flasque resolution constructed in the above
example is independent of the structure sheaf OX . Since we can compute cohomol-
ogy using flasque resolutions, we see that for every OX -module F , the R-modules
Hi(X,F) are independent of OX (as long as OX is a sheaf of R-algebras).

Remark 10.2.11. For every OX -module F on X and every open subset U
of X, consider Hi(U,F|U ), that with a slight abuse of notation we will denote
by Hi(U,F). Note that the functors

(
Hi(U,−)

)
i≥0

are the derived functors of

Γ(U,−) on OX -mod. Indeed, it is clear that they form a δ-functor, and if I is an
injective OX -module, then I is flasque by Lemma 10.2.7, hence I|U is flasque, and
thus Hi(U, I) = 0 for i ≥ 1 by Proposition 10.2.8. The natural transformation
Γ(X,−) → Γ(U,−) given by restriction of sections thus extends uniquely to a
morphism of δ-functors given by

(10.2.3) Hi(X,F)→ Hi(U,F) for i ≥ 0

(see Example 10.1.21). Explicitly, the morphisms in (10.2.3) can be described
as follows: given an injective (or flasque) resolution F → I•, we have a flasque
resolution F|U → I•|U , and the canonical morphism of complexes

Γ(X, I•)→ Γ(U, I•|U )

induces after applying Hi(−) the required morphisms.
We note that these morphisms (10.2.3) are functorial with respect to the in-

clusion maps between the open subsets of X. This follows, for example, from the
above explicit description.

Example 10.2.12. Let X be an irreducible algebraic variety and consider the
short exact sequence of sheaves of Abelian groups on X:

0→ O∗X → k(X)→ k(X)/O∗X → 0.

SinceX is irreducible, every constant sheaf onX is flasque, and thusH1
(
X, k(X)) =

0 by Proposition 10.2.8. The long exact sequence in cohomology for the abort short
exact sequence therefore gives

Γ
(
X, k(X)

)
→ Γ

(
X, k(X)/O∗X

)
= Cart(X)→ H1(X,O∗X)→ 0.

We thus see that

H1(X,O∗X) ' Cart(X)/PCart(X) ' Pic(X).
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We note that the isomorphism Pic(X) ' H1(X,O∗X) holds even if X is not irre-

ducible; the argument in the general setting makes use of Čech cohomology (see for
example [Har77, Exercise III.4.5])

10.2.2. Higher-direct images. Suppose now that f : (X,OX)→ (Y,OY ) is
a morphism of ringed spaces. We have the left exact functor

f∗ : OX -mod→ OY -mod.

Its derived functors are denoted by Rif∗, for i ≥ 0; the functor Rif∗ is the ith

higher direct image functor. We have a canonical isomorphism R0f∗ ' f∗ and for
every short exact sequence of OX -modules

0→ F ′ → F → F ′′ → 0,

we have a long exact sequence for higher direct images

. . .→ Rif∗(F ′)→ Rif∗(F)→ Rif∗(F ′′)→ Ri+1f∗(F ′)→ . . . .

Remark 10.2.13. If Y is a point and OY is given by the commutative ring
R, then a morphism (X,OX)→ (Y,OY ) corresponds to an R-algebra structure for
OX , and the functor f∗ gets identified with Γ(X,−). Therefore in this case the
functors Rif∗ get identified to Hi(X,−).

Remark 10.2.14. It is clear from definition that if F is a flasque OX -module,
then f∗(F) is flasque, too.

Given a morphism f : (X,OX)→ (Y,OY ) as above and an OX -module F , for
every open subset U of Y , we have on Hi

(
f−1(U),F) a structure of OX

(
f−1(U)

)
-

module, and thus a structure of OY (U)-module. Moreover, if V is an open subset
of U , then we have a canonical morphism of OY (U)-modules

Hi
(
f−1(U),F

)
→ Hi

(
f−1(V ),F

)
(see Remark 10.2.11). This shows that we get a presheaf of OY -modules that we

denote R̃if∗(F). It is clear that each R̃if∗(−) is a functor.

Proposition 10.2.15. With the above notation, we have a functorial isomor-
phism

Rif∗(F) ' R̃if∗(F)+.

Proof. Note that the sequence
(
R̃if∗(−)+

)
i≥0

has a natural structure of δ-

functor. Indeed, given any exact sequence of OX -modules

0→ F ′ → F → F ′′ → 0,

for every open subset U of X, we have a long exact sequence

(10.2.4) . . .→ Hi
(
f−1(U),F ′)→ Hi

(
f−1(U),F)→ Hi

(
f−1(U),F ′′)→

→ Hi+1
(
f−1(U),F ′)→ . . . .

By varying the open subset U , we see that we get a morphism of presheaves

R̃if∗(F ′′)→ R̃i+1f∗(F ′),

and an induced morphism between the associated sheaves. The fact that the corre-
sponding complex of sheaves is exact follows from the exact sequences (10.2.4) by
passing to stalks.
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Note that for i = 0 we have

R̃0f∗(F)+ ' f∗(F) ' R0f∗(F) for all F .
Moreover, if I is an injective OX -module, then it is flasque by Lemma 10.2.7 and

thus R̃if∗(I) = 0 for i ≥ 1 by Proposition 10.2.8, hence the same vanishing holds for
the associated sheaves. The uniqueness assertion in Theorem 10.1.19 then gives an

isomorphism of δ-functors between
(
Rif∗(−)

)
i≥0

and
(
R̃if∗(−)+

)
i≥0

. This implies,

in particular, the assertion in the proposition. �

Corollary 10.2.16. For every morphism of ringed spaces f : (X,OX) →
(Y,OY ) and every flasque OX-module M, we have Rif∗(M) = 0 for all i ≥ 1.
In particular, given any OX-module F and any flasque resolution F → M•, we
have a canonical isomorphism

Rif∗(F) ' Hi
(
f∗(M•)

)
for all i ≥ 0.

Proof. The first assertion follows from the proposition, since R̃if∗(M) = 0
for all i ≥ 1 by Proposition 10.2.8. The second assertion is then a consequence of
Proposition 10.1.24. �

10.2.3. Higher direct images of quasi-coherent sheaves. Our next goal
is to show that for morphisms of algebraic varieties, higher direct images preserve
quasi-coherence. The key result is the following

Proposition 10.2.17. For every algebraic variety X and every quasi-coherent
sheaf F , there is an injective morphism F ↪→ G, where G is a flasque quasi-coherent
sheaf.

The proof is somewhat involved. The argument we give follows [Har77, Chap-
ter III.3]. We begin with two lemmas.

Lemma 10.2.18. If A is a Noetherian ring and Q is an injective A-module,
then for every ideal a in A, the submodule

Γa(Q) := {u ∈ Q | ar · u = 0 for some r ≥ 1}
is injective, too

Proof. By Baer’s criterion (see Proposition I.1.2), it is enough to show that
for every ideal b in A, the induced morphism

(10.2.5) Γa(Q) = HomA

(
A,Γa(Q)

)
→ HomA

(
b,Γa(Q)

)
is surjective. Let φ : b→ Γa(Q). Since b is finitely generated, it follows that there
is r ≥ 1 such that

φ(ar · b) = ar · φ(b) = 0.

On the other hand, it follows from the Artin-Rees lemma (see Lemma C.4.2) that
there is n such that an ∩ b ⊆ ar · b, hence φ induces a morphism

φ : b/(an ∩ b)→ Γa(Q) ⊆ Q.
Since Q is an injective A-module, the injective morphism

ι : b/(an ∩ b) ↪→ A/an

induces a surjective morphism

HomA(A/an, Q)→ HomA

(
b/(an ∩ b), Q

)
.
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We can thus find a morphism ψ : A/an → Q such that ψ ◦ ι = φ. Note that

Im(ψ) ⊆ {u ∈ Q | an · u = 0} ⊆ Γa(Q),

hence by composing ψ with the projection A → A/an, we obtain a morphism
ψ : A→ Γa(Q), whose restriction to b is equal to φ. �

Lemma 10.2.19. If X is an affine variety, with A = O(X), then for every

injective A-module Q, the quasi-coherent sheaf Q̃ is flasque.

Proof. We need to show that for every open subset U ⊆ X, the restriction
map

(10.2.6) Q = Γ(X, Q̃)→ Γ(U, Q̃)

is surjective. Let us consider first the case when U = DX(f), for some f ∈ A, in

which case Γ(U, Q̃) = Qf . Consider the following non-decreasing chain of ideals in
A:

AnnA(f) ⊆ AnnA(f2) ⊆ . . . ⊆ AnnA(fn) ⊆ . . . .
Since A is Noetherian, it follows that there is r ≥ 1 such that AnnA(fr) =
AnnA(fn) for all n ≥ r. Given an element u ∈ Qf , we can write it as v

fs , for some

v ∈ Q and s ≥ 0. We define a morphism φ : (fr+s)→ Q given by φ(afr+s) = afrv.
Note that this is well-defined: if afr+s = bfr+s, then our choice of r implies
afr = bfr, hence afrv = bfrv. Since Q is an injective module, there is a morphism
ψ : A→ Q that extends φ. If w = ψ(1), then

frv = φ(fr+s) = ψ(fr+s) = fr+sw,

hence u = v
fs = w

1 lies in the image of Q. We are thus done if U is a principal affine

open subset of X.

We now consider the general case. Consider u ∈ Γ(U, Q̃). If f ∈ A is such that
DX(f) ⊆ U , it follows from the case we have already proved that there is s ∈ Q
such that s|DX(f) = u|DX(f). After replacing u by u − s|U , we may thus assume
that u|DX(f) = 0. Since DX(f) = DU (f |U ), it follows from Exercise 8.4.30 that
u is annihilated by some power of f . Moreover, we claim that if our original u
was annihilated by some power of an element g ∈ A, we may choose s that is also
annihilated by some power of g, and thus the same will be true for u− s.

In order to prove the claim, consider the subsheaf G of Q̃ given by

Γ(V,G) = {v ∈ Γ(V, Q̃) | grv = 0 for some r ≥ 0}.

It is straightforward to see that G is a quasi-coherent sheaf and thus, with the

notation in Lemma 10.2.18, it is equal to Γ̃(g)(Q). Since Γ(g)(Q) is injective by the
lemma and u ∈ Γ(U,G), it follows from what we have already proved that we can
find s ∈ Γ(g)(Q) such that s|DX(f) = u|DX(f). This proves our claim.

Suppose now that U = DX(f1)∪ . . .∪DX(fn), for some f1, . . . , fn ∈ A. Using
repeatedly the above claim, we see that we may assume that for every i, u is
annihilated by some power of fi; equivalently, we have u|DX(fi) = 0 for all i.

Therefore u = 0, in which case it is trivially in the image of Γ(X, Q̃). This completes
the proof of the lemma. �

We can now show that every quasi-coherent sheaf can be embedded in a flasque
quasi-coherent sheaf.
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Proof of Proposition 10.2.17. Note first that the assertion is clear if X is
affine by Lemma 10.2.19, since every O(X)-module can be embedded in an injective
module. For an arbitrary variety X, consider an affine cover X = U1 ∪ . . .∪Ur and
let αi : Ui ↪→ X be the inclusion map for 1 ≤ i ≤ r. Since F is quasi-coherent, the
restriction F|Ui

is quasi-coherent, and since Ui is affine, we can find an injective
morphism F|Ui

↪→ Gi, with Gi quasi-coherent and flasque on Ui. Each sheaf αi∗(G)
is quasi-coherent by Proposition 8.4.5 and it is clearly flasque. The assertion in the
proposition now follows from the injective homomorphism:

F ↪→
r⊕
i=1

αi∗(F|Ui
) ↪→

r⊕
i=1

αi∗(Gi).

�

Proposition 10.2.20. If f : X → Y is a morphism of algebraic varieties, then
for every quasi-coherent OX-module F , the sheaves Rif∗(F) are quasi-coherent for
all i ≥ 0. Moreover, for every open subset U of Y , we have isomorphisms

(10.2.7) Γ
(
U,Rif∗(F)

)
' Hi

(
f−1(U),F

)
for all i ≥ 0.

Proof. A straightforward inductive argument based on Proposition 10.2.17
shows that we can find a resolution F → M•, with each Mi quasi-coherent and
flasque. In this case Corollary 10.2.16 implies that we have isomorphisms

Rif∗(F) ' Hi
(
f∗(M•)

)
.

Since all sheaves f∗(Mp) are quasi-coherent and kernels and cokernels of morphisms
of quasi-coherent sheaves are quasi-coherent, we conclude that Rif∗(F) is quasi-
coherent. Moreover, since the functor Γ(U,−) is exact on quasi-coherent sheaves,
it follows that

Γ
(
U,Rif∗(F)

)
' Γ

(
U,Hi (f∗(M•))

)
' Hi

(
Γ (U, f∗(M•))

)
' Hi

(
Γ
(
f−1(U),M•

))
' Hi

(
f−1(U),F

)
,

where the last isomorphism follows from the fact that the M•|f−1(U) is a flasque
resolution of F|U . �

Remark 10.2.21. In fact we can be more precise about the isomorphisms in
(10.2.7). Note that it follows from Proposition 10.2.15 that for every OX -module
F and every affine open subset U ⊆ X, we have functorial morphisms of OX(U)-
modules

Hi
(
f−1(U),F

)
→ Γ

(
U,Rif∗(F)

)
for i ≥ 0.

We claim that these, in fact, are isomorphisms. Indeed, note that the isomorphisms
(10.2.7) are compatible with the maps induced by restrictions to open subsets. We
thus deduce that for every affine open subset U ⊆ Y and every a ∈ OY (U), the
induced morphism

Hi
(
f−1(U),F

)
a
→ Hi

(
f−1(DU (a)),F

)
is an isomorphism. Then the assertion follows from Proposition 10.2.15 and Re-
mark 8.7.16

Exercise 10.2.22. Show that if F is a sheaf (say, of Abelian groups) on X and
there is an open cover X =

⋃
i∈I Ui such that F|Ui

is flasque for every i, then F is
flasque.
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Exercise 10.2.23. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Show that if E is a locally free sheaf on Y , then for every OX -module F on X, we
have a canonical isomorphism

Rpf∗
(
f∗(E)⊗OX

F
)
' E ⊗OY

Rpf∗(F) for all p ≥ 0.

10.3. Singular vs. sheaf cohomology, and the de Rham theorem

In this section we show that on nice spaces, singular cohomology can be com-
puted as sheaf cohomology, and use this approach to relate singular cohomology and
De Rham cohomology on smooth manifolds. We follow the approach in [God73].
For the basic facts on singular cohomology we refer to [Hat02] and for those on
smooth manifolds to [War83].

10.3.1. The étale space of a presheaf. Since we will be dealing with sec-
tions of sheaves over closed subsets of the ambient space, it will be convenient to
interpret these in terms of the étale space of a sheaf (or presheaf) that we now
introduce. Let X be a topological space and F a presheaf on X (say, of Abelian
groups). We let Et(F) =

⊔
x∈X Fx and consider the map π : Et(F) → X that

maps the stalk Fx to x ∈ X. For every open subset U of X and every s ∈ F(U),
consider the map s̃ : U → Et(F) given by s̃(x) = sx ∈ Fx (therefore π

(
s̃(x)

)
= x

for all x ∈ U).
We consider on Et(F) the strongest topology that makes all maps s̃ continuous;

explicitly, a subset V ⊆ Et(F) is open if and only if for every map s̃ as above, the
subset s̃−1(V ) of U is open. Note that π is continuous: for every U and s as above,
and for every open subset W in X, we see that s̃−1

(
π−1(W )

)
= U ∩W is an open

subset of U . In the next remarks, we record some properties of Et(F).

Remark 10.3.1. For every open subset U of X and every s ∈ F(U), the subset
s̃(U) of Et(F) is open. Indeed, given any other open subset V of X and t ∈ F(V ),
the subset

t̃−1
(
s̃(U)

)
= {x ∈ U ∩ V | sx = tx}

is clearly open in V .

Remark 10.3.2. The map π is a local homeomorphism onto X. Indeed, every
point u ∈ Et(F) lies in some subset of the form s̃(U), and this is mapped by π
homeomorphically onto U , with inverse s̃.

Remark 10.3.3. The subsets s̃(U), with U open in X and s ∈ F(U), give a
basis for the topology of Et(F). Indeed, if V is an open subset in Et(F) and v ∈ V ,
then v = sx for some s ∈ F(U), where U is an open subset of X. If U ′ = s̃−1(V )

and s′ = s|U ′ , then v ∈ s̃′(U ′) ⊆ V .

Remark 10.3.4. It follows from definition that we have a morphism of presheaves
φ : F → G, where G is the sheaf of continuous sections of π (see Example 2.1.7); this
maps s ∈ F(U) to s̃. We claim that G is the sheaf F+ associated to F and φ is the
canonical morphism. Indeed, it follows from the previous remark that a continuous
section of π over an open subset U ⊆ X consists of a map f : U →

⊔
x∈U Fx such

that f(x) ∈ Fx for every x ∈ U and for every open subset V of X and section
s ∈ F(V ), the inverse image

f−1
(
s̃(V )

)
= {x ∈ U ∩ V | f(x) = sx}
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is open in U . It is clear that this condition holds if and only if for every x ∈ U ,
there is an open neighborhood V ⊆ U of x and s ∈ F(V ) such that f(x) = sx
for all x ∈ V . We thus see that G(U) = F+(U), as defined in §8.1.1, and φ is the
canonical morphism.

Remark 10.3.5. It is clear that the construction of the étale space of a presheaf
is functorial: if u : F → G is a morphism of presheaves, then the induced maps at
the level of stalks give a map Et(u) : Et(F)→ Et(G). This is continuous: for this,
it is enough to show that its restriction to each subset s̃(U) is continuous, where

s ∈ F(U), but the restriction of Et(u) to this open subset is equal to ũ(s) ◦ π.
It is clear that if φ : F → F+ is the canonical morphism, then Et(φ) is a

homeomorphism.

Remark 10.3.6. Suppose now that F is a sheaf and Z is a subset of X, with
i : Z ↪→ X being the inclusion. We put F|Z = i−1(F). We claim that Et(F|Z)
is homeomorphic to π−1(Z), with the homeomorphism being compatible with the
maps to Z. Indeed, recall first that for every x ∈ Z, we have a canonical iso-
morphism i−1(F)x ' Fx, hence we may and will identify Et(F|Z) and π−1(Z).
Moreover, by definition, F|Z is the sheaf associated to the presheaf that maps
V ⊆ Z to lim−→

V⊆U
F(U). It is thus easy to see that a basis for the topology on Et(F|Z)

is given by the sets s̃(U ∩Z) = π−1(Z)∩ s̃(U), where U ⊆ X is open and s ∈ F(U).
Therefore the topology on Et(F|Z) is the induced topology.

If F is a sheaf on X and Z is an arbitrary subset of X, we put

F(Z) = Γ(Z,F) := Γ(Z,F|Z)

(of course, if U is open, we don’t get anything new). It follows from Remark 10.3.6
that we can identify F(Z) with the set continuous maps f : Z → Et(F) such that
π
(
f(x)

)
= x for all x ∈ Z. Moreover, if W is a subset of Z, then the canonical map

F(Z)→ F(W ) is given by the restriction of sections of π.

Remark 10.3.7. It follows from the above description of the sections of F on
arbitrary subsets of X that if X =

⋃
i∈I Zi is a locally finite3 cover of X by closed

subsets, then the following sequence induced by the restriction maps:

0→ F(X)→
∏
i∈I
F(Zi)→

∏
i,j∈I

F(Zi ∩ Zj)

is exact. Indeed, given a family of sections si ∈ F(Zi) such that

si|Zi∩Zj = sj |Zi∩Zj for all i, j ∈ I,

it is clear that we get a unique map f : X → Et(X) such that f(x) = si(x) for all
i ∈ I and x ∈ Zi. In order to check that f is continuous, it is enough to do this
locally, and we thus reduce to the case where we have only finitely many Zj . In this
case, f is continuous since each f |Zj

is continuous (the inverse image of a closed
subset is a finite union of closed subsets, and thus closed).

3A cover X =
⋃

j∈J Vj is locally finite if every x ∈ X has an open neighborhood V that

intersects only finitely many of the Vj .



10.3. SINGULAR VS. SHEAF COHOMOLOGY, AND THE DE RHAM THEOREM 243

10.3.2. Soft sheaves on paracompact spaces. We now assume that X is
a paracompact topological space; recall that this means that X is Hausdorff and for
every open cover X =

⋃
i∈I Ui, there is a locally finite open cover X =

⋃
j∈J Vj that

refines it. A useful property is that if X =
⋃
j∈J Vj is a locally finite open cover

of a paracompact space X, then there is another open cover X =
⋃
j∈JWj such

that Wj ⊆ Vj for all j ∈ J . A special case of this says that if F ⊆ U are subsets
of X, with F closed and U open, then there is an open subset V of X such that
F ⊆ V ⊆ V ⊆ U (this means that X is a normal space). We also note that every
closed subset of a paracompact space is paracompact: this is easy to see using the
definition.

Example 10.3.8. Every topological manifold (assumed to be Hausdorff and
with countable basis of open subsets) is paracompact. Every CW-complex is para-
compact.

Definition 10.3.9. A sheaf of Abelian groups F on X is soft if for every closed
subset Z of X, the restriction map

F(X)→ F(Z)

is surjective.

Lemma 10.3.10. Let X be a paracompact topological space and F a sheaf of
Abelian groups on X.

i) For every closed subset Z of X and every s ∈ F(Z), there is an open
subset U containing Z and t ∈ F(U) such that t|Z = s.

ii) If F is flasque, then it is soft.

Proof. Let us prove i). By definition of F|Z , we see that we have a family
of open subsets (Ui)i∈I , with Z ⊆

⋃
i∈I Ui and sections si ∈ F(Ui) such that

si|Ui∩Z = s|Ui∩Z for all i ∈ I. We consider the cover of X by the Ui and by X rZ;
after passing to a suitable refinement, we may assume that this a locally finite cover.
We can then find open subsets Vi, with Vi ⊆ Ui, and such that Z ⊆

⋃
i∈I Vi.

Given any x ∈ Z, we choose an open neighborhood U(x) of x that intersects
only finitely many of the Uj and such that U(x) is contained in some Vi. We put

s(x) = si|U(x). In particular, s(x) and s take the same value at x. If x 6∈ Vj for some

j, we may replace U(x) by U(x)r Vj . Since U(x) intersects only finitely many Uj ,
it follows that after repeating this operation finitely many times, we may assume
that whenever U(x) ∩ Vj 6= ∅, we have x ∈ Vj ⊆ Uj . After further shrinking U(x),

we may thus assume, in addition, that for such j we have U(x) ⊆ Uj . Since s(x)

and sj take the same value at x, after further shrinking U(x), we may assume that

for all such j, we have s(x) = sj |U(x).
We put U =

⋃
x∈Z U(x). It is clear that U is an open neighborhood of Z. We

claim that

(10.3.1) s(x)|U(x)∩U(y) = s(y)|U(x)∩U(y) for all x, y ∈ Z.

If z ∈ U(x)∩U(y), then z ∈ V`, for some `. Since U(x)∩V` 6= ∅ and U(y)∩V` 6= ∅,
then by construction we have U(x), U(y) ⊆ U` and

s`|U(x) = s(x) and s`|U(y) = s(y),

which gives (10.3.1). We can thus find t ∈ F(U) such that t|U(x) = s(x) for all
x ∈ Z. In particular, we have tx = sx for every x ∈ Z, and thus t|Z = s.
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�

Lemma 10.3.11. Let X be a paracompact topological space. Given a short exact
sequence of sheaves of Abelian groups

0 −→ F ′ φ−→ F ψ−→ F ′′ −→ 0,

with F ′ soft, the corresponding sequence of global sections

0 −→ F ′(X) −→ F(X) −→ F ′′(X) −→ 0

is exact.

Proof. The proof is similar to that of Lemma 10.2.4. We only need to prove
that for every section s′′ ∈ F ′′(X), there is s ∈ F(X) such that ψ(s) = s′′. By
definition, we can find an open cover X =

⋃
i∈I Ui and sections si ∈ F(Ui) such

that ψ(si) = s|Ui
for all i. After passing to a refinement, we may assume that

the cover is locally finite. We may now find another cover X =
⋃
i∈I Vi such that

Vi ⊆ Ui for all i ∈ I.
For every J ⊆ I, put ZJ =

⋃
i∈J Vj . We consider the set P of pairs (J, t), where

J ⊆ I and t ∈ F(ZJ) is such that ψ(t) = s|ZJ
. We order it by (J1, t1) ≤ (J2, t2)

if J1 ⊆ J2 and t2|ZJ1
= t1. It is straightforward to see that we may apply Zorn’s

lemma to choose a maximal element (J, s) of P. If J = I, then ZJ = X, and
ψ(s) = s′′.

Suppose now that J 6= I and let i ∈ I r J . Since ψ(si|Vi∩ZJ
) = ψ(s|Vi∩ZJ

), it
follows that

si|Vi∩ZJ
− s|Vi∩ZJ

= φ(s′),

for some s′ ∈ F ′(Vi ∩ ZJ). Since F ′ is soft, we can find v ∈ F ′(X) such that
v|Vi∩ZJ

= s′. After replacing si by si−φ(v|Ui
), we may thus assume that si|Vi∩ZJ

=

s|Vi∩ZJ
= φ(s′), hence by Remark 10.3.7 we can find a section t′ ∈ F(ZJ∪{i}) such

that t′|ZJ
= t and t′|Vi

= si|Vi
. In this case ψ(t′) = s′′|ZJ∪{i} , contradicting the

maximality of J . �

Lemma 10.3.12. If X is a paracompact topological space and we have a short
exact sequence of sheaves of Abelian groups on X

0→ F ′ → F → F ′′ → 0,

with F ′ soft, then F is soft if and only if F ′′ is soft.

Proof. If Z is a closed subset of X, then we have a commutative diagram

0 // F ′(X)

��

// F(X)

��

// F ′′(X)

��

// 0

0 // F ′(Z) // F(Z) // F ′′(Z) // 0.

The rows are exact by Lemma 10.3.11 (note that if F ′ is soft, then clearly F ′|Z is
soft, and Z is paracompact, being closed in X). Moreover, since F ′ is soft, the first
vertical map is surjective, hence the second one is surjective if and only if the third
one is. �
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Proposition 10.3.13. If X is a paracompact topological space and E is a soft
sheaf of Abelian groups on X, then

Hi(X, E) = 0 for all i ≥ 1.

In particular, if OX is a sheaf of rings on X and an OX-module F has a resolution
F → E•, with all E i soft OX-modules, then we have a canonical isomorphism

Hi(X,F) ' Hi
(
Γ(X, E•)

)
.

Proof. We argue by induction on i ≥ 1. Consider a short exact sequence of
OX -modules

0→ E → A → B → 0,

with A flasque. By Lemma 10.3.10, we see that A is soft, hence B is soft by
Lemma 10.3.12. The long exact sequence in cohomology for the above short exact
sequence gives

0→ Γ(X, E)→ Γ(X,A)
α→ Γ(X,B)→ H1(X, E)→ H1(X,A).

Note that the map α is surjective by Lemma 10.3.11, and since A is flasque, we have
Hi(X,A) = 0 for i ≥ 1 by Proposition 10.2.8. First, we conclude thatH1(X, E) = 0,
completing the proof of the case i = 1 in the induction.

Moreover, the long exact sequence in cohomology gives isomorphisms

Hi(X, E) ' Hi−1(X,B) for all i ≥ 2.

Since B is soft, we have Hi−1(X,B) = 0 by induction, and thus Hi(X, E) = 0.
The last assertion in the proposition is now a direct consequence of Proposi-

tion 10.1.24. �

10.3.3. Singular cohomology as sheaf cohomology. Given a topological
space X and an Abelian group A, we temporarily denote by Hi

sing(X,A) the ith

singular cohomology group of X with coefficients in A. If R is a commutative ring
and A is an R-module, then Hi

sing(X,A) has a natural structure of R-module.
Our goal is to prove is to prove the following result relating sheaf cohomology

and singular cohomology on “nice” topological spaces.

Theorem 10.3.14. If X is a paracompact, locally contractible4 topological space,
then for every commutative ring R and every R-module A, we have a canonical
isomorphism of R-modules

Hi(X,A) ' Hi
sing(X,A).

Remark 10.3.15. Note that one can’t hope to have an isomorphism as in the
above theorem for all X. For example, we have H0(X,Z) ' Z(IX), where IX is the
set of connected components of X, while H0

sing(X,Z) ' Z(JX), where JX is the set
of path-wise connected components of X.

Remark 10.3.16. In fact, it is possible to prove the above theorem without
assuming that X is paracompact, see [Sel16].

Remark 10.3.17. An obvious example of a locally contractible space is a topo-
logical manifold. Other examples are provided by CW-complexes (see [Hat02,
Proposition A.4]).

4A topological space is locally contractible if every point has a basis of contractible open
neighborhoods.
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The key ingredient in the proof of the above theorem is the following general
proposition about certain presheaves on paracompact spaces.

Proposition 10.3.18. Let X be a paracompact topological space and F a
presheaf of Abelian groups on X that satisfies the following condition: for every
open cover X =

⋃
i∈I Ui and for every si ∈ F(Ui) such that si|Ui∩Uj

= sj |Ui∩Uj

for all i and j, there is s ∈ F(X) such that s|Ui
= si for all i. If F → F+ is the

canonical morphism to the associated sheaf, then the morphism F(X)→ F+(X) is
surjective.

Proof. A section s ∈ F+(X) is given by a map s : X → tx∈XFx such that
we have an open cover X =

⋃
i∈I Ui and sections si ∈ F(Ui) such that s(x) = (si)x

for every x ∈ Ui. After passing to a refinement, we may assume that the cover is
locally finite. We choose another open cover X =

⋃
i∈I U

′
i with U ′i ⊆ Ui for all i.

Note that if x ∈ Ui ∩ Uj , then (si)x = (sj)x, hence there is an open neighborhood
Vi,j(x) ⊆ Ui ∩ Uj such that si|Vi,j(x) = sj |Vi,j(x).

Given any x ∈ X, we choose an open neighborhood V (x) of x, such that the
following conditions are satisfied:

1) If x ∈ Ui ∩ Uj , then V (x) ⊆ Vi,j(x).
2) If x ∈ Ui, then V (x) ⊆ Ui.
3) If x ∈ U ′i , then V (x) ⊆ U ′i .
4) If V (x) ∩ U ′i 6= ∅, then x ∈ U ′i .

This is possible since the cover given by the Ui is locally finite, hence every x lies
in only finitely many Ui. Note that in this case we also have: if x, y ∈ X are such
that V (x)∩ V (y) 6= ∅, then there is i such that V (x), V (y) ⊆ Ui. Indeed, if x ∈ U ′i ,
then by 3) we have V (x) ⊆ U ′i ; therefore V (y)∩U ′i 6= ∅, and thus y ∈ U ′i by 4). We
thus get V (y) ⊆ Ui by 2).

For every x ∈ X, it follows from 2) that if x ∈ Ui, then V (x) ⊆ Ui, and we
put α(x) = si|V (x); this does not depend on i by 1). Moreover, we have seen that
if V (x) ∩ V (y) 6= ∅, then there is i such that V (x), V (y) ⊆ Ui, in which case it is
clear that

α(x)|V (x)∩V (y) = si|V (x)∩V (y) = α(y)|V (x)∩V (y).

By hypothesis, we can find t ∈ F(X) such that t|V (x) = α(x) for all x ∈ X. In

particular, we have tx = α
(x)
x = s(x) for every x ∈ X, and thus s = φ(t). �

We can now relate sheaf cohomology and singular cohomology.

Proof of Theorem 10.3.14. Recall that for every p ≥ 0, a p-simplex in X
is a continuous map ∆p → X from the standard p-dimensional simplex to X. The
group of p-chains in X, denoted Cp(X), is the free Abelian group on the set of
p-simplices and the R-module of p-cochains with values in A, denoted Cp(X,A), is
equal to HomZ

(
Cp(X), A

)
. Therefore a p-cochain can be identified to a map from

the set of p-simplices in X to A. For every p ≥ 0 we have maps ∂ : Cp(X,A) →
Cp+1(X,A) induced by corresponding maps Cp+1(X)→ Cp(X). Then C•(X,A) is
a complex and we have

(10.3.2) Hp(X,A) = Hp
(
C•(X,A)

)
.

Note that if f : Y → X is a continuous map, then we have a morphism of complexes
C•(X,A)→ C•(Y,A).
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Since A is fixed, we will denote by CpX the presheaf that associates to an open
subset of X the Abelian group Cp(U,A), with the restriction map corresponding to
U ⊆ V given by the map CpX(V,A)→ CpX(U,A) induced by the inclusion. It is clear
that we have a complex C•X of presheaves on X. For every p, let SpX := (CpX)+, so
that we also have a complex S•X of sheaves of R-modules on X. Note that we have
a morphism of sheaves A→ C0

X that associates to s ∈ Γ(X,A), viewed as a locally
constant function X → A, the cocycle which associates to every 0-simplex in A,
viewed as a point x ∈ X, the element s(x) ∈ A.

We claim that A → S•X is a resolution. Note first that if U is a contractible
open subset of X, then Hp(U,A) = 0 for all p ≥ 1 and H0(U,A) = A, hence
Γ(U,A) → Γ(U, C•X) is a resolution. Since X is locally contractible, we conclude
that for every x ∈ X, at the level of stalks we have a resolution A→ (C•X)x = (S•X)x.
This implies our claim.

If we are in a situation in which every open subset of X is paracompact (for
example, if X is a topological manifold), then it is easy to deduce from Proposi-
tion 10.3.18 that each sheaf SpX is flasque. In general, we will show only that each
sheaf SpX is soft, and the argument is a bit more involved. Note first that if Y is any
subspace of X, with i : Y ↪→ X being the inclusion map, then for every open subset
U of X, we have a canonical morphism of R-modules Cp(U,A)→ Cp(U ∩Y,A). We
thus obtain a morphism of presheaves CpX → i∗CpY and thus a morphism of sheaves
of R-modules SpX → i∗SpY . By the adjoint property of (i−1, i∗), this corresponds to
a morphism of sheaves SpX |Y → S

p
Y . It is clear that if we restrict this to an open

subset V of X that is contained in Y , then both sides are canonically isomorphic
to SpV and the map is the identity.

We can now show that SpX is soft. Suppose that Z is a closed subset of X
and s ∈ SpX(Z). By assertion i) in Lemma 10.3.10, there is an open subset U of
X containing Z, and sU ∈ SpX(U) such that sU |Z = s. Let us choose an open

subset V of X, with Z ⊆ V ⊆ V ⊆ U . Let t ∈ Sp
V

(V ) be the image of (sU )|V via

the morphism SpX |V → S
p

V
. Since X is paracompact, V is paracompact, too. It is

straightforward to see that Cp
V

satisfies the hypothesis of Proposition 10.3.18: given

an open cover V =
⋃
i∈I Ui and cochains αi ∈ SpV (Ui) such that αi|Ui∩Uj

= αj |Ui∩Uj

for all i and j, we define α ∈ Sp
V

(V ) such that for a p-simplex σ in V , we have

α(σ) = αi(σ) if the image of σ lies in some Ui, and 0 otherwise; it is clear that α is
well-defined and α|Ui

= αi for all i. We conclude, using the proposition, that t is
the image of some t′ ∈ Cp

V
(V ). Since the map CpX(X)→ Cp

V
(V ) is clearly surjective,

there is s′ ∈ CpX(X) that maps to t′. Since t|V = sU |V , it is straightforward to see
that the image of s′ in SpX(X) restricts to (sU )|V ∈ SpX(V ), and thus farther to
s ∈ SpX(Z). This shows that SpX is soft.

We thus have a soft resolution A→ S•X of sheaves of R-modules, hence Propo-
sition 10.3.13 gives a canonical isomorphism

(10.3.3) Hp(X,A) ' Hp
(
S•X(X)

)
.

Applying as above Proposition 10.3.18 for the sheaves CpX , we see that for every
p, we have a surjection

CpX(X)→ SpX(X).

Let V p be the kernel. This consists of the p-cochains β with the property that there
is some open cover X =

⋃
i∈I Ui such that β vanishes on each p-simplex whose image
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is contained in some of the Ui. By considering the long exact sequence associated
to the exact sequence of complexes

0→ V • → C•X(X)→ S•X(X)→ 0,

we see that if we show that Hp(V •) = 0 for all p, then we are done by the isomor-
phisms (10.3.2) and (10.3.3),

By definition, V • is the filtering direct limit of the complexes V •(U), where
U = (Ui)i∈I is an open cover of X and where V p(U) consists of the p-cochains that
vanish on U-small simplices, that is, p-simplexes in X whose image is contained in
some of the Ui. Since filtering direct limits form an exact functor, it is enough to
show that Hp

(
V •(U)

)
= 0 for all U and all p.

If CUp (X) is the subgroup of Cp(X) generated by simplices whose image is con-

tained in some open subset in U , then CU• (X) is a subcomplex of C•(X). A basic
result, proved using barycentric subdivisions, says that the inclusion

CU• (X) ↪→ C•(X)

is a homotopy equivalence5 (see [Hat02, Proposition 2.21]). In this case, applying
HomZ(−, A) gives a homotopy equivalence

u : C•(X,A)→ HomZ(CU• , A),

which thus induces isomorphisms in cohomology. On the other hand, u is a sur-
jective morphism of complexes, whose kernel is equal to V •(U). We thus conclude
using Lemma 10.1.4 that Hp

(
V •(U)

)
= 0 for all p. This completes the proof of the

theorem. �

10.3.4. The De Rham theorem. In this section we consider a smooth man-
ifold X. Recall that by assumption X is assumed to be Hausdorff and with a count-
able basis of open subsets, hence it is paracompact. Let n = dim(X). We denote
by C∞X the sheaf of smooth functions on X with values in R. For every p ≥ 0,
the sheaf EpX of smooth p-forms on X is a C∞X -module. Note that E0

X = C∞X and

EpX = 0 if p > n. For every p ≥ 0 we have a morphism of sheaves d : EpX → E
p+1
X

given by exterior differentiation such that d ◦ d = 0. Moreover, we also have an
inclusion ι : R ↪→ E0

X , where the sections of the constant sheaf R are viewed as
locally constant functions on X.

Definition 10.3.19. With the above notation, the De Rham complex of X is
the complex of R-vector spaces

0→ E0
X(X)→ E1

X(X)→ . . .→ EnX(X)→ 0.

The pth cohomology of this complex is the De Rham cohomology R-vector space
Hp

DR(X).

The following is the main result of this section.

Theorem 10.3.20. For every smooth manifold X, we have a canonical isomor-
phism

Hp
DR(X) ' Hp(X,R) for every p ≥ 0.

By combining this with Theorem 10.3.14, we obtain the following corollary,
known as De Rham’s theorem.

5This means that there is a morphism of complexes in the opposite direction such that both
compositions are homotopic to the respective identity maps.
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Corollary 10.3.21. For every smooth manifold X, we have a canonical iso-
morphism

Hp
DR(X) ' Hp

sing(X,R).

The proof of the above theorem will follow from the following two lemmas.

Lemma 10.3.22. Every C∞X -module is a soft sheaf.

Proof. Let F be a C∞X -module and let s ∈ F(Z), where Z is a closed subset
of X. By assertion i) in Lemma 10.3.10, there is an open subset U of X, containing
Z, and t ∈ F(U), such that t|Z = s. Let us choose open subsets U1 and U2 such
that

Z ⊆ U1 ⊆ U1 ⊆ U2 ⊆ U2 ⊆ U.
Since X is a smooth manifold, by the smooth version of Urysohn’s lemma, we can
find a global section f ∈ C∞X (X) such that f = 1 on U1 and f = 0 on X r U2.
Since F is a sheaf and (ft)|UrU2

= 0, we can find v ∈ F(X) such that v|U = ft

and v|XrU2
= 0. It is clear that v|U1

= t|U1
, hence v|Z = s. �

Lemma 10.3.23. (Poincaré) On Rn, the complex

0 −→ R
ι−→ E0

Rn(Rn)
d−→ E1

Rn(Rn)
d−→ . . .

d−→ EnRn(Rn) −→ 0

is exact.

Proof. We argue by induction on n ≥ 0, the case n = 0 being trivial.
We denote by DR•Rn the complex in the statement. Consider the smooth maps
i : Rn−1 → Rn and π : Rn → Rn−1 given by

i(x2, . . . , xn) = (0, x2, . . . , xn) and π(x1, . . . , xn) = (x2, . . . , xn).

The pull-back of differential forms gives morphisms of complexes

π∗ : DR•Rn−1 → DR•Rn and i∗ : DR•Rn → DR•Rn−1

(by convention, both i∗ and π∗ act as the identity on R). Since π ◦ i = idRn−1 , the
composition i∗ ◦π∗ is the identity on DR•Rn−1 . If we show that π∗ ◦ i∗ is homotopic
to the identity on DR•Rn , then we are done by induction.

Given a p-differential form ω on Rn, we write it as ω =
∑
|J|=p fJdxJ , where J

varies over the subsets of {1, . . . , n} with p elements, and if we order the elements
of J as j1 < . . . < jp, then dxJ = dxj1 ∧ . . . dxjp . We define an R-linear map

θp : DRp
Rn(Rn)→ DRp−1

Rn (Rn)

such that if 1 ∈ J and J ′ = J r {1}, then

θp(fdxJ) =

(∫ x1

0

f(t, x2, . . . , xn)dt

)
dxJ′ ,

and if 1 6∈ J , then θp(fdxJ) = 0. We make the convention that θ0 = 0. We claim
that the θp give a homotopy between the identity and π∗ ◦ i∗.

Indeed, if p ≥ 1, 1 ∈ J and J ′ = J r {1}, then it follows from the fundamental
theorem of calculus and the fact that we can commute integration and differentia-
tion, that

θp+1
(
d(fdxJ)

)
+ d
(
θp(fdxJ)

)
=

θp+1

∑
i 6∈J

∂f

∂xi
dxi ∧ dx1 ∧ dxJ′

+ d

((∫ x1

0

f(t, x2, . . . , xn)dt

)
dxJ′

)
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= −
∑
i 6∈J

(∫ x1

0

∂f

∂xi
(t, x2, . . . , xn)dt

)
dxi∧dxJ′+

(
∂

∂x1

∫ x1

0

f(t, x2, . . . , xn)dt

)
dx1∧dxJ′+

∑
i 6∈J

(
∂

∂xi

∫ x1

0

f(t, x2, . . . , xn)dt

)
dxi ∧ dxJ′ = f(x1, . . . , xn)dxJ .

Note also that in this case π∗
(
i∗(fdxJ)

)
= 0.

On the other hand, if p ≥ 1 and 1 6∈ J , then

θp+1
(
d(fdxJ)

)
+ d
(
θp(fdxJ)

)
= θp+1

(
∂f

∂x1
dx1 ∧ dxJ

)
=

(∫ x1

0

∂f

∂x1
(t, x2, . . . , xn)dt

)
· dxJ =

(
f(x1, . . . , xn)− f(0, x2 . . . , xn)

)
dxJ

= fdxJ − π∗
(
i∗(fdxJ)

)
.

Similarly, if p = 0, then

θ1(df) + d
(
θ0(f)

)
= θ1

(
∂f

∂x1
dx1

)
=

∫ x1

0

∂f

∂x1
(t, x2, . . . , xn)dt

= f(x1, . . . , xn)− f(0, x2, . . . , xn) = f − f ◦ i ◦ π.
Since it is also clear that θ0 ◦ ι(a) = 0 = a− π∗

(
i∗(a)

)
, this completes the proof of

the lemma. �

We can now relate De Rham cohomology and sheaf cohomology with coefficients
in R.

Proof of Theorem 10.3.20. Since every point of X has a basis of open
neighborhoods diffeomorphic to an open ball in Rn, and thus to Rn, it follows
from Lemma 10.3.23 that R → E•X is a resolution. Since all sheaves EpX are
soft by Lemma 10.3.22, we obtain the assertion in the theorem from Proposi-
tion 10.3.13. �

10.4. Cohomology of quasi-coherent sheaves on affine varieties

We prove the following theorem, due to Serre, characterizing affine varieties in
terms of the vanishing of the higher cohomology of quasi-coherent sheaves.

Theorem 10.4.1. Given an algebraic variety X, the following are equivalent:

i) X is affine.
ii) For every quasi-coherent sheaf F on X, we have Hi(X,F) = 0 for all

i ≥ 1.
iii) For every coherent ideal sheaf I ⊆ OX , we have H1(X, I) = 0.

Proof. We first prove the implication i)⇒ii). If X is affine, with O(X) = A,

and F = M̃ , for an A-module M , consider an injective resolution Q• of M . By

Lemma 10.2.19, the induced complex Q̃• is a flasque resolution of M̃ . It follows
from Proposition 10.2.8 that

Hi(X,F) ' Hi
(
Γ(X, Q̃•)

)
= Hi(Q•),

hence the left-hand side vanishes for i > 0.
Since the implication ii)⇒iii) is trivial, in order to complete the proof, it is

enough to show that if condition iii) holds, then X is affine. Given a point x ∈ X,
let U be an affine open neighborhood of x, and consider the closed subset Z =
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{x} ∪ (X r U) of X. If IZ is the radical ideal sheaf corresponding to Z, then we
have an exact sequence

0→ IZ → OX → OZ → 0.

The long exact sequence in cohomology gives

Γ(X,OX)→ Γ(Z,OZ) = Γ({x},O{x})⊕ Γ(X r U,OXrU )→ H1(X, IZ) = 0,

where the vanishing of the right-most term follows by iii). We thus conclude that
there is fx ∈ Γ(X,OX) such that fx(x) 6= 0, but fx|XrU = 0. This implies that
the open subset Ux := DX(fx) of X is contained in U ; since U is affine, it follows
that Ux is a principal affine open subset of U , hence in particular it is affine. By
quasi-compactness, we conclude that we can find f1, . . . , fr ∈ OX(X) such that

(10.4.1) X = DX(f1) ∪ . . . ∪DX(fr)

and each DX(fi) is an affine subset. If we show that f1, . . . , fr span the unit ideal
in Γ(X,OX), then we conclude that X is affine by Proposition 2.3.16.

Consider the morphism p : O⊕rX → OX , that maps the ith element of the stan-
dard basis to fi. It follows from (10.4.2) that p is surjective. If we put F = ker(p),
then it is enough to show that H1(X,F) = 0. Indeed, the long exact sequence in
cohomology for

0→ F → O⊕rX → OX → 0

then implies thatOX(X) = (f1, . . . , fr). In order to prove the vanishing ofH1(X,F),
consider the filtration of O⊕rX by

M0 = 0 ⊆M1 ⊆ . . . ⊆Mr = O⊕rX ,

where Mi is generated by the first i elements of the standard basis of O⊕rX . If we
put Fi = F ∩Mi, then for every i, with 1 ≤ i ≤ r, we have a short exact sequence

(10.4.2) 0→ Fi−1 → Fi → Fi/Fi−1 → 0.

Since we have an injection Fi/Fi−1 ↪→ Mi/Mi−1 ' OX , condition iii) gives
H1(X,Fi/Fi−1) = 0. Using the long exact sequence in cohomology correspond-
ing to (10.4.2), we deduce arguing by induction on i ≥ 0 that H1(X,Fi) = 0 for
0 ≤ i ≤ r. By taking i = r, we conclude that H1(X,F) = 0, completing the proof
of the theorem. �

Corollary 10.4.2. Given a short exact sequence of OX-modules on the alge-
braic variety X:

0→ F ′ → F → F ′′ → 0,

if F ′ and F ′′ are quasi-coherent (coherent), then F is quasi-coherent (respectively,
coherent).

Proof. For every affine open subset U of X and every f ∈ OX(U), we have a
commutative diagram with exact rows:

0 // H0(U,F ′) //

α

��

H0(U,F) //

β

��

H0(U,F ′′) //

γ

��

H1(U,F ′)

��
0 // H0

(
DU (f),F ′

)
// H0

(
DU (f),F

)
// H0

(
DU (f),F ′′

)
// H1

(
DU (f),F ′

)
.

Since F ′ is quasi-coherent and U and DU (f) are affine, we have

H1(U,F ′) = 0 = H1
(
DU (f),F ′

)
.
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Since F ′ and F ′′ are quasi-coherent, it follows that the maps α and γ in the above
diagram are isomorphisms, hence β is an isomorphism, too. Therefore F is quasi-
coherent.

If F ′ and F ′′ are coherent, then F is coherent, too: once we know that it is
quasi-coherent, the assertion follows from the fact that given a short exact sequence
of modules

0→M ′ →M →M ′′ → 0,

if M ′ and M ′′ are finitely generated, then M is finitely generated, too. �

10.5. Introduction to spectral sequences

In this section we give an introduction to spectral sequences. We begin by
discussing the spectral sequence associated to a filtered complex and then specialize
to the case of the spectral sequence of a double complex. We apply this framework
to construct Grothendieck’s spectral sequence computing the right derived functors
of a composition of two left exact functors.

10.5.1. The formalism of spectral sequences. In order to fix the ideas,
we let C be the category of OX -modules, where (X,OX) is a fixed ringed space.
Suppose that we have a complex (K•, d) of objects in C, together with a filtra-
tion F•K

• = (FpK
•)p∈Z. This means that we have a non-increasing sequence of

subcomplexes of K•:

K• ⊇ . . . ⊇ FpK• ⊇ Fp+1K
• ⊇ . . . .

The filtration on K• induces a filtration on the cohomology of K• given by

FpHn(K•) = Im
(
Hn(FpK

•)→ Hn(K•)
)
.

Instead of describing the cohomology sheaves Hn(K•), we will only describe the
graded pieces with respect to the above filtration, that is,

grpHn(K•) = FpHn(K•)/Fp+1Hn(K•).

The main idea is to describe these using a sequence of approximations built out of
the complexes FpK

•.
This is achieved by the spectral sequence associated to the filtration on K•.

For every r ≥ 0 and every p, q ∈ Z, we will define an object Ep,qr in C. For each
r, the (Ep,qr )p,q∈Z form the rth page of the spectral sequence. We note that in this
notation, the index p is related to the level of the filtration, while the sum p + q
keeps track of the cohomological degree in the complex.

For every r ∈ Z and p, q ∈ Z, we put

Zp,qr = {u ∈ FpKp+q | d(u) ∈ Fp+rKp+q+1}.
Note that for r ≤ 0, we have Zp,q0 = FpK

p+q. It is clear that we have

Zp+1,q−1
r−1 + d(Zp−r+1,q+r−2

r−1 ) ⊆ Zp,qr
and for r ≥ 0, we put

Ep,qr =
Zp,qr

Zp+1,q−1
r−1 + d(Zp−r+1,q+r−2

r−1 )
.

It is instructive to look at the first two pages. For r = 0, we have

Ep,q0 =
FpK

p+q

Fp+1Kp+q + d(Fp+1Kp+q−1)
=

FpK
p+q

Fp+1Kp+q
.
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For r = 1, we have

Ep,q1 =
{u ∈ FpKp+q | d(u) ∈ Fp+1K

p+q+1}
Fp+1Kp+q + d(FpKp+q−1)

.

Note that d induces morphisms d0 : Ep,q0 → Ep,q+1
0 such that d0 ◦ d0 = 0 and

Ep,q1 =
ker(Ep,q0 → Ep,q+1

0 )

Im(Ep,q−1
0 → Ep,q0 )

.

We now show that a similar picture holds also for higher r. For every r ≥ 0,
we claim that d induces a map dr of bidgree (r, 1− r), that is

dr : Ep,qr → Ep+r,q−r+1
r

for every p and q. Indeed, it is clear that

d(Zp,qr ) ⊆ Zp+r,q−r+1
r and d

(
Zp+1,q−1
r−1 + d(Zp−r+1,q+r−2

r−1 )
)

= d(Zp+1,q−1
r−1 ),

which implies our claim. Since d ◦ d = 0, it is clear that we have dr ◦ dr = 0. The
sequence ((Ep,qr )p,q, dr

)
r≥0

is the spectral sequence associated to the given filtered

complex.
We now show that the (r+1)st page of the spectral sequence is obtain by taking

the cohomology with respect to dr.

Proposition 10.5.1. With the above notation, for every r ≥ 0, we have Er+1 =
H(Er, dr), in the sense that for every p, q ∈ Z, we have a canonical isomorphism

Ep,qr+1 '
ker(dr : Ep,qr → Ep+r,q−r+1

r )

Im(dr : Ep−r,q+r−1
r → Ep,qr )

.

Proof. The assertion follows, with a bit of care, directly from definitions.
Note first that if u ∈ Zp,qr , then dr(u) = 0 in Ep+r,q−r+1

r if and only if

d(u) ∈ Zp+r+1,q−r
r−1 + d(Zp+1,q−1

r−1 ).

This is the case if and only if there is v ∈ Zp+1,q−1
r−1 such that d(u−v) ∈ Zp+r+1,q−r

r−1 .

This last condition is equivalent to d(u − v) ∈ Fp+r+1K
p+q+1, and since we have

in any case u− v ∈ FpKp+q, the condition is equivalent to u− v ∈ Zp,qr+1. We thus
see that

ker(dr : Ep,qr → Ep+r,q−r+1
r ) '

Zp,qr+1 + Zp+1,q−1
r−1

Zp+1,q−1
r−1 + d(Zp−r+1,q+r−2

r−1 )
,

and thus

ker(dr : Ep,qr → Ep+r,q−r+1
r )

Im(dr : Ep−r,q+r−1
r → Ep,qr )

'
Zp,qr+1 + Zp+1,q−1

r−1

d(Zp−r,q+r−1
r ) + Zp+1,q−1

r−1 + d(Zp−r+1,q+r−2
r−1 )

=
Zp,qr+1 + Zp+1,q−1

r−1

d(Zp−r,q+r−1
r ) + Zp+1,q−1

r−1

,

where the equality follows from the inclusion Zp−r+1,q+r−2
r−1 ⊆ Zp−r,q+r−1

r . We thus
obtain

ker(dr : Ep,qr → Ep+r,q−r+1
r )

Im(dr : Ep−r,q+r−1
r → Ep,qr )

'
Zp,qr+1(

d(Zp−r,q+r−1
r ) + Zp+1,q−1

r−1

)
∩ Zp,qr+1

.
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Note now that
(
d(Zp−r,q+r−1

r ) + Zp+1,q−1
r−1

)
∩ Zp,qr+1 consists of those d(a) + b such

that the following hold:

a ∈ Fp−rKp+q−1, d(a) ∈ FpKp+q, and

b ∈ Fp+1K
p+q, d(b) ∈ Fp+rKp+q+1, d(b) ∈ Fp+r+1K

p+q+1.

We thus see that the conditions on a and b are precisely that b ∈ Zp+1,q−1
r and

a ∈ Zp−r,q+r−1
r , and we obtain

ker(dr : Ep,qr → Ep+r,q−r+1
r )

Im(dr : Ep−r,q+r−1
r → Ep,qr )

'
Zp,qr+1

Zp+1,q−1
r + d(Zp−r,q+r−1

r )
= Ep,qr+1.

�

We now show that under suitable conditions on the filtration, we can recover
the filtration on the cohomology of K• from the spectral sequence.

Definition 10.5.2. The filtration on K• is pointwise finite if for every n ∈ Z,
we have FpK

n = Kn for p � 0 and FpK
n = 0 for p � 0. Note that in this case

a similar property holds for the filtration on the cohomology: for every n, we have
FpHn(K•) = 0 for p� 0 and FpHn(K•) = Hn(K•) for p� 0.

Proposition 10.5.3. Given a pointwise finite filtration (FpK
•)p∈Z on the com-

plex K•, for every p and q, there is r(p, q) such that Ep,qr = Ep,qr+1 for all r ≥ r(p, q).
If we denote this stable value by Ep,q∞ , then for every p and q we have a canonical
isomorphism

(10.5.1) Ep,q∞ ' grpHp+q(K•).

We will refer to the conclusion of the above proposition by saying that the
spectral sequence converges to (or abuts to) Hp+q(K•), and this is written as

Ep,qr ⇒p Hp+q(K•).
With a typical abuse of notation, we often write this by only recording one page of
the spectral sequence, usually the one for E1 or E2.

Proof of Proposition 10.5.3. Let p and q be fixed. For r � 0, we have
Fp+rK

p+q = 0, hence Zp+r,q−r+1
r = 0 and thus Ep+r,q−r+1

r = 0. In particular, the
map dr : Ep,qr → Ep+r,q−r+1

r is 0. Similarly, for r � 0, we have

Fp−rK
p+q−1 = Fp−r+1K

p+q−1 = Kp+q−1,

hence Zp−r,q+r−1
r = Zp−r+1,q+r−2

r−1 , and thus Ep−r,q+r−1
r = 0. In particular, the

map dr : Ep−r,q+r−1
r → Ep,qr is 0. We thus conclude via Proposition 10.5.1 that for

r � 0, we have a canonical isomorphism Ep,qr ' Ep,qr+1. This gives the first assertion
in the proposition.

In fact, we can describe Ep,q∞ very explicitly. If r � 0, then Fp+rK
p+q = 0,

hence

Zp,qr = {u ∈ FpKp+q | du = 0} and Zp+1,q−1
r−1 = {u ∈ Fp+1K

p+q | du = 0}.
Moreover, for r � 0, we have F p−r+1Kp+q−1 = Kp+q−1, hence

d(Zp−r+1,q+r−2
r−1 ) = d(Kp+q−1) ∩ FpKp+q.

We thus conclude that for r � 0, we have

Ep,q∞ '
{u ∈ FpKp+q | d(u) = 0}

{u ∈ Fp+1Kp+q | d(u) = 0}+
(
FpKp+q ∩ d(Kp+q−1)

) .
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On the other hand, it follows from definition that

FpHp+q(K•)
Fp+1Hp+q(K•)

' {u ∈ FpKp+q | d(u) = 0}+ d(Kp+q−1)

{u ∈ Fp+1Kp+q | d(u) = 0}+ d(Kp+q−1)

' {u ∈ FpKp+q | d(u) = 0}
{u ∈ Fp+1Kp+q | d(u) = 0}+

(
FpKp+q ∩ d(Kp+q−1)

) .
This completes the proof of the proposition. �

Definition 10.5.4. Suppose that the filtration on K• is pointwise finite. We
say that the spectral sequence (Ep,qr )r≥0 degenerates at level r0 ≥ 0 if dr = 0 for
all r ≥ r0. In this case, it follows from Proposition 10.5.3 that

Ep,qr0 ' grpHp+q(K•) for all p, q ∈ Z.

Remark 10.5.5. There are two important cases in which the sequence degen-
erates at level r0. Suppose, for example, that r0 ≥ 1 and there is a ∈ Z such that
Ep,qr0 = 0 unless p = a. This clearly implies, using Proposition 10.5.1 that Ep,qr = 0
for all r ≥ r0 if p 6= a. Since every dr has bidegree (r, 1 − r), we see that dr = 0
for all r ≥ r0. Moreover, we see that in this case we have grpHp+q(K•) = 0, unless
p = a. We thus conclude that

Hn(K•) ' Ea,n−ar0 for all n ∈ Z.

Another special case is that when r0 ≥ 2 and there is b ∈ Z such that Ep,qr0 = 0,
unless q = b. Again, we see that dr = 0 for all r ≥ r0, and we have

Hn(K•) ' En−b,br0 for all n ∈ Z.

We now discuss two situations, that occur rather often, when we get some
canonical maps out of the spectral sequence. We assume that all filtrations are
pointwise finite. Suppose first that Ep,q1 = 0 if p < 0. For example, this condition

holds if F0K
• = K• (in this case, if p < 0, then Zp,qr = Zp+1,q−1

r−1 , hence Ep,qr = 0
for all r). Under our assumption, it follows from Proposition 10.5.1 that Ep,qr = 0
for all r ≥ 1 if p < 0. Moreover, since E−r,q+r−1

r = 0 for every r ≥ 1, we deduce
that we have canonical injective homomorphisms

E0,q
∞ = E0,q

r ↪→ E0,q
r−1 ↪→ . . . ↪→ E0,q

2 ↪→ E0,q
1 ,

where r � 0. On the other hand, since

FpHp+q(K•)/Fp+1Hp+q(K•) ' Ep,q∞ = 0 for p < 0,

it follows that FpHn(K•) = Hn(K•) for every p ≤ 0 and we have a canonical
surjective homomorphism

Hq(K•)→ E0,q
∞ .

By composing the above morphisms, we see that we have canonical morphisms
Hq(K•)→ E0,q

2 ↪→ E0,q
1 for all q.

Suppose now that Ep,q2 = 0 if q < 0. This is the case, for example, if the
filtration satisfies the condition that FpK

n = 0 for p > n; indeed, this condition
implies that if q < 0, then Zp,qr = 0, and thus Ep,qr = 0 for all r. Under our
assumption, it follows from Proposition 10.5.1 that Ep,qr = 0 if q < 0 and r ≥ 2. In
particular, Ep+r,1−rr = 0 for every r ≥ 2, and we deduce using the same proposition
that we have canonical surjective homomorphisms

Ep,02 → Ep,03 → . . .→ Ep,0r → Ep,0∞ .
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On the other hand, we have

FpHp+q(K•)/Fp+1Hp+q(K•) ' Ep,q∞ = 0 for q < 0,

and thus FpH
n(K•) = 0 for p > n. This implies that we have canonical injective

homomorphisms

Ep,0∞ ↪→ Hp(K•)
for all p. By combining the above morphisms, we obtain for all p a canonical
morphism

Ep,02 → Hp(K•).

Remark 10.5.6. All constructions in this section are functorial. More precisely,

suppose that we have a morphism of filtered complexes u : K• → K
•

(this is a mor-

phism of complexes such that u(FpK
•) ⊆ FpK

•
for all p). If Ep,qr and E

p,q

r are the

terms of the spectral sequences associated to (K•, F•K
•) and (K

•
, F•K

•), respec-

tively, then u induces morphisms Ep,qr → E
p,q

r that commute with the morphisms

dr. Moreover, for every n, the induced morphism Hn(u) : Hn(K•) → Hn(K
•
)

maps FpHn(K•) to FpHn(K
•
). If both filtrations are pointwise finite, we have a

commutative diagram

Ep,q∞

��

// grpHp+q(K•)

��
E
p,q

∞
// grpHp+q(K

•
),

in which the horizontal maps are isomorphisms.

10.5.2. The spectral sequences associated to a double complex. We
now discuss an important example of spectral sequence that arises from a double
complex.

Definition 10.5.7. A double complex A•,• in C is given by a family of objects
(Ap,q)p,q∈Z of objects in C, together with morphisms dp,q1 : Ap,q → Ap+1,q and
dp,q2 : Ap,q → Ap,q+1, such that the following conditions hold:

d1 ◦ d1 = 0, d2 ◦ d2 = 0, and d1 ◦ d2 = d2 ◦ d1.

Note that in this case, for every p, we have a complex (Ap,•, d2) and similarly, for
every q, we have a complex (A•,q, d1).

The total complex of a double complex A•,• is the complex K• = Tot(A•,•),

with Kn =
⊕

i+j=nK
i,j , and with map d : Kn → Kn+1 defined on Ai,j by di,j1 +

(−1)idi,j2 (it is straightforward to check that d ◦ d = 0). The complex K• admits
two natural filtrations, as follows. The first filtration is given by

F ′pK
n =

⊕
i≥p

Ai,n−i;

note that indeed, we have d(F ′pK
n) ⊆ F ′pKn+1. The second filtration is given by

F ′′pK
n =

⊕
j≥p

An−j,j ;

note that again we have d(F ′′pK
n) ⊆ F ′′pKn+1.
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Let us compute the first terms of the spectral sequences associated to the two
filtrations. We do the computation for the first filtration, the other one following by
symmetry. We denote the terms of this spectral sequence by ′Ep,qr . By the general
computation of the 0th page, we see that

′Ep,q0 = FpK
p+q/Fp+1K

p+q = Ap,q for all p, q ∈ Z.

Moreover, the map induced by d on FpK
p+q/Fp+1K

p+q is equal to the map induced
by (−1)pd2, hence

′Ep,q1 = Hq(Ap,•).
Note that for every p, the map d1 induces a morphism of complexes Ap,• → Ap+1,•,
and thus for every q, it induces a morphism Hq(Ap,•) → Hq(Ap+1,•). An easy

computation shows that this map gets identified with the morphism ′Ep,q1 → ′Ep+1,q
1

associated to the spectral sequence We thus deduce from Proposition 10.5.1 that
for every p and q we have

′Ep,q2 = Hpd1
(
Hqd2(A•,•)

)
,

where the right-hand side stands for the cohomology of the complex

Hq(Ap−1,•)→ Hq(Ap,•)→ Hq(Ap+1,•),

with the maps induced by d1.
Similarly, for the other filtration, we obtain the first terms of the exact sequence

given by
′′Ep,q0 = Aq,p, ′′Ep,q1 = Hq(A•,p), and

′′Ep,q2 = Hpd2
(
Hqd1(A•,•)

)
,

where the right-hand side stands for the cohomology of the complex

Hq(A•,p−1)→ Hq(A•,p)→ Hp(A•,p+1),

with the maps induced by d2.

Remark 10.5.8. We will be interested in the case when the double complex
satisfies the following extra condition: for every n, there are only finitely many pairs
(p, q) with i+ j = n and with Ap,q 6= 0. In this case, both filtrations on Tot(A•,•)
are pointwise finite, hence both spectral sequences satisfy Proposition 10.5.3. This
condition is satisfied, in particular, for the first-quadrant or third-quadrant double
complexes introduced below.

Definition 10.5.9. A first-quadrant double complex A•,• is a double complex
such that Ap,q = 0 unless p, q ≥ 0. A third-quadrant double complex A•,• is a
double complex such that Ap,q = 0 unless p, q ≤ 0.

If A•,• is a first-quadrant double complex, then both filtrations on Tot(A•,•) are
non-negative and lower than the grading. Therefore we have canonical morphisms

′Eq,02 → Hq
(
Tot(A•)

)
→ ′E0,q

2 → ′E0,q
1 for all q ≥ 0,

and similar morphisms for the spectral sequence corresponding to the second filtra-
tion.

Exercise 10.5.10. Suppose that we have a spectral sequence

Ep,q2 ⇒p Hp+q.
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Show that if this is a first-quadrant spectral sequence (that is, Ep,q2 = 0 unless p ≥ 0
and q ≥ 0), then we have an associated five-term exact sequence:

0→ E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2.

10.5.3. The spectral sequence of a composition of two functors. We
will apply the formalism of spectral sequences for double complexes to prove the
following result of Grothendieck about the right derived functors of a composition
of two left exact functors. We consider two left exact functors

G : C1 → C2 and F : C2 → C3
(where, as usual, the categories C1, C2, and C3 are categories of sheaves of modules
on suitable ringed spaces).

Theorem 10.5.11. With the above notation, suppose that for every injective
object I in C1, the object G(I) in C2 if F -acyclic. In this case, for every object A
in C1, we have a spectral sequence

Ep,q2 = RpF
(
RqG(A)

)
⇒p R

p+q(F ◦G)(A).

The proof of the theorem will make use of the notion of Cartan-Eilenberg res-
olution, that we now introduce. Given a complex of objects in C:

C• : . . .→ Cp
dpC−−→ Cp+1 dp+1

C−−−→ . . .

that is bounded below (that is, we have Cp = 0 for p � 0), a Cartan-Eilenberg
resolution of C• is given by a double complex A•,•, together with a morphism of
complexes C• → A•,0, with the following properties:

i) There is p0 such that Ap,q = 0 for all p ≤ p0 and all q; we also have
Ap,q = 0 for all q < 0 and all p.

ii) The morphism Cp → Ap,• is an injective resolution for all p.
iii) The induced morphism ker(dpC) → ker(dp,•1 ) is an injective resolution for

all p.
iv) The induced morphism Im(dpC) → Im(dp,•1 ) is an injective resolution for

all p.
v) For every p, we have an injective resolution of Hp(C•) given by

Hp(C•)→ Hp(A•,0)→ Hp(A•,1)→ . . . .

We begin by proving the existence of such resolutions.

Lemma 10.5.12. Any bounded below complex C• has a Cartain-Eilenberg reso-
lution.

Proof. Let p0 be such that Cp = 0 for p ≤ p0. For every p, consider injective
resolutions Hp(C•)→ Up,• and Im(dp−1

C )→ V p,•, with Up,• = 0 = V p,• if p ≤ p0.
Note that we have an exact sequence

0→ Im(dp−1
C )→ ker(dpC)→ Hp(C•)→ 0

for every p and using Lemma 10.1.12, we obtain an injective resolution ker(dpC)→
W p,• such that we have a commutative diagram with exact rows:

0 // V p,• // W p,• // Up,• // 0

0 // Im(dp−1
C ) //

OO

ker(dpC) //

OO

Hp(C•) //

OO

0.
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Similarly, for every p we have an exact sequence

0→ ker(dpC)→ Cp → Im(dpC)→ 0

and using Lemma 10.1.12, we obtain an injective resolution Cp → Ap,• such that
we have a commutative diagram with exact rows:

0 // W p,• // Ap,• // V p+1,• // 0

0 // ker(dpC) //

OO

Cp //

OO

Im(dpC) //

OO

0.

For every p and q we have a morphism dp,q2 : Ap,q → Ap,q+1 defined by the complex
Ap,• and a morphism dp,q1 → Ap,q → Ap+1,q given as the composition

Ap,q → V p+1,q →W p+1,q → Ap+1,q.

We thus obtain a double complex A•,•, together a morphism of complexes C• →
A•,0, and it is straightforward to check that this satisfies conditions i)-v) in the
definition of a Cartan-Eilenberg resolution. �

The next lemma explain the usefulness of Cartain-Eilenberg resolutions.

Lemma 10.5.13. If G : C → C′ is a left exact functor6, C• is a bounded below
complex in C, and A•,• is a Cartan-Eilenberg resolution of C•, then we have two
spectral sequences abutting to the cohomology of the total complex of G(A•,•):

′Ep,q1 = RqG(Cp)⇒p Hp+q
(
Tot(G(A•,•))

)
,

where the map
′Ep,q1 = Rq(Cp)→ Rq(Cp+1) = ′Ep+1,q

1

is induced by Cp → Cp+1, hence ′Ep,q2 = Hp
(
RqG(C•

)
, and

′′Ep,q2 = RpG
(
Hq(C•)

)
⇒p Hp+q

(
Tot(G(A•,•))

)
.

In particular, if all Cp are G-acyclic, then we have a spectral sequence

Ep,q2 = RpG
(
Hq(C•)

)
⇒p Hp+q

(
G(C•)

)
.

Proof. We consider the two spectral sequences associated to the double com-
plex G(A•,•). Note that the condition i) in the definition of a Cartan-Eilenberg
resolution implies that both filtrations on Tot(A•,•) are pointwise finite, and thus
both spectral sequences abut to the cohomology of this complex. We have seen
that

′Ep,q1 = Hq
(
G(Ap,•)

)
' RqG(Cp),

where the isomorphism follows from the fact that Cp → Ap,• is an injective resolu-
tion. Moreover, the map ′Ep,q1 → ′Ep+1,q

1 is induced by the morphism of complexes
Ap,• → Ap+1,•, and thus is obtained by applying RqG to the map Cp → Cp+1.

In order to describe the second spectral sequence, note for every p and q, we
have short exact sequences

0→ ker(dp,q1 )→ Ap,q → Im(dp,q1 )→ 0

and
0→ Im(dp−1,q

1 )→ ker(dp,q1 )→ Hp(A•,q)→ 0.

6As usual, we assume that C and C′ are categories of sheaves of modules on two ringed spaces.
More generally, the same holds if C and C′ are Abelian categories, with C having enough injectives.
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By the definition of a Cartan-Eilenberg resolution, all objects that appear in these
exact sequences are injective, hence the sequences are split. This implies that after
applying G, the sequences remain exact. It is then straightforward to deduce that
we have canonical isomorphisms

′′Ep,q1 = Hp
(
G(A•,q)

)
' G

(
Hp(A•,q)

)
.

Using again the fact that A•,• is a Cartan-Eilenberg resolution, we get an isomor-
phism

′′Ep,q2 ' RqG
(
Hp(C•)

)
.

Note now that if every Cp is G-acyclic, then ′Ep,q1 = 0 for q 6= 0 and ′Ep,01 '
G(Cp). We thus conclude that ′Ep,q2 = 0 for q 6= 0 and ′Ep,02 ' Hp

(
G(C•)

)
. This

implies that we have

Hn
(
Tot(G(A•,•))

)
' Hn

(
G(C•)

)
and we obtain the last assertion in the lemma. �

Proof of Theorem 10.5.11. Consider an injective resolution A → I• in C1.
By Lemma 10.5.12, we have a Cartan-Eilenberg resolution A•,• of F (I•). Note that
by assumption, each F (Ip) is G-acyclic, hence the last assertion in Lemma 10.5.13
gives a spectral sequence

Ep,q2 = RpG
(
Hq(F (I•))

)
⇒p Hp+q

(
G(F (I•))

)
.

Since

Hq
(
F (I•)

)
' RqF (A) and Hp+q

(
G(F (I•))

)
' Rp+q(G ◦ F )(A),

we obtain the assertion in the theorem. �

Remark 10.5.14. Under the assumptions in Theorem 10.5.11, note that since
Ep,q2 = 0 if p < 0 or q < 0, then we get canonical morphisms

RnF
(
G(A)

)
→ Rn(F ◦G)(A)→ F

(
RnG(A)

)
for every object A in C1 and n ≥ 0.

Example 10.5.15. Let g : (X,OX) → (Y,OY ) and f : (Y,OY ) → (Z,OZ) be
morphisms of ringed spaces. We consider the left exact functorsG = g∗ : OX -mod→
OY -mod and F = f∗ : OY -mod→ OZ-mod. Note that F ◦G = (f ◦ g)∗. If I is an
injective OX -module, then it is flasque (see Lemma 10.2.7), hence G(I) is flasque,
and thus F -acyclic (see Corollary 10.2.16). We can thus apply Theorem 10.5.11 to
deduce that for every OX -module M, we have a spectral sequence

Ep,q2 = Rpf∗
(
Rqg∗(M)

)
⇒p R

p+q(f ◦ g)∗(M).

This is known as the Leray spectral sequence. This induces canonical morphisms

Rnf∗
(
g∗(M)

)
→ Rn(f ◦ g)∗(M)→ f∗

(
Rng∗(M)

)
.

In particular, if we take Z to consist of a point, we see that for every morphism
of ringed spaces g : (X,OX) → (Y,OY ) and for every OX -module M, we have a
spectral sequence

Ep,q2 = Hp
(
Y,Rqg∗(M)

)
⇒p H

p+q(X,M).

In particular, we have canonical morphisms

Hn
(
Y, g∗(M)

)
→ Hn(X,M)→ Γ

(
Y,Rng∗(M)

)
.
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Example 10.5.16. If f : X → Y is an affine morphism of algebraic varieties,
and F is a quasi-coherent sheaf on X, then Rpf∗(F) = 0 for all p ≥ 1. Indeed, it
follows from Proposition 10.2.20 that for every affine open subset U of Y , we have

Γ
(
U,Rpf∗(F)

)
' Hp

(
f−1(U),F),

and the right hand side vanishes by Theorem 10.4.1 since F is quasi-coherent and
f−1(U) is affine by the assumption on f . We thus deduce from the Leray spectral
sequence an isomorphism

Hi
(
Y, f∗(F)

)
' Hi(X,F) for every i ≥ 0.

This applies, in particular, when f is a closed immersion, in which case, for a quasi-
coherent sheaf F on X, we often identify Hi(X,F) with Hi(Y,F) (recall that we
also identify F with its push-forward f∗(F)).

Example 10.5.17. More generally, given two morphisms of algebraic varieties
f : X → Y and g : Y → Z and a quasi-coherent sheaf F on X, if f is an affine mor-
phism, then it follows from the Leray spectral sequence that we have isomorphisms

Rpg∗
(
f∗(F)

)
' Rp(g ◦ f)∗(F) for all p ≥ 0.

If we assume instead that g is affine, then the Leray spectral sequence gives iso-
morphisms

g∗
(
Rpf∗(F)

)
' Rp(g ◦ f)∗(F) for all p ≥ 0.

Remark 10.5.18. The assertions in Examples 10.5.16 and 10.5.17 can also
be proved without spectral sequences. Indeed, suppose that we have morphisms
f : X → Y and g : Y → Z and that F is a quasi-coherent sheaf on X. By Proposi-
tion 10.2.17, we have a resolution F → I•, with each Im flasque and quasi-coherent.
If f is affine, then f∗ is exact on the category of quasi-coherent OX -modules (see
Remark 8.4.8). In this case f∗(F)→ f∗(I•) is a flasque resolution of f∗(F), hence
we have isomorphisms

Rig∗
(
f∗(F)

)
' Hi

(
g∗(f∗(I•))

)
' Ri(g ◦ f)∗(F).

On the other hand, if g is affine, then g∗ is exact on the category of quasi-coherent
OY -modules, and thus we have isomorphisms

g∗
(
Rif∗(F)

)
' g∗

(
Hi(f∗(I•))

)
' Hi

(
g∗(f∗(I•))

)
' Ri(g ◦ f)∗(F).

Remark 10.5.19. If F is a coherent sheaf on the algebraic variety X and U
is an open subset of X such that Z = Supp(F) ⊆ U , then the canonical maps
Hp(X,F)→ Hp(U,F) are isomorphisms. Indeed, note first that if we have a short
exact sequence

0→ F ′ → F → F ′′ → 0

and if we know the assertion for both F ′ and F ′′, then the assertion for F follows
from the long exact sequence in cohomology, using the 5-Lemma. Since we have a
finite filtration of F by coherent sheaves, such that all successive quotients are of
the form i∗(G), where G is a coherent sheaf on Z and i : Z ↪→ X is the inclusion (see
Remark 8.4.21), it follows that it is enough to prove our assertion when F = i∗(G).
However, in this case both Hp(X,F) and Hp(U,F) are compatibly isomorphic to
Hp(Z,G) by Example 10.5.16, hence our assertion follows.

Exercise 10.5.20. Show that if X is an algebraic variety with irreducible
components X1, . . . , Xr, then X is affine if and only if Xi is affine for 1 ≤ i ≤ r.
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Exercise 10.5.21. Prove the following result of Chevalley: if f : X → Y is a
finite surjective morphism of algebraic varieties, and X is affine, then Y is affine.
Hint: use the following steps:

i) Reduce to the case when both X and Y are irreducible.
ii) Show that if X and Y are irreducible, then there is a coherent sheaf F on

X, and a morphism of sheaves φ : O⊕rY → f∗(F) for some r ≥ 1, such that
φ is an isomorphism over an open subset of Y .

iii) Use ii) and the functor f ! defined in Exercise 8.4.9 to show that if X and
Y are irreducible, then given a coherent sheaf N on Y , there is a coherent
sheaf M on X and a morphism f∗(M) → N⊕r that is an isomorphism
over an open subset of Y .

iv) Deduce Chevalley’s result by Noetherian induction.

10.6. Čech cohomology

The main tool for computing cohomology of quasi-coherent sheaves on algebraic
varieties is provided by Čech cohomology, that we now introduce. Let X be an
algebraic variety and consider a finite open cover U = (Ui)i∈I of X. For every
subset J of I, we put UJ =

⋂
i∈J Ui. Given an OX -module F on X (or, more

generally, a sheaf of Abelian groups), we put

Cp(U ,F) :=
⊕

#J=p+1

F(UJ) for p ≥ 0.

We choose a total order on I and define a map dp : Cp(U ,F)→ Cp+1(U ,F) by

dp
(
(sJ)J

)
= (sJ′)J′ ,

where if the elements of J ′ are i0 < . . . < ip+1, then

sJ′ =

p+1∑
q=0

(−1)qsJ′r{iq}|UJ′ .

It is easy to check that dp+1 ◦ dp = 0 for all p ≥ 0, hence we have a complex
C•(U ,F), the Čech complex of F , with respect to the cover U . The pth Čech
cohomology of F with respect to U is given by

Hp(U ,F) := Hp
(
C•(U ,F)

)
.

It is clear that the construction is functorial: given a morphism of sheaves F →
G, we have a morphism of complexes C•(U ,F) → C•(U ,G) and thus morphisms
Hp(U ,F)→ Hp(U ,G).

Note that H0(U ,F) is the kernel of d0 : C0(U ,F)→ C1(U ,F), which is canon-
ically isomorphic by the sheaf axiom to Γ(X,F). The main result of this section
says that if F is quasi-coherent and U is an affine cover, then also the higher co-
homology groups of the Čech complex compute the higher cohomology groups of
F . Here is one key place where we make use of the fact that algebraic varieties are
separated.

Theorem 10.6.1. If F is a quasi-coherent sheaf on the algebraic variety X
and U is a finite affine open cover of X, then we have functorial isomorphisms of
k-vector spaces (in fact, of OX(X)-modules)

Hp(X,F) ' Hp(U ,F) for all p ≥ 0.
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The theorem will follow from a couple of lemmas. We begin with a result
concerning a sheafy version of the Čech complex. Given a subset J of I, let
αJ : UJ ↪→ X be the inclusion map. For an OX -module F on X (or just a sheaf of
Abelian groups), we put FJ := (αJ)∗(F|UJ

) and

Cp = Cp(U ,F) :=
⊕
|J|=p+1

FJ for p ≥ −1

(we make the convention that U∅ = X and F∅ = F). For every open subset U ⊆ X
and every p ≥ −1, we have a map⊕

|J|=p+1

F(U ∩ UJ)→
⊕

|J′|=p+2

F(U ∩ UJ′), (sJ)J → (sJ′)J′ ,

where if the elements of J ′ are i0 < . . . < ip+1, then

sJ′ =

p+1∑
q=0

(−1)qsJ′r{iq}|U∩UJ′ .

It is straightforward to check that this is a complex and that by letting U vary, we
obtain a complex of sheaves

(10.6.1) 0→ F = C−1 → C0 → . . . ,

such that by taking global sections, we have the complex

0→ F(X)→ C0(U ,F)→ C1(U ,F)→ . . . .

Lemma 10.6.2. For every F , the complex (10.6.1) is exact.

Proof. It is enough to show that for every x ∈ X, the corresponding complex
of stalks at x is exact. Choose i0 ∈ I such that x ∈ Ui0 . It is enough to show that
for every open neighborhood U of x, with U ⊆ Ui0 , on the complex

(10.6.2) 0→ F(U)→ C0(U)→ . . . ,

the identity map is homotopic to 0. For every J ′ ⊆ I, with |J ′| = p, we consider
the map

Cp(U) =
⊕

#J=p+1

F(U ∩ UJ)→ F(U ∩ UJ′),

taking (sJ)J to 0 if i0 ∈ J ′, and to (−1)qsJ′∪{i0} if i0 6∈ J ′ and J ′ contains precisely
q elements < i0 (note that in this case we have U ∩UJ′ = U ∩UJ′∪{i0}). By letting

J ′ vary, we obtain a map θp : Cp(U)→ Cp−1(U), and a straightforward computation
shows that the maps (θp)p≥0 give a homotopy on the complex (10.6.2) between the
identity and the 0 map. �

Lemma 10.6.3. If U is an affine open subset of an algebraic variety X, with
j : U ↪→ X the inclusion map, then for every quasi-coherent sheaf F on U , we have

Hp
(
X, j∗(F)

)
= 0 for all p ≥ 1.

Proof. Since X is separated, the morphism j is affine. We thus deduce using
Example 10.5.16 that

Hp
(
X, j∗(F)

)
' Hp(U,F) for all p ≥ 0.

On the other hand, since F is quasi-coherent and U is affine, we have Hp(U,F) = 0
for all p ≥ 1 by Theorem 10.4.1. �
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We can now prove that for quasi-coherent sheaves, cohomology is computed by
Čech cohomology with respect to affine covers.

Proof of Theorem 10.6.1. Consider the resolution

0→ F → C0 → C1 → . . .

given by Lemma 10.6.2. Since F is quasi-coherent, the restriction of F to each open
subset UJ is quasi-coherent by Proposition 8.4.5. Moreover, since X is separated
and all Ui are affine open subsets, it follows that UJ is affine for every non-empty
J ⊆ I. We thus conclude from Lemma 10.6.3 that each (αJ)∗(F|UJ

) is Γ(X,−)
acyclic, hence each Cp, with p ≥ 0, is Γ(X,−)-acyclic. We deduce that Hp(U ,F) =
Hp
(
Γ(X, C•

)
is isomorphic to Hp(X,F) for every p ≥ 0, by Proposition 10.1.24. �

Exercise 10.6.4. Show that if U = A2r{(0, 0)}, then we have an isomorphism

H1(U,OU ) '
⊕
i,j<0

kxiyj .

In particular, H1(U,OU ) has infinite dimension over k.

We give a couple of easy consequences of Theorem 10.6.1 to vanishing results.

Corollary 10.6.5. For every algebraic variety X, there is a positive integer
d such that Hi(X,F) = 0 for every quasi-coherent sheaf F on X and every i ≥ d.

Proof. If X has an affine open cover U by d subsets, then Ci(U ,F) = 0 for
every i ≥ d, hence Hi(X,F) = 0 for every i ≥ d and every quasi-coherent sheaf F
on X by Theorem 10.6.1 �

Corollary 10.6.6. If f : X → Y is a morphism of algebraic varieties, then
there is a positive integer d such that Rif∗(F) = 0 for every quasi-coherent sheaf
F on X and every i ≥ d.

Proof. Consider a finite affine open cover Y = V1 ∪ . . . ∪ Vs. If F is a quasi-
coherent sheaf on X, then each Rif∗(F) is quasi-coherent, hence it vanishes if and
only if

Γ
(
Vj , R

if∗(F)
)
' Hi

(
f−1(Vj),F)

vanishes for all j. By Corollary 10.6.5, for every j we can find a positive integer
dj such that Hi

(
f−1(Vj),G

)
= 0 for every quasi-coherent sheaf G on f−1(Vj) and

every i ≥ dj . This implies that if d = maxj{dj}, then d satisfies the condition in
the corollary. �

For varieties that are projective over an affine variety, we can be more precise
than in Corollary 10.6.5.

Corollary 10.6.7. If X = MaxProj(S) and dim(X) = n, then Hi(X,F) = 0
for every quasi-coherent sheaf F on X and every i > n. Similarly, if F is a coherent
sheaf on X, with dim

(
Supp(F)

)
= r, then Hi(X,F) = 0 for all i > r.

Proof. We first show that if Z is a closed subset of X of dimension r, then we
can find affine open subsets U1, . . . , Ur+1 of X such that Z ⊆

⋃r+1
i=1 Ui. In order to

see this, consider a graded surjective S0-algebra homomorphism S[x0, . . . , xN ]→ S,
inducing a closed immersion j : X ↪→ PN × Y , where Y = MaxSpec(S0). Let
f : X → PN be the composition of the projection onto the first component with j.
Note that dim

(
f(Z)

)
≤ r. We can thus find hyperplanes H1, . . . ,Hr+1 in PN such
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that f(Z)∩H1∩ . . .∩Hr+1 = ∅. If Hi is defined by gi ∈ S0[x0, . . . , xN ]1 and gi ∈ S
is the image of gi, then V (gi) = f−1

(
V (gi)

)
, hence Z ∩

⋂r+1
i=1 V (gi) = ∅. If we take

Ui = D+
X(gi), this is an affine open subset of X, and we have Z ⊆

⋃r+1
i=1 Ui.

If we take Z = X, we obtain the first assertion in the corollary: if U is the cover
given by U1, . . . , Un+1, then Ci(U ,F) = 0 for all i > n, and thus Hi(X,F) = 0 for
i > n by Theorem 10.6.1.

Given a coherent sheaf F , we take Z = Supp(F). If U1, . . . , Ur+1 are open
subsets as above, we consider the affine open cover U of X given by the Ui and
by the sets in an affine open cover of X r Z. Note that by definition we have
Γ(V,F) = 0 whenever V ⊆ X r Z. We thus again conclude that Ci(U ,F) = 0 for
i > r, and thus Hi(X,F) = 0 for i > r by Theorem 10.6.1. �

Remark 10.6.8. For every positive integer m, there is an irreducible variety
of dimension 3 that can’t be covered by ≤ m affine open subsets (see [RV04,
§4.9]). Therefore the method in Corollary 10.6.7 can’t be used to prove the same
vanishing result on arbitrary algebraic varieties. However, we point out that there
is a general vanishing result, due to Grothendieck, which implies that for every
n-dimensional algebraic variety and for every sheaf of Abelian groups F on X, we
have Hi(X,F) = 0 for all i > n. For a proof in a very general setting, see [God73,
Théorème 4.15.2]. We do not give the proof, which is rather intricate, since we will
not make use of this result.

Remark 10.6.9. If (Fj)j∈J is a family of quasi-coherent sheaves on the alge-

braic variety X, by computing the cohomology as Čech cohomology with respect
to a suitable finite affine open cover, we see that we have a functorial isomorphism

Hq
(
X,⊕j∈JFj

)
' ⊕j∈JHq(X,Fj).

10.7. Ext and Tor

In this section we discuss the functors Ext and Tor for modules over a com-
mutative ring and give some applications to the study of projective dimension and
flat modules. We also discuss the local and global Ext functors for OX -modules on
a ringed space.

10.7.1. The Ext functor for modules. Let R be a commutative ring and
consider the category R-mod of all R-modules (this is a trivial example of the
category OX -mod, when X consists of one point and O(X) = R). Given an R-
module M , we consider the left exact functor HomR(M,−) from R-mod to itself.
By applying the formalism of right derived functors discussed in §10.1, we have the
corresponding right derived functors, denoted {ExtiR(M,−)}i≥0.

We note that these are in fact bifunctors (contravariant in the first variable and
covariant in the second variable), in the sense that for every morphism of R-modules
u : M →M ′, we have corresponding natural transformation

ExtiR(M ′,−)→ ExtiR(M,−).

Indeed, this follows by applying Theorem 10.1.19 to extend to a morphism of δ-
functors the natural transformation

HomR(M ′,−)→ HomR(M,−)

given by composition with u.
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On the other hand, for every R-module N , we may consider the left exact
contravariant functor HomR(−, N) from R-mod to itself. If we consider this as a
left-exact covariant functor from the dual category (R-mod)◦ to R-mod, we may
apply the considerations in §10.1. Note that (R-mod)◦ is an Abelian category with
enough injectives since R-mod has enough projectives. We thus obtain derived

functors that we temporarily denote {Ext
i

R(−, N)}i≥0, that we still consider as
contravariant functors R-mod → R-mod. We now translate the definition in our
context.

Definition 10.7.1. Given an R-module M , a projective (free) resolution of M
is a complex of projective (respectively, free) modules

F• : . . .→ Fm → . . .→ F1 → F0,

together with a morphism F0 → M such that we get a morphism of complexes
F• →M (where we consider M as a complex concentrated in degree 0) that induces
an isomorphism in cohomology. Note that we use lower indexing for projective
resolutions.

It follows from the definition of derived functors that the following hold:

i) We have a functorial isomorphism Ext
0

R(−, N) ' HomR(−, N).

ii) For every projective R-module P , we have Ext
i

R(P,N) = 0 for i ≥ 1.
iii) Given a short exact sequence of R-modules:

0→M ′ →M →M ′′ → 0,

we have an associated functorial long exact sequence:

. . .→ Ext
i

R(M ′′, N)→ Ext
i

R(M,N)→ Ext
i

R(M ′, N)→ Ext
i+1

R (M ′′, N)→ . . . .

These derived functors are computed as follows: given a projective resolution F• →
M , we have

Ext
i
(M,N) ' Hi

(
HomR(F•, N).

(note that for HomR(F•, N) we use the upper indexing and that in the ith spot we
have HomR(Fi, N)). Again, a morphism of R-modules N → N ′ induces a natural
transformation

HomR(−, N)→ HomR(−, N ′)
which then extends to natural transformations

ExtiR(−, N)→ ExtiR(−, N ′)

(in fact, to a morphism of δ-functors).
We first show that the two constructions of derived functors are canonically

isomorphic. In what follows we will freely use this identification.

Proposition 10.7.2. For every i ≥ 0, we have an isomorphism

ExtiR(M,N) ' Ext
i

R(M,N)

which is functorial in both entries.

Proof. We need to show that if F• → M is a projective resolution, then we
have a functorial isomorphism

ExtiR(M,N) ' Hi
(
HomR(F•, N).
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Let us consider the functors
(
Hi
(
HomR(F•,−)

)
i≥0

. Given a short exact sequence

of R-modules

0→ N ′ → N → N ′′ → 0,

we have a short exact sequence of complexes

0→ HomR(F•, N
′)→ HomR(F•, N)→ HomR(F•, N

′′)→ 0

(note that since each Fi is projective, HomR(Fi,−) is an exact functor). By tak-
ing the long exact sequence of cohomology groups, it follows that the functors(
Hi
(
HomR(F•,−)

)
i≥0

form a δ-functor.

By left exactness of HomR(−, N), we see that we have a functorial isomorphism

H0
(
HomR(F•, N) ' HomR(M,N).

Note also that if N is injective, then the functor HomR(−, N) is exact, hence

Hi
(
HomR(F•, N) = 0 for all i ≥ 1.

We thus deduce that the δ-functors
(
Hi
(
HomR(F•,−)

)
i≥0

and
(
ExtiR(M,−)

)
i≥0

are isomorphic. �

Corollary 10.7.3. If R is Noetherian and M and N are finitely generated R-
modules, then ExtiR(M,N) is finitely generated for every i ≥ 0. Moreover, for every
multiplicative system S in R and every i ≥ 0, we have a functorial isomorphism

S−1ExtiR(M,N) ' Homi
S−1R(S−1M,S−1N).

Proof. Indeed, since M is finitely generated over a Noetherian ring, we can
construct a free resolution F• of M , with all Fi finitely generated. In this case, every
R-module HomR(Fi, N) is finitely generated and thus every cohomology group of
HomR(F•, N) is a finitely generated R-module. This implies the first assertion by
the proposition.

Moreover, using the fact that S−1R is a flat R-module and all Fi are finitely
generated R-modules, we see that we have isomorphisms

S−1Hi
(
Hom(F•, N)

)
' Hi

(
S−1HomR(F•, N)

)
' Hi

(
HomS−1R(S−1F•, S

−1N)
)
.

Since S−1F• is a free resolution of the S−1R-module S−1M , we obtain the second
assertion in the proposition. �

Example 10.7.4. If φ : N → N is given by multiplication with an element
a ∈ R, then for every R-module M , the induced map ExtiR(M,N)→ ExtiR(M,N)
is given again by multiplication by a. Indeed, if N → I• is an injective resolution
of N , then we have a commutative diagram

N

φ

��

// I•

ψ

��
N // I•,

where ψ is given by multiplication by a. It follows that the induced map

Hi
(
HomR(M, I•)

)
→ Hi

(
HomR(M, I•)

)
is again given by multiplication by a.
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Similarly, if φ : M → M is given by multiplication by a ∈ R, it follows from
Proposition 10.7.2, using an analogous argument with the one above, that for ev-
ery R-module N , the induced morphism Exti(M,N) → ExtiR(M,N) is given by
multiplication by a.

Definition 10.7.5. If M is an R-module, the projective dimension of M , de-
noted pdR(M) is the smallest non-negative integer n such that M has a projective
resolution

0→ Fn → . . .→ F1 → F0 →M → 0

(with the convention that if no such resolution exists, then pdR(M) = ∞). Note
that we have pdR(M) = 0 if and only if M is projective.

Proposition 10.7.6. For every R-module M , the following are equivalent:

i) pdR(M) ≤ d.
ii) We have ExtiR(M,N) = 0 for all i > d and all R-modules N .

iii) We have Extd+1
R (M,N) = 0 for all R-modules N .

iv) For every exact complex

Fd−1
φ−→ Fd−2 → . . .→ F1 → F0 →M → 0,

with F0, . . . , Fd−1 projective, the R-module ker(φ) is projective.

Proof. Consider an exact complex as in iv) and let Q = ker(φ). Note that by
Proposition 10.7.2, we have ExtiR(F,N) = 0 for every i ≥ 1, and every R-modules
F and N , with F projective. By breaking the complex in iv) into short exact
sequences and using the long exact sequences for the functors ExtiR(−, N), we see
that for every i ≥ d+ 1 and every R-module N , we have

ExtiR(M,N) ' Exti−dR (Q,N).

If i) holds, then we have such a complex with Q projective, and we get ii).
Since the implications ii)⇒iii) and iv)⇒i) are trivial, we only need to show

iii)⇒iv). By the above, it is enough to show that if Ext1
R(Q,N) = 0 for all R-

modules N , then Q is projective. Consider a short exact sequence

(10.7.1) 0→ G→ F → Q→ 0,

with F projective. We obtain an exact sequence

0→ HomR(Q,G)→ HomR(F,G)→ HomR(G,G)→ Ext1
R(Q,G) = 0,

which implies that (10.7.1) is split, hence Q is projective. �

Proposition 10.7.7. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the following hold:

i) pdR(M) ≤ max{pdR(M ′),pdR(M ′′)}.
ii) pdR(M ′) ≤ max{pdR(M),pdR(M ′′)− 1}.

iii) pdR(M ′′) ≤ max{pdR(M),pdR(M ′) + 1}.

Proof. All assertions follow immediately from Proposition 10.7.6 by consid-
ering the long exact sequence for the functors ExtiR(−, N). �
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Definition 10.7.8. The global projective dimension gl-dim(R) of R is equal to
supM pdR(M), where M runs over all finitely generated7 R-modules. By Proposi-
tion 10.7.6, this is the smallest integer d such that ExtiR(M,N) for all i > d and
all R-modules M and N , with M finitely generated (it is equal to ∞ if no such d
exists).

10.7.2. Local Ext and Global Ext for sheaves. Suppose now that (X,OX)
is a ringed space. Given any OX -module F , the functor HomOX

(F ,−), defined on
the category of OX -modules, with values in the category of Γ(X,OX)-modules,
is left exact. Its right derived functors are denoted by ExtiOX

(F ,−), for i ≥ 0.
Similarly, we have the left exact functor HomOX

(F ,−) from the category of OX -
modules to itself. Its right derived functors are denoted by ExtiOX

(F ,−). Note
that every morphism of OX -modules F → F ′ induces natural transformations

HomOX
(F ′,−)→ HomOX

(F ,−) and HomOX
(F ′,−)→ HomOX

(F ,−)

and thus, via Theorem 10.1.19, natural transformations

ExtiOX
(F ′,−)→ ExtiOX

(F ,−) and ExtiOX
(F ′,−)→ ExtiOX

(F ,−)

for all i ≥ 0. It is common to refer to ExtiOX
(−,−) as the global Ext functors and

to Exti(−,−) as the local Ext functors.

Example 10.7.9. For every OX -module G, we have functorial isomorphisms

HomOX
(OX ,G) ' Γ(X,G) and HomOX

(OX ,G) ' G.
It follows that for every i ≥ 0, we have an isomorphism

ExtiOX
(OX ,G) ' Hi(X,G),

while Exti(OX ,G) = 0 for i ≥ 1.

Example 10.7.10. If E is a locally free OX -module, then for every OX -modules
F and G, we have functorial isomorphisms
(10.7.2)
HomOX

(E ⊗OX
F ,G) ' HomOX

(
F ,HomOX

(E ,G)
)
' HomOX

(
F , E∨ ⊗OX

G),

where the first isomorphism is given by Exercise 8.2.15 and the second one by
Remark 8.5.16. Note also that we have a functorial morphism

(10.7.3) HomOX
(F ,G)⊗OX

E∨ → HomOX
(E ⊗OX

F ,G)

and this is an isomorphism since E is locally free.
By taking global sections in (10.7.2), we get a functorial isomorphism

(10.7.4) HomOX
(E ⊗OX

F ,G) ' HomOX

(
F , E∨ ⊗OX

G).

Suppose now that G → I• is an injective resolution. Since tensoring with a
vector bundle is an exact functor, we deduce using (10.7.4) that each E ⊗OX

Ij
is an injective OX -module and then that E∨ ⊗OX

G → E∨ ⊗OX
I• is an injective

resolution. Using the isomorphisms in (10.7.2), (10.7.3), and (10.7.4), we see that
we have functorial isomorphisms

ExtiOX
(E ⊗OX

F ,G) ' ExtiOX
(F , E∨ ⊗OX

G) ' ExtiOX
(F ,G)⊗OX

E∨

7One can drop the finite generation requirement and the invariant does not change, but we
will not need this fact.
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and

ExtiOX
(E ⊗OX

F ,G) ' ExtiOX
(F , E∨ ⊗OX

G).

Proposition 10.7.11. For every OX-modules F and G, every open subset U
of X, and every i ≥ 0, we have a functorial isomorphism

ExtiOX
(F ,G)|U ' ExtiOU

(F|U ,G|U ).

This will follow from the following lemma.

Lemma 10.7.12. If I is an injective OX-module and U ⊆ X is an open subset
of X, then I|U is an injective OU -module.

Proof. Let i : U ↪→ X be the inclusion map. We make use of the functor i! in
Exercise 10.2.6. The assertion follows from the fact that for every OU -module we
have a functorial isomorphism

HomOU
(G, I|U ) ' HomOX

(
i!(G), I)

and the fact that i! is exact. �

Proof of Proposition 10.7.11. If G → I• is an injective resolution of G,
then it follows from the lemma that G|U → I•|U is an injective resolution of G|U .
Since by definition we have

HomOX
(F , I•)|U ' HomOU

(F|U , I•|U ),

the assertion in the proposition is an immediate consequence. �

Proposition 10.7.13. For every OX-modules F and G, we have a spectral
sequence

Ep,q2 = Hp
(
X, ExtqOX

(F ,G)
)
⇒p Extp+qOX

(F ,G).

Proof. Note that by definition we have

Γ(−) ◦ HomOX
(F ,−) = HomOX

(F ,−).

The assertion in the proposition thus follows from Theorem 10.5.11 if we show that
for an injective OX -module I, the OX -module HomOX

(F , I) is flasque. We thus
need to show that for every open subset U of X, the map

HomOX
(F , I)→ HomOU

(F|U , I|U )

induced by restriction is surjective. We make again use of the functor i!, where
i : U ↪→ X is the inclusion map (see Exercise 10.2.6). Given a morphism φ : F|U →
I|U , using the fact that I is injective, we obtain a morphism ψ : F → I that makes
the diagram

i!(F|U )
i!(φ) //

α

��

i!(I|U )

β

��
F

ψ // I
commutative (note that the vertical maps α and β are injective). It is then clear
that ψ|U = φ. �

We next show that as in the case of modules over a ring, we have long exact
sequences for the Ext and Ext functors with respect to the first argument.
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Proposition 10.7.14. Given a short exact sequence of OX-modules

0→ F ′ → F → F ′′ → 0,

for every OX-module G, we have long exact sequences

. . .→ ExtiOX
(F ′′,G)→ ExtiOX

(F ,G)→ Exti(F ′,G)→ Exti+1
OX

(F ′′,G)→ . . .

and

. . .→ ExtiOX
(F ′′,G)→ ExtiOX

(F ,G)→ Exti(F ′,G)→ Exti+1
OX

(F ′′,G)→ . . . .

Proof. Let G → I• be an injective resolution of G. Note that since each
Ij is an injective OX -module, we obtain a short exact sequence of complexes of
OX(X)-modules:

0→ HomOX
(F ′′, I•)→ HomOX

(F , I•)→ HomOX
(F ′, I•)→ 0.

Similarly, we have a short exact sequence of OX -modules:

0→ HomOX
(F ′′, I•)→ HomOX

(F , I•)→ HomOX
(F ′, I•)→ 0

(exactness here follows by taking sections over open subsets U of X and using the
fact that by Lemma 10.7.12, each Ij |U is an injective OU -module). By taking
the long exact sequences in cohomology for the above short exact sequences of
complexes, we obtain the assertion in the proposition. �

Unlike the category of modules over a ring, the category of OX -modules does
not have enough projective objects. However, in many examples, there are locally
free resolutions: such a resolution of the coherent sheaf F is a (possibly infinite)
complex

E• : . . .→ Em → . . .→ E1 → E0,
where each Ei is a locally free sheaf on X, together with a morphism E0 → F such
that we have an exact complex

. . .→ Em → . . .→ E1 → E0 → F → 0.

For example, we will see in Remark 11.6.11 that such resolutions exist on quasi-
projective varieties. The next proposition shows that we can use such resolutions
to compute the local Ext functors.

Proposition 10.7.15. If the coherent sheaf F has a locally free resolution E•,
then for every OX-module G and every i ≥ 0 we have a functorial isomorphism

ExtiOX
(F ,G) ' Hi

(
HomOX

(E•,G)
)
.

Proof. The proof is entirely analogous to that of Proposition 10.7.2, so we
leave it as an exercise for the reader. �

We now specialize to the case when X is an algebraic variety.

Proposition 10.7.16. If F and G are coherent sheaves on the algebraic variety
X, then the OX-modules ExtiOX

(F ,G) are coherent. Moreover, if U is an affine
open subset in X, then

Γ
(
U, ExtiOX

(F ,G)
)
' ExtiOX(U)

(
F(U),G(U)

)
and for every x ∈ X, we have

ExtiOX
(F ,G)x ' ExtiOX,x

(Fx,Gx).
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Proof. By Proposition 10.7.11, we may assume that X is an affine variety,

with R = OX(U). By assumption, we have F ' M̃ and G ' Ñ , for some finitely
generated R-modules M and N . If we consider a free resolution F• → M , with
all Fi finitely generated R-modules, then we have a corresponding complex of OX -

modules F̃• → M̃ . It is now straightforward to deduce from Propositions 10.7.2
and 10.7.15 that ExtiOX

(F ,G) is isomorphic to the coherent OX -module associated

to ExtiR(M,N). Finally, the last assertion in the statement follows from Corol-
lary 10.7.3. �

Remark 10.7.17. If X is an affine algebraic variety and F and G are coherent
OX -modules, then for every n ≥ 0, we have a canonical isomorphism

(10.7.5) ExtnOX
(F ,G) ' ExtnOX(X)

(
F(X),G(X)

)
.

Indeed, since X is affine and the sheaves ExtqOX
(F ,G) are coherent by the previous

proposition, the spectral sequence

Ep,q2 = Hp
(
X, Extq(F ,G)

)
⇒p Extp+qOX

(F ,G).

given by Proposition 10.7.13 satisfies Ep,q2 = 0 unless p = 0. We thus obtain

ExtnOX
(F ,G) ' Γ

(
X, ExtnOX

(F ,G)
)

for all n ≥ 0,

and (10.7.5) follows from the previous proposition.

10.7.3. Tor modules. Suppose now that R is a commutative ring. For every
R-module M , the functor M ⊗R − is right exact. Since the category of R-modules
has enough projectives, we can construct the left derived functors of this functor
via a dual version of Theorem 10.1.19 (in other words, we apply the theorem for the
corresponding left exact functor between the dual Abelian categories). The ith left

derived functor is denoted TorRi (M,−). By construction, if F• → N is a projective
resolution of N , then

TorRi (M,−) ' Hi(M ⊗R F•).
It follows from the definition of derived functors that the following hold:

i) We have a functorial isomorphism TorR0 (M,−) 'M ⊗R −.

ii) For every projective R-module P , we have TorRi (M,P ) = 0 for i ≥ 1.
iii) Given a short exact sequence of R-modules

0→ N ′ → N → N ′′ → 0,

we have an associated functorial long exact sequence:

. . .→ TorRi (M,N ′)→ TorRi (M,N)→ TorRi (M,N ′′)→ TorRi−1(M ′, N)→ . . . .

Given a morphism M → M ′, we have a functorial transformation M ⊗R − →
M ′ ⊗R −. Theorem 10.1.19 thus implies that we have natural transformations

TorRi (M,−)→ TorRi (M ′,−) for all i ≥ 0.

As in the case of the Ext module, we could proceed alternatively by constructing
the derived functors with respect to the second variable. The next proposition shows
that we obtain the same result. In what follows we will freely use this result.

Proposition 10.7.18. For every R-modules M and N and every i ≥ 0, we
have a functorial isomorphism, in both variables

TorRi (M,N) ' TorRi (N,M);
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equivalently, if G• → M is a projective resolution of M , then we have functorial
isomorphisms

TorRi (M,N) ' Hi(N ⊗R G•).

Proof. The argument is entirely analogous to that of Proposition 10.7.2, so
we leave it as an exercise for the reader. �

Example 10.7.19. Arguing as in Example 10.7.4, we see that if the morphism
φ : N → N is given by multiplication with an element a ∈ R, then for every R-
module M , the induced morphism TorRi (M,N) → TorRi (M,N) is also given by
multiplication with a. A similar assertion holds if we start with multiplication by
a on M .

Proposition 10.7.20. Let M and N be R-modules.

i) For every multiplicative system S in R, we have functorial isomorphisms

TorS
−1R

i (S−1M,S−1N) ' S−1TorRi (M,N).

ii) If R is Noetherian and M and N are finitely generated R-modules, then

TorRi (M,N) is a finitely generated R-module for all i ≥ 0.

Proof. Let F• → N be a free resolution of N . Using the fact that S−1(R)
is a flat R-module, we see that S−1F• → S−1N is a free resolution of S−1N over
S−1R. The fact that tensor product commutes with localization gives, for every
i ≥ 0, a functorial isomorphism

TorS
−1R

i (S−1M,S−1N) ' Hi(S−1M ⊗S−1R S
−1F•)

' Hi
(
S−1R⊗R (M ⊗R F•)

)
' S−1Hi(M ⊗R F•) ' S−1TorRi (M,N).

Under the assumptions in ii), we may assume that Fj is a finitely generated
R-module for all j. In this case every M ⊗R Fj is a finitely generated R-module,
and since R is Noetherian, we conclude that

TorRi (M,N) ' Hi(M ⊗R F•)
is a finitely generated R-module. �

The Tor modules can be used to characterize flatness, as follows.

Proposition 10.7.21. Given an R-module M , the following are equivalent:

i) M is a flat R-module.

ii) We have TorRi (M,N) = 0 for all i ≥ 1 and all R-modules N .

iii) We have TorR1 (M,N) = 0 for all R-modules N .

Proof. Suppose first that M is flat over R. Given an R-module N , is F• is a
free resolution of N , then Hi(M ⊗R F•) = 0 for all i ≥ 1 by the flatness of M . We
thus have i)⇒ii).

Since ii)⇒iii) is trivial, in order to finish the proof, it is enough to show iii)⇒i).
Given a short exact sequence of R-modules,

0→ N ′ → N → N ′′ → 0,

the corresponding long exact sequence gives

0 = TorR1 (M,N ′′)→M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

This implies that M is flat over R. �
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One can use the above characterization of flat modules to prove some basic
properties of flat modules. We only give two examples.

Corollary 10.7.22. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the following hold:

i) If M ′ and M ′′ are flat, then M is flat.
ii) If M and M ′′ are flat, then M ′ is flat.

Proof. Given an R-module N , the long exact sequence for Tor modules gives
an exact complex

TorR2 (M ′′, N)→ TorR1 (M ′, N)→ TorR1 (M,N)→ TorR1 (M ′′, N).

The assertions in the proposition now follow from the characterization of flatness
in Proposition 10.7.21. �

Corollary 10.7.23. Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

with M ′′ flat, for every R-module N , the sequence

0→M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

is exact.

Proof. The long exact sequence for the Tor modules gives an exact complex

TorR1 (M ′′, N)→M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0.

Since M ′′ is flat, it follows from Proposition 10.7.21 that TorR1 (M ′′, N) = 0, which
gives the assertion in the corollary. �

Corollary 10.7.24. If (R,m) is a Noetherian local ring, then every finitely
generated flat R-module M is free.

Proof. The argument is the same as the one in the proof of Proposition C.2.1,
which treats the case when M is projective. We have a short exact sequence

0→ N → F →M → 0,

where F is a finitely generated free R-module and N ⊆ mF . If we tensor this with
R/m, it follows from Corollary 10.7.23 that we have a short exact sequence

0→ N/mN → F/mF →M/mM → 0.

Since N ⊆ mF , this implies that N = mN , hence N = 0 by Nakayama’s lemma.
This shows that M ' F is free. �

Proposition 10.7.25. If N is an R-module with pdR(N) = q, then we have

TorRi (M,N) = 0 for all i > q and all R-modules M .

Proof. The assertion follows by computing TorRi (M,N) using a projective
resolution of N of length q. �

There is a version of the Tor construction for OX -modules, but we do not
discuss it here, since we will not need it.



CHAPTER 11

Coherent sheaves and cohomology on projective
varieties

In this chapter we prove the fundamental finiteness results about the coho-
mology of projective and, more generally, complete varieties. In the first section
we describe the quasi-coherent sheaves on a projective variety in terms of graded
modules over the corresponding graded ring. In the second section we compute the
cohomology of line bundles on the projective space and use this this to deduce gen-
eral properties of cohomology on projective varieties. Building on this, in the third
section we show that the higher direct images of coherent sheaves via proper maps
are coherent. The next section treats an important invariant of coherent sheaves
on projective spaces: the Hilbert polynomial. The fifth and the sixth section are
devoted to morphisms to the projective space and to the connection between ample
line bundles and very ample line bundles over affine varieties. Finally, in the last
section we discuss the relative version of ampleness.

11.1. Coherent sheaves on projective varieties

Our goal in this section is to describe quasi-coherent sheaves on projective
varieties in terms of graded modules over the homogeneous coordinate ring. In fact,
it is convenient to work in the more general setting of varieties that are projective
over an affine variety.

We fix the following notation. Let S =
⊕

i≥0 Si be a reduced N-graded k-
algebra. We assume that S0 is a finitely generated k-algebra and that S is generated
as an S0-algebra by finitely many elements in S1 (hence, in particular, S is a finitely
generated k-algebra). We put A = S0, Y = MaxSpec(A) and X = MaxProj(S), so
that we have a canonical morphism π : X → Y . By assumption, there is a graded
surjective k-algebra homomorphism A[x0, . . . , xn] → S, that induces a closed im-
mersion j : X ↪→ Pn

Y = Y ×Pn. We will be describing the quasi-coherent sheaves
on X in terms of graded modules over S.

Definition 11.1.1. A graded module over S is a module M over S, together
with a decomposition

M =
⊕
i∈Z

Mi,

such that Si ·Mj ⊆Mi+j for every i, j ∈ Z. An element u ∈Mi is homogeneous of
degree i. If M and N are graded modules over S, a morphism of graded modules
φ : M → N is a morphism of S-modules such that φ(Mi) ⊆ Ni for all i ∈ Z. We
denote the Abelian group of graded such morphisms by HomS−gr(M,N).

Definition 11.1.2. If M is a graded S-module, a graded submodule of S is a
submodule N of M that is generated by homogeneous elements of M ; equivalently,

275
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the decomposition of M induces a decomposition

N =
⊕
i∈Z

(N ∩Mi).

In particular, if we put Ni = N ∩Mi, then N is a graded module such that the
inclusion map N → M is a morphism of graded modules. It is clear that in this
case we get a decomposition

M/N =
⊕
i∈Z

Mi/Ni,

which makes M/N a graded module such that the projection map M →M/N is a
morphism of graded modules.

Remark 11.1.3. Note that a graded submodule of S is the same as a homoge-
neous ideal.

Remark 11.1.4. It is clear that the composition of morphisms of graded mod-
ules is again a morphism of graded modules. In this way, graded S-modules form a
category. It is easy to check that if φ : M → N is a morphism of graded modules,
then ker(φ) ⊆ M and Im(φ) ⊆ N are graded submodules, the kernel and image in
the category of graded S modules, which is an Abelian category.

Example 11.1.5. If M is a graded S-module, then for every j ∈ Z, we define
a new graded S-module M(j), which is equal to M , as an S-module, but such that
M(j)i = Mi+j for all i ∈ Z.

We now define a functor from the category of graded S-modules to the category
of quasi-coherent OX -modules. Recall that a basis of open subsets of X is given
by those of the form D+

X(f), where f ∈ S is homogeneous, with deg(f) > 0. Each
such subset is affine and

Γ
(
D+
X(f),OX) ' S(f)

(see Propositions 4.3.15 and 4.3.16). Given any such f , say of degree d, we consider
the graded Sf -module Mf , where

(Mf )i =

{
u

fq
| q ≥ 0, u ∈Mqd

}
.

It is clear that M(f) := (Mf )0 is a module over S(f). Note that if D+
X(f) = D+

X(g)
for homogeneous elements f, g ∈ S, of positive degree, then the ideals (f) and (g)
have the same radical (see Proposition 4.3.8), and in this case it is easy to see
that we have a graded isomorphism Mf 'Mg compatible with the isomorphism of
S-algebras Sf ' Sg.

More generally, if D+
X(f) ⊆ D+

X(g), then Proposition 4.3.8 implies that f lies
in the radical of (g), in which case we have a morphism of graded S-modules
Mg →Mf . This induces a morphism M(g) →M(f) compatible with the restriction
homomorphisms

Γ
(
D+
X(g),OX

)
' S(g) → S(f) ' Γ

(
D+
X(f), S(f)

)
.

Lemma 11.1.6. Given homogeneous elements of positive degree f, f1, . . . , fr ∈
S, such that D+

X(f) =
⋃r
i=1D

+
X(fi), for every graded S-module M , the localization



11.1. COHERENT SHEAVES ON PROJECTIVE VARIETIES 277

maps induce an exact sequence:

0→M(f) →
r⊕
i=1

M(fi) →
r⊕

i,j=1

M(fifj).

Proof. The following is a graded variant of the argument in the proof of
Lemma 8.3.2 (cf. also the proof of Proposition 4.3.16). Note first that the condition
on f, f1, . . . , fr is equivalent to the fact that the ideals (f) and (f1, . . . , fr) have the
same radical. Let d = deg(f) > 0 and di = deg(fi) > 0.

We first show that the morphism M(f) →
⊕r

i=1M(fi) is injective. If u
fj lies in

the kernel, then for N � 0, we have fNj · u = 0 for all j. Since f lies in the radical

of (f1, . . . , fr), it follows that fN
′
u = 0 for some N ′, hence u

fj = 0.

We next show that if we have ui

f
mi
i

∈ M(fi) (hence ui ∈ Mmidi) such that for

all i and j, we have
ui
fmi
i

=
uj

f
mj

j

∈M(fifj),

then there is u
fm ∈M(f) such that u

fm = ui

f
mi
i

for all i. The hypothesis implies that

if N � 0, then

(fifj)
N (f

mj

j ui − fmi
i uj) = 0 for all i, j.

If we replace each ui

f
mi
i

by
uif

N
i

f
mi+N

i

, then we see that we may assume that f
mj

j ui =

fmi
i uj for all i and j. Moreover, we may replace each fj by f

mj

j and thus assume

that mi = 1 for all i. By hypothesis, f lies in the radical of (f1, . . . , fr), hence we
can write

fs =

r∑
i=1

hifi

for some s ≥ 1 and some hi ∈ Ssd−di .
Note that

deg(ui) + deg(hi) = di + (sd− di) = sd for 1 ≤ i ≤ r.
In order to complete the proof, it is enough to show that if we put u =

∑r
i=1 hiui ∈

Msd, then u
fs =

uj

fj
in M(fj) for all j. Indeed, we have

fju =

r∑
i=1

hifjui =

r∑
i=1

hifiuj = fsuj .

�

By applying Proposition 8.3.1, the above lemma implies that we have an OX -

module M̃ on X, unique up to a canonical isomorphism, such that over each D+
X(f),

where f is homogeneous, of positive degree, we have an isomorphism

Γ
(
D+
X(f), M̃

)
'M(f),

and these isomorphisms are compatible with the restriction maps.
This construction is functorial: if M → N is a morphism of graded S-modules,

then for every f as above, we have a morphism of S(f)-modules M(f) → N(f), and
these morphisms are compatible with the restriction morphisms. We thus obtain

a morphism of OX -modules M̃ → Ñ via Proposition 8.3.1. We get in this way a
functor from the category of graded S-modules to the category of OX -modules.
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The functor that maps M to M̃ is exact. Indeed, since the open subsets D+
X(f)

form a basis of open subsets, it is enough to show that the functor that maps a
graded S-module M to M(f) is exact: this is clear.

We also note that the functor commutes with arbitrary direct sums: given
a family (Mi)i∈I of graded S-modules, the OX -module associated to

⊕
i∈IMi is

canonically isomorphic to
⊕

i∈I M̃i. This is an immediate consequence of the fact
that localization commutes with arbitrary direct sums.

Example 11.1.7. We have S̃ ' OX .

Example 11.1.8. For every m ∈ Z, we put

OX(m) := S̃(m).

This is a line bundle. In order to see this, we use the fact that X is a union of affine
open subsets of the form D+

X(f), where f is homogeneous, of degree 1 (we recall
that this is a consequence of the fact that S is generated by S1 as an S0-algebra).
Note that we have a basis of open subsets of D+

X(f) given by subsets of the form

D+
X(f)∩D+

X(g) = D+
X(fg), where g ∈ S is homogeneous, and for every such f and

g, we have an isomorphism

S(m)(fg) = (Sfg)m ' S(fg), u→ f−m · u.
Moreover, when we vary g, these isomorphisms are compatible with the restriction
maps, giving an isomorphism

OX(m)|D+
X(f) ' OD+

X(f).

For every OX -module F , we put F(m) := F ⊗OX
OX(m).

Remark 11.1.9. When X = Pn, the definition of OPn(m) given in this section
agrees with the one in Example 8.6.14. Indeed, if Ui = D+

Pn(xi), then we have seen
in Example 11.1.8 that the isomorphism

φi : OPn(m)|Ui → OUi

is given by multiplication by x−mi . Therefore φi ◦φ−1
j is given by

(
xj

xi

)m
, hence the

transition functions are the same as for the line bundle OPn(m) in Example 8.6.14.

Proposition 11.1.10. For every graded S-module M , the OX-module M̃ is

quasi-coherent. Moreover, if M is finitely generated, then M̃ is coherent.

Proof. We can choose a set of homogeneous generators (ui)i∈I of M , with
deg(ui) = ai, and consider the surjective morphism of graded S-modules

φ :

r⊕
i∈I

S(−ai)→M, ei → ui.

We thus obtain a surjective morphism of OX -modules
⊕

i∈I OX(−ai) → M̃ . Ap-
plying the same argument for ker(φ), we get an exact sequence⊕

j∈J
OX(−bj)→

⊕
i∈I
OX(−ai)→ M̃ → 0.

Therefore M̃ is quasi-coherent, as the cokernel of a morphism of quasi-coherent
sheaves. Moreover, if M is finitely generated, then we may choose I and J to be

finite sets, hence M̃ is coherent. �
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Example 11.1.11. If I ⊆ S is a homogeneous radical ideal, then Ĩ is a coherent
ideal in OX ; it is the radical ideal corresponding to the closed subset V (I).

Example 11.1.12. We note that for every graded S-module M and every m ∈
Z, we have a canonical isomorphism

M̃ ⊗OX
OX(m) ' M̃(m).

Indeed, if U = D+
X(f), where f is homogeneous, of degree 1, then the restriction(

M̃ ⊗OX
OX(m)

)
|U is the quasi-coherent sheaf associated to

(Mf )0 ⊗(Sf )0 (Sf )m ' (Mf )m, u⊗ a

fs
→ au

fs
.

It is clear that these maps are compatible and thus give the desired isomorphism.
In particular, we see that for every m,n ∈ Z, we have OX(m) ⊗ OX(n) '

OX(m+n). Therefore OX(−1) ' OX(1)−1 and OX(m) ' OX(1)⊗m for all m > 0.

Remark 11.1.13. Recall that if S(d) =
⊕

i≥0 Sid, then we have a canonical

isomorphism g : MaxProj(S) → MaxProj(S(d)) (see Exercise 4.3.22). It follows
from the definition that we have a canonical isomorphism g∗

(
O(1)

)
' O(d).

Remark 11.1.14. Let p : T → S be a surjective, graded k-algebra homomor-
phism, with kernel I, and consider the corresponding closed immersion i : X ↪→
Y = MaxProj(T ). It is easy to see that if N is a graded T -module and we take
M = N ⊗T S ' N/IN (which is naturally a graded S-module), then we have an
isomorphism

M̃ ' i∗(Ñ).

In particular, if N = T (m), we have M = S(m), and we get an isomorphism
i∗
(
OY (m)

)
' OX(m) for all m ∈ Z.

This justifies the fact that if X = MaxProj(S) and Z is a closed subset of X,
then we will denote OX(m)|Z by OZ(m).

We now describe the modules that induce the zero sheaf. Recall that S+ =⊕
i>0 Si.

Proposition 11.1.15. If M is a graded S-module, then M̃ = 0 if and only if
for every u ∈M , there is N such that SN+ · u = 0.

Proof. Let y1, . . . , yr ∈ S1 generate S as an S0-algebra. In this case, we

have S+ = (y1, . . . , yr) and X =
⋃r
i=1D

+
X(yi). Since M̃ is quasi-coherent, we have

M̃ = 0 if and only if M(yi) = 0 for all i. For every m ∈ Z, multiplication by ymi
gives an isomorphism (Myi)0 ' (Myi)m, hence M(yi) = 0 if and only if Myi = 0.
This condition holds if and only if for every u ∈ M , we have yqi · u = 0 for q � 0.
The assertion in the proposition now follows from the fact that S+ is generated as
an ideal by y1, . . . , yr. �

Remark 11.1.16. Suppose that M is a finitely generated graded S-module. In

this case the proposition immediately implies that M̃ = 0 if and only if there is
q such that Sq+ ·M = 0. We claim that this is the case if and only if there is j0
such that Mj = 0 for j ≥ j0. Indeed, if the latter condition holds, then it is clear
that for every u ∈ Mi, if q ≥ max{0, j0 − i}, then Sq+ · u = 0. Conversely, suppose
that Sq+ ·M = 0 and let u1, . . . , ur ∈ M be a system of homogeneous generators,
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with deg(ui) = di for all i. Given any u ∈ Mj , we can write u =
∑r
i=1 aiui, with

ai ∈ Sj−di . It follows that if j ≥ q + maxi{di}, then Mj = 0.

We now construct a functor going in the opposite direction, from OX -modules
to graded S-modules. This maps F to

Γ∗(F) :=
⊕
m∈Z

Γ
(
X,F(m)

)
.

For now, this is a graded Abelian group. The definition is functorial: given a
morphism of OX -modules F → G, we get morphisms F(m)→ G(m) for all m ∈ Z,
and thus a morphism of graded Abelian groups Γ∗(F)→ Γ∗(G).

For every graded S-module M , we have a functorial map

ΦM : M → Γ∗(M̃)

that takes Mi to Γ
(
X, M̃(i)

)
= Γ

(
X, M̃(i)

)
, defined as follows. Given u ∈ Mi

and a homogeneous element f in S of positive degree, we consider the element of

Γ
(
D+
X(f), M̃(i)

)
= (Mf )i given by u

1 . It is straightforward to check that these

sections glue to give ΦM (u) ∈ Γ
(
X, M̃(i)

)
. In particular, we have a map

φS : S →
⊕
m∈Z

Γ
(
X,OX(m)

)
.

For every OX -module F , we have maps

Γ
(
X,OX(i)

)
⊗k Γ

(
X,F(j)

)
→ Γ

(
X,F(i+ j)

)
induced by tensor product of sections. For F = OX , this makes Γ∗(OX) a graded
ring such that ΦS is a morphism of graded rings. Moreover, for every F , this makes
Γ∗(F) a graded module over Γ∗(OX), and thus via ΦS , a graded S-module. Note
that ΦM is then a morphism of graded S-modules. We thus see that Γ∗(−) is a
functor from the category of OX -modules to the category of graded S-modules.

Remark 11.1.17. Given f ∈ Sm, we have a corresponding section s = ΦS(f) ∈
Γ
(
OX(m)

)
. Note that a point x ∈ X corresponding to the homogeneous prime ideal

q of S lies in the zero-locus of s if and only if f ∈ q, which is the case precisely
when x ∈ V (f).

Our next goal is to relate the two functors that we defined. As we will see,
these give an “almost equivalence” between the category of graded S-modules and
that of quasi-coherent OX -modules. Recall that S+ =

⊕
i>0 Si.

Proposition 11.1.18. If F a quasi-coherent OX-module, then we have a func-
torial isomorphism

ΨF : Γ̃∗(F) ' F .

We begin with the following general lemma, which describes the sections of
coherent sheaves over complements of zero-loci of sections of line bundles. We will
apply it in order to describe the sections of quasi-coherent sheaves on open subsets
of the form D+

X(f).

Lemma 11.1.19. Let Y be an arbitrary variety, L a line bundle on Y , and
s ∈ Γ(Y,L) a global section of L. If U = Y r V (s), then for every quasi-coherent
sheaf F on X, the following hold:
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i) If t ∈ Γ(Y,F) is such that t|U = 0, then there is N ≥ 0 such that sN ·t = 0
in Γ(Y,F ⊗ LN ).

ii) For every t ∈ Γ(U,F), there is q ≥ 0 such that sq|U · t is the restriction
of a section in Γ(Y,F ⊗ Lq).

Note that when L = OX , this is precisely the assertion in Exercise 8.4.30.

Proof of Lemma 11.1.19. Let Y =
⋃r
i=1 Ui be an affine open cover of Y

such that for every i, we have an isomorphism φi : L|Ui
→ OUi

. We put fi =
φi(s|Ui). Since F is quasi-coherent, for every i, we have an isomorphism

(11.1.1) Γ(Ui,F)fi → Γ
(
Ui ∩ U,F).

Let us first prove i). Since t|U = 0, it follows from (11.1.1) that for every i

we can find Ni such that fNi
i · t|Ui

= 0. We conclude that if N ≥ maxiNi, then
(sN · t)|Ui ∈ Γ(Ui,F ⊗ LN ) is 0, and thus sN · t = 0.

We now prove ii). By (11.1.1), for every i, there is qi such that fqii · t|U∩Ui is
the restriction of a section in Γ(Ui,F). By taking q ≥ maxi qi, we thus see that for
every i, the section

sq|U∩Ui
· t|U∩Ui

∈ Γ(U ∩ Ui,F ⊗ Lq)
is the restriction of a section vi ∈ Γ(Ui,F ⊗ Lq). For every i and j, the restriction
of vi|Ui∩Uj

− vj |Ui∩Uj
to U ∩ Ui ∩ Uj vanishes. Since we only have finitely many

such intersections to consider, using the assertion in i), we see that after possibly
replacing q by a larger value, we may assume that vi|Ui∩Uj

= vj |Ui∩Uj
for all i

and j. Therefore there is v ∈ Γ(Y,F ⊗ Lq) such that v|Ui = vi for all i, and thus
sq|U · t = v|U since we have equality after restricting to each Ui. �

Proof of Proposition 11.1.18. Given F , we construct Ψ = ΨF : Γ̃∗(F)→
F by describing it on the affine open subsets of the form D+

X(f), where f is homo-
geneous, with d = deg(f) > 0. We thus need to define

Γ∗(F)(f) → Γ
(
D+
X(f),F).

Given s
fm , with s ∈ Γ

(
X,F(md)

)
, we consider 1

fm as a section in Γ
(
DX(f),OX(−md)

)
and define Ψ

(
s
fm

)
to be the section 1

fm · s|D+(f) ∈ Γ
(
D+
X(f),F

)
. It is straightfor-

ward to see that this is well-defined and that the morphisms thus defined on each

D+
X(f) glue to a morphism of sheaves Ψ: Γ̃∗(F) → F . Moreover, it is clear that

this is functorial in F .
In order to show that Ψ is an isomorphism of sheaves, we use the lemma. Again,

it is enough to show that α is an isomorphism over every open subset D+
X(f) =

XrV (f), where f ∈ S is homogeneous, with deg(f) = d > 0. If α
(

s
fm

)
= 0, since

1
fm ∈ Γ

(
D+
X(f),OX(−m)

)
does not vanish anywhere, it follows that s|D+

X(f) = 0.

By the lemma, we can find N such that fN · s = 0 in Γ
(
X,F(md+Nd)

)
. In this

case we have s
fm = fN ·s

fm+N = 0. We thus see that Ψ is injective.

For surjectivity, suppose that t ∈ Γ
(
D+
X(f),F

)
. It follows from the lemma that

we can find q ≥ 0 such that fq · t is the restriction of a section t′ ∈ Γ
(
X,F(qd)

)
, in

which case t = Ψ
(
t′

fq

)
. This completes the proof of the theorem. �

We now derive some consequences of the above proposition.
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Corollary 11.1.20. If F is a coherent OX-module, then there is a finitely

generated graded S-module M such that F ' M̃ .

Proof. It follows from the proposition that if N = Γ∗(F), then Ñ ' F . Let
y1, . . . , yr be homogeneous elements of positive degree such that X =

⋃r
i=1DX(yi).

Since F is coherent, it follows thatN(yi) is a finitely generated S(yi)-module for every
i. By choosing generators and letting M to be the S-submodule of N generated
by the numerators that appear in all these generators, for all i, we see that M is
a finitely generated graded submodule of N such that M(yi) = N(yi) for all i. We

thus have M̃ ' Ñ ' F . �

Remark 11.1.21. For every graded S-module M , the morphism ΦM : M →
Γ∗(M̃) induces a morphism of sheaves

Φ̃M : M̃ → Γ̃∗(M̃).

It is easy to check that Ψ
M̃
◦ Φ̃M is equal to id

M̃
, hence Φ̃M is an isomorphism.

Therefore the sheaves associated to ker(ΦM ) and coker(ΦM ) are 0. If M is finitely
generated, it follows that ker(ΦM ) is finitely generated, and Remark 11.1.16 implies
that if j � 0, then the morphism

Mj → Γ
(
X, M̃(j)

)
induced by ΦM is injective. In fact, this is also surjective, but we postpone the
proof of this fact until the next section (see Corollary 11.2.3 below).

Exercise 11.1.22. Let X = Pn and S = k[x0, . . . , xn] be the homogeneous
coordinate ring of Pn, with irrelevant ideal m = (x0, . . . , xn). A homogeneous ideal
J in S is saturated if for every element u ∈ S such that u ·m ⊆ J , we have u ∈ J .

i) Show that for every homogeneous ideal J in S, there is a unique saturated
ideal J sat in S such that J ⊆ J sat and there is r such that mr · J sat ⊆ J .

ii) Show that if J1 and J2 are homogeneous ideals in S, then J̃1 = J̃2 if and
only if J sat

1 = J sat
2 .

iii) In particular, given any coherent ideal sheaf J on Pn, there is a unique

saturated ideal J in S such that J̃ = J . Show that this is the unique

largest homogeneous ideal I such that Ĩ = J , and it is equal to⊕
m≥0

Γ
(
Pn,J (m)

)
⊆ S =

⊕
m≥0

Γ
(
Pn,OPn(m)

)
.

iv) Show that if J is a homogeneous, radical ideal different from m, then J is
saturated. Show also that if J is a radical coherent ideal on Pn, then the

saturated ideal J such that J̃ = J is radical.

We end this section by introducing two important definitions. If Y is an arbi-
trary algebraic variety and F is an OY -module, then we have a canonical morphism

(11.1.2) Γ(Y,F)⊗k OY → F
that maps

∑r
i=1 si ⊗ fi, where si ∈ Γ(Y,F) and fi ∈ OY (U) for some open subset

U of Y , to
∑r
i=1 fi · si|U .

Definition 11.1.23. An OY -module F is globally generated if the canonical
morphism (11.1.2) is surjective. Equivalently, for every y ∈ Y , the stalk Fy is
generated as an OY,y-module by {sy | s ∈ Γ(Y,F)}.
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Exercise 11.1.24. Show that if F is a coherent sheaf on an algebraic variety X,
then F is globally generated if and only if there is a surjective morphism O⊕NX → F ,
for some non-negative integer N .

Definition 11.1.25. A line bundle L on Y is ample if for every coherent sheaf
F on Y , there is n0 such that F ⊗ Ln is globally generated for all n ≥ n0. If D
is a Cartier divisor on an irreducible variety Y , then D is ample if the line bundle
OX(D) is ample.

Example 11.1.26. Note that if Y is an affine variety, then every quasi-coherent
sheaf on Y is globally generated. It follows that every line bundle on Y is ample.

We will discuss ample line bundles in detail in §11.6. For now, we note the
following consequence of the results discussed in this section.

Proposition 11.1.27. If X = MaxProj(S) as above, then the line bundle
OX(1) is ample.

Proof. Given a coherent sheaf F on X, it follows from Corollary 11.1.20 that

there is a finitely generated graded module M such that F ' M̃ . Let u1, . . . , un be
homogeneous generators ofM , with deg(ui) = di. Since S+ is generated by elements

of degree 1, we see that if d ≥ maxi{di} and if we take T =
⊕n

i=1 S
d−di
+ · ui, then

T is a graded submodule of M generated by elements of degree d. This implies
that we have a surjective morphism S(−d)⊕q → T , for some q, which induces a

surjective morphism OX(−d)⊕q → T̃ . This implies that T̃ ⊗ OX(m) is the image

of O⊕qX , hence it is finitely generated. On the other hand, every element in M/T is

annihilated by some power of S+, hence M̃/T = 0, and thus T̃ ' M̃ ' F . �

The line bundle O(1) that played a key role in this section admits a version on
the total space of an arbitrary projective morphism. More generally we have a func-
tor from graded quasi-coherent sheaves on the base to quasi-coherent sheaves on the
total space, as follows. Suppose that Y is an arbitrary variety and S =

⊕
m∈N Sm

is an N-graded OY -algebra, which is reduced, quasi-coherent, and generated over
S0 by S1; moreover, both S0 and S1 are coherent. Consider the morphism

f : X =MaxProj(S)→ Y.

Suppose that M =
⊕

i∈ZMi is an S-module, which is quasi-coherent as an OY -
module. For every affine open subset U of Y , we have a canonical isomorphism
f−1(U) ' MaxProj

(
S(U)

)
. Note that M(U) is a graded S(U)-module, and we

get a corresponding quasi-coherent sheaf M̃(U) on f−1(U). It is straightforward
to check that if V ⊆ U is another affine open subset, then we have a canonical
isomorphism

M̃(U)|f−1(V ) ' M̃(V ).

We thus obtain a quasi-coherent sheaf M̃ on X. It is clear that if M is locally
finitely generated over S (in the sense that M(U) is a finitely generated S(U)-

module for every affine open subset U of Y ), then M̃ is a coherent sheaf on X. An

important example is provided by the line bundle OX(1) := S̃(1).
Note that for every m and every affine open subset U of Y , we have a canonical

morphism
Γ(U,Sm)→ Γ

(
f−1(U),Of−1(U)(m)

)
.
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These induce for every m a morphism of OY -modules

Sm → f∗
(
OX(m)

)
.

Example 11.1.28. Suppose that I is a non-zero coherent sheaf of ideals on the

irreducible variety Y and let π : Ỹ → Y be the blow-up along I. Recall that in

this case, we have I · OỸ = OY (−E), for an effective Cartier divisor E on Ỹ (see

Example 9.4.21). Since Ỹ =MaxProj(S), where S =
⊕

m≥0 Im, it is easy to see

that we have OỸ (1) ' OY (−E).

Example 11.1.29. An important example is that when

X =MaxProj(OY [x0, . . . , xn]) = Pn × Y =: Pn
Y .

In this case, the canonical morphism f : Pn
Y → Y is the projection onto the second

component. If q : Pn
Y → Pn is the projection onto the first component, then it is

easy to see that OPn
Y

(1) ' q∗
(
OPn(1)

)
.

11.2. Cohomology of coherent sheaves on projective varieties

We keep the notation in the previous section. In particular, we consider X =
MaxProj(S). Our goal is to prove the following fundamental result about the
cohomology of sheaves on X.

Theorem 11.2.1. If X = MaxProj(S), then for every coherent sheaf F on X,
the following hold:

i) For every i ≥ 0, the S0-module Hi(X,F) is finitely generated.
ii) If m� 0, then Hi

(
X,F(m)

)
= 0 for all i ≥ 1.

The main ingredient in the proof of the theorem is the following result concern-
ing the cohomology of the line bundles OX(m) when S = A[x0, . . . , xn]. Note that
in this case we have X = Pn

Y , where Y = MaxSpec(A).

Theorem 11.2.2. If S = A[x0, . . . , xn] and X = MaxProj(S), then the follow-
ing hold:

i) The canonical morphism Φ: S →
⊕

j≥0H
0
(
X,OX(j)

)
is an isomor-

phism.
ii) If 0 ≤ p ≤ n− 1, then Hp

(
X,OX(j)

)
= 0 for all j.

iii) We have Hn
(
X,OX(−n − 1)

)
' A and for every j, the canonical multi-

plication map

H0
(
X,OX(j)

)
×Hn

(
X,OX(−n− 1− j)

)
→ Hn

(
X,OX(−n− 1)

)
is a perfect pairing of finitely generated, free A-modules.

Proof. We compute the cohomology of the sheaves OX(j) using the affine
cover X =

⋃n
i=0DX(xi). For every J ⊆ {0, . . . , n}, we put UJ =

⋂
i∈J DX(xi) and

xJ =
∏
i∈J xi. Note that by definition, we have

Γ
(
UJ ,OX(j)

)
= (SxJ

)j .

The Čech complex for this cover and for the sheaf OX(j) is thus given by

0→ C0 → C1 → . . .→ Cn → 0,

where
Cp =

⊕
|J|=p+1

(SxJ
)j
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and where the maps are given, up to a sign, by the natural inclusion maps. We also
put C−1 = Sj . The map Γ

(
X,OX(j)

)
→ C0 induces a morphism C−1 → C0 and

we denote by C• the resulting complex. Note that by Theorem 10.6.1, the first two
assertions in the theorem are equivalent with Hi(C•) = 0 for i ≤ n− 1.

For every u = (u0, . . . , un) ∈ Zn+1, we write xu for the Laurent monomial
xu0

0 · · ·xun
n . The top cohomology of C• is easy to compute. Indeed, the A-module

Hn(C•) = coker

(
n⊕
i=0

(Sx0···x̂i···xn
)j → (Sx0···xn)j

)
is finitely generated and free, with a basis given by the classes of the Laurent
monomials xa, with ai ≤ −1 for all i and such that

∑n
i=0 ai = j. This shows that

Hn
(
X,OX(j)

)
= 0 if j > −n− 1 and Hn

(
X,OX(−n− 1)

)
' A.

Note also that every s ∈ Γ
(
X,OX(j)) induces a morphism OX(−n− 1− j)→

OX(−n−1) given by tensoring with s. Via the map Sj → Γ
(
X,OX(j)

)
, by applying

Hn(−), we thus get a bilinear map

Sj ×Hn
(
X,OX(−n− 1− j)

)
→ Hn

(
X,OX(−n− 1)

)
' A

which maps (xu, xv) to the generator xu+v if ui + vi = −1 for all i, and to 0,
otherwise. It is then clear that this is a perfect pairing of finitely generated, free
A-modules.

In order to complete the proof of the theorem, it is thus enough to prove that
Hi(C•) = 0 for i < n. Given J ⊆ {0, . . . , n}, with |J | = p, we write eJ for the unit
in the summand of Cp−1 corresponding to J . We thus see that

Cp−1 =
⊕

u∈Zn+1

⊕
J(u)⊆J,|J|=p

AxueJ ,

where J(u) = {i | ui < 0}. It is clear that the complex C• decomposes as⊕
u∈Zn+1 C•u, where

Cp−1
u =

⊕
J(u)⊆J,|J|=p

AxueJ .

If J(u) = {0, . . . , n}, then Cpu = 0 for p ≤ n − 1. Therefore it is enough to
show that for every u ∈ Zn+1, with J(u) 6= {0, . . . , n}, the identity map on C•u is
homotopic to 0. This complex is, up to a shift, the complex that computes the
reduced simplicial cohomology with coefficients in A for the full simplicial complex
on the set {0, . . . , n} r J(u); our assertion is then well-known, but we recall the
argument. If 0 ≤ i0 ≤ n is such that i0 6∈ J(u), and 0 ≤ p ≤ n, we define
θp : Cpu → Cp−1

u by θp(xueJ) = 0 if i0 6∈ J and

θp(xueJ) = (−1)`−1xueJr{i0}

if the elements of J are j1 < . . . < j` = i0 < . . . < jp+1. A straightforward
computation shows that the maps (θp)0≤p≤n give a homotopy between the identity
map and 0 on C•u. This completes the proof of the theorem. �

We can now deduce the result about the cohomology of arbitrary coherent
sheaves on MaxProj(S).

Proof of Theorem 11.2.1. Let us consider a surjective, graded homomor-
phism T = S0[x0, . . . , xn] → S and the corresponding closed immersion ι : X ↪→
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Y = MaxProj(T ). For every coherent sheaf F on X, the sheaf ι∗(F) on Y is coher-
ent. Moreover, by Remark 11.1.14, we have ι∗

(
OY (m)

)
' OX(m) for all m ∈ Z,

hence the projection formula gives

ι∗
(
F ⊗OX

OX(m)
)
' ι∗(F)⊗OY

OY (m).

By Example 10.5.16, we thus obtain isomorphisms

Hi
(
X,F ⊗OX

OX(m)
)
' Hi

(
Y, i∗(F)⊗OY

OY (m)
)

for allm ∈ Z and i ≥ 0. We thus see that we may and will assume S = A[x0, . . . , xn],
with the standard grading. Note that in this case, if F = OX(m), for some m ∈ Z,
then both assertions in the theorem follow from Theorem 11.2.2.

We show by descending induction on i that for every coherent sheaf F on X,
we have Hi(X,F) finitely generated as an A-module, and Hi

(
X,F(m)

)
= 0 for

m � 0. If i > dim(X), then both assertions are trivially true since Hi(X,F) = 0
for every quasi-coherent sheaf by Corollary 10.6.7. We now suppose that both
assertions hold for i+ 1 and deduce them for i. Given a coherent sheaf F on X, it
follows from Corollary 11.1.20 that there is a finitely generated graded S-module

M such that F ' M̃ . If u1, . . . , ur ∈M form a system of homogeneous generators,
with deg(ui) = ai, we have a surjective morphism

⊕r
j=1 S(−aj)→M . By passing

to the associated sheaves and taking the kernel, we obtain a short exact sequence

0→ G →
r⊕
j=1

OX(−aj)→ F → 0.

By tensoring this with OX(m) and taking the long exact sequence in cohomology,
we obtain an exact sequence

r⊕
j=1

Hi
(
X,OX(m− aj)

)
→ Hi

(
X,F(m)

)
→ Hi+1

(
X,G(m)

)
.

Suppose first that m = 0. The third term is a finitely generated module over A
by the inductive assumption, while the first term is a finitely generated A-module
by Theorem 11.2.2. We thus see that Hi(X,F) is a finitely generated A-module as
well.

We also see that for m� 0, the third term in the above exact sequence vanishes
by the inductive assumption, while the first term vanishes by Theorem 11.2.2. We
thus see that Hi

(
X,F(m)

)
= 0 for all m � 0. This completes the proof of the

induction step.
We note that regarding ii), we have shown for every i, we haveHi

(
X,F(m)

)
= 0

for m � 0. This implies that there is m0 such that all these vanish for m ≥ m0,
since we only need to consider the cohomology groups for i ≤ dim(X), the others
being automatically 0. This completes the proof of the theorem. �

Corollary 11.2.3. If X = MaxProj(S) and M is a finitely generated S-
module, then for j � 0, the canonical morphism

Mj → Γ
(
X, M̃(j)

)
induced by ΦM is an isomorphism.

Proof. We have already seen that this is injective (see Remark 11.1.21), but
we reprove this now as well. Note that if S′ → S is a surjective graded S0-algebra
homomorphism, inducing the closed immersion X ↪→ MaxProj(S′), then M is a
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graded S′-module and the assertion over S is equivalent to the assertion over S′.
We thus may and will assume that S is a polynomial ring over S0. In this case, if
M = S(m) for some m ∈ Z, then ΦM is an isomorphism by Theorem 11.2.2. In
general, after choosing finitely many homogeneous generators of M , we obtain a
commutative diagram with exact rows

0 // Q

ΦQ

��

// P //

ΦP

��

M //

ΦM

��

0

0 // Γ∗(Q̃) // Γ∗(P̃ )
α // Γ∗(M̃),

where P =
⊕r

i=1 S(−mj). Note that (ΦP )j is an isomorphism for all j. On the

other hand, it follows from Theorem 11.2.1 that H1
(
X, Q̃(j)

)
= 0 for j � 0, hence

αj is surjective. We thus conclude from the above diagram that (ΦM )j is surjective
for j � 0.

Moreover, it follows from the above diagram and the Snake lemma that for
every j, we have an exact sequence

0 = ker(ΦP )j → ker(ΦM )j → coker(ΦQ)j .

Applying what we have already seen for Q, we obtain that for j � 0 we have
coker(ΦQ)j = 0, hence ker(ΦM )j = 0. �

Given a graded S-module M and an integer q, we put

M≥q :=
⊕
m≥q

Mm.

Corollary 11.2.4. If F is a coherent sheaf on X = MaxProj(S), then for
every m0 ∈ Z, the S-module Γ∗(F)≥m0 is finitely generated.

Proof. By Corollary 11.1.20, we have a finitely generated S-module M such

that F ' M̃ . Corollary 11.2.3 then implies that we have m1 ≥ m0 such that the
canonical morphism

M≥m1
→ Γ∗(F)≥m1

is an isomorphism. Since M is finitely generated, it is easy to see that the left-
hand side is finitely generated, hence the right-hand side is finitely generated as
well. Since each Γ

(
X,F(m)

)
, with m0 ≤ m < m1 is finitely generated over S0 by

Theorem 11.2.1, we obtain the assertion in the corollary. �

Remark 11.2.5. Suppose that X is a closed subvariety of Pn
Y , where Y =

MaxSpec(A). Let I ⊆ S = A[x0, . . . , xn] be a radical homogeneous ideal such that

Y = V (I). The coherent ideal Ĩ is the radical ideal sheaf IX corresponding to X,

so that if SX = S/I, we have S̃X ' OX . It follows that for every m ≥ 0, we have
a canonical morphism

(SX)m → Γ
(
X,OX(m)

)
and by Corollary 11.2.3, there is m0 such that the above morphism is an isomor-
phism for m ≥ m0.

It follows that for m ≥ m0, the canonical map

Γ
(
X,OX(m)

)
⊗k Γ

(
X,OX(1)

)
→ Γ

(
X,OX(m+ 1)

)
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given by multiplication of sections is surjective. In particular, the graded k-algebra

S
(
OX(m)

)
:=
⊕
j≥0

Γ
(
X,OX(jm)

)
is generated by its degree 1 part. It is easy to see that this algebra is reduced and we
can thus consider MaxProj

(
S(OX(m))

)
. In fact, this is isomorphic to X. Indeed,

we have a graded homomorphism S
(m)
X → S

(
OX(m)

)
which is an isomorphism in

all positive degrees, so that the assertion follows from Exercises 4.3.21 and 4.3.22.

Example 11.2.6. Let n ≥ 1 and let D be an effective Cartier divisor on Pn.
Recall that we have an isomorphism Pic(Pn) ' Z that maps OPn(m) to m (see
Example 9.3.4). Suppose that D has degree d, that is, OPn(D) ' OPn(d); equiva-
lently, if D =

∑r
i=1 aiDi, where Di is an irreducible hypersurface in Pn of degree

di, then d =
∑r
i=1 aidi.

Recall that by Proposition 9.4.24, effective Cartier divisors of degree d on Pn are
in bijection with sections of Γ

(
Pn,OPn(d)

)
' Sd, up to multiplication by non-zero

elements of k, where S = k[x0, . . . , xn]. We write fD ∈ Sd for such a polynomial
corresponding to D. Note that if D is a hypersurface in Pn (that is, it is a reduced
divisor, that we identify with its support), then fD is a generator for the principal
radical ideal corresponding to this hypersurface. In general, if D =

∑r
i=1 aiDi,

where Di is an irreducible hypersurface in Pn, with corresponding radical ideal
generated by fi, then we can take fD =

∏r
i=1 f

ai
i .

Suppose now that n ≥ 2 and let us compute Hi
(
Pn,OD(m)

)
for all m. Note

that since OX(−D) ' OPn(−d), we have a short exact sequence

0→ OPn(−d)→ OPn → OD → 0.

By tensoring with OPn(m) and taking the long exact sequence in cohomology, we
obtain for every i ≥ 0, an exact sequence

Hi
(
Pn,OPn(m− d)

)
→ Hi

(
Pn,OPn(m)

)
→ Hi

(
Pn,OD(m)

)
→

→ Hi+1
(
Pn,OPn(m− d)

)
→ Hi+1

(
Pn,OPn(m)

)
.

We first deduce from Theorem 11.2.2 that

Hi
(
Pn,OD(m)

)
= 0 for 1 ≤ i ≤ n− 2,m ∈ Z.

We also see that

H0
(
Pn,OD(m)

)
' (S/S · fD)m.

In particular, we have

dimkH
0
(
Pn,OD(m)

)
=

(
m+ n

n

)
−
(
m+ n− d

n

)
for m ≥ 0,

with the convention that the second binomial coefficient is 0 for m < d.
Finally, we see that for every m, we have an exact sequence

0→ Hn−1
(
Pn,OD(m)

)
→ Hn

(
Pn,OPn(m− d)

)
→ Hn

(
Pn,OPn(m)

)
→ 0.

Example 11.2.7. Suppose that E is a locally free sheaf on T and

f : X = P(E) =MaxProj
(
Sym•(E)

)
→ T
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is the corresponding projective bundle. Arguing locally on T , we deduce from
Theorem 11.2.2 that for every m < 0 we have f∗

(
OX(m)

)
= 0 and for m ≥ 0, the

canonical morphism
Symm(E)→ f∗

(
OX(m)

)
is an isomorphism. We also see that if rk(E) = n + 1, then Rif∗

(
OX(m)

)
= 0 for

1 ≤ i ≤ n− 1 and all m, or for i = n and m ≥ −n.
In particular, we see that we have a canonical isomorphism E → f∗

(
OP(E)(1)

)
.

Since f∗ is the left adjoint of f∗, this morphism corresponds to a morphism on P(E)

f∗(E)→ OP(E)(1).

This is a surjective morphism. Indeed, in order to check this, after consider-
ing a suitable affine open cover of T , we may assume that T is affine and E =

O⊕(n+1)
T . In this case, the surjectivity comes down to the fact that on the vari-

ety MaxProj
(
O(T )[x0, . . . , xn]

)
, the line bundle O(1) is generated by its global

sections, which holds since
⋂n
i=0 V (xi) = ∅.

11.3. Coherence of higher direct images for proper morphisms

In this section we prove an important finiteness result for proper morphisms,
and use a special case to define some numerical invariants of smooth, complete
varieties. We end the section by introducing the Grothendieck groups of vector
bundles and of coherent sheaves on an algebraic variety.

11.3.1. Higher direct images for proper morphisms. The results in the
previous section imply that each cohomology group of a coherent sheaf on a pro-
jective variety is finite-dimensional over the ground field. We want to extend this
to the case of arbitrary complete varieties. More generally, we prove the following
result concerning the higher direct images of a coherent sheaf by a proper morphism.

Theorem 11.3.1. If f : X → Y is a proper morphism of algebraic varieties,
then for every coherent sheaf F on X and every p ≥ 0, the sheaf Rpf∗(F) on Y is
coherent.

Proof. The proof of the theorem is based on “dévissage”, a technique intro-
duced by Grothendieck. We recall that the quasi-coherence of Rpf∗(F) follows from
Proposition 10.2.20 and thus we only need to prove that if U ⊆ Y is an affine open
subset, then Hp

(
f−1(U),F

)
is a finitely generated OY (U)-module.

We note that the theorem holds if f admits a factorization X
i−→ Y ×Pn π−→ Y ,

for some n ≥ 0, where i is a closed immersion and π is the projection onto the first
component. Indeed, if U is an affine open subset of Y , then

Hp
(
f−1(U),F

)
' Hp

(
U ×Pn, i∗(F)

)
and the right-hand side is a finitely generated OY (U)-module by Theorem 11.2.1.

In order to handle the general case, we make use of Chow’s lemms. Arguing
by Noetherian induction on X, we may assume that for every closed subvariety Z

of X, different from X, the composition Z
j
↪→ X −→ Y satisfies the conclusion of

the theorem with respect to any coherent sheaf on Z. If G is a coherent sheaf on X
such that IZ · G = 0, where IZ is the radical ideal sheaf defining Z, then we have
a coherent sheaf GZ on Z such that G = j∗(GZ) and thus

Rpf∗(G) ' Rp(f ◦ j)∗(GZ)
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is coherent for every p ≥ 0.
We see that if G is a coherent sheaf on X such that Supp(G) 6= X, then Rpf∗(G)

is coherent for every p. Indeed, let I be the radical ideal defining Supp(G) and let
d ≥ 1 be such that Id · G = 0. As we have seen, for every j ≥ 0 and every p,
the sheaf RpfF (IjG/Ij+1G) is coherent. The long exact sequence for higher direct
images corresponding to the short exact sequence

0→ Ij+1G → IjG → IjG/Ij+1G → 0

gives an exact sequence

Rpf∗(Ij+1G)→ Rpf∗(IjG)→ Rpf∗(IjG/Ij+1G).

We thus deduce by descending induction on j, starting with j = d, that Rpf∗(IjG)
is coherent. By taking j = 0, we conclude that Rpf∗(G) is coherent.

This implies that if φ : G1 → G2 is a morphism such that the supports of ker(φ)
and coker(φ) are proper subsets of X, then for every q we have that Rpf∗(G1) is
coherent if and only if Rpf∗(G2) is coherent. Indeed, using the long exact sequences
for higher direct images associated to the short exact sequences

0→ ker(φ)→ G1 → Im(φ)→ 0

and

0→ Im(φ)→ G2 → coker(φ)→ 0,

we obtain the exact sequences

Rpf∗
(
ker(φ)

)
→ Rpf∗(G1)→ Rpf∗

(
Im(φ)

)
→ Rp+1f∗

(
ker(φ)

)
and

Rpf∗
(
Im(φ)

)
→ Rpf∗(G2)→ Rpf∗

(
coker(φ)

)
→ Rp+1f∗

(
Im(φ)

)
.

Since we know that Rjf∗
(
ker(φ)

)
and Rjf∗

(
coker(φ)

)
are coherent for all j, the

first exact sequence shows that Rpf∗(G1) is coherent if and only if Rpf∗
(
Im(φ)

)
is

coherent and the second exact sequence shows that Rpf∗
(
Im(φ)

)
is coherent if and

only if Rpf∗(G2) is coherent.
By Chow’s lemma (see Theorem 5.2.2), we have a proper morphism g : W → X

that satisfies the following two properties:

i) We have dense open subsets U ⊆ X and V ⊆ W such that g induces an
isomorphism V ' U .

ii) The composition h = f ◦ g factors as W
i
↪→ Y × Pn π−→ Y , where i is a

closed immersion and π is the projection onto the first components.

Moreover, in this case g admits such a factorization, too (see Remark 5.2.3). As we
have noted, the conclusion of the theorem thus holds for both g and f ◦ g.

We may and will assume that V = g−1(U). Indeed, for this it is enough to
replace U by U r g(W r V ), which is open (since g is closed) and dense in X.
Note that if this last property fails, then there is an irreducible component Z of
W r V such that g(Z) is an irreducible component of X. However, any irreducible
component of W containing Z meets V , and thus is birational to g(Z), hence
dim(Z) < dim

(
g(Z)

)
, a contradiction.

Consider the morphism φ : F → g∗
(
g∗(F)

)
. Since the sheaf g∗(F) is coherent

and since the theorem holds for g, the sheaf g∗
(
g∗(F)

)
is coherent. Moreover, since

φ is clearly an isomorphism on U , it follows that both ker(φ) and coker(φ) have the
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support contained in X r U . We thus see that it is enough to show that for every
p, the sheaf Rpf∗

(
g∗(G)

)
is coherent, where G = g∗(F).

Consider the Leray spectral sequence for G:

Ep,q2 = Rpf∗
(
Rqg∗(G)

)
⇒p R

p+qh∗(G).

We need to show that Ep,02 is coherent for all p. It is clear that if q ≥ 1, then
Rqg∗(G)|U = 0, hence Supp

(
Rqg∗(G)

)
⊆ X r U . By the inductive assumption, we

see that in this case Ep,q2 is a coherent sheaf on Y , and thus Ep,qr is coherent for
every r ≥ 2 if q ≥ 1. On the other hand, for every p and q, Ep,q∞ is a subquotient of
Rp+qh∗(G), hence it is coherent. Since Ep,q∞ = Ep,qr for r � 0, in order to conclude

that Ep,02 is coherent, it is enough to show that for every r ≥ 2, if Ep,0r+1 is coherent,

then Ep,0r is coherent. Recall that we have morphisms

Ep−r,r−1
r

α−→ Ep,0r
β−→ Ep+r,1−rr = 0

such that

Ep,0r+1 = ker(β)/Im(α) = coker(α).

Since r − 1 ≥ 1, we know that Ep−r,r−1
r is coherent, and thus Im(α) is coherent

(recall that these are all quasi-coherent sheaves). Since also coker(α) is coherent,
we conclude that Ep,0r is coherent. This completes the proof. �

By taking Y to be a point, we obtain the following

Corollary 11.3.2. If X is a complete algebraic variety over k, then for every
coherent sheaf F on X, we have dimkH

i(X,F) <∞.

Corollary 11.3.3. If X is a complete algebraic variety over k, then for every
coherent sheaves F and G on X, we have dimk ExtiOX

(F ,G) <∞ for all i ≥ 0.

Proof. By Proposition 10.7.13, we have a spectral sequence

Ep,q2 = Hp
(
X, ExtqOX

(F ,G)
)
⇒p Extp+qOX

(F ,G).

Since each ExtqOX
(F ,G) is a coherent sheaf by Proposition 10.7.16, it follows from

the previous corollary that dimk E
p,q
2 <∞, and thus dimk E

p,q
∞ <∞ for every p and

q. Moreover, by Corollary 10.6.5, there is a positive integer d such that Hi(X,M) =
0 for all i > d and all quasi-coherent sheaves M on X. In particular, we have
Ep,q2 = 0 = Ep,q∞ unless 0 ≤ p ≤ d. Therefore ExtiOX

(F ,G) has a finite filtration

such that each successive quotient is finite-dimensional over k, hence ExtiOX
(F ,G)

is finite-dimensional. �

We also have the slightly stronger version of the finiteness result in the theorem:

Corollary 11.3.4. If f : X → Y is a morphism of algebraic varieties and F
is a coherent sheaf of X such that Supp(F) is proper over Y , then for every p ≥ 0,
the OY -module Rpf∗(F) is coherent.

Proof. Let Z = Supp(F) and i : Z ↪→ X be the inclusion map. If F = i∗(G),
for some coherent sheaf G on Z, then the assertion follows from the theorem, since

Rpf∗(F) ' Rp(f ◦ i)∗(G)
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by Example 10.5.17. In general, we have a finite filtration of F , with successive
quotients of the form i∗(G), for some coherent sheaf G on Z (see Remark 8.4.21).
We finally note that if we have a short exact sequence

0→ F ′ → F → F ′′ → 0

on X, such that Rpf∗(F) and Rpf∗(F ′′) are coherent for all p, then it follows from
the long exact sequence for higher direct images that Rpf∗(F) is coherent for all p.
We thus obtain the assertion in the corollary. �

Given a coherent sheaf F on the complete variety X, we will put

hi(F) = hi(X,F) := dimkH
i(X,F).

The Euler-Poincaré characteristic of F is

χ(F) = χ(X,F) :=
∑
i≥0

(−1)ihi(X,F).

Note that this is well-defined since hi(X,F) = 0 for i� 0 by Corollary 10.6.5.

Exercise 11.3.5. Show that if

0→ F ′ → F → F ′′ → 0

is a short exact sequence of coherent sheaves on the complete variety X, then

χ(F) = χ(F ′) + χ(F ′′).

11.3.2. The geometric genus. One can use the finite-dimensionality of co-
homology on complete varieties to define numerical invariants.

Definition 11.3.6. For every complete variety X, the arithmetic genus of X
is the number pa(X) := (−1)n

(
χ(OX)− 1

)
, where n = dim(X). For example, if X

is connected, of dimension 1, then h0(OX) = 1, so that p1(X) = h1(OX).

Definition 11.3.7. If X is a smooth, connected, complete variety, of dimension
n, the Hodge numbers of X are given by

hp,q(X) = hq(X,ΩqX).

In particular, we have the geometric genus of X, given by pg(X) := hn,0(X) =
h0(X,ωX). More generally, for m ≥ 1, the mth plurigenus of X is given by
pm(X) := h0(X,ω⊗mX ).

We now show that the geometric genus (and some of the other invariants) are
birational invariants.

Theorem 11.3.8. If X and Y are smooth, connected, complete varieties, with
X and Y birational, then pg(X) = pg(Y ). More generally, we have

hq,0(X) = hq,0(X) and pm(X) = pm(Y ) for all q,m.

Proof. We give the argument for the geometric genus: the one for the other
invariants is entirely similar. By assumption, we have a birational map φ : X 99K Y .
Let U ⊆ X be the domain of φ and f : U → Y the corresponding morphism. Since
X is smooth in codimension 1 and Y is complete, it follows from Proposition 9.1.6
that codimX(X r U) ≥ 2. Since ωX is a locally free sheaf and X is normal, it
follows that restriction of sections gives an isomorphism

(11.3.1) Γ(X,ωX) ' Γ(U, ωX)
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(see Proposition 9.1.4).
By assumption, f is birational, hence we can find open subsets Y0 ⊆ Y and

U0 ⊆ U such that f induces an isomorphism U0 ' Y0. Recall now that we can
pull-back differential forms via a morphism (see Remark 8.7.22). We consider the
commutative diagram

Γ(Y, ωY )

α

��

β // Γ(U, ωU )

γ

��
Γ(Y0, ωY0

)
δ // Γ(U0, ωU0

)

in which all maps are given by pull-back of top differential forms; in particular, the
vertical maps are given by restriction. Note that δ is an isomorphism and α is an
injective since Y is irreducible and ωY is locally free (see Exercise 8.5.26). It follows
from the comuttaive diagram that β is injective. By combining this with (11.3.1),
we conclude that

pg(X) = h0(X,ωX) ≥ h0(Y, ωY ) = pg(Y ).

Since the opposite inequality follows by symmetry, this completes the proof of the
theorem. �

Example 11.3.9. It follows from Example 8.7.29 that for n ≥ 1, we have
ωPn ' OPn(−n − 1), hence pg(P

n) = 0. More generally, we see that pm(Pn) = 0
for all m ≥ 1.

Example 11.3.10. Suppose that n ≥ 2 and Y ⊆ Pn is a smooth hypersurface
of degree d ≥ 1. Note that NY/X = OX(d)|Y = OY (d) and Corollary 8.7.27 and
Example 8.7.29 give

ωY ' ωPn |Y ⊗OY
NY/X ' OY (d− n− 1).

We thus see, using Example 11.2.6, that if d ≤ n, then pg(Y ) = 0 and if d ≥ n+ 1,

then pg(Y ) =
(
d−1
n

)
. For example, if n = 2, we see that pg(Y ) = (d−1)(d−2)

2 .

Definition 11.3.11. An irreducible n-dimensional algebraic variety X is ra-
tional if it is birational to Pn.

Remark 11.3.12. Showing that certain varieties are not rational is a classical
problem that has seen a lot of recent progress (see [Bea16] for an overview of
classical and recent results). An easy criterion is provided by Theorem 11.3.8 and
Example 11.3.9: if a smooth, irreducible, complete variety X has pg(X) 6= 0 (or,
more generally, some pm(X) 6= 0), then X is not rational. For example, it follows
from Example 11.3.10 that if X ⊆ Pn, with n ≥ 2, is a smooth hypersurface of
degree d ≥ n+ 1, then X is not rational.

11.3.3. Grothendieck groups. We end this section by introducing two in-
variants of algebraic varieties: the Grothendieck group of vector bundles and that
of coherent sheaves on the given variety.

Definition 11.3.13. Given an algebraic variety X, the Grothendieck group
K0(X) of vector bundles on X is the quotient of the free Abelian group on the set
of isomorphism classes of locally free sheaves on X, by the subgroup generated by
relations of the form [E ]− [E ′]− [E ′′], where

0→ E ′ → E → E ′′ → 0
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is an exact sequence of locally free sheaves on X. We denote by [E ] the image in
K0(X) of the isomorphism class of E .

Given an exact sequence of vector bundles as in the definition, if F is another
vector bundle, then we have an exact sequence

0→ E ′ ⊗OX
F → E ⊗OX

F → E ′′ ⊗OX
F → 0.

This easily implies that we get a bilinear map

K0(X)×K0(X)→ K0(X),
(
[E ], [F ]

)
→ [E ⊗OX

F ].

This is clearly associative and commutative and has a unit element given by [OX ].
We thus see that K0(X) is a commutative ring.

If f : X → Y is a morphism and we have an exact sequence

0→ E ′ → E → E ′′ → 0

of locally free sheaves on Y , since this is locally split, the induced sequence

0→ f∗(E ′)→ f∗(E)→ f∗(E ′′)→ 0

is exact. We thus see that we get a morphism of Abelian groups

f∗ : K0(Y )→ K0(X), [E ]→ [f∗(E)].

Since f∗(E1 ⊗OY
E2) ' f∗(E1) ⊗OX

f∗(E2) for every vector bundles E1 and E2 on
Y , it follows that f∗ is a ring homomorphism. It is clear from definition that if
g : Y → Z is another morphism, then f∗ ◦ g∗ = (g ◦ f)∗ on K0(Z).

Remark 11.3.14. Recall that if

0→ E ′ → E → E ′′ → 0

is an exact sequence of locally free sheaves on X, then we have an isomorphism

det(E) ' det(E ′)⊗OX
det(E ′′).

This implies that we get a morphism of Abelian groups

K0(X)→ Pic(X), [E ]→ [det(E)].

Remark 11.3.15. If X is connected, then we have a ring homomorphism

K0(X)→ Z, [E ]→ rank(E).

Definition 11.3.16. For an algebraic varietyX, the Grothendieck group K0(X)
of coherent sheaves on X is the quotient of the free Abelian group on isomorphism
classes of coherent sheaves on X by the subgroup generated by relations of the form
[F ]− [F ′]− [F ′′], where

0→ F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on X.

Remark 11.3.17. If we have an exact complex of coherent sheaves

0→ F0 → F1 → . . .→ Fr → 0,

by breaking this into short exact sequences and using the relations in K0(X), we
see that in K0(X) we have

r∑
i=0

(−1)i[Fi] = 0.

A similar fact for exact complexes of locally free sheaves holds in K0(X).
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Given a proper morphism f : X → Y of algebraic varieties, we define a mor-
phism of Abelian groups f∗ : K0(X)→ K0(Y ), as follows. For every coherent sheaf
F on X, we put

f∗
(
[F ]
)

=
∑
i≥0

(−1)i[Rif∗(F)].

Note first that by Theorem 11.3.1, each sheaf Rif∗(F) is coherent. Moreover, it
follows from Corollary10.6.6 that Rif∗(F) = 0 for i � 0. Therefore f∗

(
[F ]) is

well-defined. We claim that we get in this way a morphism of Abelian groups
f∗ : K0(X) → K0(Y ). In order to see this, it is enough to note that given a short
exact sequence

0→ F ′ → F → F ′′ → 0

of coherent sheaves on X, the long exact sequence for higher direct images gives,
via Remark 11.3.17 the equality

f∗
(
[F ′]

)
− f∗

(
[F ]
)

+ f∗
(
[F ]
)

= 0.

Exercise 11.3.18. Use the Leray spectral sequence to deduce that if f : X →
Y and g : Y → Z are proper morphisms, then (g ◦ f)∗ = g∗ ◦ f∗ as morphisms
K0(X)→ K0(Z).

Example 11.3.19. If X = MaxSpec(k) is a point, then a coherent sheaf on
X is just a finite-dimensional vector space over k. It is then clear that we have
K0(X) = K0(X) and the rank map that takes [V ] to dimk(V ) gives an isomorphism
K0(X) ' Z. If W is a complete variety and we consider the morphism to X, then
the morphism f∗ gets identified with the map K0(W )→ Z that takes [F ] to χ(F).

Given a short exact sequence of coherent sheaves

0→ F ′ → F → F ′′ → 0

and a locally free sheaf E , using the fact that a free module is flat, we see that the
sequence

0→ E ⊗OX
F ′ → E ⊗OX

F → E ⊗OX
F ′′ → 0

is exact, too. We can thus define an operation

K0(X)×K0(X)
−∩−−−−→ K0(X),

(
[E ], [F ]

)
→ [E ⊗OX

F ]

that makes K0(X) a module over K0(X). Note that the projection formula in
Exercise 10.2.23 induces the following version in this setting: if f : X → Y is a
proper morphism, then for every α ∈ K0(Y ) and β ∈ K0(X), we have

f∗
(
f∗(α) ∩ β

)
= α ∩ f∗(β).

It is clear that we have a morphism of K0(X)-modules K0(X)→ K0(X) given
by α→ α ∩ [OX ]. In other words, this maps [E ] ∈ K0(X) to [E ] ∈ K0(X).

Example 11.3.20. It is easy to see that the structure theorem for finitely
generated modules over PIDs implies that the canonical morphisms

K0(A1)→ K0(A1) and K0(A1)
rk(−)−−−→ Z

are isomorphisms.
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Remark 11.3.21. The reader might note that for an algebraic variety X, the
pair

(
K0(X),K0(X)

)
behaves formally like the pair

(
H∗(Y,Z), H∗(Y,Z)

)
in the

case of a topological space Y . One can also note that in this case we also have a
“fundamental class” [OX ] ∈ K0(X) such that the morphism K0(X) → K0(X) is
the analogue of the Poincaré isomorphism (in fact, we will see later that this is an
isomorphism when X is a smooth quasi-projective variety).

11.4. Hilbert polynomials

In this section we discuss an important invariant for coherent sheaves on a
projective space.

Theorem 11.4.1. If F is a coherent sheaf on a projective space Pn, for a
positive integer n, then there is a polynomial PF ∈ Q[t] such that

PF (m) = χ
(
F(m)

)
for all m ∈ Z.

Moreover, if F 6= 0, then deg(PF ) = dim
(
Supp(F)

)
.

The polynomial PF attached to F is the Hilbert polynomial of F . If F = OX
for a closed subvariety X in Pn, we write PX for POX

; the is the Hilbert polynomial
of X.

Before giving the proof of the theorem, we make some preparations. For every
non-negative integer m, consider the polynomial

Qd =

(
t+ d

d

)
:=

(t+ 1) · · · (t+ d)

d!

(with the convention Q0 = 1). It is clear that deg(Qd) = d and that Q0, Q1, . . . , Qd
give a basis for the Q-vector space of polynomials in Q[t] of degree ≤ d. It is
straightforward to check that

(11.4.1) Qd(t)−Qd(t− 1) = Qd−1(t) for all d ≥ 1.

Lemma 11.4.2. Let φ : Z → Q be a function with the property that there is a
polynomial Q of degree d such that φ(m)−φ(m− 1) = Q(m) for all m ∈ Z. In this
case, there is a polynomial P of degree d+ 1 such that φ(m) = P (m) for all m ∈ Z.

Moreover, if Q =
∑d
i=0 aiQi, then P =

(
φ(0)−

∑d
i=0 ai

)
+
∑d+1
i=1 ai−1Qi.

Proof. If P is given as in the statement, using the fact that Qi(0) = 1 for
all i, we see that P (0) = φ(0). Moreover, using (11.4.1) and the hypothesis on Q,
we see that P (m) − P (m − 1) = φ(m) − φ(m − 1) for all m ∈ Z. The fact that
φ(m) = P (m) for all m ∈ Z follows by induction for m ≥ 0 and by descending
induction for m ≤ 0. �

Given a coherent sheaf F on the algebraic variety X, we define the set Ass(F)
of associated subvarieties of F to consist of those closed irreducible subvarieties
Y ⊆ X with the property that if U ⊆ X is an affine open subset with U ∩ Y 6= ∅,
then the prime ideal in OX(U) corresponding to U ∩ Y lies in AssO(U)

(
F(U)

)
.

Note that the condition is independent of the choice of U : if U and V are affine
open subsets of X intersecting Y , then it follows from Lemma 5.3.3 that there is W
which is a principal affine open subset in both U and V and such that W ∩ Y 6= ∅;
we can now use the fact that if M is an A-module, p is a prime ideal in A, and
f ∈ Ar p, then p ∈ AssR(M) if and only if pRf ∈ AssRf

(Mf ) (see Remark E.3.6).
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We can thus describe Ass(F) as follows: given a finite affine open cover X =
U1 ∪ . . . ∪ Ur, if Ai = OX(Ui) and Mi = F(Ui), then

Ass(F) =

r⋃
i=1

⋃
pi∈AssAi

(Mi)

V (pi).

In particular, we see that Ass(F) is a finite set. Note that every irreducible com-
ponent of Supp(F) is in Ass(F) (see Remark E.3.7).

Example 11.4.3. Suppose that X is an irreducible variety. A coherent sheaf
F on X is torsion-free if for some (any) affine open cover X =

⋃r
i=1 Ui, each F(Ui)

is a torsion-free OX(Ui)-module (that is, every non-zero element of OX(Ui) is a
non-zero-divisor on F(Ui)). In this case, the only associated variety of F is X.

This notion is often applied as follows. Suppose that X is irreducible, F is a
coherent sheaf on X, and D is an effective Cartier divisor on X. If Supp(D) does
not contain any associated subvariety of F , then by tensoring with F the canonical
short exact sequence

0→ OX(−D)→ OX → OD → 0,

we obtain a short exact sequence

0→ F ⊗OX
OX(−D)

α−→ F → F ⊗OX
OD → 0.

Indeed, we only need to check the injectivity of α. If U ⊆ X is an affine open
subset such that D is described on U by f ∈ OX(U), then α gets identified to the
morphism of sheaves associated to the map F(U)→ F(U) given by multiplication
by f . This is an injective map since f does not lie in any associated prime of F(U)
(see assertion iii) in Proposition E.3.2).

Proof of Theorem 11.4.1. We may assume that F 6= 0, since the case F =
0 is trivial. We argue by induction on r = dim

(
Supp(F)

)
. If r = 0, then the

support of F consists of finitely many points p1, . . . , ps. In this case, for every
m ∈ Z we have

χ
(
F(m)

)
= h0

(
F(m)

)
= h0(F) =

s∑
i=1

dimk Fpi .

It follows that we can find PF as in the theorem and this is a non-zero constant.
Suppose now that r ≥ 1 and that we know the result for sheaves whose support

has dimension r − 1. We choose a general hyperplane H in Pn such that H does
not contain any subvariety in Ass(F). As we have seen, in this case we have a short
exact sequence

0→ F ⊗OPn OPn(−H)→ F → FH = F ⊗OPn OH → 0.

By tensoring with OPn(m) and taking the Euler-Poincaré characteristic, we obtain

χ
(
F(m)

)
− χ

(
F(m− 1)

)
= χ

(
FH(m)

)
.

Note that Supp(FH) = Supp(F)∩H and our assumption on H implies, in particu-
lar, that it does not contain any irreducible component of Supp(F). It follows that
dim

(
Supp(F|H)

)
= r − 1, and by the inductive assumption, we have a polynomial

Q of degree r − 1 such that χ
(
FH(m)

)
= Q(m) for all m ∈ Z. We then conclude

by applying Lemma 11.4.2. �
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Remark 11.4.4. For every coherent sheaf F on Pn, it follows from Theo-
rem 11.2.1 that for m� 0, we have hi

(
Pn,F(m)

)
= 0. We thus conclude that

PF (m) = h0
(
F(m)

)
for m� 0.

Example 11.4.5. If X = Pn, then it follows from Theorem 11.2.2 that for
m ≥ 0 we have

χ
(
OPn(m)

)
= h0

(
OPn(m)

)
=

(
m+ n

n

)
,

hence PX(t) =
(
t+n
n

)
. Similarly, if L ⊆ Pn is an r-dimensional linear subspace,

then PL(t) =
(
t+r
r

)
.

Example 11.4.6. If D is an effective Cartier divisor in Pn of degree d, then it
follows from Example 11.2.6 that for m ≥ d, we have

χ
(
OD(m)

)
= h0

(
OD(m)

)
=

(
m+ n

n

)
−
(
m− d+ n

n

)
,

hence the Hilbert polynomial of OD is P (t) =
(
t+n
n

)
−
(
t+n−d
n

)
.

Remark 11.4.7. We emphasize that the Hilbert polynomial PX does not de-
pend just on the variety X, but also on the embedding in Pn. For example, it
follows from Example 11.4.5 that if we embed P1 as a line in P2, then the Hilbert
polynomial is t + 1, while if we embed it as a smooth conic, via the Veronese em-
bedding, the Hilbert polynomial is 2t + 1. More generally, if C ⊆ Pn is a rational
normal curve (recall that this is projectively equivalent to the image of the Veronese
embedding P1 ↪→ Pn), then OPn(1)|C ' OP1(n), hence the Hilbert polynomial is
nt+ 1.

Given a finitely generated, graded S-module M , where S = k[x0, . . . , xn], we

define the Hilbert polynomial of M to be the Hilbert polynomial of M̃ . We denote

it by PM . Recall that by Corollary 11.2.3, we have Mi ' Γ
(
Pn, M̃(i)

)
for i � 0,

so that the Hilbert polynomial of M is the unique polynomial PM such that

PM (i) = dimkMi for i� 0.

Remark 11.4.8. If P ∈ Q[t] is a polynomial, then P (m) is an integer for all
m ∈ Z if and only if P lies in the Abelian subgroup generated by {Qi | i ≥ 0}.
Indeed, it is well-known thatQi(m) ∈ Z for allm. The converse follows by induction
on degree: if the polynomial P (m) − P (m − 1) lies in the subgroup generated by
the Qi and if P (0) ∈ Z, then it follows from the last assertion in Lemma 11.4.2
that P also lies in the subgroup generated by the Qi.

It follows from the above remark that for every non-zero coherent sheaf F on
Pn, the top degree term of PF is e

r! t
r, where r = dim

(
Supp(F)

)
and e ∈ Z r {0}.

Since P (m) ≥ 0 for m � 0 (see Remark 11.4.4), it follows that e is a positive
integer. This is the degree of F , denoted deg(F). If X is a closed subvariety of Pn,
then the degree deg(X) is the degree of OX .

Example 11.4.9. It follows from Example 11.4.5 that if L ⊆ Pn is a linear
subspace, then deg(L) = 1. Similarly, it follows from Example 11.4.6 that if X is
a hypersurface in Pn, then the above definition for the degree of X coincides with
our old one.
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Example 11.4.10. If F is a coherent sheaf on Pn with r = dim
(
Supp(F)

)
and deg(F) = d, and if D is an effective Cartier divisor on Pn, of degree e, whose
support does not contain any associated subvariety of F , then FD := F ⊗OPn OD
has dim(Supp(FD)

)
= r−1 and deg(FY ) = de. Indeed, we have an exact sequence

0→ F ⊗OPn OPn(−D)→ F → FD → 0,

which implies that

PFD
(m) = PF (m)− PF (m− d),

hence the top degree term of PFY
is de

(r−1)! t
r−1.

Example 11.4.11. A closed subset Y ⊆ Pn is non-degenerate if there is no
hyperplane in Pn containing Y . Let us show that if C ⊆ Pn is an irreducible,
non-degenerate curve, where n ≥ 2, then d = deg(C) ≥ n. Note that since C is
irreducible, the only associated subvariety of OC is C itself. By assumption, for
every hyperplane H in Pn, we have C 6⊆ H, hence by Example 11.4.10 we have
deg(C) = deg(OC) = deg(OC ⊗OPn OH). Note that F := OC ⊗OPn OH is a
coherent sheaf, with support the finite set C ∩H, hence

d = deg(F) =
∑

p∈C∩H
`OPn,p

(Fp).

In particular, we see that C ∩H consists of at most d points.
Suppose now that H is a general hyperplane. Since C has finitely many sin-

gular points, it follows from Bertini’s theorem that H is transversal to C, meeting
C only at smooth points of C (see Remark 6.4.2). In this case, it follows from
Proposition 6.3.26 that the radical ideal sheaf corresponding to C ∩H is equal to
IC + OPn(−H), where IC is the radical ideal sheaf corresponding to C. In other
words, in this case we have F = OC∩H , and thus C ∩ H consists precisely of d
points.

It is now easy to see that for such general H, the intersection C ∩ H is non-
degenerate in H ' Pn−1. Indeed, if C ∩H is contained in a codimension 1 linear
subspace Λ ⊆ H, and if p ∈ C r H, then the linear span H ′ of Λ and p is a
hyperplane in Pn that meets C in at least (d + 1) points. We have seen that this
is not possible, and thus C ∩H is non-degenerate in H. Since any (n − 1) points
in Pn−1 are contained in a hyperplane, we conclude that d ≥ n, as claimed.

11.5. Morphisms to projective spaces

Our goal in this section is to describe morphisms to Pn. Let S = k[x0, . . . , xn]

and recall that on Pn = MaxProj(S) we have the line bundle OPn(1) = S̃(1) such
that we have a canonical isomorphism

S1 ' Γ
(
Pn,OPn(1)

)
.

We put V = S1. Note that the line bundle OPn(1) is globally generated: we have⋂n
i=0 V (xi) = ∅.

Given an arbitrary variety Y and a morphism f : Y → Pn, we have a line
bundle L on Y given by L = f∗

(
OPn(1)

)
. Moreover, by pulling back the canonical

surjective morphism on Pn:

V ⊗k OPn → OPn(1),
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we obtain a surjective morphism on Y :

φ : V ⊗k OY → L.

By considering the basis of x0, . . . , xn of V , we see that giving φ is equivalent to
giving the sections si = φ(xi ⊗ 1) ∈ Γ(Y,L) and the surjectivity of φ is equivalent
with the fact that

⋂n
i=0 V (si) = ∅. We will say that two pairs (L, φ) and (L′, φ′) as

above are isomorphic if there is an isomorphism α : L → L′ such that α ◦ φ = φ′.

Proposition 11.5.1. For every algebraic variety Y , if V = S1, we have a
natural bijection between morphisms f : Y → Pn and isomorphism classes of pairs
(L, φ), where L is a line bundle on Y and φ : V ⊗kOY → L is a surjective morphism
of OY -modules.

Proof. We have a map that associates to every morphism f : Y → Pn the
isomorphism class of the pair (L, φ), where L = f∗

(
OPn(1)

)
and φ is the pull-back

of the canonical morphism V ⊗k OPn → OPn(1). We now define a map in the
opposite direction.

Given a line bundle L on Y and a surjective morphism φ : V ⊗k OY → L, let
si = φ(xi ⊗ 1). We want to define f : Y → Pn by f(y) = [s0(y), . . . , sn(y)], so we
need to make sense of this expression. For every i with 0 ≤ i ≤ n, let Vi = Y rV (si).
Note that since φ is surjective, we have

⋃n
i=0 Vi = Y . Given i with 0 ≤ i ≤ n, for

every j there is a unique ai,j ∈ OX(Vi) such that sj |Vi
= ai,jsi|Vi

. We define a
morphism

fi : Vi → Ui = D+
Pn(xi), fi(x) = [ai,0(x), . . . , ai,n(x)].

The uniqueness of the functions ai,j implies that if y ∈ Vi1∩Vi2 , then ai1,j(y)ai2,i1(y) =
ai2,j(y) for all j and ai2,i1(y) 6= 0. This implies that fi1 |Vi1∩Vi2

= fi2 |Vi1∩Vi2
for

every i1 and i2, hence there is a unique f : Y → Pn such that f |Vi = fi for all i.
It is clear from definition that the morphism f only depends on the isomorphism
class of (L, φ).

Checking the fact that the two maps we defined are mutual inverses is now a
straightforward exercise. �

Exercise 11.5.2. If we denote by Aut(Pn) the group of automorphisms of Pn,
we have seen that we have a group homomorphism

PGLn+1(k)→ Aut(Pn).

Show that this is an isomorphism.

Remark 11.5.3. There is a way to make precise the “naturality” in the state-
ment of the proposition, as follows. For every variety Y , let Pn(Y ) denote the
set of isomorphism classes of pairs (L, φ), where L is a line bundle on Y and
φ : V ⊗k OX → L is a surjective morphism. We have a contravariant functor Pn
from the category of varieties to the category of sets, which associates to Y the
set Pn(Y ); if g : Z → Y is a morphism, then Pn(g) maps (L, φ) ∈ Pn(Y ) to(
g∗(L), g∗(φ)

)
∈ Pn(Z). The map we defined in the proof of the proposition is a

natural transformation

HomVar/k(−,Pn)→ Pn

and we showed that this is in fact an isomorphism. In other words, Pn represents
the functor Pn.
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Remark 11.5.4. It is sometimes convenient to formulate the assertion in the
above proposition in a slightly more functorial way, as follows. Given a finite-
dimensional vector space V over k, let S = Sym•(V ), so that we have a canonical
isomorphism V ' S1. Of course, if dimk(V ) = n+ 1, then we have an isomorphism
of graded k-algebras S ' k[x0, . . . , xn], but this depends on the choice of a basis on
V , which we prefer to avoid now. If X = MaxProj(S), then we have an isomorphism
V ' Γ

(
X,OX(1)

)
, which induces a surjective morphism of locally free sheaves

V ⊗k OX → OX(1)

and the proposition implies that the set of morphisms Y → X is in natural bijection
with the set of isomorphism classes of pairs (L, φ), where L is a line bundle on Y
and φ : V ⊗k OY → L is a surjective morphism on Y .

In particular, by taking Y = MaxSpec(k), we see that the set of morphisms
Y → X (which can be, of course, identified with the set underlying X) is in bijection
with isomorphism classes of surjections V → k, that is, with hyperplanes in V . In
other words, X is identified naturally with the projective space P(V ) parametrizing
the hyperplanes in V .

Note now that for every variety Y and every pair (L, φ), with L a line bundle
on Y and φ : V ⊗k OX → L surjective, we can describe the corresponding map
f : Y → P(V ) by

f(y) = ker
(
V → L(y)

)
.

Remark 11.5.5. Given a variety X, a line bundle L on X, and a finite-
dimensional vector space V over k, giving a morphism

V ⊗k OX → L

is equivalent to giving a k-linear map V → Γ(X,L).

Example 11.5.6. If V , W are finite-dimensional vector spaces over k and we
have a surjective morphism φ : V → W , then on P(W ) we have the surjective
morphism

V ⊗k OP(W ) →W ⊗k OP(W ) → OP(W )(1),

where the second map is the canonical one and the first map is induced by φ. We
obtain a corresponding morphism P(W ) → P(V ), which is a closed embedding
of P(W ) as a linear subspace of P(V ), mapping a hyperplane in W to its inverse
image in V .

Example 11.5.7. If V is a finite-dimensional vector space over k and W is a
linear subspace, then by the previous example, we have a closed immersion

P(V/W ) ↪→ P(V ).

If U is the complement of the image of this map, then on U we have a surjective
morphism

W ⊗k OU ↪→ V ⊗k OU → OP(V )(1)|U .
The induced morphism π : U → P(W ) is the projection onto P(W ), with center
P(V/W ). Note that if we choose a splitting of the short exact sequence

0→W → V → V/W → 0,

then we also obtain a closed immersion P(W ) ↪→ P(V ) and the projection gets
identified with the morphism described in Example 5.3.9.
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Example 11.5.8. Given a projective space P = P(V ), the canonical morphism
V ⊗k OP(V ) → OP(V )(1) induces for every d ≥ 1 a surjective morphism

Symd(V )⊗k OP(V ) → OP(V )(d).

The induced morphism P(V ) → P
(
Symd(V )

)
is the dth Veronese embedding of

P(V ) (cf. Exercise 4.2.22).

Example 11.5.9. Given two projective spaces P(V ) and P(W ), we have canon-
ical morphisms

V ⊗k OP(V ) → OP(V )(1) and W ⊗k OP(W ) → OP(W )(1).

By pulling these back to P(V ) × P(W ) via the two projections, and taking the
tensor product, we obtain a surjective morphism

V ⊗k W ⊗k OP(V )×P(W ) → L, where L = pr∗1
(
OP(V )(1)

)
⊗ pr∗2

(
OP(W )(1)

)
.

The corresponding morphism f : P(V )×P(W )→ P(V ⊗kW ) is the Segre embed-
ding of P(V )×P(W ) (cf. Exercise 4.2.21).

Definition 11.5.10. Recall that a closed subvariety X in Pn is non-degenerate
if there is no hyperplane H in Pn that contains X. Equivalently, the canonical map
induced by restriction

(11.5.1) Γ
(
Pn,OPn(1)

)
→ Γ

(
X,OX(1)

)
is injective.

A closed subvariety X of Pn is linearly normal if the canonical map (11.5.1) is
surjective. We say that X is projectively normal if for every m > 0, the canonical
map

Γ
(
Pn,OPn(m)

)
→ Γ

(
X,OX(m)

)
is surjective.

Remark 11.5.11. Let X be a variety and f : X → P(V ) be a morphism cor-
responding to the surjective morphism of sheaves on X

φ : V ⊗k OX → L.

Note that a hyperplane in P(V ) defined by v ∈ V r {0} contains f(X) if and only
if the image of v in Γ(X,L) is 0. Therefore the closure of f(X) is non-degenerate
if and only if the induced k-linear map V → Γ(X,L) is injective. In general, if we
put W = Im

(
V → Γ(X,L)

)
, then the morphism f factors as

X
g−→ P(W )

ι
↪→ P(V ),

where ι is a linear embedding and g(X) is non-degenerate in P(W ).

Remark 11.5.12. Let X be a complete variety, L a line bundle on X, and W
a linear subspace of V = Γ(X,L). If the composition

W ⊗k OX ↪→ V ⊗k OX → L

is surjective, then we get a morphism f : X → P(W ), whose image Y is a non-
degenerate subvariety of P(V ). Note that we also have a morphism g : X → P(V )
such that if π : P(V ) 99K P(W ) is the projection corresponding to the inclusion
W ↪→ V , we have f = π ◦ g.
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If V = W , then the composition

V = Γ
(
P(V ),OP(V )(1)

) φ−→ Γ
(
Y,OY (1)

) ψ−→ Γ(X,L) = V

is the identity. Since the morphism X → Y is surjective, the map ψ is injective,
and thus is an isomorphism. We thus see that in this case Y is a linearly normal
subvariety of P(V ). We also see that if W 6= V and f is a closed immersion, then
its image in P(W ) is not linearly normal.

Remark 11.5.13. If E is a locally free sheaf on the variety T and g : T ′ → T is
an arbitrary morphism, then it is easy to check that we have a Cartesian diagram

P
(
g∗(E)

)
��

// P(E)

f

��
T ′

g // T.

In particular, we see that the fiber of f over a point t ∈ T is canonically isomorphic
to P

(
E(t)
)
, that is, to the projective space of hyperplanes in E(t).

Recall that we have a surjective morphism

f∗(E)→ OP(E)(1)

(see Example 11.2.7). Given a point t ∈ T and u ∈ f−1(t), the induced k-linear
map between the fibers at u

f∗(E)(u) = E(t) → OP(E)(1)(u)

is the quotient map by the hyperplane in E(t) corresponding to u.

Exercise 11.5.14. Prove the following variant of Proposition 11.5.1 for pro-
jective bundles. Let T be an algebraic variety and E a locally free sheaf on T . To
a variety g : Y → T over T we associate the set F (Y ) of isomorphism classes of
pairs (L, φ), where L is a line bundle on Y and φ : g∗(E) → L is a surjective mor-
phism (two such pairs (L, φ) and (L′, φ′) are isomorphic if there is an isomorphism
ψ : L → L′ such that ψ ◦ φ = φ′). If h : Z → Y is a morphism of varieties over T ,
then F (h) maps (L, φ) to

(
h∗(L), h∗(φ)

)
. Show that P(E) represents the functor

F in the category of varieties over T .

Remark 11.5.15. Given a variety X, a line bundle L on X, a finite-dimensional
vector space W over k, and a morphism

φ : W ⊗k OX → L

corresponding to the k-linear map ψ : W → Γ(X,L), the image of φ is a coherent
subsheaf of L. Therefore this is of the form I ⊗OX

L, for some coherent ideal sheaf
I on X. The closed subvariety V (I) is equal to

⋂
w∈W V

(
ψ(w)

)
. If U = XrV (I),

then U is non-empty if and only if the map W → Γ(X,L) is nonzero; in this case,
the restriction of φ to U is surjective and it induces a morphism U → P(W ).

Let X be an irreducible complete variety and L a line bundle on X. Recall
that the linear system |L| consists of the effective Cartier divisors D on X that such
that OX(D) ' L (see Remark 9.4.25). We thus have a canonical bijection between
|L| and P

(
Γ(X,L)∨

)
.
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Definition 11.5.16. More generally, a linear system corresponding to L is a
linear subspace of the projective space P

(
Γ(X,L)∨

)
. The dimension of the linear

system is the dimension of this linear space. Such a linear system corresponds to a
linear subspace V of Γ(X,L) and the linear system corresponding to V is denoted
by |V |. A linear system is complete if it is equal to |L|.

Given a non-empty linear system |V |, its base locus is the closed subset

Bs
(
|V |) :=

⋂
s∈V

V (s).

A linear system |V | is base-point free if Bs
(
|V |
)

= ∅. In general, the restriction of

the canonical morphism V ⊗k OX → L to X r Bs
(
|V |
)

is surjective, and we thus
have a corresponding morphism

f : X r Bs
(
|V |
)
−→ P(V )

such that the closure of the image of f is non-degenerate in X.
Note that, by definition, we have a bijection between the hyperplanes in P(V )

and the effective divisors in |V | such that if the hyperplane H ⊆ P(V ) corresponds
to D, then f∗(H) = D|U .

Our next goal is to give a criterion to determine when a morphism f : Y →
P(W ), described by a surjective morphism φ : W ⊗k OY → L, with Y complete, is
a closed immersion. Note that by Remark 11.5.11, we may replace W by its image
in Γ(Y,L), in order to assume that W ⊆ Γ(Y,L).

Definition 11.5.17. Given a variety Y , a line bundle L on Y , and a finite-
dimensional linear subspace W ⊆ Γ(Y,L), we make the following definitions:

i) We say that W generates L if the induced morphism W ⊗k OY → L is
surjective.

ii) We say that W separates points if for every points p 6= q in Y , there is
s ∈W such that1 s(p) = 0, but s(q) 6= 0.

iii) We say that W separates tangent directions if for every p ∈ Y and every
non-zero v ∈ TpY , there is s ∈ W such that s(p) = 0, but v does not
vanish on the image of sp in mpLp/m2

pLp ' mp/m
2
p (if the ideal I(s) is

radical, then this condition is equivalent to saying that v 6∈ TpV (s)).

Proposition 11.5.18. Let Y be a complete variety, L a line bundle on Y ,
and W ⊆ Γ(Y,L) a subspace that generates L. If f : Y → P(W ) is the morphism
corresponding to L and W , then f is a closed immersion if and only if W separates
points and tangent directions.

Proof. Note that every non-zero s ∈ W defines a hyperplane Hs in P(W )
and all hyperplanes arise in this way. It is clear that for a point p ∈ Y , we have
s(p) = 0 if and only if f(p) ∈ Hs. Since for two different points in P(W ), there is
a hyperplane that contains the first one, but not the second one, it follows that W
separates points if and only if f is injective. Similarly, it is easy to see that if s(p) = 0
and v ∈ TpY , then v does not vanish of the image of sp in mpLp/m2

pLp ' mp/m
2
p

if and only if dfp(v) 6∈ Tf(p)Hs. Since for every non-zero w ∈ Tf(p)P(W ), there is
a hyperplane H containing f(p) and with w 6∈ Tf(p)H, it follows that W separates

1Recall that s(p) is the image of sp in Lp/mpLp, where mp is the ideal defining p.
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tangent directions if and only if for every p ∈ Y , the map dfp : TpY → Tf(p)P(W )
is injective (in other words, f is an immersion).

It is clear that if f is a closed immersion, then it is injective and it is an
immersion. Conversely, let us suppose that these two conditions hold. Note first
that since Y is complete, f is proper, hence closed (see Remark 5.1.8). Since f is
injective and closed, it gives a homeomorphism g : Y → Z onto a closed subset Z of
Pn. If we show that the canonical morphism OPn → f∗(OY ) is surjective, we get
an isomorphism OZ ' g∗(OY ), hence g is an isomorphism, and thus f is a closed
immersion.

Since f is a homeomorphism onto its image, for every p ∈ Y , we have

f∗(OY )f(p) ' OY,p,
such that the morphism OPn,f(p) → f∗(OY )f(p) gets identified with the canonical
morphism α : A = OPn,f(p) → OY,p = B. Let mA and mB denote the maximal
ideals of A and B, respectively. Note that since f is proper, it follows from Theo-
rem 11.3.1 that f∗(OY ) is a coherent sheaf on Pn, hence B is a finitely generated
A-module. The condition that TpY → Tf(p)P

n is injective is equivalent to the fact
that the induced k-linear map

mA/m
2
A → mB/m

2
B

is surjective. This implies by Nakayama’s lemma (see Corollary C.1.2) that we have
mB = mA · B. On the other hand, the induced morphism A/mA → B/mB is an
isomorphism (since both quotient rings are isomorphic to k), hence

B = α(A) + mB = α(A) + mA ·B.
Since B is a finitely generated A-module, another application of Nakayama’s lemma
gives B = α(A), hence α is surjective. This hold for every p ∈ Y , hence the
morphismOPn → f∗(OY ) is surjective. This completes the proof of the proposition.

�

Remark 11.5.19. For future reference, we note the following variant of the
assertion in Proposition 11.5.18. Suppose that Y is a complete variety and f : Y →
P(W ) is the morphism defined by a linear subspace W ⊆ H0(Y,L). If U is an
open subset in P(W ) such that W separates the points in f−1(U) and the tangent
directions at the points in f−1(U), then f induces a closed immersion f−1(U)→ U .
Indeed, since f is proper, the induced morphism f−1(U) → U is proper and then
the argument in the proof of the proposition applies verbatim for this morphism.

11.6. Ample and very ample line bundles

In this section we discuss the connection between ample line bundles and em-
beddings in projective space.

11.6.1. Ample line bundles. We begin with a discussion of general proper-
ties of ample line bundles.

Proposition 11.6.1. Let L and M be line bundles on a variety X.
i) If F1 and F2 are globally generated OX-modules, then F1 ⊗OX

F2 is globally
generated.

ii) If L and M are ample, then L ⊗OX
M is ample.

iii) If m is a positive integer, then L is ample if and only if Lm is ample.
iv) If L is ample and M is globally generated, then L ⊗OX

M is ample.
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v) If L is ample, then there is q0 such that Lq ⊗OX
M is ample for all q ≥ q0.

Proof. If F1 and F2 are globally generated, the following canonical k-linear
maps are surjective:

α : Γ(X,F1)⊗k OX → F1 and β : Γ(X,F2)⊗k OX → F2.

Therefore the map α⊗OX
β is surjective, and since this factors as

Γ(X,F1)⊗k Γ(X,F2)⊗k OX
δ−→ Γ(X,F1 ⊗OX

F2)⊗k OX
γ−→ F1 ⊗OX

F2,

we conclude that the canonical map γ is surjective, hence F1 ⊗OX
F2 is globally

generated.
If L andM are ample, then for every coherent sheaf F on X, we can find q1 and

q2 such that F⊗OX
Lq is globally generated for q ≥ q1 andMq is globally generated

for q ≥ q2. We deduce using i) that if q ≥ max{q1, q2}, then F ⊗OX
(L ⊗OX

M)q

is globally generated. Therefore L ⊗OX
M is ample.

If L is ample, by applying ii), we deduce by induction on m ≥ 1 that Lm
is ample. Conversely, suppose that Lm is ample. For every coherent sheaf F ,
applying the definition for each of the sheaves F ,F ⊗OX

L, . . . ,F ⊗OX
Lm−1, we

conclude that there is q0 such that F ⊗OX
Li ⊗OX

(Lm)q is globally generated for
all 0 ≤ i ≤ m − 1 and q ≥ q0. In this case F ⊗OX

Lq is globally generated for all
q ≥ mq0. We thus see that L is ample.

Suppose now that L is ample andM is globally generated. Given any coherent
sheaf F , there is q0 ≥ 1 such that F ⊗OX

Lq is globally generated for all q ≥ q0.
Since M is globally generated, we deduce using i) that

F ⊗OX
Lq ⊗OX

Mq ' F ⊗OX
(L ⊗OX

M)q

is globally generated for all q ≥ q0. Therefore L ⊗OX
M is ample.

Let us prove v). Since L is ample, there is q0 such that Lq ⊗OX
M is globally

generated for all q ≥ q0. In this case, it follows from iv) that Lq ⊗OX
M is ample

for all q ≥ q0 + 1. �

Proposition 11.6.2. Let X be an algebraic variety.

i) IfM is a globally generated OX-module, then for every morphism f : Y →
X, the OY -module f∗(F) is globally generated.

ii) If L is an ample line bundle on the algebraic variety X and Z is a locally
closed subset of X, then L|X is ample on Z.

Proof. By definition, the canonical map

α : Γ(X,M)⊗k OX →M

is surjective. Since f∗(−) is a right-exact functor, we deduce that

f∗(α) : Γ(X,M)⊗k OY → f∗(M)

is surjective. Since this factors as

Γ(X,M)⊗k OY → Γ
(
Y, f∗(M)

)
⊗k OY

β−→ f∗(M),

it follows that β is surjective, hence f∗(M) is globally generated.
In order to prove ii), it is enough to show that given a coherent sheaf F on Z,

we can find a coherent sheaf G on X such that F ' G|Z . Indeed, in this case we
can find q0 such that G ⊗OX

Lq is globally generated for all q ≥ q0. By applying i)
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for the inclusion map i : Z ↪→ X, we then conclude that F ⊗OZ
(L|Z)q is globally

generated for all q ≥ q0.
In order to prove the existence of G, since Z is the intersection of an open

and a closed subvariety, it is enough to treat separately the two cases. If Z is a
closed subvariety, the assertion is trivial: we can simply take G = i∗(F). When Z
is an open subvariety, the assertion is more subtle. We treat it separately in the
proposition below. �

Proposition 11.6.3. If U is an open subvariety of the algebraic variety X and
F is a coherent sheaf on U , then the following hold:

i) There is a coherent sheaf G on X such that G|U ' F .
ii) Moreover, if M is a quasi-coherent sheaf on X such that F is a subsheaf

of M|U , then there is a coherent subsheaf G of M such that we have
F = G|U .

Proof. Let α : U ↪→ X be the inclusion map. We first note that it is enough
to prove the assertion in ii), since the sheaf α∗(F) on X is quasi-coherent by Propo-
sition 8.4.5 and we have an isomorphism F ' α∗(F)|U . We thus focus on ii) and
divide the proof into 2 steps.
Step 1. We first consider the case when X is affine and let R = O(X). We may

assume thatM = M̃ for anR-moduleM and choose a finite cover U =
⋃r
i=1DX(fi)

by principal affine open subsets in X. For every i, since F is coherent, Γ
(
DX(fi),F

)
is a finitely generated Rfi-module and we have

Γ
(
DX(fi),F

)
⊆ Γ

(
DX(fi),M

)
= Mfi .

Therefore we have elements ui,j ∈M for j in a finite set Λi such that Γ
(
DX(fi),F

)
is generated by the elements

ui,j

1 ∈Mfi for j ∈ Λi.
Let N be the R-submodule of M generated by the ui,j , for 1 ≤ i ≤ r and

j ∈ Λi, so that the subsheaf N = Ñ of M is coherent. We see that for every i, we
have F|DX(fi) ⊆ N|DX(fi), and thus F ⊆ N|U .

Consider now the canonical morphism φ : M → α∗(M|U ) and let G = N ∩
φ−1

(
α∗(F)

)
. Therefore G is quasi-coherent, and being an OX -submodule of N , it

is coherent. Moreover, we have G|U = N|U ∩ F = F . We are thus done when X is
affine.
Step 2. We now deduce the assertion in ii) in the general case. Consider now pairs
(V,G), where V is an open subset of X with U ⊆ V , and G ⊆ M|V is a coherent
subsheaf such that F = G|U . For example, (U,F) is such a pair. Since every open
subset of X is quasi-compact, it follows that that there is such a pair (V,G) with
V maximal. We will show that if V 6= X, then we have a contradiction.

If V 6= X, then we can choose an affine open subset V ′ of X such that V ′ 6⊆ V .
Applying Step 1 for the open subset V ∩ V ′ ⊆ V ′ and G|V ∩V ′ ⊆ M|V ∩V ′ , we
find a coherent subsheaf G′ ⊆ M|V ′ such that G′|V ∩V ′ = G|V ∩V ′ . In this case, on
V ′′ = V ∪ V ′ we have an OV ′′ -submodule G′′ ⊆M|V ′′ such that G′′|V = G (hence,
in particular, we have G′′|U = F) and G′′|V ′ = G′. Since G and G′ are coherent, it
follows that G′′ is coherent. This contradicts the maximality of V , completing the
proof of the proposition. �

Example 11.6.4. Since the structure sheaf of an affine variety is ample, it
follows from Proposition 11.6.2 that for every quasi-affine variety X, the structure
sheaf OX is ample.
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Remark 11.6.5. If X is a complete variety, then OX is ample if and only if
X is a finite set. The “if” part is clear and for the “only if” part, we may and
will assume that X is irreducible (if X1, . . . , Xr are the irreducible components of
X, since OX is ample, it follows that each OXi

is ample on Xi, and it is enough
to show that each Xi consists of one point). Note that OX is ample if and only
if every coherent sheaf on X is globally generated. Given a point x ∈ X, with
corresponding radical ideal sheaf mx, we have Γ(X,mx) ⊆ Γ(X,OX) = k and since
the sections of mx vanish at x, it follows that Γ(X,mx) = 0. This implies that
mx = 0, and thus X = {x}.

11.6.2. Very ample line bundles over affine varieties.

Definition 11.6.6. If f : X → Y is a morphism of algebraic varieties and L is
a line bundle on X, we say that L is f -very ample (or very ample over Y ) if there
is a locally closed immersion j : X ↪→ Pn

Y over Y such that L ' j∗
(
OPn

Y
(1)
)
. We

will be especially interested in the case of a proper morphism f , in which case j
is automatically a closed immersion. If Y is a point, then we simply say that L is
very ample. If D is a Cartier divisor on an irreducible variety X, then D is very
ample if the line bundle OX(D) is very ample.

We begin with a proposition giving some general properties of very ample line
bundles.

Proposition 11.6.7. Let f : X → Y be a morphism of algebraic varieties and
L,M line bundles on X.

i) If L is very ample over Y , then L is globally generated.
ii) If L is very ample over Y and M is globally generated, then L⊗OX

M is
very ample over Y .

iii) If L is very ample over Y , then Ld is very ample over Y for all d > 0.

Proof. If L is very ample over Y , then there is a locally closed immersion
j : X ↪→ Pn

Y such that j∗
(
OPn

Y
(1)
)
' L. Since OPn(1) is globally generated, its

pull-back OPn
Y

(1) to Pn
Y is globally generated, and thus the restriction L of this

line bundle to X has the same property. This proves i).
Suppose now that L is very ample andM is globally generated. We thus have

a locally closed immersion j : X ↪→ Pn
Y such that j∗

(
OPn

Y
(1)
)
' L. On the other

hand, since M is globally generated, we have a morphism g : X → Pm such that
g∗
(
OPm(1)

)
'M. Consider now the morphism h : X → Pn

Y ×Pm = Y ×Pn×Pm

over Y given by (j, g). If π : Pn
Y ×Pm → Pn

Y is the first projection, the composition
π ◦ h = j is a locally closed immersion, and thus h is a locally closed immersion
(see Remark 5.1.8). If ι : Y × Pn × Pm → Y × PN maps (y, u, v) to

(
y, φ(u, v)

)
,

where φ : Pn × Pm → PN is the Segre embedding, then ι ◦ h is a locally closed
immersion such that (ι ◦ h)∗

(
OPN

Y
(1)
)
' L ⊗OX

M. Therefore L ⊗OX
M is very

ample, completing the proof of ii).
If L is very ample over Y , it follows from i) that it is globally generated, hence

the assertion in iii) follows by induction on d from the assertion in ii). �

Our first goal is to relate the notion of ampleness with that of very ampleness in
the case of varieties over an affine variety. Note that while ampleness is an absolute
notion, very ampleness is a relative one.
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Theorem 11.6.8. Let f : X → Y be a morphism of algebraic varieties, with Y
affine. For any line bundle L on X, the following are equivalent:

i) L is ample.
ii) There is a positive integer m such that Lm is very ample over Y .

Proof. The implication ii)⇒i) is easy. If Lm is very ample over Y , then we
have a locally closed immersion j : X ↪→ Pn

Y such that Lm ' OPn
Y

(1)|X . Since
OPn

Y
(1) is ample on Pn

Y by Proposition 11.1.27, its restriction Lm to X is ample
by assertion ii) in Proposition 11.6.2. Finally, assertion iii) in Proposition 11.6.1
allows us to deduce from Lm being ample, that L is ample as well.

We now prove the converse. Suppose that L is ample. Given a point x ∈ X,
choose an affine open neighborhood W of x such that L|W ' OW , and let Z =
XrW . If IZ is the radical ideal sheaf corresponding to the closed set Z, using the
fact that L is ample, we obtain that for m � 0, the sheaf IZ ⊗OX

Lm is globally
generated. Since IZ,x = OX,x, it follows that there is s ∈ Γ(X, IZ ⊗ Lm) such
that s(x) ∈ Lm(x) is non-zero. Let U = X r V (s). Note that x ∈ U ⊆ W , and

thus U = W r V (s|W ), and since L|W is trivial, it follows that U is a principal
affine open subset of W , hence it is affine. We also note that if we replace s by
sq ∈ Γ(X,Lmq), then the set U does not change.

When we let x vary over the points of X, the corresponding open subsets U
cover X. Since X is quasi-compact, we deduce that we have finitely many affine
open subsets U1, . . . , Ur that cover X and for each Ui a section si ∈ Γ(X,Lmi) such
that Ui = X r V (si). Furthermore, after replacing each si by a suitable tensor
power, we may assume that mi = m for all i.

Each OX(Ui) is a finitely generated k-algebra, hence a finitely generated R-
algebra, where R = O(Y ). Let us choose generators ai,1, . . . , ai,qi for OX(Ui) as

an R-algebra. By Lemma 11.1.19, for every i and j, there is m′ such that sm
′

i · ai,j
extends to a section ti,j ∈ Γ(X,Lmm′). Moreover, we may clearly replace any m′

by a larger value and thus assume that the same m′ works for all i and j.
Consider on X the map

kN+1 ⊗k OX → Lmm
′
,

where N+1 = r+
∑r
i=1 qi, that maps the elements of the standard basis of kN+1 to

the sections sm
′

i and ti,j for 1 ≤ i ≤ r and 1 ≤ j ≤ qi. This is a surjective morphism

since
⋂r
i=1 V (sm

′

i ) =
⋂r
i=1 V (si) = ∅. Therefore it induces via Proposition 11.5.1 a

morphism

g : X → PN = Proj
(
k[xi, yi,j ]

)
with g∗

(
OPN (1)

)
' Lmm

′
.

If α = (f, g) : X → PN
Y = Y × PN , then α is a morphism over Y such that

α∗
(
OPN

Y
(1)
)
' Lmm′ . In order to conclude the proof, it is enough to show that α

is a locally closed immersion.
It is clear from definition that the image of α lies in the open subset V =⋃r

i=1D
+(xi) of PN

Y . Moreover, the induced morphism β : X → V is a closed

immersion. This follows from Proposition 2.3.10, since each β−1
(
D+(xi)

)
= Ui is

affine and the induced homomorphism

O
(
D+(xi)

)
→ OX(Ui)

is surjective, since each
yi,j
xi

maps to ai,j , and ai,1, . . . , ai,qi generate OX(Ui). There-
fore α is a locally closed immersion, completing the proof of the theorem. �
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Corollary 11.6.9. A variety X is quasi-projective if and only if it has an
ample line bundle.

Proof. The assertion follows from the theorem by taking Y to be a point,
since it is clear that X is quasi-projective if and only if it has a very ample line
bundle. �

Remark 11.6.10. We can make a stronger assertion than the one in the theo-
rem: if f : X → Y is a morphism of algebraic varieties, with Y affine, and M and
L are line bundles on X, with L ample, then there is d0 ≥ 1 such thatM⊗OX

Ld is
very ample over Y for every d ≥ d0. Indeed, it follows from the theorem that there
is m such that Lm is very ample over Y . On the other hand, since L is ample, it
follows that there is q such that M⊗OX

Lj is globally generated for every j ≥ q.
Using assertion ii) in Proposition 11.6.7, we conclude thatM⊗OX

Ld is very ample
over Y for all d ≥ m+ q.

This observation implies that if f : X → Y is a morphism, with Y affine, and
if there is an ample line bundle L on X, then everyM∈ Pic(X) can be written as
M'M1 ⊗OX

M−1
2 , where both M1 and M2 are very ample over Y . Indeed, we

may take M1 =M⊗OX
Ld and M2 = Ld, for d� 0.

Remark 11.6.11. A useful consequence of the existence of an ample line bundle
on a variety X is that every coherent sheaf F on X has a locally free resolution.
Indeed, if L is an ample line bundle on X, then there is m such that there is a
surjective morphism

O⊕N0

X → F ⊗OX
Lm.

By tensoring this with L−m, we obtain a surjective morphism φ0 : E0 → F , where
E0 = (L−m)⊕N0 . We can now repeat the construction with F replaced by ker(φ0)
in order to get an exact complex

E1 → E0 → F → 0,

with E1 locally free as well. By repeating this argument, we obtain the locally free
resolution of F . In particular, it follows from Corollary 11.6.9 that on a quasi-
projective variety, every coherent sheaf has a locally free resolution.

Corollary 11.6.12. Let f : X → Y be a proper morphism, with Y affine. If
L is an ample line bundle on X, then for d divisible enough, the following hold:

i) For every j ≥ 1, the canonical multiplication map

SjO(Y )Γ(X,Ld)→ Γ(X,Ldj)

is surjective.
ii) If S(Ld) =

⊕
j≥0 Γ(X,Ldj), then we have an isomorphism

X ' MaxProj
(
S(Ld)

)
.

Proof. It follows from Theorem 11.6.8 that we can find m ≥ 1 such that Lm is
very ample. We thus have a closed immersion j : X ↪→ Pn

Y such that j∗
(
OPn

Y
(1)
)
'

Lm. The assertion in the corollary now follows from Remark 11.2.5. �

We will mostly be interested in the case when X is proper over Y . In this case
(still assuming that Y is affine), we have the following cohomological characteriza-
tion of ampleness:
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Theorem 11.6.13. Let f : X → Y be a proper morphism of algebraic varieties,
with Y affine. For any line bundle L on X, the following are equivalent:

i) L is ample.
ii) For every coherent sheaf F on X, there is m0 such that

Hi(X,F ⊗OX
Lm) = 0 for all i ≥ 1 and m ≥ m0.

Proof. In fact, we will show that the condition in ii) is equivalent to the very
ampleness over Y for some power of L and then use the previous theorem. Suppose
first that Lq is very ample, for some positive integer q, and let j : X ↪→ Pn

Y be a
closed embedding over Y such that j∗

(
OPn

Y
(1)
)
' Lq. If F is a coherent sheaf on

X, then it follows from assertion ii) in Theorem 11.2.1 that there is m1 such that

Hi
(
Pn
Y , j∗(F)⊗OPn

Y
(m)

)
= 0 for all i ≥ 1 and m ≥ m1.

Since j is a closed immersion, using the projection formula, we obtain

Hi
(
Pn
Y , j∗(F)⊗OPn

Y
(m)

)
' Hi

(
Pn
Y , j∗(F ⊗ j∗(OPn

Y
(m)))

)
' Hi(X,F ⊗ Lmq).

We thus conclude that Hi(X,F ⊗ Lmq) = 0 for all m ≥ m1 and i ≥ 1. Applying
this for F ⊗Lj , with 1 ≤ j ≤ q − 1, we get mj+1 such that Hi(X,F ⊗Lmq+j) = 0
for all m ≥ mj+1 and i ≥ 1. We thus see that if m0 = q · max{mj | 1 ≤ j ≤ q},
then Hi(X,Lm) = 0 for all m ≥ m0 and all i ≥ 1.

Conversely, we show that if the condition in ii) holds, then L is very ample
over Y . By running the same argument as in the proof of Theorem 11.6.8, we
see that it is enough to show that for every x ∈ X, there is a positive integer m
and s ∈ Γ(X,Lm) such that X r V (s) is an affine open neighborhood of x. The
argument is similar to the one in the proof of Theorem 10.4.1: let W be an affine
open neighborhood of x such that L|W ' OW , put Z = (X rW )∪{x}, and let IZ
be the radical sheaf of ideals defining Z. By tensoring the short exact sequence

0→ IZ → OX → OZ → 0

with Lm, for m� 0, and taking the long exact sequence in cohomology, we obtain
an exact sequence

Γ(X,Lm)
φ−→ Γ(Z,Lm|Z)→ H1(X, IZ ⊗ Lm) = 0.

Since φ is surjective and since there is a section of Lm|Y that is 0 on X rU and is
non-zero at x, we obtain a section s ∈ Γ(X,Lm) such that s(x) 6= 0 and s|XrU = 0.
In this case X r V (s) = W r V (s|W ) is a principal affine open subset of W , and
thus it is affine. Since it contains x, this completes the proof of the theorem. �

Corollary 11.6.14. Let f : X → Y be a proper morphism, with Y affine, and
L an ample line bundle on X. For every exact complex of coherent sheaves on X:

F1 → F2 → . . .→ Fm,

the induced complex of A-modules

Γ(X,F1 ⊗OX
Lq)→ Γ(X,F2 ⊗OX

Lq)→ . . .→ Γ(X,Fm ⊗OX
Lq)

is exact for all q � 0.

Proof. Of course, it is enough to treat the case when m = 3. If

A = ker(F1 → F2), B = Im(F1 → F2), and C = Im(F2 → F3),
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then we have short exact sequences

0→ A→ F1 → B → 0

and
0→ B → F2 → C → 0.

Since L is ample, it follows from Theorem 11.6.13 that

H1(X,A⊗OX
Lq) = 0 = H1(X,B ⊗OX

Lq) for q � 0.

For such q, the long exact sequences in cohomology give short exact sequences

0→ Γ(X,A⊗OX
Lq)→ Γ(X,F1 ⊗OX

Lq)→ Γ(X,B ⊗OX
Lq)→ 0

and

0→ Γ(X,B ⊗OX
Lq)→ Γ(X,F2 ⊗OX

Lq)→ Γ(X, C ⊗OX
Lq)→ 0.

Since the morphism

Γ(X, C ⊗OX
Lq)→ Γ(X,F3 ⊗OX

Lq)
is injective for all q, we deduce that the sequence

Γ(X,F1 ⊗OX
Lq)→ Γ(X,F2 ⊗OX

Lq)→ Γ(X,F3 ⊗OX
Lq)

is exact for all q � 0. �

Remark 11.6.15. One can make a slightly stronger vanishing statement than
the one in the theorem, and this is sometimes useful: if f : X → Y is a morphism
of algebraic varieties, with Y affine, F is a coherent sheaf on X, and L is a line
bundle on X such that L|Supp(F) is ample and Supp(F)→ Y is proper, then there
is m0 such that

Hi(X,F ⊗OX
Lm) = 0 for all i ≥ 1 and m ≥ m0.

Indeed, it follows Remark 8.4.21 that if I is the radical ideal sheaf defining Supp(F),
then F has a finite filtration

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fr = F
such that Fj/Fj−1 is annihilated by I for 1 ≤ j ≤ r. By Theorem 11.6.13, we can
find m0 such that Hi

(
X, (Fj/Fj−1) ⊗OX

Lm
)

= 0 for all i ≥ 1, 1 ≤ j ≤ r, and
m ≥ m0. Using the long exact sequence in cohomology for

0→ Fj−1 → Fj → Fj/Fj−1 → 0,

we see by induction on j ≥ 1 that Hi(X,Fj⊗OX
Lm) = 0 for all i ≥ 1 and m ≥ m0.

For j = r, we obtain our assertion.

Exercise 11.6.16. Let f : X → Y be a morphism of algebraic varieties, with
Y affine, and let F be a coherent sheaf on X such that Supp(F) → Y is proper.
Show that if L is a line bundle on X such that L|Supp(F) is ample, then there is m0

such that F ⊗OX
Lm is globally generated for all m ≥ m0.

The cohomological characterization of ample line bundles Theorem 11.6.13 is
very useful for proving permanence properties of ample line bundles. We give a few
applications in this direction.

Corollary 11.6.17. Let X be a variety that is proper over an affine variety
(for example, a complete variety) and L a line bundle on X. If f : W → X is a
finite morphism, then f∗(L) is ample.
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Proof. Given a coherent sheaf F on X, by Example 10.5.16 and the projection
formula, we have

(11.6.1) Hi
(
W,F ⊗ f∗(Lm)

)
' Hi

(
X, f∗(F ⊗ f∗(Lm))

)
' Hi

(
X, f∗(F)⊗ Lm

)
for all i ≥ 0 and m ∈ Z. Since f∗(F) is coherent and L is ample, the right-most
term in (11.6.1) vanishes for all i ≥ 1 if m� 0. The characterization in the theorem
thus implies that f∗(L) is ample. �

Remark 11.6.18. In particular, the above corollary implies that if f : W → X
is a finite morphism of algebraic varieties and X is projective, then W is projective.
For example, this implies that the normalization of any projective variety is again
a projective variety.

Exercise 11.6.19. Show that if X is a complete variety, with irreducible com-
ponents X1, . . . , Xr, and L is a line bundle on X, then L is ample if and only if
L|Xi

is ample for every i.

Exercise 11.6.20. Using the approach in Exercise 10.5.21, prove the following
converse to Corollary 11.6.17: if X is a variety that is proper over an affine variety,
f : W → X is a finite, surjective morphism, and L is a line bundle on X such that
f∗(L) is ample, then L is ample.

Exercise 11.6.21. Let X and Y be algebraic varieties and p : X×Y → X and
q : X × Y → Y the two projections. Show that if L ∈ Pic(X) and M∈ Pic(Y ) are
very ample (ample), then p∗(L)⊗OX×Y

q∗(M) is very ample (respectively ample).

Exercise 11.6.22. Recall that if Y = Pm × Pn, then every line bundle L on
Y is isomorphic to pr∗1

(
OPm(a)

)
⊗OY

pr∗2
(
OPn(b)

)
for a unique (a, b) ∈ Z2 (see

Example 9.4.29); in this case, we say that L has type (a, b). Show that if L has
type (a, b), then the following are equivalent:

i) L is very ample.
ii) L is ample.

iii) We have a > 0 and b > 0.

11.7. Relatively ample line bundles and projective morphisms

In this section we introduce a relative version of ampleness, for proper mor-
phisms, and use it to study projective morphisms.

Definition 11.7.1. Given a proper morphism f : X → Y of algebraic varieties,
a line bundle L on X is f -ample (or ample over Y ) if for every afffine open subset
V ⊆ Y , the line bundle L|f−1(V ) on f−1(V ) is ample.

Example 11.7.2. If f : X → Y is a finite morphism, then every line bundle on
X is f -ample.

Example 11.7.3. If f : X → Y is a proper morphism, then every f -very ample
line bundle on X is f -ample.

Example 11.7.4. If Y is an algebraic variety, S is an OY -algebra as in §8.6.3,
and f : X = Proj(S)→ Y is the corresponding projective morphism, then the line
bundle OX(1) is ample over Y .
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Remark 11.7.5. It follows from definition and assertion iii) in Proposition 11.6.1
that if f : X → Y is a proper morphism and m is a positive integer, then a line
bundle L on X is f -ample if and only if Lm is f -ample.

Proposition 11.7.6. Given a proper morphism of algebraic varieties f : X →
Y and a line bundle L on X, the following are equivalent:

i) L is f -ample.
ii) There is a finite affine open cover Y =

⋃
j∈J Vj such that L|f−1(Vj) is

ample for all j ∈ J .
iii) For every coherent sheaf F on X, there is m0 such that

Rif∗(X,F ⊗OX
Lm) = 0 for all m ≥ m0 and i ≥ 1.

iv) For every coherent sheaf F on X, there is m0 such that the canonical
morphism

f∗f∗
(
F ⊗OX

Lm
)
→ F ⊗OX

Lm

induced by the adjunction is surjective for all m ≥ m0.

Proof. Given a finite affine open cover Y =
⋃
j∈J Vj , note that for a given m

and i, we have

Rif∗(F ⊗OX
Lm) = 0 if and only if Hi

(
f−1(Vj),F ⊗ Lm

)
= 0 for all j ∈ J.

Similarly, we see that the morphism

f∗f∗
(
F ⊗OX

Lm
)
→ F ⊗OX

Lm

is surjective if and only if for every j ∈ J , the restriction of this morphism to
f−1(Vj), which gets identified to the morphism

Γ
(
f−1(Vj),F ⊗OX

Lm
)
⊗k Of−1(Vj) → F ⊗OX

Lm|f−1(Vj)

is surjective. We also note that by Proposition 11.6.3, for every coherent sheaf G
on some f−1(Vj), we can write G ' F|f−1(Vj) for some coherent sheaf F on X. We
thus conclude that each restriction L|f−1(Vj) is ample if and only if condition iv)
holds, if and only if condition iii) holds (by Theorem 11.6.13). Since the conditions
in iii) and iv) are independent of the given cover, we see that also conditions ii) and
i) are equivalent. �

Remark 11.7.7. It follows from the above proposition that if X is a proper
variety over Y , with Y affine, then a line bundle L on X is ample over Y if and
only if it is ample (in the usual sense).

Remark 11.7.8. Given a proper morphism f : X → Y and a line bundle L
on X, for every line bundle M on Y , we have L ample over Y if and only if
L⊗OX

f∗(M) is ample over Y . For this, it is enough to consider a finite affine open
cover Y =

⋃
j∈J Vj such that each M|Vj is trivial, and use the characterization ii)

in Proposition 11.7.6.

Proposition 11.7.9. A proper morphism f : X → Y is projective if and only
if there is an f -ample line bundle on X.

Proof. The “only if” part follows from Example 11.7.4. Conversely, suppose
that L is an f -ample line bundle on X. Consider a finite affine open cover Y =⋃
i∈I Ui. By Theorem 11.6.8, we can find m such that for every i ∈ I, the line

bundle Lm|f−1(Ui) is very ample; in order to have the same m for all i, we use the
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fact that the power of a very ample line bundle is very ample (see assertion iii) in
Proposition 11.6.7). Moreover, after replacing m by a suitable multiple, we may
assume that for every j ≥ 0, the canonical multiplication map

Symj
OY (Ui)

Γ
(
f−1(Ui),Lm

)
→ Γ

(
f−1(Ui),Ljm

)
is surjective and we have a canonical isomorphism

f−1(Ui) ' MaxProj

⊕
j≥0

Γ
(
f−1(Ui),Ljm

)
(see Remark 11.2.5). The OY -algebra

S =
⊕
j≥0

f∗(Ljm)

is quasi-coherent and reduced, and generated over S0 by S1. Moreover, S0 and
S1 are coherent, and we can thus consider Z = MaxProj(S) → Y . The above
isomorphisms glue together to an isomorphism X ' Z of varieties over Y . Therefore
f is a projective morphism. �

Proposition 11.7.10. Let f : X → Y be a proper morphism. If L is an f -
ample line bundle one X and M is an ample line bundle on Y , then there is m > 0
such that the line bundle Lm ⊗ f∗(Md) is f -very ample for every d� 0.

Proof. We choose an integer m > 0 and the corresponding OY -algebra S =⊕
j≥0 f∗(Ljm) as in the proof of Proposition 11.7.9. Note that if

g : Z =MaxProj(S)→ Y

is the canonical morphism, then we have an isomorphism h : X → Z over Y
such that Lm ' h∗

(
OZ(1)

)
. Since M is ample, it follows that S1 ⊗OY

Md

is globally generated for all d � 0. For every such d, consider the OY -algebra
S ′ =

⊕
j≥0(Sj ⊗OY

Mdj). Note that for every open subset U of Y with L|U ' OU ,

we have S ′|U ' S|U . We may thus define g′ : Z ′ =MaxProj(S ′) and for every U
as above, we have an isomorphism (g′)−1(U) ' g−1(U). These isomorphisms glue
together to an isomorphism α : Z → Z ′ over Y . It is straightforward to see that
α∗
(
OZ′(1)

)
' OZ(1) ⊗OZ

g∗(Md). On the other hand, since S ′1 is globally gen-
erated, it follows that we have a surjective morphism OY [x0, . . . , xN ] → S ′ which
induces a closed immersion j : Z ′ ↪→ PN

Y over Y such that j∗
(
OPN

Y
(1)
)
' OZ′(1).

By putting these together, we conclude that for every such d, the line bundle
Lm ⊗ f∗(Md) on X is f -ample. �

Proposition 11.7.11. Let f : X → Y and g : Y → Z be proper morphisms, L
a line bundle on X and M a line bundle on Y .

i) If L is f -very ample andM is g-very ample, then L⊗OX
f∗(M) is (g◦f)-

very ample.
ii) If L is f -ample and M is g-ample, then L ⊗OX

f∗(Md) is (g ◦ f)-ample
for d� 0

Proof. In order to prove i), consider closed immersions

i = (α, f) : X ↪→ Pn
Y = Pn × Y and j = (β, g) : Y ↪→ Pm

Z = Pm × Z
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such that i∗
(
OPn

Y
(1)
)
' L and j∗

(
OPm

Z
(1)
)
' M. In this case we have a closed

immersion φ given by the composition

X
i−→ Pn × Y idPn×j−−−−−→ Pn ×Pm × Z τ×idZ−−−−→ PN × Z,

where τ : Pn ×Pm ↪→ PN is the Segre embedding. Since

φ∗
(
OPN

Z
(1)
)
' L⊗OX

f∗(M),

it follows that L ⊗OX
f∗(M) is (g ◦ f)-very ample.

We now prove ii). Since we can cover Z by finitely many affine open subsets,
we see that it is enough to prove ii) when Z is an affine variety, in which case M
is ample. Applying Proposition 11.7.10 for f , we can find positive integers d1 and
m such that Lm ⊗OX

f∗(Md) is f -very ample for all d ≥ d1. Similarly, applying
Proposition 11.7.10 for g, we can find a positive integer d2 such thatMd2 is g-very
ample. In this case, it follows from i) that Lm ⊗OX

f∗(Md) is (g ◦ f)-very ample
for all d ≥ d1 + d2, and thus L ⊗OX

f∗(Md) is (g ◦ f)-ample if d ≥ d1+d2
m . �

By combining Proposition 11.7.9 with assertion ii) in Proposition 11.7.11, we
obtain the following corollary.

Corollary 11.7.12. If f : X → Y and g : Y → Z are projective morphisms,
then g ◦ f is a projective morphism.

Remark 11.7.13. If f : X → Y is a proper morphism and L is an f -ample line
bundle on X, then for every Cartesian diagram

X ×Y Z

v

��

g // Z

u

��
X

f // Y,

then v∗(L) is g-ample. Indeed, after covering Y by affine open subsets Vi and
covering each u−1(Vi) by affine open subsets Ui,j , we reduce the statement to the
case when both Y and Z are affine. In this case L is ample and by Theorem 11.6.8
there is a positive integer m and a closed immersion j = (α, f) : X ↪→ Pn

Y = Pn×Y
such that Lm ' j∗

(
OPn

Y
(1)
)
. Consider now the commutative diagram

X ×Y Z
jZ //

v

��

Pn
Z

//

w

��

Z

u

��
X

j // Pn
Y

// Y,

where jZ = (α ◦ v, g). Since the right square is Cartesian and the big rectangle is
Cartesian by hypothesis, it follows that the left square is Cartesian. In particular,
since j is a closed immersion, it follows that jZ is a closed immersion. Since

v∗(Lm) ' v∗
(
j∗(OPn

Y
(1))

)
' j∗Z

(
w∗(OPn

Z
(1))

)
' j∗Z

(
OPn

Z
(1)
)
,

we conclude that v∗(L) is g-ample.
In particular, we see that for every y ∈ Y , the restriction L|Xy

to the fiber

Xy = f−1(y) is ample. In Corollary 11.7.15 below we will see that conversely, if
the restriction of L to each fiber of f is ample, then L is f -ample.
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We will not make use of the following result in what follows, but we include it
for the sake of completeness. Its proof makes use of the fact that proper morphisms
with finite fibers are finite; we thus put it off until Chapter 14.

Theorem 11.7.14. Let f : X → Y be a proper morphism and L a line bundle
on X. If y ∈ Y is such that the restriction of L to the fiber Xy = f−1(y) is an ample
line bundle, then there is an affine open neighborhood U of y such that L|f−1(U) is
ample. In particular, the set

{z ∈ Y | L|Xz is ample}
is open in Y .

Corollary 11.7.15. If f : X → Y is a proper morphism and L is a line bundle
on X such that the restriction of L to each fiber of f is ample, then L is f -ample.

Proof. Using the theorem, we obtain an affine open cover Y =
⋃
i∈I Ui such

that L|Ui is ample for every i ∈ I. In this case L is f -ample by Proposition 11.7.6.
�





CHAPTER 12

Depth and Cohen-Macaulay rings

In this chapter we discuss some more advanced topics in local algebra. We
assume some basic results in commutative algebra as covered in Appendices A-H
and the facts about Ext and Tor modules covered in §10.7. For the applications
in the geometric setting, we only need the case when the rings we deal with are
algebras of finite type over an algebraically closed field k, as well as the localizations
of such rings. However, it is more natural to work in the general setting.

In the first section we discuss the notion of depth and characterize it in terms of
the vanishing of certain Ext modules. In particular, we prove an important result
of Auslander-Buchsbaum relating depth to projective dimension. We also give here
a normality criterion, due to Serre, involving the notion of depth. In the second
section we discuss the Koszul complex and its relationship to depth. Finally, in
the last section we introduce Cohen-Macaulay rings and modules; for the sake of
simplicity, we restrict to the case of algebraic varieties and coherent sheaves on
them. For a more in-depth treatment of the topics discussed in this chapter, we
refer to [BH93].

12.1. Depth

12.1.1. Regular sequences and depth. The following is a key notion for
this chapter.

Definition 12.1.1. Given a finitely generated module M over the Noetherian
ring R, a sequence of elements x1, . . . , xn ∈ R is an M -regular sequence (or a regular
sequence for M) if the following conditions hold:

i) We have (x1, . . . , xn)M 6= M .
ii) For every i with 1 ≤ i ≤ n, the element xi is a non-zero-divisor on the

R-module M/(x1, . . . , xi−1)M .

If M = R, we simply say that x1, . . . , xn form a regular sequence.

Remark 12.1.2. If x1, . . . , xn is an M -regular sequence and S is a multiplica-
tive system in R such that S−1M/(x1, . . . , xn)S−1M 6= 0, then it is clear that
x1

1 , . . . ,
xn

1 ∈ S
−1R is an S−1M -regular sequence.

As we will see in the next section, regular sequences tend to behave better when
we work in a local ring.

Remark 12.1.3. Suppose that M is a finitely generated module over a Noe-
therian ring R. If x1, . . . , xn is an M -regular sequence, then

(x1)M ( (x1, x2)M ( . . . ( (x1, . . . , xn)M.

Indeed, if 1 ≤ i ≤ n is such that xiM ⊆ (x1, . . . , xi−1)M , since xi is a non-zero-
divisor on M/(x1, . . . , xi−1)M , it follows that (x1, . . . , xi−1)M = M contradicting
condition i) in the definition of an M -regular sequence.

319
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Since M is a Noetherian module, it follows that given any ideal I in M , every
M -regular sequence of elements in I can be completed to a maximal such sequence.
We note that if IM 6= M , an M -regular sequence x1, . . . , xn of elements in I is
maximal among such sequences if and only if I is contained in the set of zero-
divisors of M/(x1, . . . , xn)M . By Remark E.3.5, this is the case if and only if there
is u ∈M r (x1, . . . , xn)M such that I · u ⊆ (x1, . . . , xn)M .

Definition 12.1.4. Let M be a finitely generated module over a Noetherian
ring R. If I is an ideal in R, we put

depth(I,M) := min{i ≥ 0 | ExtiR(R/I,M) 6= 0}.
Note that if the set on the right-hand side is empty, then we follow the convention
tht depth(I,M) = ∞. If R is a local ring and m is the maximal ideal, then we
write depth(M) for depth(m,M).

The following result makes the connection with regular sequences and motivates
the above definition.

Theorem 12.1.5. Let R be a Noetherian ring, M a finitely generated R-module,
and I an ideal in R.

i) If IM = M , then depth(I,M) =∞.
ii) If IM 6= M , then depth(I,M) is equal to the length of every maximal

M -regular sequence of elements of I.

Proof. Suppose first that IM = M . In order to show that depth(I,M) =∞
it is enough to show that for every prime ideal p in R, we have ExtiR(R/I,M)p = 0
for all i ≥ 0. Note that by Corollary 10.7.3, we have

ExtiR(R/I,M)p ' ExtiRp
(Rp/IRp,Mp).

If I ⊆ p, then the hypothesis together with Nakayama’s lemma implies Mp = 0,

hence ExtiRp
(Rp/IRp,Mp) = 0. On the other hand, if I 6⊆ p, then Rp = IRp, and

again we have ExtiRp
(Rp/IRp,Mp) = 0. This completes the proof of i).

Suppose now that IM 6= M and let x1, . . . , xn be a maximal M -regular se-
quence in I. We show that depth(I,M) = n arguing by induction on n. If n = 0,
then there is no non-zero-divisor on M in I (we use here that IM 6= M). It follows
that we have u ∈ M r {0} such that I · u = 0, and thus a non-zero morphism
R/I → M that maps the image of 1 to u. This shows that Hom(R/I,M) 6= 0,
hence depth(I,M) = 0.

Suppose now that we know the assertion when we have a maximal M -regular
sequence of length n−1. Since x1 is a non-zero-divisor on M , we have a short exact
sequence

0→M
·x1−−→M →M/x1M → 0.

Note that multiplication by x1 on each ExtiR(R/I,M) is 0 since x1 ∈ I. The long
exact sequence for Ext modules thus breaks into short exact sequences

0→ ExtiR(R/I,M)→ ExtiR(R/I,M/x1M)→ Exti+1
R (R/I,M)→ 0.

This immediately implies that depth(I,M/x1M) = depth(I,M)− 1. On the other
hand, it is clear that x2, . . . , xn is a maximal M/x1M -regular sequence in I. Since
I · (M/x1M) 6= M/x1M , we conclude using the induction hypothesis that n− 1 =
depth(I,M)−1. This completes the proof of the induction step and thus the proof
of the theorem. �
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Remark 12.1.6. It follows from the above proof that if J = rad(I), then

depth(J,M) = depth(I,M).

Note first that we have IM = M if and only if JM = M . If this is not the case,
then it is enough to show that depth(J,M) is equal to the length of any maximal
M -regular sequence contained in I. The above proof carries through with one
modification: we need to note that if there is a non-zero u ∈M such that I ·u = 0,
then there is also a non-zero v ∈M with J ·v = 0 (this is straightforward to check),
and thus HomR(R/J,M) 6= 0.

Remark 12.1.7. It follows from the theorem that if a is an ideal in R such that
a ·M = 0, then depth(I,M) = depth

(
(I + a)/a,M

)
, where in the second depth, we

consider M as an R/a-module.

Corollary 12.1.8. If R, M , and I are as in the theorem, and x ∈ I is a
non-zero-divisor on M , then

(12.1.1) depth(I,M/xM) = depth(I,M)− 1.

Proof. We have already noticed this equality in the proof of Theorem 12.1.5.
�

Example 12.1.9. If M is a finitely generated module over a Noetherian ring R
and I is an ideal generated by anM -regular sequence x1, . . . , xn, then depth(I,M) =
n. Indeed, a repeated application of the previous corollary reduces the assertion to
showing that if I = 0 and M is non-zero, then depth(I,M) = 0, which is obvious.

Corollary 12.1.10. If R, M , and I are as in the theorem and J is an ideal
containing I, then

depth(I,M) ≤ depth(J,M).

Proof. The inequality follows immediately from the theorem. �

Corollary 12.1.11. If R, M , and I are as in the theorem, then

depth(I,M) = min{depth(Mp) | p ⊇ I},
where the minimum is over the prime ideals p containing I. In particular, if m is
a maximal ideal in R, then depth(m,M) = depth(Mm).

Proof. For every prime ideal p and every i, we have

ExtiR(R/I,M)p ' ExtiRp
(Rp/IRp,Mp)

by Proposition 10.7.3. It follows from the description in the theorem (see also
Remark 12.1.2) that for every prime ideal p containing I, we have

depth(I,M) ≤ depth(IRp,Mp) ≤ depth(Mp),

where the second inequality follows from the previous corollary.
If IM = M , then we are done. Suppose now that IM 6= M and let x1, . . . , xn

be a maximal M -regular sequence contained in I. Since every element of I is a zero-
divisor on M/(x1, . . . , xn)M , it follows that there is p ∈ AssR

(
M/(x1, . . . , xn)M

)
such that I ⊆ p (see Remark E.3.5). Since pRp ∈ AssRp

(
Mp/(x1, . . . , xn)Mp

)
, it

follows that x1

1 , . . . ,
xn

1 is a maximal Mp-regular sequence in pRp, and thus

depth(I,M) = depth(Mp).

�
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Proposition 12.1.12. Given a short exact sequence

0→M ′ →M →M ′′ → 0

of finitely generated modules over the Noetherian ring R, the following hold:

i) depth(I,M) ≥ min{depth(I,M ′),depth(I,M ′′)}.
ii) depth(I,M ′) ≥ min{depth(I,M),depth(I,M ′′) + 1}.

iii) depth(I,M ′′) ≥ min{depth(I,M),depth(I,M ′)− 1}.

Proof. All assertions follows directly from definition and the long exact se-
quence for the Ext modules:

. . .→ Exti−1
R (R/I,M ′′)→ ExtiR(R/I,M ′)→ ExtiR(R/I,M)

→ ExtiR(R/I,M ′′)→ Exti+1
R (R/I,M ′)→ . . . .

�

Recall that for a non-zero finitely generated R-module M , one defines

dim(M) = dim
(
R/AnnR(M)

)
.

Proposition 12.1.13. If M is a finitely generated module over a Noetherian
local ring (R,m), then for every p ∈ AssR(M), we have

depth(M) ≤ dim(R/p).

In particular, we have depth(M) ≤ dim(M).

Proof. Let p ∈ AssR(M). In particular, we see that M 6= 0, and thus mM 6=
M by Nakayama’s lemma. We argue by induction on n = depth(M). If n = 0,
then there is nothing to prove. Otherwise, let x ∈ m be a non-zero-divisor on
M . By Corollary 12.1.8, we have depth(M/xM) = n − 1. On the other hand,
by hypothesis, there is u ∈ M such that p = AnnR(u). By Krull’s Intersection
theorem (see Theorem C.4.1), we have

⋂
j≥0 x

jM = 0, hence there is ` ≥ 0 such

that u = x`v and v 6∈ xM . Since x is a non-zero-divisor on M , it follows that
p = AnnR(v) and thus p annihilates the non-zero element v ∈ M/xM . It follows
from Remark E.3.5 that there is q ∈ AssR(M/xM) such that p ⊆ q. Note that
x ∈ AnnR(M/xM) ⊆ q, while x 6∈ p, since x is a non-zero-divisor on M . We thus
have dim(R/p) ≥ dim(R/q)+1 and we conclude using the induction hypothesis. �

Remark 12.1.14. A related inequality says that if a ( R is an ideal in a
Noetherian ring R, then

depth(a, R) ≤ codim(a)

(recall that codim(a) = minp{codim(p)}, where the minimum is over the minimal
primes containing a or, equivalently, over all primes containing a). The above
inequality follows easily by induction on depth(a, R) = r, noting that if a ∈ R is a
non-zero-divisor, then it does not lie in any minimal prime ideal of R, and thus for
every prime ideal p containing a, we have codim(p) ≥ codim

(
p/(a)

)
+ 1.

Example 12.1.15. Let X be an algebraic variety and x ∈ X a smooth point,
with dim(OX,x) = n. It follows from Proposition 6.3.8 that OX,x is a domain,
hence every non-zero element in the maximal ideal m of OX,x forms an OX,x-regular
sequence. Moreover, if x1, . . . , xn is a minimal system of generators of m, then it
follows from Proposition 6.3.20 that for every i ≥ 1, the ring OX,x/(x1, . . . , xi) is
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the local ring of a smooth variety; in particular, it is a domain. We thus see that
x1, . . . , xn is an OX,x-regular sequence, and thus depth(OX,x) = n.

In fact, the same holds for any regular local ring, see [BH93, §2.2]. We have
restricted to the case of local rings of smooth points on algebraic varieties since we
only proved in this setting the basic properties of regular local rings.

12.1.2. Depth and projective dimension. Our next goal is to prove a
result due to Auslander and Buchsbaum, relating depth and projective dimension.
We first need some preparations regarding minimal free resolutions over Noetherian
local rings.

Let (R,m, k) be a Noetherian local ring and M a finitely generated R-module.
If u1, . . . , un ∈ M give a minimal system of generators and if φ0 : F0 = Rn →
M is given by φ0(ei) = ui, then ker(φ0) ⊆ mF0 (this follows from the fact that
u1, . . . , un ∈ M/mM are linearly independent over k). If we choose a minimal
system of generators of ker(φ0), we obtain a morphism φ1 : F1 → F0 such that
Im(φ1) = ker(φ0) ⊆ mF0. Continuing in this way we obtain a free resolution

F• : . . .→ Fm
φm−−→ . . .

φ2−→ F1
φ1−→ F0

φ0−→M → 0

of M such that φi(Fi) ⊆ mFi−1 for all i ≥ 1. A free resolution with this property
is called minimal.

Proposition 12.1.16. If F• →M is a minimal free resolution of M , then

rank(Fi) = dimk TorRi (k,M).

Proof. Note first that since TorRi (k,M) is annihilated by m, it follows that

indeed, TorRi (k,M) is a k-vector space (finitely generated by Proposition 10.7.20).
Since F• →M is a free resolution, we have

TorRi (k,M) ' Hi(k ⊗R F•).
On the other hand, with respect to suitable bases of Fi and Fi−1, the matrix of φi
has entries in m; therefore all maps in k ⊗R F• are 0, hence

TorRi (k,M) ' k ⊗R Fi.
This gives the assertion in the proposition. �

Remark 12.1.17. The above proposition shows that the ranks of the free mod-
ules in a minimal free resolution do not depend on the resolution. In fact, any
two minimal free resolutions of M are isomorphic (though the isomorphism is not
unique). Indeed, suppose that F• →M and G• →M are two minimal free resolu-
tions. It follows from the analogue of Proposition 10.1.11 for projective resolutions
that we have a morphism of complexes F• → G• that lifts the identity on M . By
tensoring with k, we see that each morphism k⊗RFi → k⊗RGi is an isomorphism.
Since R is local, it follows that each map Fi → Gi is an isomorphism, proving our
assertion. Because of this, one often talks about the minimal free resolution of M .

Corollary 12.1.18. If M is a finitely generated module over the Noetherian
local ring R and q is a non-negative integer, then the following are equivalent:

i) pdR(M) ≤ q.
ii) TorRi (N,M) = 0 for all i ≥ q + 1 and all R-modules N .

iii) TorRq+1(k,M) = 0.
iv) If F• →M is the minimal free resolution of M , then Fq+1 = 0.
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Proof. The implication i)⇒ii) follows from Proposition 10.7.25, ii)⇒iii) is
trivial, iii)⇒iv) follows from the proposition, and iv)⇒i) is clear. �

Corollary 12.1.19. If (R,m, k) is a Noetherian local ring, then the global
dimension of R is equal to pdR(k).

Proof. The fact that gl-dim(R) is at least as large as pdR(k) follows from the
definition of global dimension. On the other hand, if pdR(k) = n, then it follows

from Proposition 10.7.25, that TorRi (N, k) for every i > n and every R-module N .
Applying the previous corollary, we see that for every finitely generated R-module
N , we have pdR(N) ≤ n. �

Lemma 12.1.20. Given an R-module M , if x ∈ R is a non-zero divisor on both
R and M , we have ToriR

(
M,R/(x)

)
= 0 for i ≥ 1.

Proof. Since x is a non-zero-divisor on R, we have the following free resolution
of R/(x):

0→ R
·x−→ R→ R/(x)→ 0.

It is then clear that TorRi
(
M,R/(x)

)
= 0 for i ≥ 2, while

TorR1
(
M,R/(x)

)
' ker

(
M

·x−→M
)

= 0.

�

We can now prove the connection between depth and projective dimension.

Theorem 12.1.21 (Auslander-Buchsbaum). If (R,m) is a Noetherian local ring
and M is a non-zero R-module with pdR(M) <∞, then

(12.1.2) depth(R) = depth(M) + pdR(M).

Proof. We argue by induction on depth(R) and treat separately different
cases. Since pdR(M) <∞, it follows from Corollary 12.1.18 that the minimal free
resolution of M is finite:

0→ Fn
φ−→ Fn−1 → . . .→ F0 →M → 0.

Case 1. Suppose first that depth(R) = 0. Therefore m ∈ AssR(R), hence there
is a non-zero u ∈ R such that m · u = 0. If n > 0, then φ(Fn) ⊆ mFn−1, hence
φ(u ·Fn) = 0, contradicting the injectivity of φ. Therefore n = 0, that is, M is free,
in which case it is clear that depth(M) = depth(R) = 0. This proves (12.1.2) in
this case.
Case 2. Suppose now that depth(R) > 0 and depth(M) > 0. In this case there
is x ∈ m which is a non-zero-divisor on both R and M . The hypothesis on x
implies, using the lemma, that F• ⊗R R/(x) is an exact complex, hence a minimal
free resolution of M/xM . By Nakayama’s lemma, we have Fi = 0 if and only
if Fi/xFi = 0, and we deduce using Corollary 12.1.18 that pdR/(x)(M/xM) =

pdR(M). On the other hand, using Corollary 12.1.8, we have

depth(M/xM) = depth(M)− 1 and depth
(
R/(x)

)
= depth(R)− 1.

We deduce the equality in (12.1.2) from the induction hypothesis.
Case 3. Suppose that depth(R) > 0 and depth(M) = 0. Note that in this case
M can’t be free, hence N = ker(F0 → M) is non-zero. Note that pdR(N) =
pdR(M) − 1. On the other hand, we have depth(N) = 1 by Proposition 12.1.12.
We thus obtain the equality in (12.1.2) by applying Case 2 to N . �
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12.1.3. Serre’s normality criterion. We now use the notion of depth to
prove a normality criterion due to Serre.

Definition 12.1.22. Given a Noetherian ring R, we say that R satisfies Serre’s
condition (Ri) if for every prime ideal p in R, with codim(Rp) ≤ i, the local ring
Rp is regular.

Example 12.1.23. If X is an affine variety and A = O(X), then A satisfies
property Ri if and only if codimX(Xsing) ≥ i+ 1.

Definition 12.1.24. We say that a Noetherian ring R satisfies Serre’s condition
(Si) if for every prime ideal p in R, we have

depth(Rp) ≥ min{dim(Rp), i}.

Example 12.1.25. A Noetherian ring R satisfies (S1) if and only if every asso-
ciated prime of R is minimal. It satisfies both (R0) and (S1) if and only if for every
associated prime p of R, we have pRp = 0. It is clear that this holds if R is reduced.
The converse also holds: if 0 = q1 ∩ . . . ∩ qr is a minimal primary decomposition,
then conditions (R0) and (S1) imply that if pi = rad(qi), then each pi is a minimal
prime ideal and qiRpi ⊆ piRpi = 0; since qi is pi-primary, it follows that qi = pi
for all i, hence R is reduced.

As in the geometric setting, we say that an arbitrary Noetherian ring R is
normal if Rp is an integrally closed domain for every prime ideal p in R (or, equiv-
alently, for every maximal ideal p in R).

Remark 12.1.26. We note that a normal ring is isomorphic to a product of
normal domains. Indeed, if R is normal and p1, . . . , pr are the minimal prime ideals
of R, then pi + pj = R for every i 6= j (this is due to the fact that Rp is a domain
for every maximal ideal p in R). Moreover, since al localizations of R are reduced,
it follows that R is reduced, hence p1 ∩ . . . ∩ pr = 0. We thus conclude from the
Chinese Remainder theorem that the canonical morphism

R→ R/p1 × . . .×R/pr
is an isomorphism. Furthermore, for every prime ideal q containing pi, the localiza-
tion Rq is a normal domain, hence (R/pi)q = Rq is normal. We thus deduce that
each R/pi is a normal domain.

Theorem 12.1.27 (Serre). A Noetherian ring R is normal if and only if it
satisfies conditions (R1) and (S2).

Proof. After localizing, we may assume that (R,m) is a local ring. It is
straightforward to see that if R is a domain, then having (R1) + (S2) is just a
reformulation of conditions i) + ii) in Proposition E.5.1. In particular, the “only if”
assertion in the theorem is clear. For the “if” part, the subtlety is that we don’t
know a priori that R is a domain.

Suppose now that R satisfies conditions (R1) and (S2). In particular, it satisfies
(R0) + (S1), and thus R is reduced by Example 12.1.25. Let p1, . . . , pr be the
minimal prime ideals of R, and let S = Rr

⋃r
i=1 pi be the set of non-zero-divisors

in R. Consider the inclusion map φ : R ↪→ K = S−1R. The Chinese Remainder
theorem gives an isomorphism K '

∏r
i=1Ki, where Ki = Frac(R/pi) = Rpi

. If we
can show that r = 1, then R is a domain, in which case we are done. We follow
the proof of Proposition E.5.1 to show that R is integrally closed in K. If we know
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this, and ei ∈ K is the idempotent corresponding to 1 ∈ Ki, then e2
i = ei implies

that ei lies in R. Since R is local, the only idempotents it has are 0 and 1, and
these are mapped by φ to 0 and 1, respectively, in K. We thus see that r = 1.

Suppose that b
a ∈ K is a non-zero element that is integral over R (note that a

is a non-zero-divisor). Consider a minimal primary decomposition

(a) = q1 ∩ . . . ∩ qs.

If q̃i = rad(qi), then q̃i ∈ Ass
(
R/(a)

)
by Remark E.3.13. Condition (S2) implies

that codim(q̃j) = 1, and condition (R1) implies that Rq̃j
is a DVR. Let j be fixed

and consider i such that pi ⊆ q̃j . Since b
a is integral over R, its image in Ki is

integral over R, and since Rq̃j
⊆ Ki is a DVR, hence integrally closed, we conclude

that there is s ∈ R r q̃j such that sb ∈ (a). Since qj is a primary ideal, it follows

that b ∈ qj . Since this holds for every j, we conclude that b ∈ (a) and thus b
a ∈ R.

This completes the proof of the theorem. �

12.2. The Koszul complex

In this section we discuss a complex that can be used to compute the depth
of a module. We begin by considering the algebraic context and then we describe
how the construction can be globalized in the geometric setting. We end this
chapter with an application of the Koszul complex to proving the basic properties
of Castelnuovo-Mumford regularity of a sheaf on the projective space.

12.2.1. The Koszul complex: definition and first properties. Let R be
a commutative ring, E an R-module, and φ : E → R a morphism of R-modules. We
define a complex K(φ) = K(φ)•, as follows. For every p ≥ 1, we put K(φ)p = ∧pE
and define dp : ∧p E → ∧p−1E by

dp(e1 ∧ . . . ∧ ep) =

p∑
i=1

(−1)i−1φ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ ep.

Note that d1 = φ. It is straightforward to check that dp ◦ dp+1 = 0 for all p ≥ 1,
hence K(φ) is a complex: the Koszul complex associated to φ. We will mostly be
interested in the case when E is a free R-module. In this case, if rank(E) = n, then
K(φ)p = 0 for p > n. If M is an R-module, then we put K(φ;M) := K(φ)⊗RM .

If x is a sequence x1, . . . , xn of elements of R, then we write K(x1, . . . , xn) or
K(x) for the complex K(φ), where φ : Rn → R is given by φ(ei) = xi, and similarly,
K(x1, . . . , xn;M) or K(x;M) for K(x)⊗RM . We also write Hi(x1, . . . , xn;M) or
Hi(x;M) for Hi

(
K(x;M)

)
.

Example 12.2.1. If n = 1, then the Koszul complex corresponding to the
element x ∈ R consists of

0→ R
·x−→ R→ 0.

Remark 12.2.2. Note that for every φ : E → R, we have

H0

(
K(φ;M)

)
' coker(φ)⊗RM.



12.2. THE KOSZUL COMPLEX 327

Remark 12.2.3. Given a commutative diagram

E

u

��

φ // R

idR

��
F

ψ // R,

we obtain a morphism of complexes K(φ) → K(ψ) given for every p ≥ 0 by
∧pu : ∧p E → ∧pF .

In particular, we see that if u : E → F is an isomorphism, then we have an
induced isomorphism K(ψ ◦ u) ' K(ψ) for every ψ : F → R. For example, given
x1, . . . , xn ∈ R, if σ is a permutation of {1, . . . , n}, we see that K(x1, . . . , xn) '
K
(
xσ(1), . . . , xσ(n)

)
.

Example 12.2.4. If (R,m) is a Noetherian local ring, a is an ideal of R, and
x = x1, . . . , xn and y = y1, . . . , yn are minimal systems of generators of a, then
the Koszul complexes K(x) and K(y) are isomorphic. Indeed, we can write yi =∑n
j=1 ai,jxj for all i and we have a commutative diagram

Rn

u

��

φ // R

idR

��
Rn

ψ // R,

where φ(ei) = yi, ψ(ei) = xi, and u(ei) =
∑n
j=1 ai,jej . Since both x and y are

minimal systems of generators of a, it follows that det(ai,j) 6∈ m, hence u is an
isomorphism. Our assertion then follows from Remark 12.2.3.

Proposition 12.2.5. Given a morphism φ : E → R, then multiplication by
a ∈ φ(E) on K(φ) is homotopic to 0. In particular, if φ is a surjective map, then
for every R-module M , the complex K(φ;M) is exact.

Proof. If a = φ(e), then we define for every p ≥ 0 a morphism θp : K(φ)p →
K(φ)p+1 given by

θp(e1, . . . , ep) = e ∧ e1 ∧ . . . ∧ ep.
It is straightforward to see that dp+1 ◦ θp + θp−1 ◦ dp = a · idK(φ)p , hence (θp)p≥0

give a homotopy between a · idK(φ) and 0. �

Our next goal is to relate the Koszul complex associated to n elements to the
Koszul complex associated to (n− 1) of these elements. We do this more generally,
as follows.

Let φ : E → R be a linear map and consider ψ : F = E ⊕ R → R given by
ψ(u, λ) = φ(u) + λa, for some a ∈ R. Note that for every p ≥ 1, we have a
decomposition

∧pF ' ∧pE ⊕ ∧p−1E,

where the injective map ∧pE ↪→ ∧pF is induced by the injective map E ↪→ F and
the injective map ∧p−1E ↪→ ∧pF takes e1 ∧ . . . ∧ ep−1 to e0 ∧ e1 ∧ . . . ∧ ep−1, with
e0 = (0, 1) ∈ F . The decomposition also holds for p = 0 if we make the convention
∧−1E = 0.

It is clear that we have an injective morphism of complexes K(φ) ↪→ K(ψ) and
let C• be the quotient complex. Note that we have Cp ' K(φ)p−1 and the map
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dC : Cp → Cp−1 is equal to −dK(φ). In particular, for every p we have Hp(C•) '
Hp−1

(
K(φ)

)
. Moreover, the long exact sequence associated to the short exact

sequence of complexes

0→ K(φ)→ K(ψ)→ C• → 0

looks as follows:

Hp
(
K(φ)

)
→ Hp

(
K(ψ)

)
→ Hp−1

(
K(φ)

) τp−1−−−→ Hp−1

(
K(φ)

)
→ Hp−1

(
K(ψ)

)
→ . . . .

A straightforward computation using the maps giving K(ψ) shows that the maps
τp−1 is given by multiplication by a ∈ R. This applies, in particular, if φ : Rn−1 → R
is the map corresponding to a sequence x1, . . . , xn−1 and ψ is the map corresponding
to x1, . . . , xn−1, a.

A similar picture holds if we tensor with an R-module M . Indeed, each exact
sequence

0→ K(φ)p → K(ψ)p → Cp → 0

is split, hence by tensoring with M we obtain an exact sequence of complexes

0→ K(φ,M)→ K(ψ,M)→ C• ⊗RM → 0

such that the corresponding long exact sequence looks as follows:

. . .→ Hp
(
K(φ,M)

)
→ Hp

(
K(ψ,M)

)
→ Hp−1

(
K(φ,M)

) ·a−→ Hp−1

(
K(φ,M)

)
→ . . . .

Example 12.2.6. Suppose that x1, . . . , xn−1 ∈ R and xn ∈ (x1, . . . , xn−1). We

can thus write xn =
∑n−1
i=1 aixi, for suitable ai ∈ R, and we have a commutative

diagram

Rn

u

��

φ // R

idR

��
Rn

ψ // R,

where φ(ei) = xi for 1 ≤ i ≤ n, ψ(ei) = xi for 1 ≤ i ≤ n− 1 and ψ(en) = 0, while

u(ei) = ei for 1 ≤ i ≤ n−1 and u(en) = en+
∑n−1
i=1 aiei. Since u is an isomorphism,

it follows from Remark 12.2.3 that

K(x1, . . . , xn−1, xn) ' K(x1, . . . , xn−1, 0).

On the other hand, it follows from the above discussion that for every R-module
M and every i, we have a short exact sequence

0→ Hi(x1, . . . , xn−1;M)→ Hi(x1, . . . , xn−1, 0;M)→ Hi−1(x1, . . . , xi−1;M)→ 0.

12.2.2. The Koszul complex and depth. We begin by discussing the con-
nection between the exactness of the Koszul complex and regular sequences.

Proposition 12.2.7. Let R be a Noetherian ring, M a finitely generated R-
module, and x = x1, . . . , xn a sequence of elements of R.

i) If x1, . . . , xn is an M -regular sequence, then Hi(x;M) = 0 for i ≥ 1, while
H0(x;M) = M/(x1, . . . , xn)M .

ii) Conversely, if (R,m) is regular, x1, . . . , xn ∈ m, M 6= 0, and Hi(x;M) = 0
for i ≥ 1, then x1, . . . , xn is an M -regular sequence.
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Proof. We prove i) by induction on n. Note that the equality H0(x;M) =
M/(x1, . . . , xn)M holds for all x by Remark 12.2.2 If n = 1, then the complex
K(x1)⊗RM consists of

0→M
·x1−−→M → 0.

The map is injective since x1 is a non-zero-divisor on M , hence Hi(x1;M) = 0 for
i 6= 0.

Suppose now that n ≥ 2 and we know the assertion for n − 1. We have seen
that if x′ consists of x1, . . . , xn−1, then we have a long exact sequence

→ Hi(x′;M)
·xn−−→ Hi(x′;M)→ Hi(x,M)→ Hi−1(x′;M)→ . . . .

By induction, we know that Hi(x′;M) = 0 for i ≥ 1, which immediately implies
Hi(x;M) = 0 for i ≥ 2. Moreover, we have an exact sequence

0→ H1(x;M)→ H0(x′;M)
·xn−−→ Hi(x′;M).

Since H0(x′;M) = M/(x1, . . . , xn−1)M and xn is a non-zero-divisor on the R-
module M/(x1, . . . , xn−1)M , we conclude that H1(x;M) = 0. This completes the
proof of i).

Suppose now that we are under the assumptions of ii). Note that by Nakayama’s
lemma, we have M/(x1, . . . , xn)M 6= 0, hence we only need to show that xi is a
non-zero-divisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ n. We argue again by induction
on n. If n = 1, then

0 = H1

(
K(x1;M)

)
= ker

(
M

·x1−−→M
)
,

hence x1 is a non-zero-divisor on M .
For the induction step we use the exact sequence

Hi(x′;M)
·xn−−→ Hi(x′;M)→ Hi(x;M) = 0,

where i ≥ 1 and x′ = x1, . . . , xn−1. Since Hi(x′;M) is a finitely generated R-
module, it follows from Nakayama’s lemma that Hi(x′;M) = 0 for all i ≥ 1, hence
by induction x1, . . . , xn−1 is an M -regular sequence. Moreover, we have an exact
sequence

0 = H1(x;M)→ H0(x′;M)
·xn−−→ H0(x′;M).

Therefore xn is a non-zero-divisor on H0(x′;M) = M/(x1, . . . , xn−1)M , and thus
x1, . . . , xn is an M -regular sequence. �

Corollary 12.2.8. If M is a finitely generated module over the Noetherian
local ring (R,m) and x1, . . . , xn ∈ m form an M -regular sequence, then every per-
mutation of this sequence is still M -regular.

Proof. The assertion follows from the proposition and the fact that the Koszul
complex for a permutation of a sequence is isomorphic to the Koszul complex for
the sequence (see Remark 12.2.3). �

Remark 12.2.9. If R, M , and x1, . . . , xn are as in the above corollary, then
x1, . . . , xn form a minimal system of generators for the ideal (x1, . . . , xn). Indeed,
if this is not the case, then there is i such that xi ∈ b = (x1, . . . , xi−1, xi+1, . . . , xn).
However, it follows from the corollary that xi is a non-zero-divisor on the non-zero
R-module M/bM , a contradiction.
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Remark 12.2.10. If (R,m) is a local Noetherian ring, a ⊆ m is an ideal, and
M is a finitely generated, non-zero R-module, then we can choose a maximal M -
regular sequence in a that is part of a minimal system of generators of a. Indeed,
suppose that we have chosen x1, . . . , xr ∈ a that form an M -regular sequence and
which are part of a minimal system of generators of a. If depth(a,M) > r, then
a 6⊆

⋃
p∈P p, where P is the set of associated primes of M/(x1, . . . , xr)M . Since

there is y ∈ a such that x1, . . . , xr, y is an M -regular sequence, it follows that
a 6= (x1, . . . , xr), and thus, by Nakayama’s lemma, a 6⊆ b := ma + (x1, . . . , xr). We
thus conclude using Lemma E.1.1 that a 6⊆ b∪

⋃
p∈P p, and therefore we can choose

xr+1 ∈ a such that x1, . . . , xr+1 is an M -regular sequence and x1, . . . , xr+1 are part
of a minimal generating system for a.

Corollary 12.2.11. If (R,m) is a Noetherian local ring and I is an ideal
generated by a regular sequence x1, . . . , xr ∈ m, then pdR(R/I) = r.

Proof. It follows from the proposition that the Koszul complex K(x1, . . . , xr)
gives a free resolution of R/I and it is clear from the definition of the Koszul complex
that this is a minimal resolution. �

When the ring is local, we can use the Koszul complex to compute the depth,
as follows.

Proposition 12.2.12. If R is a Noetherian local ring, M is a non-zero finitely
generated R-module, and x1, . . . , xn generate an ideal a contained in the maximal
ideal, then r = depth(a,M) ≤ n and

Hi
(
K(x;M)

)
= 0 for i > n− r, while Hn−r

(
K(x,M)

)
6= 0.

Proof. Note first that we may assume that x1, . . . , xn is a minimal system
of generators of a. Indeed, if for example xn ∈ (x1, . . . , xn−1) and we put x′ =
x1, . . . , xn−1, then it follows from Example 12.2.6 that

n−max{i | Hi(x,M) 6= 0} = n− 1−max{i | Hi(x′,M) 6= 0}.
We may thus replace x by x′ and after repeating this argument several times, we
reduce to the case when x1, . . . , xn form a minimal generating set of a.

By Remark 12.2.10, there is a maximal M -regular sequence y1, . . . , yr in a, that
is part of a minimal system of generators of a. In particular, we have r ≤ n. We
choose yr+1, . . . , yn such that y = y1, . . . , yn is a minimal system of generators of
a. Since Hi(y,M) ' Hi(x,M) for all i by Remark 12.2.4, we may replace x by y
and thus assume that x1, . . . , xr is a maximal M -regular sequence in a.

Let M ′ = M/(x1, . . . , xr)M . We show by induction on j, with r ≤ j ≤ n, that

(12.2.1) Hi(x1, . . . , xj ;M) = 0 for i ≥ j − r + 1 and

Hj−r(x1, . . . , xj ;M) ' {u ∈M ′ | xr+1u = . . . = xju = 0}.
For j = n, this implies the assertion in the proposition, since x1, . . . , xr being a
maximal M -regular sequence in a implies that there is a nonzero u ∈M ′ such that
a · u = 0.

For j = r, (12.2.1) follows from Proposition 12.2.7. Suppose now that we know
the assertion for j and let us prove it for j + 1. Consider the exact complex

. . .→ Hi(x1, . . . , xj ;M)→ Hi(x1, . . . , xj+1;M)→ Hi−1(x1, . . . , xj ;M)

·xj+1−−−→ Hi−1(x1, . . . , xj ;M)→ . . . .
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We deduce that Hi(x1, . . . , xj+1;M) = 0 for i ≥ j − r + 2 using the inductive
vanishing assumption in (12.2.1). Moreover, we see that

Hj−r+1(x1, . . . , xj+1;M) = ker
(
Hj−r(x1, . . . , xj ;M)

·xj+1−−−→ Hj−r(x1, . . . , xj ;M)
)

and using the inductive formula for Hj−r(x1, . . . , xj ;M), we deduce that

Hj−r+1(x1, . . . , xj+1;M) ' {u ∈M ′ | xr+1u = . . . = xj+1u = 0}.

This completes the proof of the induction step for (12.2.1) and thus that of the
proposition. �

Remark 12.2.13. If we drop the assumption thatR is local in Proposition 12.2.12,
we can still say that if I is generated by x1, . . . , xn and depth(I,M) = r, then
Hi
(
K(x;M)

)
= 0 for i > n−r. Indeed, it is enough to show that Hi

(
K(x;M)

)
m

=
0 for every maximal ideal m in R and every i > n− r. Since we clearly have

Hi
(
K(x1, . . . , xn;M)

)
m
' Hi

(
K(x1/1, . . . , xn/1;Mm

)
,

the required vanishing follows from Proposition 12.2.5 if I 6⊆ m and it follows
from Proposition 12.2.12 if I ⊆ m, since depth(I,M) ≤ depth(IRm,Mm) (see
Corollary 12.1.11).

Corollary 12.2.14. If (R,m) is a Noetherian local ring, M is a finitely gen-
erated non-zero R-module, and a = (x1, . . . , xn) ⊆ m, then depth(a,M) = n if and
only if x1, . . . , xn form an M -regular sequence.

Proof. Both implications follow by combining Propositions12.2.7 and 12.2.12.
�

Corollary 12.2.15. If (A,m) is a Noetherian local ring and φ : A → B is
a finite homomorphism, then for every ideal a ⊆ m and every finitely generated
B-module M , we have

depth(a,M) = depth(aB,M).

Proof. Of course, we may assume that M is non-zero. Let x1, . . . , xr ∈ a be
a system of generators. By Proposition 12.2.12, we have

depth(a,M) = r −max
{
i | Hi

(
K(x;M)

)
6= 0
}
.

On the other hand, if n1, . . . , ns are the maximal ideals of B (note that since B is
finite over A, these are precisely the prime ideals containing mB), then

Hi
(
K(x;M)

)
= 0 if and only if Hi

(
K(x;M)

)
nj

= 0 for 1 ≤ j ≤ s.

Since the complex K(x;M)nj
is isomorphic to the Kozsul complex on the images of

x1, . . . , xr in Bnj
, with respect to Mnj

, applying one more time Proposition 12.2.12,
we conclude that

(12.2.2) depth(a,M) = min
j

depth(aBnj
,Mnj

).

On the other hand, the right-hand side of (12.2.2) is equal to depth(aB,M). Indeed,
the inequality depth(aB,M) ≤ minj depth(aBnj ,Mnj ) follows from Remark 12.1.2,
while the opposite inequality follows from Proposition 12.1.11. �
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12.2.3. Finite locally free resolutions on smooth quasi-projective va-
rieties. We begin with the following consequence of the exactness of the Koszul
complex for a regular sequence:

Proposition 12.2.16. Let X be an algebraic variety and x ∈ X a smooth point.
If R = OX,x, then the global dimension of R is equal to dim(R).

Proof. We have seen in Example 12.1.15 that if dim(R) = n and x1, . . . , xn
form a minimal system of generators for the maximal ideal m in R, then x1, . . . , xn
form an R-regular sequence, and we conclude using the previous corollary that
pdR(R/m) = n. The assertion then follows from Corollary 12.1.19. �

Remark 12.2.17. As we have mentioned in Example 12.1.15, the fact that
a minimal system of generators for the maximal ideal forms a regular sequence
is shared by all regular local rings. It follows that for every regular local ring,
its global dimension is equal to the dimension. Conversely, if a Noetherian local
ring has finite global dimension, then the ring is regular: this is a result proved
independently by Auslander-Buchsbaum and Serre (see [BH93, Theorem 2.2.7]).

Remark 12.2.18. Suppose that X is a smooth algebraic variety of dimension
n, F is a coherent sheaf on X, and we have an exact complex

Em → . . .→ E1 → E0 → F → 0,

with all Ei locally free OX -modules. If m ≥ n− 1 and G = ker(Em → Em−1), then
G is locally free. Indeed, it follows from Corollary 12.2.16 that for every x ∈ X, we
have pdOX,x

(Fx) ≤ n and thus Gx is free by Proposition 10.7.6.
In particular, by combining this observation with Remark 11.6.11, we see that

on a smooth quasi-projective variety, every coherent sheaf has a finite resolution by
locally free sheaves.

We can now show that on a smooth, quasi-projective variety, the two flavors of
Grothendieck groups that we introduced are isomorphic.

Proposition 12.2.19. If X is a smooth, quasi-projective algebraic variety, then
the canonical morphism of Abelian groups K0(X)→ K0(X) is an isomorphism.

Proof. If F is a coherent sheaf on X, it follows from Remark 12.2.18 that we
have an exact complex

0→ En → . . .→ E0 → F → 0,

with all Ei locally free. Since [F ] =
∑n
i=0(−1)i[Ei] in K0(X), it follows that the

canonical morphism α : K0(X)→ K0(X) that maps [E ] to [E ], is surjective.
The argument for the injectivity of α is more involved. In fact, we will con-

struct an inverse map β : K0(X) → K0(X), proceeding as above. Given a co-
herent sheaf F , we choose a finite locally free resolution E• as above and define
β
(
[F ]
)

=
∑
i≥0(−1)i[Ei]. The first step is to show that the definition is independent

of the choice of locally free resolution. In order to do this, we recall the following
property of fiber products of sheaves: given a Cartesian diagram of OX -modules

G

v2

��

v1 //M1

u1

��
M2 u2

//M,
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if u1 is surjective, then v2 is surjective, and we have an induced isomorphism
ker(v2) → ker(u1). Note that G = M1 ×M M2 is the subsheaf of M1 × M2

equal to the kernel of u1 ◦ pr1 − u2 ◦ pr2, with v1 and v2 being induced by the two
projections. By passing to stalks, both assertions about the diagram are reduced
to the case of modules over a ring, in which case they are easy to check.

Suppose now that we have finite locally free resolutions E ′• → F and E ′′• → F .
Note first that we are done if there is a surjective morphism of complexes u : E ′• → E ′′•
that induces the identity on F . Indeed, if G• = ker(u), then G• is a complex of
locally free sheaves having only finitely many non-zero terms. By looking at the
short exact sequence of complexes

0→ G• → E ′• → E ′′• → 0

in each degree, we see that

[E ′i ]− [E ′′i ] = [Gi] in K0(X) for all i ≥ 0.

On the other hand, the long exact sequence in cohomology for the above short exact
sequence of complexes implies that G• is an exact complex, and thus

∑
i≥0(−1)i[Gi] =

0 in K0(X), implying that∑
i≥0

(−1)i[E ′i ] =
∑
i≥0

(−1)i[E ′′i ] in K0(X).

It follows that given arbitrary E ′• and E ′′• as above, it is enough to construct
another finite locally free resolution E• → F together with surjective morphisms
of complexes E• → E ′• and E• → E ′′• that induce the identity on F . Constructing
E• recursively, we see that it is enough to prove the following: given surjective
morphisms of coherent sheaves:

E ′ u′ // P ′

P

OO

��
E ′′ u′′ // P ′′,

we can find surjective morphisms u : E → P, E → E ′ and E → E ′′, with E locally
free, such that the resulting squares are commutative and the induced morphisms
ker(u) → ker(u′) and ker(u) → ker(u′′) are surjective. In order to see this, let
G′ = P ×P′ E ′ and G′′ = P ×P′′ E ′′. We then take G = G′ ×P G′′ and consider a
surjective morphism E → G, with E locally free. If the morphisms E → P, E → E ′,
and E → E ′′ are given by the obvious compositions, it is easy to see, using the
above property of fibered products, that these satisfy the required properties.

We next show that by mapping [F ] to β
(
[F ]
)
, we have a well-defined group

homomorphism K0(X)→ K0(X). In other words, if

0→ F ′ → F → F ′′ → 0

is a short exact sequence of coherent sheaves on X, we need to show that

(12.2.3) β
(
[F ′]

)
− β

(
[F ]
)

+ β
(
[F ′′]

)
= 0.
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Let us consider a finite locally free resolution E ′′• → F ′′ of F ′′. A similar argument
to the one used above shows that there is a finite locally free resolution E• → F ,
together with a surjective morphism u : E• → E ′′• inducing the given morphism
F → F ′′. If E ′• = ker(u), then this is a complex with finitely many terms, all of
them locally free. Moreover, using the long exact sequence in cohomology for the
exact sequence of complexes

0→ E ′• → E• → E ′′• → 0,

we see that E ′• is a resolution of F ′. It follows from the above exact sequence of
complexes that we have [E ′i ] − [Ei] + [E ′′i ] = 0 in K0(X) for every i ≥ 0, hence
by computing β

(
[F ′]

)
, β
(
[F ]
)
, and β

(
[F ′′]

)
using E ′•, E•, and E ′′• , respectively, we

obtain (12.2.3).
We thus have a group homomorphism β : K0(X) → K0(X). The composition

β ◦ α is the identity on K0(X) since for a locally free sheaf E , we can compute
β
(
[E ]
)

using the resolution

0→ E → E → 0.

On the other hand, if F is a coherent sheaf and E• → F is a locally free resolution,
we have [F ] =

∑
i≥0(−1)i[Ei] in K0(X), hence α ◦ β is the identity on K0(X).

Therefore β is the inverse of α, completing the proof of the fact that α is an
isomorphism. �

12.2.4. The Koszul complex in the global setting. We now consider the
Koszul complex in a global geometric setting. Let X be an algebraic variety and E a
locally free sheaf on X, of rank r. Given a section s ∈ Γ(X, E∨) = HomOX

(E ,OX),
we obtain a Koszul complex:

0→ ∧rE → . . .→ ∧2E → E → OX ,

where the map ∧pE → ∧p−1E is given by

u1 ∧ . . . ∧ up →
p∑
i=1

(−1)i−1s(ui)u1 ∧ . . . ∧ ûi ∧ . . . ∧ un.

It is clear that if we restrict to an affine open subset U of X, this is the complex of
coherent sheaves associated to the Koszul complex corresponding to s|U : E(U) →
OX(U).

Example 12.2.20. Let V be k-vector space, with dimk(V ) = n + 1. On the
projective space P(V ), we have the canonical surjective morphism

V ⊗k OP(V ) → OP(V )(1).

By tensoring this with OP(V )(−1), we obtain a surjective morphism

φ : V ⊗k OP(V )(−1)→ OP(V )

and a corresponding Koszul complex

0→ ∧n+1V ⊗k OP(V )(−n− 1)
φn+1−−−→ . . .

φ3−→ ∧2V ⊗k OP(V )(−2)

φ2−→ V ⊗k OP(V )(−1)
φ1=φ−−−→ OP(V ) → 0.

This is an exact complex by Proposition 12.2.5, since φ is surjective.
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Exercise 12.2.21. With the notation in the above example, show that we have
an isomorphism

ker(φi) ' ΩiP(V ).

Example 12.2.22. Let E be a locally free sheaf of rank r on a variety X, and
let s ∈ Γ(X, E). We may consider s as a morphism E∨ → OX and denote by I(s)
the image of this morphism. Explicitly, if over an affine open subset U of X we
have a trivialization E|U ' O⊕rU such that s|U corresponds to (f1, . . . , fr), then
Γ
(
U, I(s)

)
is generated by f1, . . . , fr. We also denote by V (s) the closed subset

defined by I(s); this consists of those x ∈ X such that s(x) = 0 in E(x). Note that
these definitions extend the ones given in §9.4.4 in the case of a line bundle.

We say that s is a regular section of E if

depth
(
I(s)x

)
= r for every x ∈ V (s);

equivalently, if we choose an isomorphism Ex ' O⊕rX,x, such that sx corresponds to

(a1, . . . , ar), then a1, . . . , ar is anOX,x-regular sequence. For example, this is always
the case if r = 1 and X is irreducible, in which case I(s) is the ideal corresponding
to the effective Cartier divisor Z(s).

Consider the “extended” Koszul complex associated to s:

(12.2.4) 0→ ∧r(E∨)→ . . .→ ∧2(E∨)→ E∨ s−→ OX → OX/I(s)→ 0.

If s is a regular section, then the complex is exact at every x ∈ V
(
I(s)

)
by as-

sumption, while it is always exact at all other points by Proposition 12.2.5. We
thus conclude that in this case, the Koszul complex gives a locally free resolution
of OX/I(s).

If s is a regular section such that the ideal I(s) is radical, defining a closed
subvariety Y ⊆ X, then we have an exact sequence

∧2(E∨)→ E∨ → I(s)→ 0.

By tensoring this with OX/I(s), we see that the conormal sheaf of Y in X is
isomorphic to E∨|Y . In particular, the conormal sheaf is locally free and its dual,
the normal sheaf, is isomorphic to E|Y .

12.2.5. Castelnuovo-Mumford regularity. We give an application of the
Koszul complex on the projective space to the notion of Castelnuovo-Mumford
regularity. A coherent sheaf F on Pn is m-regular if

Hi
(
Pn,F ⊗OPn OPn(m− i)

)
= 0 for all i ≥ 1.

Note that by Theorem 11.2.1, any coherent sheaf F is m-regular for m � 0. The
Castelnuovo-Mumford regularity of F is the smallest m such that F is m-regular.

Proposition 12.2.23. If F is an m-regular coherent sheaf on Pn, the following
hold:

i) The sheaf F is also m′-regular for every m′ ≥ m.
ii) The canonical map

H0
(
Pn,OPn(1)

)
⊗k H0

(
Pn,F(m)

)
→ H0

(
Pn,F(m+ 1)

)
,

given by multiplication of sections, is surjective.
ii) The sheaf F(m) is globally generated.
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Proof. After replacing F by F(m), we may and will assume that m = 0.
Moreover, in order to prove i), arguing by induction on m′, it is clear that it is
enough to prove the case m′ = 1. Consider the Koszul complex on Pn:

K• : 0→ Kn+1
φn+1−−−→ . . .

φ2−→ K1
φ1−→ K0 → 0,

where Ki = ∧iV ⊗k OPn(−i), with V = H0
(
Pn,OPn(1)

)
. If we put Zi = ker(φi),

then the Koszul complex induces the short exact sequences of locally free sheaves

(Sj) 0→ Zj → Kj → Zj−1 → 0

for 1 ≤ j ≤ n (note that Zn = Kn+1 and Z0 = K0). Since (Sj) is locally split,
by tensoring it with F(1 − i) we get a short exact sequence, and we consider the
following piece of the corresponding long exact sequence in cohomology:

Hi+j−1
(
Pn,Kj⊗F(1−i)

)
→ Hi+j−1

(
Pn, Zj−1⊗F(1−i)

)
→ Hi+j

(
Pn, Zj⊗F(1−i)

)
.

Since F is 0-regular, we have

Hi+j−1
(
Pn,Kj ⊗F(1− i)

)
' Hi+j−1

(
Pn,F(1− i− j)

)⊕ (n+1
j )

= 0.

For every i with 1 ≤ i ≤ n, arguing by descending induction on j, with 1 ≤ j ≤ n+1,
we see that

Hi+j−1
(
Pn, Zj−1 ⊗F(1− i)

)
= 0

(note that for j = n+ 1, this follows from the fact that Hi+n(Pn,G) = 0 for every
coherent sheaf G on Pn by Corollary 10.6.7). For j = 1, this gives

Hi
(
Pn,F(1− i)

)
= 0

for 1 ≤ i ≤ n (while for i > n, the vanishing follows again by Corollary 10.6.7). We
thus see that F is 1-regular.

The argument for ii) is similar. By tensoring (S1) with F(1), and taking the
long exact sequence in cohomology, we obtain an exact sequence

V ⊗k H0(Pn,F)
µ−→ H0

(
Pn,F(1)

)
→ H1

(
Pn, Z1 ⊗F(1)

)
.

Since µ is the map given by multiplication of sections, in order to prove ii), it is
enough to show that H1

(
Pn, Z1 ⊗ F(1)

)
= 0. By tensoring (Sj+1) with F(1) for

1 ≤ j ≤ n − 1, we obtain from the long exact sequence in cohomology the exact
sequence

Hj
(
Pn,Kj+1 ⊗F(1)

)
→ Hj

(
Pn, Zj ⊗F(1)

)
→ Hj+1(Pn, Zj+1 ⊗F(1)

)
.

Since we have by hypothesis

Hj
(
Pn,Kj+1 ⊗F(1)

)
= Hj

(
Pn,F(−j)

)⊕(n+1
j+1) = 0,

we conclude by descending induction on j that Hj
(
Pn, Zj ⊗F(1)

)
= 0 for 1 ≤ j ≤

n− 1; note that we have an injective map

Hn−1
(
Pn, Zn−1 ⊗F(1)

)
↪→ Hn

(
Pn,F(−n)

)
and the right-hand side vanishes since F is 0-regular. For j = 1, we obtain
H1
(
Pn, Z1 ⊗F(1)

)
= 0, hence ii) holds.

Since OX(1) is an ample line bundle on Pn, we know that F(q) is globally
generated for q � 0. In order to show that F is globally generated, it is thus
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enough to show that for q ≥ 0, if F(q + 1) is globally generated, then F(q) is
globally generated. Note that we have a commutative diagram

H0
(
Pn,F(q)

)
⊗k H0

(
Pn,OPn(1)

)
⊗k OPn

α

��

β // H0
(
Pn,F(q + 1)

)
⊗k OPn

γ

��
H0
(
X,F(q)

)
⊗OPn(1)

δ
// F(q + 1).

Since F(q+1) is globally generated, γ is surjective; on the other hand, the assertion
in i) implies that F(q) is 0-regular, and thus ii) gives that β is surjective. We deduce
from the commutative diagram that δ is surjective. By tensoring δ with OPn(−1),
we deduce that F(q) is globally generated. This completes the proof of iii). �

We end with an application of Castelnuovo-Mumford regularity to an assertion
about points in the projective plane. We begin with a definition: given a positive
integer d, a finite subset Λ ⊆ Pn imposes independent conditions on hypersurfaces
of degree d if the canonical restriction morphism

Γ
(
Pn,OPn(d)

)
→ Γ

(
Λ,OΛ(d)

)
is surjective. Equivalently, for every point p ∈ Λ, there is an effective Cartier divisor
D in Pn of degree d, such that p 6∈ Supp(D) and q ∈ Supp(D) for all q ∈ Γ with
q 6= p. If IΛ is the radical ideal sheaf corresponding to Λ, then it follows from the
long exact sequence in cohomology associated to the short exact sequence

0→ IΛ → OPn → OΛ → 0

that Λ imposes independent conditions on hypersurfaces of degree d if and only if
H1(Pn, IΛ(d)

)
= 0.

Remark 12.2.24. If Λ ⊆ Pn imposes independent conditions on hypersurfaces
of degree d, then it also imposes independent conditions on hypersurfaces of degree
d′, for every d′ ≥ d. Indeed, it is enough to show this when d′ = d + 1. For every
p ∈ Λ, if D is an effective Cartier divisor in Pn of degree d such that p 6∈ Supp(D)
and q ∈ Supp(D) for every q ∈ Λ with q 6= p, then for any hyperplane H not
containing p, the divisor D+H has degree d+ 1 and satisfies the same conditions.

Proposition 12.2.25. For every n ≥ 3, let Sn consist of all subsets of P2 with
n elements and S ′n ⊆ Sn the subset consisting of all sets that do not lie on a line.

i) There is N such that h0
(
P2, IΛ(n − 1)

)
= N for all Λ ∈ S, where IΛ is

the radical ideal sheaf corresponding to Λ.
ii) The map S ′n → G that takes Λ to H0

(
P2, IΛ(n − 1)

)
, where G is the

Grassmann variety of N -dimensional linear subspaces of the vector space
H0
(
P2,OP2(n− 1)

)
is injective.

Note that if Λ is a set of n points lying on a line L in P2, then every polynomial
of degree n − 1 that vanishes on Λ vanishes on L, hence H0

(
P2, IΛ(n − 1)

)
=

H0
(
P2, IL(n− 1)

)
. In particular, Λ is not determined by H0

(
P2, IΛ(n− 1)

)
.

Proof of Proposition 12.2.25. For every finite subset Λ of P2 and every
d ≥ 0, we deduce from the short exact sequence

0→ IΛ(d)→ OP2(d)→ OΛ(d)→ 0
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that

χ
(
IΛ(d)

)
= χ

(
OP2(d)

)
− χ

(
OΛ(d)

)
= h0

(
P2,OP2(d)

)
−#(Λ) =

(
d+ 2

2

)
−#(Λ).

Moreover, the long exact sequence in cohomology gives an exact sequence

0 = H1
(
P2,OΛ(d)

)
→ H2

(
P2, IΛ(d)

)
→ H2

(
P2,OP2(d)

)
= 0,

hence h2
(
P2, IΛ(d)

)
= 0.

The assertion in i) thus follows if we show that if #(Λ) = n, then Λ imposes
independent conditions on hypersurfaces of degree n − 1. This is clear: given any
p ∈ Λ, for every q ∈ Λ r {p}, let Lq be a line containing q, but not containing p.
The effective Cartier divisor

∑
q∈Λr{p} Lq has degree n − 1, does not contain p in

its support, but contains all other points in Λ.
In order to prove ii), it is enough to show that for every Λ ∈ S ′n, the sheaf

IΛ(n− 1) is globally generated. By Proposition 12.2.23, it is enough to show that
IΛ is (n− 1)-regular, that is,

H1
(
P2, IΛ(n− 2)

)
= 0 = H2

(
P2, IΛ(n− 3)

)
.

As we have seen, the second equality automatically holds, while the first one is
equivalent with the fact that Λ imposes independent conditions on hypersurfaces
of degree n − 2. Given any p ∈ Λ, there is a line L containing two of the other
points in Λ, but not containing p. Otherwise, by considering the lines joining a
point q ∈ Λ r {p} with the other points in Λ r {p, q}, we see that in fact all these
lines coincide (if this is not the case, we would get p = q); moreover, this line also
contains p, contradicting the hypothesis that the points of Λ do not lie on a line.
For each of the remaining n− 3 points in Λ, we choose a line passing through that
point, but not containing p. The sum of the n − 2 lines that we constructed is
an effective Cartier divisor of degree n − 2, not containing p in its support, but
containing all the other points in Λ. This completes the proof of ii). �

12.2.6. The Grothendieck ring of Pn. . We end this section by computing
K0(Pn) and K0(Pn). This will be based on a result of independent interest about
resolutions of coherent sheaves on Pn. We begin with the following graded version
of Nakayama’s lemma. In what follows we put S = k[x0, . . . , xn]. The first two
results hold, more generally, for graded quotient rings of S.

Lemma 12.2.26. Let R be a graded quotient ring of S and m = ⊕i>0Ri. If M
is a finitely generated, graded R-module and N is a graded submodule of M such
that M = mM +N , then N = M .

Proof. After replacing M by M/N , we reduce to the case when N = 0.
Suppose that M 6= 0 and let u1, . . . , ur be non-zero homogeneous generators of M ,
with deg(ui) = di. If d = mini di, then using the fact that mi = 0 for i ≤ 0, it
follows that (mM)i = 0 for i < d + 1. This contradicts that fact that we have a
non-zero homogeneous element of degree d in M = mM . �

Remark 12.2.27. As a side remark, we note that if R and m are as in the
lemma and M is a finitely generated, graded R-module, then for every homogeneous
elements f1, . . . , fs that generate an ideal I ⊆ m, we have depth(I,M) = s if and
only if f1, . . . , fs form an M -regular sequence. The “if” part is a general fact (see
Example 12.1.9). On the other hand, if depth(I,M) = s, then it follows from
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Remark 12.2.13 that Hi(x;M) = 0 for i > 0. We can now deduce that x1, . . . , xs is
an M -regular sequence by arguing as in the proof of assertion ii) in Theorem 12.2.7:
that proof made use of the local assumption in order to apply Nakayama’s lemma;
this is now replaced by Lemma 12.2.26.

As in the local case, Lemma 12.2.26 allows us to talk about minimal systems
of homogeneous generators for M . Indeed, if u1, . . . , ur ∈ M are homogeneous
elements, these generate M if and only if their classes in M/mM generate this k-
vector space. Therefore u1, . . . , ur form a minimal system of generators if and only
if their classes in M/mM form a k-basis.

A finitely generated, free, graded R-module is a graded R-module isomorphic
to
⊕r

i=1R(−di) for some integers d1, . . . , dr. Given any M as above and a minimal
system of homogeneous generators u1, . . . , ur, with deg(ui) = di, we have a surjec-
tive morphism of graded R-modules φ : F → M , with F a finitely generated, free,
graded R-module. Since the classes u1, . . . , ur ∈ M/mM form a k-basis, it follows
that if K = ker(φ), then K ⊆ mM . If M is a projective R-module, then φ is a split
surjection, and we thus have an exact sequence

0→ K/mK → F/mF →M/mM → 0.

Since K ⊆ mF , we conclude that K = mK, hence K = 0 by Lemma 12.2.26. This
proves the following:

Proposition 12.2.28. If R is a graded quotient ring of S, then a finitely gen-
erated graded R-module M is projective if and only if it is a free graded R-module.

By combining this with the result concerning the projective dimension of regular
local rings, we obtain the following:

Corollary 12.2.29. Given any finitely generated, graded module M over S =
k[x0, . . . , xn], we have a free resolution of M of the form:

0→ Fn+1 → . . .→ F1 → F0 →M → 0,

where each Fi is a finitely generated, free, graded S-module Fi =
⊕

j S(−j)⊕βi,j .
In particular, every coherent sheaf F on Pn has a locally free resolution of the form

0→ En+1 → . . .→ E1 → E0 → F → 0,

where each Ei is a direct sum of finitely many line bundles on Pn.

Proof. By choosing finitely many homogeneous generators for M , we con-
struct a surjective graded homomorphism

φ : F0 →M, where F0 =
⊕
j

S(−j)⊕β0,j .

By taking the kernel of φ and repeating this construction step by step, we obtain
an exact complex

0→ Fn+1 → Fn → . . .→ F1 → F0 →M → 0,

where F0, . . . , Fn are finitely generated, free, graded S-modules. Since the affine
variety corresponding to S is smooth, irreducible, of dimension n+1, it follows from
Proposition 12.2.16 that for every maximal ideal m of S, we have pdSm

(Mm) ≤
n + 1, hence (Fn+1)m is a projective Sm-module. Therefore Fn+1 is a projective
S-module, and thus it is a free graded S-module by Proposition 12.2.28. This gives
the first assertion in the proposition. The second one follows from the fact that
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every coherent sheaf on Pn is isomorphic to M̃ , for some finitely generated, graded
S-module M . �

Remark 12.2.30. We emphasize that for n ≥ 2, it is not true that every
locally free sheaf on Pn is a direct sum of line bundles. For example, for n ≥ 2,
the cotangent bundle is not isomorphic to a direct sum of line bundles. Since
H1
(
Pn,OPn(m)

)
= 0 for every m by Theorem 11.2.2, it is enough to show that

H1(Pn,ΩPn) 6= 0. Recall that we have the Euler exact sequence

0→ ΩPn → OPn(−1)⊕(n+1) → OPn → 0.

The long exact sequence in cohomology gives an exact sequence

0 = Γ
(
Pn,OPn(−1)⊕(n+1)

)
→ Γ(Pn,OPn)→ H1(Pn,ΩPn)

→ H1
(
Pn,OPn(−1)⊕(n+1)

)
= 0.

We thus obtain H1(Pn,ΩPn) ' k.

We use Corollary 12.2.29 to give the following description for the Grothendieck
group of Pn.

Proposition 12.2.31. The Grothendieck group K0(Pn) of coherent sheaves on
Pn is freely generated by [OPn ], [OPn(−1)], . . . , [OPn(−n)]. Moreover, we have a
ring isomorphism between the Grothendieck ring K0(Pn) of locally free sheaves on
Pn and Z[x]/(xn+1) that maps 1− [OPn(−1)] to x ∈ Z[x]/(xn+1).

Proof. We deduce from Corollary 12.2.29 that K0(Pn) is generated by the
elements [OPn(m)], for m ∈ Z. Let A be the subgroup of K0(Pn) generated by
[OPn ], [OPn(−1)], . . . , [OPn(−n)]. Recall that we have the exact Koszul complex:

0→ OPn(−n− 1)→ OPn(−n)⊕(n+1) → . . .→ OPn(−1)⊕(n+1) → OPn → 0.

By tensoring this withOPn(m), we see that [OPn(m)] lies in the subgroup generated
by [OPn(m − i)] for 1 ≤ i ≤ n + 1. We thus deduce, by induction on m ≥ 0, that
[OPn(m)] lies in A for every m ≥ 0. Similarly, by tensoring the Koszul complex
with OPn(m + n + 1), we see that [OPn(m)] lies in the subgroup generated by
[OPn(m + i)], for 1 ≤ i ≤ n + 1. Using this, we see by decreasing induction on
m ≤ −n− 1 that [OPn(m)] lies in A. We thus conclude that A = K0(Pn).

Note now that for every closed subvariety X of Pn, given an exact sequence of
coherent sheaves on X

0→ F ′ → F → F ′′ → 0,

by tensoring this with OX(m) and taking the Euler-Poincaré characteristic, we
obtain

χ
(
F(m)

)
= χ

(
F ′(m)

)
+ χ

(
F ′′(m)

)
for all m ∈ Z.

We thus have PF = PF ′ + PF ′′ . This implies that we have a morphism of Abelian
groups K0(X)→ Q[t] that maps [F ] to the Hilbert polynomial PF .

We apply this to the case X = Pn. The morphism γ : K0(Pn) → Q[t] maps
[OPn(−i)] to the polynomial P (t− i), where

P (t) =
(t+ 1) · · · (t+ n)

n!
.

We claim that P (t), P (t− 1), . . . , P (t−n) are linearly independent over Z. Indeed,
if
∑n
i=0 λiP (t − i) = 0, where not all λi are 0, and if j = max{i | λi 6= 0},

then by taking t = j, we obtain λj = 0, a contradiction. Since the images by γ of
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[OPn ], [OPn(−1)], . . . , [OPn(−n)] are linearly independent over Z, we conclude that
these elements freely generate K0(Pn), completing the proof of the first assertion
in the proposition.

Recall now that by Proposition 12.2.19, since Pn is smooth and carries an
ample line bundle, the canonical group homomorphism K0(Pn) → K0(Pn) is an
isomorphism. What we proved so far thus shows that if h = [OPn(−1)], then
1, h, . . . , hn give a Z-basis of K0(Pn). Moreover, the Koszul complex gives the

relation
∑n+1
i=0 (−1)i

(
n+1
i

)
hi = 0, that is, (1−h)n+1 = 0. Since {(1−x)i | 0 ≤ i ≤ n}

gives a basis of Z[x]/(xn+1), we obtain the second assertion in the proposition. �

12.3. Cohen-Macaulay varieties and sheaves

Using the notion of depth, we introduce Cohen-Macaulay rings and modules,
give some examples, and discuss some basic properties. When doing this, we restrict
ourselves most of the time to the geometric setting1. For a treatment in arbitrary
Noetherian rings, we refer to [BH93, §2.1].

Definition 12.3.1. If R is a Noetherian local ring andM is a finitely generated,
non-zero R-module, then M is a Cohen-Macaulay module if depth(M) = dim(M).
If R is an arbitrary Noetherian ring and M is a finitely generated R-module then M
is a Cohen-Macaulay module if Mp is a Cohen-Macaulay Rp-module for all maximal
ideals p ∈ Supp(M) (thus, by convention, M = 0 is considered Cohen-Macaulay).
If M = R, we say instead that R is a Cohen-Macaulay ring.

Remark 12.3.2. It follows from Remark 12.1.7 that if M is a finitely generated
module over a Noetherian ring R and a is an ideal in R such that a ·M = 0, then M
is a Cohen-Macaulay module over R if and only if it is a Cohen-Macaulay module
over R/a.

Proposition 12.3.3. A Noetherian ring R is Cohen-Macaulay if and only if
for every ideal a ( R, we have

depth(a, R) = codim(a).

Proof. Note that by Proposition 12.1.11, we have

depth(a, R) = min
p

depth(Rp),

where the minimum is over all prime ideals p containing a. It is then clear that if R
is Cohen-Macaulay, then depth(a, R) = codim(a). Conversely, if this holds for all
ideals a, then in particular it holds for all maximal ideals m. On the other hand,
for every such m, we have

depth(m, R) = depth(Rm) ≤ dim(Rm) = codim(m),

where the first equality follows from Proposition 12.1.11 and the inequality follows
from Proposition 12.1.13. We thus conclude that depth(Rm) = dim(Rm) for every
maximal ideal m, hence R is Cohen-Macaulay. �

Remark 12.3.4. If a is an ideal in a Noetherian ring R, then for every maximal
ideal m containing a, we have the following inequalities

depth(a, R) ≤ depth(aRm, Rm) ≤ codim(aRm) ≤ codim(a),

1This is done simply because we developed the basic properties of dimension theory only in
the geometric setting.
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where the second one follows from Remark 12.1.14. We deduce from the proposition
that if R is Cohen-Macaulay, then the above inequalities are all equalities.

Exercise 12.3.5. Show that if R is a reduced, Noetherian ring with dim(R) =
1, then R is Cohen-Macaulay.

Exercise 12.3.6. Show that the subring k[x4, x3y, xy3, y4] of k[x, y], where k
is a field, is not Cohen-Macaulay.

Definition 12.3.7. A coherent sheaf F on an algebraic variety X is Cohen-
Macaulay at x ∈ X if Fx is a Cohen-Macaulay OX,x-module. If F = OX , we say
that X is Cohen-Macaulay at x. The sheaf F is Cohen-Macaulay if it is Cohen-
Macaulay at every point; equivalently, for every affine open subset U ⊆ X, the
OX(U)-module F(U) is Cohen-Macaulay. Similarly, X is Cohen-Macaulay if it is
Cohen-Macaulay at every point.

We now give some examples of Cohen-Macaulay varieties.

Example 12.3.8. Every smooth variety is Cohen-Macaulay. Indeed, if x is
a smooth point on the variety X, then it follows from Example 12.1.15 that
depth(OX,x) = dim(OX,x), hence OX,x is a Cohen-Macaulay ring. In particular,
every affine space An is a Cohen-Macaulay variety.

Example 12.3.9. If X and Y are Cohen-Macaulay varieties, then X × Y is
Cohen-Macaulay. Indeed, we may assume that X and Y are affine, with A = O(X)
and B = O(Y ) and let x ∈ X and y ∈ Y be points corresponding to the maximal
ideals m ⊆ A and n ⊆ B. In this case X × Y is an affine variety with O(X × Y ) '
A⊗kB and the point (x, y) corresponds to the maximal ideal p = m⊗kB+A⊗kn. If
codim(m) = r and codim(n) = s, then codim(p) = r + s. Moreover, by assumption
we have an A-regular sequence a1, . . . , ar ∈ m and a B-regular sequence b1, . . . , bs ∈
n. It is then straightforward to check that a1 ⊗ 1, . . . , ar ⊗ 1, 1 ⊗ b1, . . . , 1 ⊗ bs is
an A⊗k B regular sequence, hence depth(OX×Y,(x,y)) ≥ r + s. Since the opposite
inequality follows from Proposition 12.1.13, we are done.

Example 12.3.10. If f : X → Y is a finite, surjective morphism of algebraic
varieties, with Y smooth, then X is Cohen-Macaulay if and only if f is flat (which,
by Corollary 10.7.24 is equivalent to f∗(OX) being a locally free OY -module). In
order to check this, we may assume that both X and Y are affine. Let A =
O(Y ) and B = O(X) and consider the finite, injective homomorphism φ : A → B
corresponding to f . The key point is that if m is a maximal ideal in A, then

(12.3.1) depth(mAm, Bm) = depth(mBm, Bm) = min
n

depth(Bn),

where the minimum on the right-hand side is over the maximal ideals in B con-
taining mB; note that the first equality in (12.3.1) follows from Corollary 12.2.15
and the second one from Corollary 12.1.11. Since for every n as above, we have
depth(Bn) ≤ dim(Bn) = dim(Am), it follows from (12.3.1) that Bn is Cohen-
Macaulay for every maximal ideal n in B, with φ−1(n) = m, if and only if

depth(mAm, Bm) = dim(Am).

On the other hand, Am is regular and thus pdAm
(Bm) < ∞ and depth(Am) =

dim(Am). By the Auslander-Buchsbaum formula, we conclude that

depth(mAm, Bm) = dim(Am)− pdAm
(Bm),
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and thus depth(mAm, Bm) = dim(Am) if and only if Bm is projective (equivalently,
flat) over Am. This proves our assertion.

Example 12.3.11. If X is an affine toric variety which is normal, then X is
Cohen-Macaulay (see [Ful93, Chapter 2.1]).

In what follows we give some general properties of Cohen-Macaulay varieties
and Cohen-Macaulay sheaves.

Proposition 12.3.12. If F is a coherent sheaf on X and I is a coherent sheaf
of ideals on X, then for every x ∈ X such that Ix is generated by an Fx-regular
sequence, F is Cohen-Macaulay at x if and only if F/IF is Cohen-Macaulay at x.

Proof. Arguing by induction of the length on the regular sequence, it is clear
that it is enough to treat the case of a regular sequence of length 1. Since Ix is
generated by a non-zero-divisor on Fx, it follows that V (I) does not contain any
irreducible component of Supp(F) passing through x, and since Supp(F/IF) =
Supp(F) ∩ V (I), we have

dim
(
(F/IF)x

)
= dim(Fx)− 1,

while Corollary 12.1.8 gives

depth
(
(F/IF)x

)
= depth(Fx)− 1.

The assertion in the proposition now follows from the definition. �

Proposition 12.3.13. If F is a coherent sheaf on a variety X and F is Cohen-
Macaulay at x ∈ X, then every associated variety of F that passes through x is an
irreducible component of Supp(F). Moreover, any two irreducible components of
Supp(F) that pass through x have the same dimension, equal to dimOX,x

(Fx).

Proof. If U ⊆ X is an affine open subset containing x, and m ⊆ R = OX(U)
is the maximal ideal corresponding to x, it follows from Proposition 12.1.13 that
for every p ⊆ m in AssR(M), where M = F(U), we have

depth(Mm) ≤ dim(Rm/pRm) ≤ dim(Mm).

Since Mm is a Cohen-Macaulay module, it follows that the above inequalities are
equalities. Therefore p is a minimal prime ideal in Supp(M) and all minimal prime
ideals in Supp(M) that are contained in m correspond to varieties of dimension
equal to dim(Mm); we thus have both assertions in the proposition. �

Proposition 12.3.14. If a coherent sheaf F on the algebraic variety X is
Cohen-Macaulay at x ∈ X, then FY is a Cohen-Macaulay OX,Y -module for every
closed, irreducible subvariety Y of X, with x ∈ Y .

Proof. We may assume that X is affine, with R = O(X), and let p and m
be the prime ideals in R corresponding to Y and x, respectively. We also put
M = F(X). We may assume that Mp 6= 0 and need to show that depth(Mp) =
dim(Mp). For this, we argue by induction on r = depth(Mp). If r = 0, then
p ∈ AssR(M). Since Mm is Cohen-Macaulay, it follows from Proposition 12.3.13
that p is a minimal prime in Supp(M), and thus dim(Mp) = 0.

Suppose now that r ≥ 1. In this case p 6∈ AssR(M), hence there is h ∈ p which is
a non-zero-divisor on M , in which case depth(Mp/hMp) = r−1 by Corollary 12.1.8.
Since Mm/hMm is a Cohen-Macaulay Rm-module by Proposition 12.3.12, we can
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apply the inductive hypothesis to conclude that r − 1 = dim(Mp/hMp). Since h
is a non-zero-divisor on M , it does not vanish on any irreducible component of
Supp(M), and thus if Z = Supp(M/hM) = Supp(M) ∩ V (h), we have

r − 1 = dim(Mp/hMp) = codimZ(Y ) = codimSupp(F)(Y )− 1 = dim(Mp)− 1.

This completes the proof of the induction step. �

Remark 12.3.15. It follows from the above proposition that if X is a Cohen-
Macaulay affine variety, then O(X) trivially satisfies Serre’s condition (Si) for every
i. In particular, it follows from Theorem 12.1.27 that a Cohen-Macaulay variety is
normal if and only if it is smooth in codimension 1.

Definition 12.3.16. Given a variety X, a coherent ideal sheaf I on X is locally
a complete intersection ideal if for every x ∈ V (I), the ideal Ix ⊆ OX,x is generated
by a regular sequence. We say that a closed subvariety Y of X is regularly embedded
if the radical ideal sheaf corresponding to Y is locally a complete intersection.

Remark 12.3.17. The conormal sheaf of a regularly embedded subvariety is
locally free: this is a special case of the computation in Example 12.2.22.

Remark 12.3.18. If X is a Cohen-Macaulay variety, then a coherent ideal
sheaf I is locally a complete intersection ideal if and only if for every x ∈ V (I), the
ideal Ix can be generated by r elements, where r = codim(Ix) (this follows from
Proposition 12.3.3 and Corollary 12.2.14). Moreover, in this case, the OX -module
OX/I is Cohen-Macaulay by Proposition 12.3.12.

Example 12.3.19. If Y is a smooth closed subvariety of the smooth variety X,
it follows from Proposition 6.3.21 that Y is regularly embedded in X.

We now give an application to Bézout’s theorem. Suppose that H1, . . . ,Hn are
effective Cartier divisors in Pn, with deg(Hi) = di, such that Z :=

⋂n
i=1 Supp(Hi)

is 0-dimensional. For every point p ∈ Z, we define the intersection multiplicity
ip(H1, . . . ,Hn) of H1, . . . ,Hn at p, as follows. If fi ∈ OPn,p is the image of an
equation of Hi in a neighborhood of p, then the quotient OPn,p/(f1, . . . , fn) is
0-dimensional and its length is ip(H1, . . . ,Hn). With this notation, we have the
following result.

Proposition 12.3.20 (Bézout). With the above notation, we have∑
p∈Z

ip(H1, . . . ,Hn) =

n∏
i=1

di.

Proof. For j, with 1 ≤ j ≤ n, let

Fj = OH1 ⊗OPn . . .⊗OPn OHj ' OPn/Ij .

Note that Supp(Fj) =
⋂j
i=1 Supp(Hi) has all its irreducible components of codi-

mension ≤ j in Pn by Corollary 3.3.7. In fact, every such irreducible component has
codimension precisely j: otherwise, its intersection with

⋂n
i=j+1 Supp(Hi) would

be non-empty, of dimension ≥ 1, by Corollary 4.2.12, contradicting the hypothesis.
Since Ij is generated at every point by j elements, we see that Ij is locally a com-
plete intersection ideal, and thus Fj is a Cohen-Macaulay module. In particular,
Proposition 12.3.13 implies that the associated subvarieties of Fj are precisely the
irreducible components of Supp(Fj). For j ≤ n − 1, since Supp(Hj+1) does not
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contain any irreducible component of Supp(Fj), it follows from Example 11.4.10
that

deg(Fj+1) = deg(Fj) · dj+1.

We thus conclude that
n∏
i=1

di = deg(Fn) =
∑
p∈Z

ip(H1, . . . ,Hn).

�

We end this section with a discussion of complete intersection projective vari-
eties.

Example 12.3.21. A closed subvariety X ⊆ Pn, of codimension r, is a (global)
complete intersection if its homogeneous ideal IX ⊆ S = k[x0, . . . , xn] is generated
by r homogeneous elements f1, . . . , fr. Let di = deg(fi) > 0.

We first note that such a variety is Cohen-Macaulay. Indeed, if I is the radical
ideal sheaf corresponding to X, by Remark 12.3.18 it is enough to show that for
every p ∈ X, the ideal Ip ⊆ OPn,p is generated by codim(Ip) elements (we use
here that Pn is smooth, hence Cohen-Macaulay). If p ∈ Ui = (xi 6= 0), then Ip is

generated by f1

x
d1
i

, . . . , fr
xdr
i

. In particular, we have codim(Ip) ≤ r by Corollary 3.3.7.

On the other hand, we clearly have

codim(Ip) ≥ codimPn(X) = r,

hence this is an equality and X is Cohen-Macaulay. Moreover, this argument shows
that every irreducible component of X has pure dimension n− r.

We next show that the following hold:

(α) If r ≤ n− 1, then the canonical morphism S/IX →
⊕

m∈Z Γ
(
X,OX(m)

)
is an isomorphism.

(β) For every q, with 1 ≤ q ≤ dim(X)− 1, we have

Hq
(
X,OX(m)

)
= 0 for all m ∈ Z.

In order to show this, we consider Fj = OPn/Ij , for 1 ≤ j ≤ r, where Ij is
the ideal sheaf corresponding to the homogeneous ideal (f1, . . . , fj). Arguing as
above, we see that each Fj is a Cohen-Macaulay OPn -module. Indeed, Ij is locally
defined by j equations. In particular, every irreducible component of Supp(Fj) has
codimension ≤ j in Pn. In fact, the codimension is precisely j: otherwise, the inter-
section of this component with

⋂r
i=j+1 V (fi) would be non-empty, of codimension

< r by Corollary 4.2.12, a contradiction with the fact codimPn(X) = r.
With the convention that F0 = OPn , we show by induction on j ≥ 0, that the

following hold:

(αj) If j ≤ n− 1, then the canonical morphism

S/(f1, . . . , fj)→
⊕
m∈Z

Γ
(
Pn,Fj(m)

)
is an isomorphism.

(βj) For every q, with 1 ≤ q ≤ n− j − 1, we have

Hq
(
Pn,Fj(m)

)
= 0 for all m ∈ Z.
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For j = r, we obtain (α) and (β).
Both (α0) and (β0) hold by Theorem 11.2.2, hence it is enough to show that

for 0 ≤ j ≤ r − 1, if we know the assertions for j, then we obtain them for
j + 1. Since Fj is Cohen-Macaulay, it follows from Proposition 12.3.13 that the
associated subvarieties of Fj are precisely the irreducible components of Supp(Fj).
Moreover, we have seen that each such irreducible component has codimension
j, and thus can’t be contained in Supp(Fj+1). Therefore V (fj+1) contains no
associated subvariety of Fj , and thus we have a short exact sequence

0→ Fj(m− dj+1)→ Fj(m)→ Fj+1(m)→ 0

for every m ∈ Z. By taking the long exact sequence in cohomology, we obtain exact
sequences

(12.3.2) 0→ Γ
(
Pn,Fj(m− dj+1)

)
→ Γ

(
Pn,Fj(m)

)
→ Γ

(
Pn,Fj+1(m)

)
→ H1

(
Pn,Fj(m− dj+1)

)
and

(12.3.3) Hq
(
Pn,Fj(m)

)
→ Hq

(
Pn,Fj+1(m)

)
→ Hq+1

(
Pn,Fj(m− dj+1)

)
for all q ≥ 0. It is clear that using (βj), the sequence in (12.3.3) implies (βj+1).
Moreover, if j + 1 ≤ n− 1, then (βj) implies H1

(
Pn,Fj(m− dj+1)

)
= 0, and thus

(12.3.2) and (αj) imply (αj+1). This completes the proof of the induction step.
In particular, it follows from (α) that if r ≤ n − 1, then Γ(X,OX) = k. We

thus conclude that in this case X is connected.
It is easy to compute the normal bundle of X. Indeed, s = (f1, . . . , fr) is a reg-

ular section of
⊕r

j=1OPn(di) such that I = I(s), and thus NX/Pn '
⊕r

j=1OX(di)
by Example 12.2.22. In particular, if X is smooth, then we conclude using Corol-
lary 8.7.27 that

ωX ' ωPn |X ⊗OX
det(NX/Pn) ' OX(d1 + . . .+ dr − n− 1).

Remark 12.3.22. Suppose that I ⊆ S = k[x0, . . . , xn] is an ideal generated
by homogeneous elements f1, . . . , fr of positive degree, with r ≤ n, such that
codimPn

(
V (I)

)
= r. We claim that in this case I is saturated (see Exercise 11.1.22)

and f1, . . . , fr form a regular sequence. In particular, if Ĩ is the ideal sheaf corre-
sponding to a closed subvariety X of Pn, then I = IX .

Indeed, since S is Cohen-Macaulay, the assumption on V (I) implies that

depth(I, S) = codim(I) = r.

We thus deduce that f1, . . . , fr is a regular sequence (see Remark 12.2.27). The
fact that I is saturated, is equivalent with m 6∈ Ass(S/I), where m = (x0, . . . , xn).
Since I is generated by a regular sequence and S is Cohen-Macaulay, it follows
from Proposition 12.3.12 that S/I is Cohen-Macaulay. If m ∈ Ass(S/I), we deduce
from Proposition 12.3.13 that m is minimal over I, contradicting the fact that I is
generated by r ≤ n elements, while codim(m) = n+ 1. Therefore I is saturated.



CHAPTER 13

Flatness and smoothness, revisited

13.1. Flatness, revisited

In this section we discuss a few more advanced topics related to flatness. We
begin by considering the constancy of invariants of fibers of flat morphisms. We
then prove Grothendieck’s Generic Flatness theorem, and then end by discussing
the Local Flatness criterion.

13.1.1. Hilbert polynomials of flat families. We begin with an easy state-
ment in the case of finite morphisms.

Let f : X → Y be a quasi-finite morphism, that is, f has finite fibers. Given
a point y ∈ Y corresponding to the radical ideal sheaf my, the coherent sheaf
OX/myOX is supported on the fiber f−1(y). In particular, its stalk at every x ∈
f−1(y) has finite length, and we put

multxf
−1(y) := `(OX,x/myOX,x).

Suppose now that f : X → Y is a finite morphism of algebraic varieties. Note
that f is flat if and only if f∗(OX) is a flat OY -module. Since this is a coherent
OY -module, it is flat if and only if it is locally free (see Corollary 10.7.24). If this is
the case and Y is connected, then f∗(OX) has a well-defined rank: this is the degree
of f , denoted deg(f). We note that if f is finite and flat, then it is both closed and
open by Proposition 5.3.6 and Theorem 5.6.15. In particular, if Y is connected,
then f is surjective. It is clear that if f is a finite, flat morphism of irreducible
varieties, then the above notion of degree agrees with the one for generically finite
maps introduced in Definition 5.3.11.

Proposition 13.1.1. If f : X → Y is a finite, flat morphism of algebraic
varieties, with Y connected, then for every y ∈ Y , we have∑

x∈f−1(y)

multxf
−1(y) = deg(f),

Proof. It is clear that after replacing Y by a suitable affine open neighborhood
U of y and X by f−1(U), we may assume that Y and X are affine, and B = O(X)
is a free module over A = O(Y ), of rank deg(f). If we identify my with the maximal
ideal in A corresponding to y, then we have∑

x∈f−1(y)

multxf
−1(y) = `(B/myB) = dimk(B/myB) = deg(f).

giving our assertion. �

It is convenient to consider flatness for more general quasi-coherent modules.
Given a morphism of algebraic varieties f : X → Y , a quasi-coherent sheaf F on X
is flat over Y if the following equivalent conditions hold:

347
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i) For every affine open subsets U ⊆ X and V ⊆ Y such that f(U) ⊆ V , the
OY (V )-module F(U) is flat.

ii) There are affine open covers Y =
⋃
i∈I Vi and X =

⋃
i∈I Ui such that for

every i ∈ I, we have f(Ui) ⊆ Vi and the OY (Vi)-module F(Ui) is flat.
iii) For every x ∈ X, the OY,f(x)-module Fx is flat.

The proof of the equivalence of these conditions is entirely similar to that in Propo-
sition 5.6.8. Note that OX is flat over Y precisely when f is flat. If f is the identity
map of X, we say that F is a flat OX -module. Note that by Corollary 10.7.24, a
coherent sheaf F on X is flat if and only if it is locally free.

Given a morphism f : X → Y , a quasi-coherent sheaf F onX, and a point y ∈ Y
corresponding to the radical ideal sheaf my, we put Fy := F ⊗OX

OX/myOX . If f

factors as X ↪→ Pn
Y

g−→ Y , where the first morphism is a closed immersion and g is
the canonical projection, then Fy can be identified to a coherent sheaf on the fiber
g−1(y) ' Pn. In particular, we may consider the Hilbert polynomial of Fy. We
now show that flatness guarantees that this invariant is constant on the connected
components of Y .

Theorem 13.1.2. Given a connected algebraic variety Y , a closed subvariety
X of Pn

Y , and F a coherent sheaf on X that is flat over Y , the Hilbert polynomial
of Fy is independent of the point y ∈ Y .

Proof. It is clear that we may assume that Y is affine, with A = O(Y ).
Furthermore, after replacing F by its push-forward to Pn

Y , we may assume that

X = Pn
Y . We consider the Čech complex computing the cohomology of F(q) with

respect to the cover of Pn
Y by the affine open subsets D+(xi), for 0 ≤ i ≤ n:

(13.1.1)

0→ Γ
(
Pn
Y ,F(q)

)
→ C0 =

⊕
i

Γ
(
Ui,F(q)

)
→ C1 =

⊕
i<j

Γ
(
Ui ∩ Uj ,F(q)

)
→ . . . .

Since F is flat over Y , it is clear that Cp is a flatA-module for all p ≥ 0. On the other
hand, it follows from Theorem 11.2.1 that there is q0 such that Hp

(
X,F(q)

)
= 0

for q ≥ q0. This implies that the complex (13.1.1) is exact for q ≥ q0. By breaking
the complex into short exact sequences and using assertion ii) in Corollary 10.7.22,
we conclude that Γ

(
Pn
Y ,F(q)

)
is flat over A for all q ≥ q0. By Theorem 11.2.1, this

is also a finitely generated A-module, hence it is projective, of a well-defined rank.
In order to obtain the conclusion of the theorem, it is enough to show that for every
y ∈ Y , corresponding to the maximal ideal my ⊆ A, we have an isomorphism

(13.1.2) Γ
(
Pn
Y ,F(q)

)
⊗A A/my ' Γ

(
Pn,Fy(q)

)
for q � 0.

By choosing a system of generators of my, we obtain an exact sequence

A⊕N → A→ A/my → 0.

By taking the corresponding sheaves on Y , pulling them back to Pn
Y , and tensoring

with F , we obtain an exact sequence of coherent sheaves on Pn
Y :

F⊕N → F → Fy → 0.

Corollary 11.6.14 implies that after tensoring with q � 0 and taking global sections,
we get an exact sequence

Γ
(
Pn
Y ,F(q)

)⊕N → Γ
(
Pn
Y ,F(q)

)
→ Γ(Pn,Fy)→ 0.
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Since the first map has entries in my, after tensoring with A/my, we obtain the
isomorphism (13.1.2). This completes the proof.

�

Remark 13.1.3. The converse of the above theorem also holds: if the Hilbert
polynomial of Fy is independent of y ∈ Y , then F is flat over Y .

After evaluating the Hilbert polynomial at 0, we obtain the following conse-
quence.

Corollary 13.1.4. Given a projective morphism f : X → Y , with Y con-
nected, and a coherent sheaf F on X which is flat over Y , the Euler-Poincaré
characteristic χ(Fy) is independent of y ∈ Y .

13.1.2. Generic Flatness. In this section we prove the following result of
Grothendieck, known as the Generic Flatness theorem.

Theorem 13.1.5. If f : X → Y is a morphism of algebraic varieties and F is
a coherent sheaf on X, then there is a dense open subset U of Y such that F|f−1(U)

is flat over U .

Proof. The proof of the theorem is another instance of “dévissage”. We may
assume that Y is affine and irreducible. Indeed, if Y1, . . . , Ys are the irreducible
components of Y , let Vi be an affine open subset of Yi that does not intersect any
Yj , with j 6= i. If Ui ⊆ Vi is a non-empty open subset such that F|f−1(Ui) is flat

over Ui, then U =
⋃s
i=1 Ui satisfies the condition in the theorem.

Suppose now that Y is irreducible and affine. We may also assume that X is
affine. Indeed, if X = W1 ∪ . . .∪Wr is an affine open cover and if Ui ⊆ Y is a non-
empty open subset such that F|f−1(Ui)∩Wi

is flat over Ui, then U =
⋂r
i=1 Ui satisfies

the conditions in the theorem. When X and Y are affine, with Y irreducible, the
assertion follows from the more general and more precise lemma below. �

Lemma 13.1.6 (Generic Freeness lemma). If R is a Noetherian domain, S is a
finitely generated R-algebra, and M is a finitely generated S-module, then there is
a non-zero a ∈ R such that Ma is a free Ra-module.

Proof. We first note that if we have a short exact sequence

0→M ′ →M →M ′′ → 0

such that we know the theorem for M ′ and M ′′, so that we have non-zero a′, a′′ ∈ R
such that M ′a′ if free over Ra′ and M ′′a′′ is free over Ra′′ , then Ma is free over Ra,
where a = a′a′′. Indeed, both M ′a and M ′′a are free Ra-modules; in particular, after
localizing at a, the above exact sequence splits, so that Ma ' M ′a ⊕M ′′a is a free
R-module. Since R is a domain, a 6= 0, hence M satisfies the conclusion of the
lemma.

By Corollary E.3.4, we have a finite sequence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mq = M

such that Mi/Mi−1 ' S/pi for 1 ≤ i ≤ q, for prime ideals p1, . . . , pq ⊆ S. By the
previous observation, it is enough to prove the lemma when M = S/p, for a prime
ideal p, and thus, after replacing S by S/p and M by S/p, we may assume that S
is a domain and M = S. If the structure morphism R → S is not injective, then
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we are trivially done: for every non-zero a in the kernel, we have Sa = 0, hence it
is free.

From now on, we suppose that the morphism R → S is injective. Of course,
at any point we may replace R by Rc and S by Sc, for some non-zero c ∈ R. Let
K be the fraction field of R. We argue by induction on n = trdegK(S ⊗R K) ≥ 0.
By Noether Normalization (see Theorem 1.2.2), there are algebraically independent
elements x1, . . . , xn ∈ S⊗RK such that the inclusion map K[x1, . . . , xn] ↪→ S⊗RK
is finite. After multiplying each xi by a suitable element in R, we may assume that
xi ∈ S for all i. If u1, . . . , ud ∈ S generate S as an R-algebra, then each ui
satisfies a monic polynomial with coefficients in K[x1, . . . , xn]. After clearing the
denominators we obtain a polynomial with coefficients in R[x1, . . . , xn]. If ci ∈ R
is the coefficient of the top degree term, and if c =

∏d
i=1 ci, after replacing R by Rc

and S by Sc, we may assume that the inclusion map R[x1, . . . , xn] ↪→ S is finite.
In this case, we may replace S byR[x1, . . . , xn] (though we keepM = S). As be-

fore, we have a finite filtration of M by R[x1, . . . , xn]-submodules, with each succes-
sive quotient isomorphic to R[x1, . . . , xn]/q, for some prime ideal q in R[x1, . . . , xn].
If q = 0, then the corresponding quotient is free over R. On the other hand, if q 6= 0,
then either q ∩ R 6= 0 (as we have seen, in this case

(
R[x1, . . . , xn]/q

)
a

for some

non-zero a ∈ R) or q ∩ R = 0, but trdegK
(
(R[x1, . . . , xn]/q) ⊗R K

)
< n, in which

case we are done by induction. Arguing as above, since all successive quotients
satisfy the conclusion of the lemma, the same holds for M . This completes the
proof. �

Corollary 13.1.7. Given an algebraic variety Y , a closed subvariety X of
PnY , and a coherent sheaves F on X, there is a finite set of polynomials S such that
for every y ∈ Y , the Hilbert polynomial of Fy lies in S.

Proof. We argue by Noetherian induction. By Generic Flatness, we have a
non-empty open subset U of Y such that F|f−1(U) is flat over U . In particular,
it follows from Theorem 13.1.2 that for y ∈ U , the Hilbert polynomial of Fy only
depends on the connected component of U containing y. Since by the induction
hypothesis the Hilbert polynomials of Fy, for y ∈ Y r U , lie in a finite set, this
completes the proof. �

13.1.3. Local Flatness criterion. A finitely generated module M over a
Noetherian local ring (R,m) is flat if and only if it is free, which holds if and

only if TorR1 (R/m,M) = 0 (see Corollary 12.1.18). It turns out that the latter
characterization of flatness over R holds under weaker assumptions: it is enough
for M to be finitely generated over a Noetherian local ring S such that we have
a local homomorphism R → S. In order to prove this result, we begin with the
following general criterion for the flatness of a module.

Lemma 13.1.8. Given a commutative ring R and an R-module M , the following
are equivalent:

i) M is flat.
ii) For every ideal a in R, the canonical map

a⊗RM →M

is injective.
iii) For every ideal a in R, we have TorR1 (R/a,M) = 0.
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Proof. The implication i)⇒ii) is obvious, while the equivalence of ii) and iii)
follows from the long exact sequence for Tor modules associated to

0→ a→ R→ R/a→ 0,

namely

0 = TorR1 (R,M)→ TorR1 (R/a,M)→ a⊗RM →M → R/a⊗RM → 0.

In order to complete the proof, it is enough to show that iii)⇒i).

By Proposition 10.7.21, it is enough to show that TorR1 (N,M) = 0 for ev-
ery R-module N . Since N is the filtering direct limit of its finitely generated
R-submodules, using Lemma 13.1.9 below, we see that it is enough to consider the
case when N is finitely generated. Suppose that N can be generated by r elements
and let us argue by induction on r. If r = 0, then N = 0 and the assertion is trivial.
For the induction step, if N is generated by u1, . . . , ur and N ′ is the R-submodule
generated by u1, . . . , ur−1, then we have an exact sequence

0→ N ′ → N → N ′′ → 0,

where N ′′ is generated by one element, hence N ′′ ' R/a, for some ideal a in R.
The long exact sequence for Tor modules gives an exact sequence

TorR1 (N ′,M)→ TorR1 (N,M)→ Tor1
R(N ′′,M).

The left term vanishes by induction and the right term vanishes by hypothesis,
hence the middle one vanishes, too. This completes the proof. �

Lemma 13.1.9. If N = lim−→
i∈I

Ni, where (I,≤) is a filtering ordered set, then for

every R-module M , we have a functorial isomorphism

TorRj (N,M) ' lim−→
i∈I

TorRj (Ni,M).

Proof. If F• → M is a free resolution of M , then the assertion follows from
the isomorphisms

TorRj (N,M) ' Hj(N ⊗R F•) ' Hj
(

lim−→
i∈I

(Ni ⊗R F•)
)

' lim−→
i∈I
Hj(Ni ⊗R F•) ' lim−→

i∈I
TorRj (Ni,M),

where we used the fact that the tensor product commutes with direct limits and
that filtering direct limits give an exact functor. �

The following result is known as the Local Flatness criterion.

Proposition 13.1.10. Let (R,m) → (S, n) be a local homomorphism of Noe-
therian local rings. If M is a finitely generated S-module, then M is flat over R if
and only if TorR1 (R/m,M) = 0.

Proof. The “only if” part is obvious, so we only need to prove the “if” part.
By Lemma 13.1.8, it is enough to show that the canonical map φ : a⊗RM →M is
injective for every ideal a in R. Let a be such an ideal and denote by Q the kernel
of φ.
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Note first that TorR1 (N,M) = 0 if N is an R-module of finite length. Indeed, we
argue by induction on `(N), the case `(N) = 1 being taken care of by hypothesis.
By considering a composition series of N , we obtain a short exact sequence

0→ N ′ → N → N ′′ → 0,

with `(N ′) = `(N) − 1 and `(N ′′) = 1. Using the long exact sequence for Tor
modules and the inductive hypothesis, we obtain our assertion.

In particular, we see that TorR1
(
R/(a+mj),M

)
= 0 for all j ≥ 1, or equivalently,

the canonical morphism
φj : (a + mj)⊗RM →M

is injective. Since the map φ factors as

a⊗RM → (a + mj)⊗RM
φj−→M,

it follows that

Q ⊆ ker
(
a⊗RM → (a + mj)⊗RM

)
⊆ ker

(
a⊗RM → ((a + mj)/mj)⊗RM

)
.

Using the isomorphism (a + mj)/mj ' a/(a ∩mj), we thus obtain the inclusion

Q ⊆ Im
(
(a ∩mj)⊗RM → a⊗RM

)
.

By the Artin-Rees lemma (see Lemma C.4.2), for every ` ≥ 1, we have a∩mj ⊆ m`a
for j � 0. Given ` ≥ 1, by taking j � 0, we conclude that

Q ⊆ m` · (a⊗RM).

Note that a⊗RM is in fact a finitely generated S module and we see that

Q ⊆
⋂
`≥1

n` · (a⊗RM).

Since the right-hand side is 0 by Krull’s Intersection theorem (see Theorem C.4.1),
we conclude that Q = 0, completing the proof of the proposition. �

The above proposition is often used via the following corollary.

Corollary 13.1.11. Let (R,m)→ (S, n) be a local homomorphism of Noether-
ian local rings and M a finitely generated S-module. If x1, . . . , xn ∈ m form a regu-
lar sequence on both R and M , then M is flat over R if and only if M/(x1, . . . , xn)M
is flat over R/(x1, . . . , xn).

Proof. By an obvious induction on n, it is enough to treat the case n = 1,
when we have x ∈ m which is a non-zero-divisor on both R and M . The “only
if” part is clear: it follows from assertion i) in Proposition 5.6.6. In fact, for both
implications, by the proposition, it is enough to show that we have an isomorphism

(13.1.3) TorR1 (R/m,M) ' Tor
R/(x)
1 (R/m,M/xM).

Note first that

(13.1.4) TorRi
(
(R/(x),M

)
= 0 for all i ≥ 1.

Indeed, since x is a non-zero-divisor on R, we have a free resolution of R/(x) given
by

0→ R
·x−→ R→ 0.

By tensoring with M and using the fact that x is a non-zero-divisor on M , we
obtain (13.1.4).
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Consider now a free resolution F• of M over R. Note that because of (13.1.4),
the complex R/(x) ⊗R F• gives a free resolution of M/xM over R/(x). We thus
have

TorRi (R/m,M) ' Hi(R/m⊗R F•)

' Hi
(
R/m⊗R/(x) (R/(x)⊗R F•)

)
' Tor

R/(x)
i (R/m,M/xM).

In particular, for i = 1, we obtain (13.1.3). �

As an application of the above corollary we show that a morphism from a
Cohen-Macaulay variety to a smooth variety, having all fibers of the same dimen-
sion, is flat.

Proposition 13.1.12. Let f : X → Y be a morphism of algebraic varieties,
with Y smooth and X Cohen-Macaulay. If Y is irreducible, of dimension r, X has
pure dimension n, and every non-empty fiber of f has pure dimension n− r, then
f is flat, of relative dimension n− r.

Note that the assumptions that Y is irreducible and X has pure dimension are
not really restrictive. Indeed, since Y is smooth, every connected component of Y
is irreducible, and since X is Cohen-Macaulay, every connected component of X
has pure dimension (see Proposition 12.3.13).

Proof of Proposition 13.1.12. Consider a point x ∈ X and let y = f(x)
and φ : OY,y → OX,x be the local homomorphism induced by f . Note that by
assumption, we have

dim(OY,y) = r, dim(OX,x) = n, and dim(OX,x/myOX,x) = n− r,

where my is the maximal ideal in OY,y. Since the ring OY,y is regular, of dimension
r, the ideal my is generated by r-elements a1, . . . , ar, which form a regular sequence
on OY,y (see Example 12.1.15). Note that

codim
(
(a1, . . . , ar)OX,x

)
= n− (n− r) = r,

and since OX,x is Cohen-Macaulay, it follows that a1, . . . , ar also form an OX,x-
regular sequence (see Remark 12.3.18). We can thus apply Corollary 13.1.11: since
OX,x/(a1, . . . , ar)OX,x is clearly flat over OY,y/(a1, . . . , ar), which is a field, we
conclude that OX,x is flat over OY,y. Therefore f is flat, of relative dimension
n− r. �

13.2. Smooth morphisms between arbitrary varieties

Our goal in this section is to discuss smooth morphisms between arbitrary alge-
braic varieties, extending the discussion in §6.5. However, for the sake of simplicity,
we only consider such morphisms of fixed relative dimension.

Definition 13.2.1. A morphism of algebraic varieties f : X → Y is smooth, of
relative dimension n if the following conditions hold:

i) The morphism f is flat, of relative dimension n, and
ii) The coherent sheaf ΩX/Y on X is locally free, of rank n.

An étale morphism is a smooth morphism, of relative dimension 0.

Example 13.2.2. It is clear that every open immersion is étale, of relative
dimension 0.
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Example 13.2.3. Let X and Y be algebraic varieties, and consider the projec-
tion onto the first component p : X × Y → X. This is always flat and it is flat of
relative dimension n if and only if Y has pure dimension n. Moreover, it follows
from Proposition 8.7.8 that ΩX×Y/X = q∗(ΩY ), where q : X × Y → Y is the pro-
jection onto the second component. We thus deduce that p is smooth, of relative
dimension n if and only if Y is smooth, of pure dimension n.

Remark 13.2.4. It is clear from the definition that the notion of smooth mor-
phism is local on the source: given a morphism f : X → Y and an open cover
X =

⋃
i∈I Ui, the morphism f is smooth, of relative dimension n if and only if each

restriction f |Ui : Ui → Y satisfies the same property.

Remark 13.2.5. We also note that if f : X → Y is a morphism that factors
through an open subset V ⊆ Y , then f is smooth, of relative dimension n if and
only if the induced morphism g : X → V has the same property. Indeed, it is clear
that f is flat, of relative dimension n, if and only if g is; moreover, it follows from
the definition of the sheaf of relative differentials that ΩX/Y = ΩX/V .

Proposition 13.2.6. A morphism f : X → Y is smooth, of relative dimension
n if and only if it the following conditions hold:

i) f is flat, and
ii) For every y ∈ Y , defined by by the radical ideal sheaf my, the ideal sheaf

myOX is radical and the fiber f−1(y) is smooth, of pure simension n.

Proof. We may assume that f is flat, of relative dimension n. We need to show
that ΩX/Y is locally free, of rank n, if and only if for every y ∈ Y , the radical ideal

sheaf defining the fiber f−1(y) is myOX , and this fiber is smooth. Let x ∈ f−1(y)
and consider the induced local homomorphism φ : A = OY,y → OX,x = B. Let mA
be the maximal ideal of A, which is the stalk at y of my, and mB the maximal ideal

in B. Let B = B/mAB and mB = mB/mAB. Note that by Proposition 8.7.8, we
have

ΩB/k ' ΩB/A ⊗B B.
The same computation as the one in the proof of Proposition 8.7.23 shows that

ΩB/k ⊗B B/mB ' mB/m
2
B
.

We deduce that if ΩX/Y is locally free of rank n, then dimk mB/m
2
B

= n = dim(B).

Therefore B is a regular ring, hence reduced (see Remark 6.3.11). Since this holds
for every x ∈ f−1(y), we conclude that myOX is a radical ideal and the fiber f−1(y)
is smooth (of pure dimension n).

Conversely, if myOX is a radical ideal sheaf and f−1(y) is a smooth variety
(of pure dimension n), we conclude that dimk(ΩX/Y )(x) = n for every x ∈ X. By
Proposition 8.5.6, this implies that ΩX/Y is locally free, of rank n. �

Lemma 13.2.7. If f : X → Y is a morphism of algebraic varieties,, then for
every x ∈ X, we have a canonical isomorphism

(ΩX/Y )∨(x) ' ker(dfx : TxX → TyY ),

where y = f(x). In particular, if the fiber f−1(y) has an r-dimensional irreducible
component containing x, then dimk(ΩX/Y )(x) ≥ r.
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Proof. Recall the we have an exact sequence

f∗(ΩY )→ ΩX → ΩX/Y → 0.

By taking the fibers at x ∈ X, we get an exact sequence

(ΩY )(f(x)) → (ΩX)(x) → (ΩX/Y )(x) → 0.

By taking duals and using Proposition 8.7.23, we obtain the first assertion in the
lemma. Note that if Z is an irreducible component of f−1(y) containing x, then
TxZ ⊆ ker(dfx). Since dimk TxZ ≥ dim(Z), we obtain the last assertion in the
lemma. �

We use the above lemma to show that for morphisms between smooth algebraic
varieties, the notion introduced in this chapter agrees with the one introduced in
Chapter 6.5. If f : X → Y is a morphism between algebraic varieties, then for every
connected component X ′ of X, the image f(X ′) is contained in some connected
component Y ′ of Y . We thus easily reduce to morphisms between connected va-
rieties. In particular, when X and Y are smooth, then we reduce in this way to
the case when X and Y are irreducible. For example, f is smooth in the sense
of Chapter 6.5 if and only if for every X ′ and Y ′ and above, the corresponding
morphism X ′ → Y ′ is smooth.

Proposition 13.2.8. Let f : X → Y be a morphism between irreducible, smooth
varieties. The following are equivalent:

i) The morphism f is smooth, of relative dimension r = dim(X)− dim(Y ).
ii) For every x ∈ X, the induced linear map dfx : TxX → Tf(x)Y is surjective.

Proof. Let dim(X) = m and dim(Y ) = n. Suppose first that i) holds. Since
f is flat, of relative dimension r, every fiber of f has all irreducible components of
dimension r. Since ΩX/Y is locally free, of rank r, it follows from the lemma that
the kernel of dfx : TxX → Tf(x)Y has dimension r. Since X and Y are smooth, we
have dimk TxX = m and dimk Tf(x)Y = n, and we see that dfx is surjective.

Conversely, suppose that ii) holds. Applying the lemma, we see that

dimk(ΩX/Y )(x) = m− n for every x ∈ X,

hence ΩX/Y is locally free of rank m− n by Proposition 8.5.6. On the other hand,
it follows from Proposition 6.5.2 that every non-empty fiber of f is smooth, of pure
dimension m− n. Since X and Y are smooth, by Proposition 13.1.12, f is flat, of
relative dimension m− n, hence i) holds. �

Remark 13.2.9. It follows from the above proof that if f : X → Y is a smooth
morphism of smooth varieties, then the canonical morphism f∗(ΩY ) → ΩX is
an injective morphism of vector bundles. In particular, if f is étale, then this is
an isomorphism. In fact, for every smooth morphism f : X → Y , the morphism
f∗(ΩY ) → ΩX is injective; however, we do not give a proof here for this more
general fact.

Proposition 13.2.10. If f : X → Y is a smooth morphism, of relative dimen-
sion r and g : Y → Z is a smooth morphism, of relative dimension s, then g ◦ f is
smooth, of relative dimension r + s.
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Proof. Note that g ◦ f is flat, of relative dimension r + s. Indeed, flatness
follows from Remark 5.6.12. On the other hand, if X0 is an irreducible component
of X dominating an irreducible component Z0 of Z, then there is an irreducible
component Y0 of g−1(Z0) containing f(X0). In this case, Y0 is an irreducible
component of Y dominated by X0, and which dominates Z0; we thus have

dim(X0) = dim(Y0) + r = dim(Z0) + r + s.

Recall now that we have an exact sequence

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0

(see Proposition 8.7.20). By taking the fiber at some x ∈ X and using the fact that
f and g are smooth, we obtain

dimk(ΩX/Z)(x) ≤ dimk(ΩX/Y )(x) + dimk(ΩY/Z)(f(x)) = r + s.

On the other hand, since all fibers of g◦f have pure dimension r+s, it follows from
Lemma 13.2.7 that dimk(ΩX/Z)(x) ≥ r+s, hence we have equality. Proposition 8.5.6
implies that ΩX/Z is locally free, of rank r+ s. This shows that g ◦ f is smooth, of
relative dimension r + s. �

We next give some equivalent descriptions of étale morphisms.

Definition 13.2.11. A morphism of algebraic varieties f : X → Y is unramified
at x ∈ X if the induced local morphism (OY,f(x),mf(x)) → (OX,x,mx) has the
property that mf(x) ·OX,x = mx. The morphism is unramified if it is unramified at
every x ∈ X.

Remark 13.2.12. Given a morphism f : X → Y , a point x ∈ X and y = f(x),
we have an induced linear map dfx : TxX → TyY . If φ : (OY,y,my) → (OX,x,mx)
is the local homomorphism induced by f , then dfx is the dual of the induced map
my/m

2
y → mx/m

2
x. Therefore dfx is injective if and only if mx = m2

x + myOX,x. By
Nakayama’s lemma, this is equivalent to f being unramified at x.

Proposition 13.2.13. Given a morphism of algebraic varieties f : X → Y , the
following are equivalent:

i) f is étale.
ii) f is flat and ΩX/Y = 0.

iii) f is flat and unramified.
iv) For every x ∈ X, the induced morphism

ÔY,y → ÔX,x,
where y = f(x), is an isomorphism.

Proof. By Proposition 8.7.20, we have an exact sequence of coherent sheaves
on X:

f∗(ΩY )→ ΩX → ΩX/Y → 0.

By taking the fiber at some x ∈ X, we obtain an exact sequence

(ΩY )(f(x))
df∨x−−→ (ΩX)(x) → (ΩX/Y )(x) → 0.

We thus conclude that ΩX/Y = 0 if and only if for every x ∈ X, the induced map
dfx : TxX → Tf(x)Y is injective, condition which, by Remark 13.2.12, is equivalent
to f being unramified at x. This gives the equivalence ii)⇔iii). The equivalence
i)⇔ii) is also clear if we show that under the assumptions in ii) all fibers of f are
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0-dimensional. Note that if Z is an irreducible, closed subvariety of dimension ≥ 1
that is mapped to y ∈ Y , and if x ∈ Z, then dfx maps TxZ ⊆ TxX to 0. Since
dimk(TxZ) ≥ 1, this contradicts the fact that dfx is injective.

We now prove the equivalence of iii) and iv). Given x ∈ X and y = f(x),
consider the induced local homomorphism

φ : A = OY,y → OX,x = B.

Let mA and mB be the maximal ideals in A and B, respectively.

Suppose first that iv) holds, hence for every x as above, φ̂ is an isomorphism.
In particular, it is flat, hence by Lemma 13.2.14 below, φ is flat. Since this holds

for all x ∈ X, we conclude that f is flat. Moreover, since φ̂ is an isomorphism and

the maximal ideals in Â and B̂ are mAÂ and mBB̂, we conclude that

mB ⊗B B̂ = mBB̂ = mAB̂ = (mAB)⊗B B̂.

Since the local homomorphism B → B̂ is flat, we deduce from the above equality,
using Lemma 5.6.18, that mB = mAB. Since this holds for all x ∈ X, we conclude
that f is unramified.

Conversely, suppose that iii) holds. Since φ is flat, it follows from Lemma 13.2.14

that φ̂ is flat, too. In particular, by Lemma 5.6.18, it is injective. On the other
hand, since f is unramified at x, we have mB = mAB, and thus for all j ≥ 1, the
induced map

(13.2.1) mjA/m
j+1
A → mjB/m

j+1
B ' mjBB̂/m

j+1
B B̂.

is surjective. This also holds for j = 0 since the map between the residue fields
A/mA → B/nB is an isomorphism. Given b ∈ B, it is straightforward to see,
using (13.2.1), that we can construct inductively a sequence (aj)j≥1 with aj ∈ A,

aj − aj+1 ∈ mjA and b− φ(aj) ∈ mjBB̂ for all j ≥ 1. In this case a = (aj)j≥1 gives

an element in Â such that φ̂(a) = b. We thus conclude that the homomorphism

φ̂ : ÔY,f(x) → ÔX,x is an isomorphism for every x ∈ X. �

Lemma 13.2.14. If φ : (A,m)→ (B, n) is a local homomorphism between Noe-

therian local rings, then φ is flat if and only if the morphism φ̂ : Â→ B̂ is flat.

Proof. Since φ̂ is a local morphism between Noetherian, local rings, with

the maximal ideals of Â and B̂ being mÂ and nB̂, respectively (see Proposi-
tion G.2.7 and Remark G.2.8,) we can apply the characterization of flatness in

Proposition 13.1.10. We thus see that φ̂ is flat if and only if the canonical map

β : mÂ⊗Â B̂ → B̂

is injective. Similarly, φ is flat if and only if the canonical morphism

α : m⊗A B → B.

is injective. Note now that we have an isomorphism

mÂ⊗Â B̂ ' (m⊗A Â)⊗Â B̂ ' m⊗A B̂ ' (m⊗A B)⊗B B̂,

such that β gets identified to α ⊗B B̂. Since the morphism B → B̂ is a local,
flat homomorphism (see Corollary G.2.3), it follows from Lemma 5.6.18 that α is
injective if and only if β is injective. This completes the proof of the lemma. �
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We next turn to the Generic Smoothness theorem. We begin with a lemma
concerning separable field extensions.

Definition 13.2.15. A finite type field extension L/K is separable if there is
a transcendence basis a1, . . . , an of L over K such that the finite field extension
L/K(a1, . . . , an) is separable. Note that for finite field extensions, we recover the
usual definition.

Remark 13.2.16. Clearly, if char(K) = 0, every finite type field extension is
separable.

Lemma 13.2.17. Given a finite type, separable field extension L/K, we have

dimL ΩL/K = trdegK(L).

Proof. Let a1, . . . , an ∈ L be a transcendence basis such that the finite field
extension L/K ′ is separable, where K ′ = K(a1, . . . , an). In particular, by the Prim-
itive Element theorem, we can write L = K ′[b] for some b ∈ L. Let f ∈ K ′[y] be
the minimal polynomial of b over K ′, so that L ' K ′[y]/(f). Since b is separa-
ble over K ′, it follows that f ′(b) 6= 0. Note that the coefficients of f are rational
functions of a1, . . . , an. After clearing the denominators, we find a polynomial
g ∈ K[x1, . . . , xn, y] such that g(a1, . . . , an, b) = 0 and ∂g

∂y (a1, . . . , an, b) 6= 0. Note

that L is obtained as a suitable ring of fractions of A = K[x1, . . . , xn, y]/(g). By Ex-
ample 8.7.12, ΩA/K is the quotient of the free A-module with basis dx1, . . . , dxn, dy
by the relation

∂g

∂y
(x1, . . . , xn, y)dy +

n∑
i=1

∂g

∂xi
(x1, . . . , xn, y)dxi = 0,

where x1, . . . , xn, y are the images of x1, . . . , xn, y in A. Since ΩL/K ' ΩA/K ⊗A L
by Proposition 8.7.7, and since ∂g

∂y (a1, . . . , an, b) is invertible in L, we conclude that

ΩL/K has dimension n over L. �

Theorem 13.2.18 (Generic Smoothness). Let f : X → Y be a dominant mor-
phism of irreducible algebraic varieties, with X smooth. If char(k) = 0, then there
is an open subset V of Y such that the induced morphism f−1(V )→ V is smooth.

We prove this in several steps. We begin begin by proving a weaker assertion,
which sometimes also holds in positive characteristic.

Lemma 13.2.19. If f : X → Y is a dominant morphism of irreducible algebraic
varieties, such that the field extension k(X)/k(Y ) is separable, then there is a non-
empty open subset U of X such that the induced morphism U → Y is smooth.

Proof. After replacing both X and Y by suitable open subsets, we may as-
sume that they are both smooth. Since the stalk V of ΩX/Y at X is isomorphic
to Ωk(X)/k(Y ), the hypothesis implies, by Lemma 13.2.17, that V is a k(X)-vector
space of dimension equal to

trdegk(Y )k(X) = dim(X)− dim(Y ).

By Remark 8.5.2, we deduce that there is an open subset U of X such that ΩX/Y |U
is locally free of rank equal to dim(X) − dim(Y ). In this case, arguing as in the
proof of Proposition 13.2.8, we see that for every x ∈ U , the map TxX → Tf(x)Y
is surjective, which by the same proposition, implies that the map U → Y induced
by f is smooth. �
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Lemma 13.2.20. If f : X → Y is a morphism of algebraic varieties over k, with
char(k) = 0, and

Zr = {x ∈ X | rank(TxX → Tf(x)Y ) ≤ r},

then every irreducible component of f(Zr) has dimension ≤ r.

Proof. Let W be an irreducible component of f(Zr) and Z an irreducible
component of Zr that dominates W . Since we are in characteristic 0, we can apply
Lemma 13.2.19 for the induced map g : Z →W to we find an open subset U of Zsm

mapping to Wsm, and such that the map U → W is smooth. For every x ∈ U , we
have the following commutative diagram of linear maps

TxZ

dgx

��

// TxX

dfx

��
Tf(x)W // Tf(x)Y,

in which the horizontal maps are injective. Since rank(dfx) ≤ r and dgx is surjective,
we conclude that dimk Tf(x)W ≤ r, hence dim(W ) ≤ r. �

We can now prove the Generic Smoothness result.

Proof of Theorem 13.2.18. After replacing Y by its smooth locus, we may
assume that Y is smooth, too. We apply Lemma 13.2.20 with r = dim(Y ) − 1
to conclude that if Z is the locus of those x ∈ X such that dfx is not surjective,
then f(Z) is a proper closed subset of Y . The open subset V = Y r f(Z) is thus
non-empty and it satisfies the conclusion of the theorem. �

We end this chapter with two applications of the Generic Smoothness theorem.
We first prove a version of Bertini’s theorem, due to Kleiman.

Theorem 13.2.21. If X is a smooth, irreducible variety over an algebraically
closed field of characteristic 0, L a line bundle on X, and V ⊆ Γ(X,L) a finite-
dimensional vector space that generates L, then there is a non-empty open subset
U of P(V ∨) such that every effective Cartier divisor corresponding to a point in U
is reduced, with smooth support.

Proof. We choose a basis s0, . . . , sn of V , which allows us to identify P(V ∨)
to Pn = Proj

(
k[x0, . . . , xn]

)
. The case n = 0 is trivial, hence from now on we

assume n ≥ 1. By assumption, we have
⋂n
i=0 V (si) = 0, hence X =

⋃n
i=0 Ui, where

Ui = X r V (si). Let π1 and π2 be the projections of Y = X × Pn onto the two
factors and consider the section of π∗1(L)⊗OY

π∗2
(
OPn(1)

)
given by σ =

∑n
i=0 xisi.

We claim that the effective Cartier divisor Z(s) is a prime, smooth divisor.
Indeed, on Ui we can write sj = aj,isi for aj,i ∈ OX(Ui) and we have an isomorphism

π∗1(L)⊗OY
π∗2
(
OPn(1)

)
|Ui×Pn ' π∗2

(
OPn(1)

)
|Ui×Pn

such that the restriction of s corresponds to the section φi =
∑n
j=0 aj,ixj . Note

that we have an automorphism

αi : Ui×Pn → Ui×Pn,
(
u, [v0, . . . , vn])→ (u, [v0, . . . , vi−1,

∑
ji

aj,ivj , vi+1, . . . , vn]
)

such that α∗i (Hi) = Z(s|Ui×Pn), where Hi is the effective Cartier divisor Ui×Z(xi)
on Ui×Pn. We thus see that that the restriction of Z(s) to Ui×Pn is a smooth prime
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divisor. The fact that Z(s) is irreducible is an easy consequence of Exercise 1.3.17.
While we do not need this, it is easy to deduce from the above description that as
a variety over X, Z(s) is a projective bundle.

Consider now the morphism f : Z(s) → Pn induced by π1. Note that if v =
[v0, . . . , vn] ∈ Pn, then f−1(v) is the support of the effective Cartier divisor defined
by sv :=

∑n
i=0 visi. In particular, if non-empty, f−1(v) has dimension dim(X)− 1.

Since dim
(
Z(s)

)
= dim(X) + n − 1, we conclude that f is dominant. Since Z(s)

is smooth, we can apply Theorem 13.2.18 to conclude that there is an open subset
U ⊆ Pn such that the induced morphism f−1(U) → U is smooth. We see that if
v ∈ U , then Supp(Z(sv)

)
is smooth. Moreover, by Proposition 13.2.6, the radical

ideal defining f−1(v) in Z(s) is mv · OZ(s), where mv; this implies that the ideal
sheaf in OX corresponding to sv is a radical ideal, hence Z(sv) is a reduced divisor.
This completes the proof of the theorem. �

Our second application is to the study of the dual projective variety of a given
projective variety. Let X ⊆ Pn be a closed subvariety of dimension d and consider
the subset of Pn × (Pn)∗ given by

I0(X) := {(p,H) ∈ Pn × (Pn)∗ | p ∈ Xsm, H ⊇ TpX}.
Let I(X) be the closure of I0(X) in Pn×(Pn)∗ and let p : I(X)→ X and q : I(X)→
(Pn)∗ be the maps induced by the two projections. Note that these are both proper,
hence closed morphisms.

Arguing as in the proof of Theorem 6.4.1, we see that I0(X) is a closed sub-
variety of Xsm × Pn and each fiber of the morphism I0(X) → Xsm induced by
the first projection is isomorphic to Pn−d−1, hence I0(X) is an irreducible variety
of dimension n − 1 by Proposition 5.5.1. Therefore I(X) is a closed, irreducible
subvariety of X × (Pn)∗, of dimension n− 1. The dual projective variety X∗ is the
image q

(
I(X)

)
⊆ (Pn)∗. Our goal is to prove the following reflexivity statement:

Proposition 13.2.22. If char(k) = 0, then the isomorphism Φ: Pn× (Pn)∗ →
(Pn)∗ × Pn,

(
[v], [u]

)
→
(
[u], [v]

)
maps I(X) onto I(X∗). In particular, we have

(X∗)∗ = X.

We need some preparations. Let V = Γ(Pn,O(1)
)∨

, so that Pn parametrizes
the lines in V and (Pn)∗ parametrizes hyperplanes in V . We thus have surjective
morphisms πV : V r {0} → Pn and πV ∨ : V ∨ r {0} → (Pn)∗, and for v ∈ V r {0}
and u ∈ V ∨ r {0}, we write [v] and [u] for the images in Pn and, respectively,
(Pn)∗. We denote by 〈−,−〉 the canonical pairing V ∨ × V → k.

The morphism πV is smooth (over Ui = D+
Pn(xi), the inverse image π−1

V (Ui) is
isomorphic to Ui × (A1 r {0})). Note also that for every v ∈ V r {0}, the line 〈v〉
is contained in the kernel of the induced morphism (dπV )v : V = TvV → T[v]P

n.
Therefore we have a canonical isomorphism T[v]P

n ' V/〈v〉. Similarly, πV ∨ is
smooth and T[u](P

n)∗ ' V ∨/〈u〉 for every u ∈ V ∨ r {0}.
It is useful to interpret from this point of view the projective tangent space to

a subvariety X ⊆ Pn. Given a point [v] ∈ X, then by definition of the projective

tangent space T[v]X, if C(X) = π−1
V (X) is the affine cone over X, then

TvC(X) r {0} = π−1
V (T[v]X).

Since C(X) r {0} = π−1
V (X), we also have

TvC(X) = (dπV )−1
v (TvX).
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We thus conclude that that if we write T[v]X = W/〈v〉 ⊆ T[v]P
n, then T[v]X =

πV (W r {0}).
Let Q ⊆ Pn × (Pn)∨ be the incidence pairing

Q = {(p,H) ∈ Pn × (Pn)∨ | p ∈ H}.
It is easy to see that this is a closed subset of Pn × (Pn)∗ (see Exercise 4.2.18).

Note that if Q̃ ⊆ V × V ∨ is the closed subset given by

Q̃ = {(v, u) ∈ V × V ∨ | 〈u, v〉 = 0},
then

W := Q̃ ∩
(
(V r {0})× (V ∨ r {0})

)
= (πV × πV ∨)−1(Q).

Note that Q̃ is the affine cone over a smooth quadric in P2n+1, hence W is smooth.
We can cover Q by affine open subsets Vi,j such that (πV × πV ∨)−1(Vi,j) ' Vi,j ×
(A1 r {0})2. It follows that Q is smooth and the morphism W → Q is smooth as

well. It is easy to see that for every (v, u) ∈ Q̃, we have

T(v,u)Q̃ = {(b, a) ∈ V × V ∨ | 〈u, b〉+ 〈a, v〉 = 0}.

We thus conclude that for every
(
[v], [u]

)
∈ Q, we have

T([v],[u])Q = {(b, a) ∈ V/〈v〉 × V ∨/〈u〉 | 〈u, b〉+ 〈a, v〉 = 0}.
We can now prove the reflexivity of the dual variety.

Proof of Proposition 13.2.22. It is clear from definition that I0(X) ⊆ Q,
hence I(X) ⊆ Q. By Lemma 13.2.19, we have an open subset U ⊆ I0(X) such that
for every

(
[v], [u]

)
∈ U , we have [u] ∈ (X∗)sm and the tangent map T([v],[u])I(X)→

T[u]X
∗ is surjective. Given

(
[v], [u]

)
∈ U , since I(X) ⊆ Q ∩

(
X × (Pn)∗

)
, we have

T([v],[u])I(X) ⊆ {(b, a) ∈ V/〈v〉 × V ∨/〈u〉 | b ∈ T[v]X, 〈u, b〉+ 〈a, v〉 = 0}.

Note now that since
(
[v], [u]

)
∈ I0(X), we have 〈u, b〉 = 0 for every b ∈ V such

that b ∈ T[v]X. We thus see that 〈a, v〉 = 0 for every (b, a) ∈ T([v],[u])I(X). Since

the tangent map at
(
[v], [u]

)
is surjective, we conclude that for every

(
[v], [u]

)
∈ U

and every a ∈ T[u]X
∗, we have 〈a, v〉 = 0. We thus see that Φ(U) ⊆ I(X∗), hence

Φ
(
I(X)

)
⊆ I(X∗). These are both irreducible closed subvarieties of (Pn)∗ × Pn,

of dimension n − 1, hence they are equal. This gives the first assertion in the
proposition, and the second one is an immediate consequence. �





CHAPTER 14

The theorem on formal functions and Serre duality

In this chapter we discuss two important results about cohomology of sheaves
on projective varieties: the theorem on formal functions, describing the completion
of the stalk of higher direct image sheaves by proper morphisms, and Serre duality,
a result providing an analogue of Poincaré duality in algebraic geometry.

14.1. The theorem on formal functions

In the classical setting, it is very often the case that one can explicitly describe
the stalk of a higher direct image sheaf via a proper map as the cohomology for
the restriction of the sheaf to the corresponding fiber. For example, we have the
following elementary result (see, for example, [God73, Rémarque 4.17.1] for a
proof).

Theorem 14.1.1. If f : X → Y is a proper1, continuous map between locally
compact topological spaces, then for every y ∈ Y , every sheaf of Abelian groups F
on X, and every q ≥ 0, we have a functorial isomorphism

Rqf∗(F)y ' Hq(Xy,F|Xy ),

where Xy = f−1(y), and if i : Xy ↪→ X is the inclusion map, we put F|Xy
= i−1(F).

In the algebraic setting the situation is more complicated. There are two results
that handle this issue. In this section we give a general result that describes the
completion of Rqf∗(F)y when f : X → Y is a proper morphism and F is a coherent
sheaf on X. In fact, a similar result holds for the inverse image of an an arbitrary
closed subset. Another important result, the base-change theorem, gives necessary
conditions for having an isomorphism between Rqf∗(F)(y) and the cohomology of
(a suitable version of) the restriction of F to the fiber Xy over y (for a treatment
of this result, see [Har77, Chapter III.12]).

In order to formulate the main result, we set up some notation. Let f : X → Y
be a proper morphism of algebraic varieties and I a coherent ideal on Y . Given
a coherent sheaf F on X and q ≥ 0, it follows from Theorem 11.3.1 that the OY -
module Rqf∗(F) is coherent. For every i ≥ 0, we consider the coherent sheaf Fi :=
F ⊗OX

OX/Ii+1OX , whose support is contained in f−1
(
V (I)

)
. The surjective

morphism F → Fi induces a morphism Rqf∗(F)→ Rqf∗(Fi). In fact, Rqf∗(Fi) is
an OY /Ii+1-module, and we thus get an induced morphism

Rqf∗(F)⊗OY
OY /Ii+1 → Rqf∗(Fi).

Note that this is a morphism of inverse systems ofOY -modules, where
(
Rqf∗(Fi)

)
i≥0

form an inverse system with respect to the morphisms Rqf∗(Fj) → Rqf∗(Fi), for

1In this setting, a map is proper if the inverse image of any compact set is compact.

363
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j ≥ i, induced by the canonical surjections Fj → Fi. We will be concerned with
the corresponding morphism between the inverse limits:

(14.1.1) lim←−
(
Rqf∗(F)⊗OY

OY /Ii+1
)
→ lim←−R

qf∗(Fi).

Example 14.1.2. If Y is affine, with O(Y ) = A and I(Y ) = I, then the
morphism (14.1.1) induces by taking global sections on both sides a morphism

Hq(X,F )̂ → lim←−H
q(X,Fi),

where on the left-hand side we have the completion of the finitely generated A-
module Hi(X,F), with respect to the ideal I.

Example 14.1.3. If y ∈ Y and I = my, the radical ideal sheaf defining a
point, then the ideal Ii+1OX corresponds to the “ith infinitesimal neighborhood”
of the fiber f−1(y). Given an affine open neighborhood U of y, we have isomor-
phisms Hq

(
f−1(U),Fi

)
' Hq(X,Fi) (see Remark 10.5.19) and thus the morphism

in (14.1.1) induces by taking sections over U a morphism

Rqf∗(F )̂y → lim←−H
q(X,Fi),

where on the left-hand side we have the completion of the stalk Rqf∗(F)y with
respect to the maximal ideal in OY,y.

The following theorem, known as the Formal Function theorem, is due to
Grothendieck:

Theorem 14.1.4. If f : X → Y is a proper morphism of algebraic varieties, F
is a coherent sheaf on X, and q ≥ 0, then the morphism (14.1.1) is an isomorphism.

Before giving the proof of the theorem, we give some applications. All these
come from the following corollary, known as Zariski’s Main theorem.

Corollary 14.1.5. If f : X → Y is a proper morphism of algebraic varieties
such that the canonical morphism OY → f∗(OX) is an isomorphism, then f has
connected fibers.

Proof. Let y ∈ Y and suppose that the fiber Xy over y is the union of two
disjoint open subsets W1 and W2. We will apply the Formal Function theorem for
F = OX and write OXi

for Fi. If j : Xy ↪→ X is the inclusion map, since each sheaf
OXi

has support contained in Xy, the canonical morphism OXi
→ j∗

(
j−1(OXi

)
)

is an isomorphism. The decomposition Xy = W1 t W2 thus induces a product
decomposition

Γ(X,OXi
) ' Ai ×Bi,

where Ai = Γ
(
W1, j

−1(OXi)
)

and Bi = Γ
(
W2, j

−1(OXi)
)

are k-algebras. Note
that both Ai and Bi are non-zero, since they each contain a copy of k. Moreover,
we have natural morphisms Ai+1 → Ai and Bi+1 → Bi compatible with the homo-
morphisms Γ(X,OXi+1

)→ Γ(X,OXi
). By passing to projective limit, we obtain a

ring isomorphism

lim←−Γ((,OXi
) ' A×B, where A = lim←−Ai, B = lim←−Bi.

Note again that A and B are both non-zero, since they each contain a copy of k.
By the theorem, we thus obtain an isomorphism

f∗(OX )̂y ' A×B,
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and thus, using the hypothesis, a ring isomorphism ÔY,y ' A×B. However, ÔY,y
is a local ring (see Remark G.2.8) and a local ring doesn’t decompose non-trivially
as a product. This gives a contradiction, completing the proof. �

Example 14.1.6. An important example which satisfies the hypothesis in
Corollary 14.1.5 is that of a proper, birational morphism of irreducible varieties
f : X → Y , with Y normal. Indeed, consider the canonical morphism of sheaves
OY → f∗(OX). In order to show that this is an isomorphism, we may and will
assume that Y is affine. Let U ⊆ X and V ⊆ Y be affine open subsets such that f
induces an isomorphism U ' V , and consider the commutative diagram

Γ(Y,OY )

��

// Γ(X,OX)

��
Γ(V,OV ) // Γ(U,OU ),

in which the vertical maps are given by restriction. We thus conclude that Γ(X,OX)
is a subring of the function field k(X) = k(Y ) that contains Γ(Y,OY ). Since it
is finite over Γ(Y,OY ) by Theorem 11.3.1, it is contained in the integral closure
of Γ(Y,OY ) in its fraction field. However, Y is normal, and thus Γ(X,OX) =
Γ(Y,OY ). We thus conclude, by the previous corollary, that in this case f has
connected fibers.

We now show that every proper morphism admits a decomposition into a finite
map and one that satisfies the conclusion of Corollary 14.1.5. This is known as the
Stein factorization.

Corollary 14.1.7. If f : X → Y is a proper morphism, then f factors as

X
g−→ Z

u−→ Y , where u is finite and g is proper, with OZ → g∗(OX) an isomor-

phism. Moreover, if X
h−→ W

v−→ Y is another such factorization, then there is an
isomorphism α : W → Z such that α ◦ h = g and u ◦ α = v.

Proof. Consider the quasi-coherent sheaf of OY -algebras f∗(OX). Since f
is proper, this is coherent by Theorem 11.3.1. For every affine open subset U
of Y , the ring OY

(
f−1(U)

)
is reduced, hence f∗(OX) is a reduced OY -algebra.

We thus conclude that we have a finite morphism u : Z = MaxSpec
(
f∗(OX)

)
→

Y . Moreover, corresponding to the identity map f∗(OX) → f∗(OX), we have a
morphism g : X → Z of varieties over Y (see Remark 8.6.7). Let us check that the
canonical morphism OZ → g∗(OX) is an isomorphism. If Y =

⋃r
i=1 Vi is a finite

affine cover of Y , then Z =
⋃r
i=1 u

−1(Vi) is a finite affine open cover of Z, and by
definition, we have

Γ
(
u−1(Vi),OZ

)
' Γ

(
f−1(Vi),OX

)
,

such that the pull-back map induced by g corresponds to the identity. We thus see
that the factorization satisfies the conclusion of the corollary (note that since f is
proper, we also have that g is proper by Remark 5.1.8).

Suppose now that X
h−→ W

v−→ Y is another such decomposition. Since v
is a finite morphism, we have W ' MaxSpec

(
v∗(OZ)

)
as varieties over Y . On

the other hand, since the canonical morphism OW → h∗(OX) is an isomorphism,
by applying v∗, we obtain v∗(OZ) ' v∗

(
h∗(OX)

)
= f∗(OX). We thus have an

isomorphism α : W → Z of varieties over Y . The fact that g = α ◦ h follows using
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Remark 8.6.7 and noticing that the map u∗(OZ)→ (u ◦ g)∗(OX) corresponding to
g and the map u∗(OZ)→ u∗

(
(α ◦ h)∗(OX)

)
corresponding to α ◦ u are equal. �

An important consequence of the results in this section is the following:

Corollary 14.1.8. If f : X → Y is a proper morphism that has finite fibers,
then f is finite.

Proof. Consider the Stein factorization X
g−→ Z

u−→ Y of f . It is enough to
show that g is an isomorphism. Note that since f has finite fibers, g has finite fibers,
too. Since g∗(OX) = OZ , it follows from Corollary 14.1.5 that g has connected
fibers. We thus conclude that each fiber is either empty or contains just one point.

Since g is proper, we thus conclude that it gives a homeomorphism onto a closed
subvariety Z ′ of Z. In fact, we have Z ′ = Z. Indeed, if j : Z ′ ↪→ Z is the inclusion,
then the composition

OZ → j∗(OZ′)→ g∗(OZ)

is an isomorphism, hence the morphism OZ → j∗(OZ′) is injective. Its kernel is
the radical ideal sheaf corresponding to Z ′, and thus Z ′ = Z. Since g : X → Z is a
homeomorphism such that the induced morphism OZ → g∗(OX) is an isomorphism,
it follows that g is an isomorphism, completing the proof of the corollary. �

Example 14.1.9. If X is a complete variety and f : X → Pn is an arbitrary
morphism, then f∗

(
OPn

)
is globally generated and if f is finite, then f∗

(
OPn(1)

)
is

also ample (see Corollary 11.6.17). We can now see that the converse holds: if L is
an ample and globally generated line bundle on X, then there is a finite morphism
f : X → Pn such that L ' f∗

(
OPn(1)

)
. Indeed, since L is globally generated, we

have a morphism f : X → Pn such that f∗
(
OPn(1)

)
' L. We claim that any such

morphism f is finite. Indeed, by Corollary 14.1.8, it is enough to show that f has
finite fibers. However, if Z is a fiber of f , then L|Z ' OZ , and since Z is complete,
it is a finite set (see Remark 11.6.5).

Another consequence of the Formal Function theorem is the following

Corollary 14.1.10. If f : X → Y is a proper morphism of algebraic varieties
and F is a coherent sheaf on X such that

dim
(
Supp(F) ∩ f−1(y)

)
≤ n for all y ∈ Y,

then R`f∗(F) = 0 for all ` > n.

The assertion follows easily from Theorem 14.1.4 if we know that for a complete
n-dimensional variety Z, we have H`(Z,G) = 0 for every ` > n and every coherent
sheaf G on Z. However, we haven’t proved this yet (cf. Corollary 10.6.7), so that
we have to prove this as part of an inductive approach. The proof will make use of
Chow’s lemma and the approach in the proof of Theorem 11.3.1.

Proof of Corollary 14.1.10. We first note that it is enough to prove the
assertion when dim

(
f−1(y)

)
≤ n for every y ∈ Y . Indeed, if I is the radical

ideal sheaf defining Supp(F), then we have a finite filtration of F , with successive
quotients that are annihilated by I (see Remark 8.4.21). Each such quotient is of
the form j∗(G), where j : Supp(F) ↪→ X is the inclusion map and G is a coherent
sheaf on Supp(F). Since R`f∗

(
j∗(G)

)
' R`(f ◦ j)∗(G) by Example 10.5.17, if we

know that R`(f◦j)∗(G) = 0 for all such G and all i > n, then we obtain R`f∗(F) = 0
for all i > n using the long exact sequence for higher direct images.



14.1. THE THEOREM ON FORMAL FUNCTIONS 367

We prove by induction on n that if dim
(
f−1(y)

)
≤ n for all y ∈ Y , then

R`f∗(F) = 0 for all ` > n. Of course, it is enough to show that R`f∗(F)y = 0
for all y ∈ Y , and since a finitely generated OY,y embeds in its completion (see
Remark G.1.4), it is enough to show that the completion of R`f∗(F)y is 0 for all
y ∈ Y . By Theorem 14.1.4 (applied with I being the radical ideal sheaf defining
y ∈ Y ), it is enough to show that for every such y and every i ≥ 0, we have
H`(X,Fi) = 0 for all ` > n. By considering again a finite filtration of Fi whose
successive quotients are annihilated by the radical ideal sheaf corresponding to
f−1(y) ↪→ X, we thus see that it is enough to show that for every n-dimensional
complete variety X and every coherent sheaf F on X, we have H`(X,F) = 0 for
` > n. This is trivially true if n = 0 and thus it is enough to show that if n ≥ 1
and the assertion holds for smaller values of n, then it also holds for n.

If X is a projective variety, then the assertion holds by Corollary 10.6.7. In
order to prove the general case, we argue as in the proof of Theorem 11.3.1. We
apply Chow’s lemma (see Theorem 5.2.1) to get a proper morphism g : W → X,
with W a projective variety, and that induces an isomorphism g−1(U)→ U , where
U is open and dense in X and g−1(U) is open and dense in W . We consider the
canonical morphism φ : F → g∗

(
G), where G = g∗(F) (note that g∗(F) is coherent

by Theorem 11.3.1). Since both ker(φ) and coker(φ) are supported on XrU , whose
dimension is ≤ n− 1, we deduce from the inductive hypothesis, and using the long
exact sequences in cohomology for the short exact sequences

0→ ker(φ)→ F → Im(φ)→ 0

and

0→ Im(φ)→ g∗(G)→ coker(φ)→ 0

that we have isomorphisms

H`(X,F) ' H`
(
X, Im(φ)

)
' H`

(
X, g∗(G)

)
for all q > n.

Consider now the Leray spectral sequence for g and the coherent sheaf G on W :

Ep,q2 = Hp
(
X,Rqg∗(G)

)
⇒p H

p+q(W,G).

Given ` > n, we need to show that E`,02 = 0. Note that E`,0∞ = 0, being a
sub-quotient of H`(W,G), which is 0, since W is a projective variety of dimension

n. Since E`,0∞ = E`,0r for r � 0, in order to conclude that E`,02 = 0, it is enough to

show that for every r ≥ 2, if E`,0r+1 = 0, then E`,0r = 0. Since E`,0r+1 is the cohomology
of

E`−r,r−1
r → E`,0r → E`+r,1−rr = 0,

it follows that it is enough to show that E`−r,r−1
r = 0. This is a sub-quotient of

E`−r,r−1
2 , hence it is enough to show that

(14.1.2) H`−r(X,Rr−1g∗(G)
)

= 0 for r ≥ 2.

Since all fibers of g have dimension ≤ n−1, it follows from the inductive assumption
that Rjg∗(G) = 0 for j > n− 1. We may thus assume that r ≤ n.

Let V =
{
x | dim

(
g−1(x)

)
≤ r − 2

}
(note that this is open in X by Theo-

rem 5.4.1). Since r − 2 ≤ n − 2, it follows from the inductive assumption that
Rr−1g∗(G)|V = 0, hence Supp

(
Rr−1g∗(G)

)
⊆ X r V . On the other hand, since f

induces an isomorphism g−1(U) → U , with g−1(U) open and dense in W and
U open and dense in X, it follows from the theorem on fiber dimension that
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dim(X r V ) ≤ (n− 1)− (r − 1) = n− r and thus the vanishing in (14.1.2) follows
from the inductive assumption, since `− r > n− r. This completes the proof of the
corollary. �

We now turn to the proof of Theorem 14.1.4, for which we follow closely [Gro61,
§4]. The key ingredient is the following finiteness result:

Proposition 14.1.11. Let f : X → Y be a proper morphism. We consider an
N-graded OY -algebra T and an N-graded OX-algebra S that satisfy the usual condi-
tions2. If we have a surjective morphism of OX-algebras f∗(T )→ S, then for every
graded S-module M =

⊕
i∈ZM which is quasi-coherent as an OX-module and lo-

cally finitely generated over S, then for every j ≥ 0, the T -module
⊕

i∈ZR
jf∗(Mi)

is locally finitely generated.

Proof. Since we have a surjective morphism f∗(T ) → S, it follows that we
have a commutative diagram

X̃ =MaxProj(S)

g

��

u // X

f

��
Ỹ =MaxProj(T )

v // Y.

The graded S-module M gives a coherent sheaf M̃ on X̃ and Theorem 11.3.1

implies that Rqg∗(M̃) is a coherent sheaf on Ỹ for every q.
The same result implies that for every i, theOY -module Rjf∗(Mi) is a coherent

OY -module, Moreover, since M is locally finitely generated over S, it follows that
Mi = 0 for i� 0. We thus conclude that it is enough to show that

⊕
i≥0R

jf∗(Mi)
is locally finitely generated over T .

We consider the two Leray spectral sequences corresponding to the composi-

tions v ◦ g = f ◦ u and to the quasi-coherent sheaf P :=
⊕

i≥0

(
M⊗OX̃(i)

)
on X̃.

In what follows, we freely use the fact that the cohomology commutes with direct
sums of quasi-coherent sheaves (see Remark 10.6.9). The first of these two spectral
sequences is

Ep,q2 = Rpv∗
(
⊕i≥0 R

qg∗
(
M̃ ⊗OX̃(i)

))
⇒p R

p+q(v ◦ g)∗(P).

Note that since g∗
(
OỸ (i)

)
' OX̃(i), using the projection formula we obtain

Ep,q2 ' Rpv∗
(
⊕i≥0

(
Rqg∗(M̃)⊗OỸ (i)

))
.

Since Rqg∗(M̃) is a coherent OỸ -module, it follows from Theorem 11.2.1 that Ep,q2

is a coherentOY -module for p > 0, while Corollary 11.2.4 implies that E0,q
2 is locally

finitely generated over T . Finally, note that by Corollary 10.6.6, there is a positive
integer N such that Rpv∗(M) = 0 for every p > N and every quasi-coherent sheaf

M on Ỹ , hence Ep,q2 = 0 = Ep,q∞ , unless 0 ≤ p ≤ N . The spectral sequence thus
implies that for every d, Rd(v◦g)∗(P) has a finite filtration such that the successive
quotients are locally finitely generated over T , and therefore Rd(v◦g)∗(P) is locally
finitely generated over T .

2This means that T is quasi-coherent, reduced, generated over T0 by T1, and such that T0
and T1 are coherent OY -modules, and S satisfies the analogous conditions on X.
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Consider now the spectral sequence

E
p,q

2 = Rpf∗
(
Rqu∗(⊕i≥0M̃ ⊗OX̃(i))

)
⇒p R

p+q(v ◦ g)∗(P).

Again, Theorem 11.2.1 implies that the OX -module Rqu∗
(
⊕i≥0 M̃ ⊗ OX̃(i))

)
is

coherent for every q > 0, and thus E
p,q

2 is a coherent OY -module for q > 0 by
Theorem 11.3.1. On the other hand, Corollary 11.2.4 implies that

N := u∗
(
⊕i≥0 M̃ ⊗OX̃(i)

)
is locally finitely generated over S. The canonical morphism ⊕i≥0Mi → N is an
isomorphism in large enough degrees by Corollary 11.2.3 and thus it is enough to

show that E
p,0

2 is locally finitely generated over T for every p.

For r � 0, we have E
p,0

r = E
p,0

∞ , and this is a subquotient of Rd(v ◦ g)∗(P),
hence it is locally finitely generated over T . In order to conclude the proof, it is

thus enough to show that if r ≥ 2 and E
p,0

r+1 is locally finitely generated over T ,

then the same holds for E
p,0

r . Recall that we have the maps

E
p−r,r−1

r
dr−→ E

p,0

r → E
p+r,1−r
r = 0

such that E
p,0

r+1 ' coker(dr). Since this is locally finitely generated over T and

E
p−r,r−1

r has the same property (in fact, this is coherent over OY ), the same holds

for E
p,0

r . This concludes the proof. �

We can now give the proof of the Formal Function theorem.

Proof of Theorem 14.1.4. In order to show that the morphism (14.1.1) is
an isomorphism, it is enough to show that we get an isomorphism whenever we
take sections over an affine open subset of Y . We thus may and will assume that Y

is affine, with R = O(Y ) and I = I(Y ). Let T =
⊕

i≥0 Ii. It is clear that T := T̃

and S :=
⊕

i≥0 IiOX satisfy the conditions in Proposition 14.1.11. Moreover,

M :=
⊕

i≥0 Ii+1F is locally finitely generated over S, hence by the proposition,

the T -module N (q) =
⊕

i≥0H
q(X, Ii+1F) is finitely generated for every q ≥ 0.

For every i ≥ 0, the short exact sequence

0→ Ii+1F → F → Fi → 0

gives via the long exact sequence in cohomology an exact complex

0→ Ai → Hq(X,F)→ Hq(X,Fi)→ Bi → 0,

where

Ai = Im
(
Hq(X, Ii+1F)→ Hq(X,F)

)
and Bi = Im

(
Hq(X,Fi)→ Hq+1(X, Ii+1F)

)
.

We thus obtain an exact sequence

(14.1.3) 0→ lim←−
(
Hq(X,F)/Ai

)
→ lim←−H

q(X,Fi)→ lim←−Bi.

For everym ≥ 0 and every h ∈ Im, we have a morphism of short exact sequences

0 // Ii+1F //

·h
��

F //

·h
��

Fi //

·h
��

0

0 // Ii+m+1F // F // Fi+m // 0,
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and the connecting homomorphisms in the long exact sequences in cohomology fit
in a commutative diagram

Hq(X,Fi)

��

// Hq+1(X, Ii+1F)

��
Hq(X,Fi+m) // Hq+1(X, Ii+m+1F).

This implies that B :=
⊕

i≥0Bi is a T -submodule of N (q+1); in particular, it is
finitely generated over T . Since T is generated as a T0-algebra by T1, it follows
that there is i1 such that Bm+i1 = Tm ·Bi1 for all m ≥ 0. Given h ∈ Tm and i ≥ 0,
consider the composition

Bi
·h−→ Bi+m → Bi,

where the second map is one of the structural maps of the inverse system (Bi)i≥0.
It is easy to see that this composition is the multiplication map by h, using the
R-module structure of Bi. For every i, note that Ii+1 annihilates Hq(X,Fi), hence
it also annihilates its quotient Bi. We thus see that if m ≥ i1 + 1, then the map
Bm+i → Bi is the zero map. Therefore lim←−Bi = 0.

Similarly, for every m ≥ 0 and every h ∈ Im, we have a commutative diagram

Hq(X, Ii+1F)

��

// Hq(X,F)

��
Hq(X, Ii+m+1F) // Hq(X,F),

where the vertical maps are induced by multiplication with h. This implies that
A :=

⊕
i≥0Ai has a structure of T -module; in fact, it is a quotient of N (q), hence

it is finitely generated over T .
Note that

(14.1.4) Ii+1 ·Hq(X,F) ⊆ Ai for all i ≥ 0

(this follows from the fact that Hq(X,Fi+1) is annihilated by Ii+1). On the other
hand, since A is a finitely generated T -module, and T is generated as a T0-algebra
by T1, it follows that there is i2 such that Am+i2 = Tm · Ai2 for all m ≥ 0. For
every h ∈ Tm and every i, the composition

Ai
·h−→ Am+i ↪→ Ai

is the multiplication map by h using the R-module structure of Ai. We thus see
that

(14.1.5) Am+i2 = Im ·Ai2 for all m ≥ 0.

The inclusion in (14.1.4) implies that we have a canonical morphism

lim←−
(
Hq(X,F)/Ii+1 ·Hq(X,F)

)
→ lim←−

(
Hq(X,F)/Ai

)
and (14.1.5) implies that this is an isomorphism. Since we have already seen that
lim←−Bi = 0, the conclusion of the theorem follows from (14.1.3). �
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Remark 14.1.12. In the setting of Theorem 14.1.4, if J is a coherent ideal in
OX with V (J ) = V (I · OX) and if we put F ′i = F ⊗OX

OX/J i+1, then for every
q we have a canonical isomorphism

lim←−R
qf∗(Fi) ' lim←−R

qf∗(F ′i).

Indeed, the hypothesis implies that we have positive integers m and n such that
Im ⊆ J and J n ⊆ I, which induces canonical morphisms Fmi+m−1 → F ′i and
F ′ni+n−1 → Fi for every i. Using the fact that an inverse limit does not change if
we pass to a final subset of the index set, we obtain morphisms

lim←−Fi = lim←−Fmi+m−1 → lim←−F
′
i and lim←−F

′
i = lim←−F

′
ni+n−1 → lim←−Fi

which are mutual inverses.

In the context of Theorem 14.1.3, one can show that the sheaves Rqf∗(Fi)
satisfy the so-called Mittal-Leffler condition. We explain this now, discussing also
the motivation for considering this condition. However, we will not make use of
this in what follows.

Definition 14.1.13. Consider an inverse system (An, φm,n) with objects in
some Abelian category A, indexed by the non-negative integers (with the usual
order). This satisfies the Mittag-Leffler condition (ML, for short) if for every n ≥ 0,
the non-increasing sequence

(
Im(Am → An)

)
m≥n of sub-objects of An is stationary,

that is

Im(Am → An)
)

= Im(Am+1 → An)
)

for m� 0.

In what follows we mostly consider the case when A is the category of modules over
a fixed commutative ring R.

Example 14.1.14. Every inverse system (An, φm,n) of finite-dimensional vector
spaces over a field clearly satisfies that the ML condition.

Remark 14.1.15. Suppose that (An, φm,n) is an inverse system of R-modules
that satisfies the ML condition. For every n ≥ 1, put

A′n := Im(Aq → An)
)

for q � 0.

It is clear that for every m ≥ n, φm,n induces a morphism φ′m,n : A′m → A′n and
these satisfy the required compatibilities. Note that each φ′m,n is surjective: if q is
large enough, then

A′n = Im(Aq → An) and A′m = Im(Aq → Am),

and the assertion follows. The inclusion maps give a morphism of inverse systems

(A′n, φ
′
m,n)→ (An, φm,n)

and the induced morphism

lim←−A
′
n → lim←−An

is an isomorphism. Indeed, the injectivity is clear. The surjectivity follows from
the fact that if (an)n≥1 ∈ lim←−An, then an ∈ A′n for all n ≥ 1.

Remark 14.1.16. Under the assumptions in Theorem 14.1.4, the inverse system
of coherent sheaves

(
(Rqf∗(Fi)

)
i≥0

satisfies the ML condition. Since these are

coherent sheaves, it is clear that it is enough to check this when Y is affine. With
the notation in the proof of Theorem 14.1.3, we have seen that given any i, the
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map Bm → Bi is the zero map for m � 0. The commutative diagram with exact
rows

Hq(X,F) // Hq(X,Fi) // Bi // 0

Hq(X,F) //

OO

Hq(X,Fm) //

OO

Bm

OO

// 0

then implies that

Im
(
Hq(X,Fm)→ Hq(X,Fi)

)
= Im

(
Hq(X,F)→ Hq(X,Fi)

)
for m� 0.

This gives our assertion.

The ML condition is useful, since it provides a criterion for the exactness of
inverse limits, as follows.

Proposition 14.1.17. If we have morphisms of inverse systems of R-modules

(An)n≥0
(un)−−−→ (Bn)n≥0

(vn)−−−→ (Cn)n≥0

such that for every n, we have an exact sequence

0→ An
un−−→ Bn

vn−→ Cn → 0,

and if (An)n≥0 satisfies the ML condition, then after taking the inverse limit, we
have an exact sequence

0→ lim←−An
u−→ lim←−Bn

v−→ lim←−Cn → 0.

Proof. The exactness of

0→ lim←−An
u−→ lim←−Bn

v−→ lim←−Cn
is easy and does not need the ML condition. The interesting statement is the
surjectivity of v. Of course, we may assume that An ⊆ Bn and Cn = Bn/An. For
m ≥ n, we denote by ψm,n the structural morphism Bm → Bn.

We begin by treating two special cases. Suppose first that every morphism
Am → An, for m ≥ n, is surjective. Given c = (cn)n≥0 ∈ lim←−Cn, we construct
recursively bn ∈ Bn such that

(14.1.6) vn(bn) = cn and ψn+1,n(bn+1) = bn for n ≥ 0.

In this case b = (bn)n≥0 ∈ lim←−Bn and v(b) = c. To begin with, we choose b0 ∈ B0

such that v0(b0) = c0. Suppose now that we have chosen b0, . . . , bm such that
the conditions in (14.1.6) hold for 0 ≤ n ≤ m. Let b′m+1 ∈ Bm+1 be such that
vm+1(b′m+1) = cm+1. In this case bm − ψm+1,m(b′m+1) ∈ Am. By assumption, we
can find an element a ∈ Am+1 such that ψm+1,m(a) = bm−ψm+1,m(b′m+1). In this
case, bm+1 = b′m+1 + a satisfies

vm+1(bm+1) = cm+1 and ψm+1,m(bm+1) = bm,

completing the proof of the recursion step.
Suppose now that (An)n≥0 satisfies the condition that for every n, the map

Aq → An is 0 for q � 0. Given (cn)n≥0 ∈ lim←−Cn, consider for every n some b′n ∈ Bn
with vn(b′n) = cn. Given n, consider q ≥ n such that the map Aq → An is 0. For
every m ≥ q, we have b′m−ψm+1,m(b′m+1) ∈ Am, hence ψm,n(b′m) = ψm+1,n(b′m+1);
we put bn = ψm,n(b′m), which is thus independent of m ≥ q. It is then clear that
b = (bn)n≥0 ∈ lim←−Bn and v(b) = c.
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We now treat the general case. As in Remark 14.1.15, for every n ≥ 0, consider
A′n = Im(Aq → An) for q � 0. The morphism v factors as

lim←−Bn → lim←−Bn/A
′
n → lim←−Bn/An.

The first map is surjective by the first case treated above, while the second map is
surjective by the second case. Therefore the composition is surjective. �

14.2. Serre duality

In this section we discuss Serre duality for projective varieties. While similar
results hold for complete varieties, we only treat the projective case (which will be
enough for our applications). Serre duality is an analogues of Poincaré duality in
the setting of algebraic varieties. However, it is much more general: on one hand,
it applies to arbitrary coherent sheaves, and on the other hand, it also holds on
certain singular varieties.

Definition 14.2.1. Let X be a complete variety, with dim(X) = n. We will
say that Serre duality holds on X if there is a coherent sheaf ω◦X on X such that
for every i ≥ 0 and every coherent sheaf F on X, we have a functorial isomorphism

ExtiOX
(F , ω◦X) ' Hn−i(X,F)∨.

Remark 14.2.2. Note that by Remark 10.7.14, for every coherent sheaf ω◦X on

X, the sequence of contravariant functors
(
ExtiOX

(−, ω◦X)
)
i≥0

form a contravariant

δ-functor from the category Coh(X) to the category of k-vector spaces. Similarly,
if X is a complete variety of dimension n, since Hi(X,F) = 0 for all i > n and
all coherent sheaves F on X (see Corollary 14.1.10), the sequence of contravari-
ant functors

(
Hn−i(X,−)

)
i≥0

form a contravariant δ-functor from Coh(X) to the

category of k-vector spaces.
We will say that Serre duality holds in strong form on X if the above two

contravariant δ-functors are isomorphic. We will see in Theorem 14.2.12 below that
the two conditions for Serre duality are in fact equivalent, at least for projective
varieties.

Remark 14.2.3. Note that for every complete variety X and every locally free
sheaf E on X, we have canonical isomorphisms

ExtiOX
(E , ω◦X) ' ExtiOX

(OX , E∨ ⊗OX
ω◦X) ' Hi(X,ωX ⊗OX

E∨)

(see Examples 10.7.10 and 10.7.9). It follows that if Serre duality holds on X, then
for every locally free sheaf E on X, we have a functorial isomorphism

Hi(X,ω◦X ⊗OX
E∨) ' Hn−i(X, E)∨.

Definition 14.2.4. A contravariant3 δ-functor F = (Fi)i≥0 : A → B between
two Abelian categories is coeffacebale if for every A ∈ Ob(A) and every i > 0, there
is an epimorphism P → A such that Fi(P ) = 0. In what follows we only need the
case when A is the category of coherent sheaves on a variety, so the reader can
restrict to this case.

The above property is useful because it implies universality:

3A similar definition works for covariant δ-functors.
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Proposition 14.2.5. A coeffaceable contravariant δ-functor F = (Fi)i≥0 : A →
B is universal, that is, for every contravariant δ-functor G = (Gi)i≥0 and every
natural transformation α0 : F0 → G0, there is a unique natural transformation of
δ-functors α : F → G that extends α0.

Proof. We construct the natural transformations αi : Fi → Gi by induction
on i ≥ 0, such that for every short exact sequence

0→ A′ → A→ A′′ → 0,

the diagram

(14.2.1) Fi(A
′)

αi(A
′)

��

// Fi+1(A′′)

αi+1(A′′)

��
Gi(A

′) // Gi+1(A′′)

is commutative. With α0 being given, suppose that we have constructed αi, for
some i ≥ 0, and let us construct αi+1.

Given any A, by hypothesis there is a short exact sequence

0→ B → P → A→ 0

such that Fi+1(P ) = 0. The commutative diagram with exact rows

Fi(P ) //

αi(P )

��

Fi(B) //

αi(B)

��

Fi+1(A) // Fi+1(P ) = 0

Gi(P ) // Gi(B) // Gi+1(A) // Gi+1(P )

induces a unique morphism αi+1(A) : Fi+1(A) → Gi+1(A) making the new square
commutative.

The first thing that needs to be checked is the independence on the choice of
the short exact sequence. We only sketch the argument. It is easy to see that if we
consider two short exact sequences as above, that fit in a commutative diagram

0 // B

��

// P

��

// A //

idA

��

0

0 // B′ // P ′ // A // 0,

then the morphisms Fi+1(A)→ Gi+1(A) induced by the two exact sequences agree.
Given two arbitrary short exact sequences as above

0→ B′ → P ′ → A→ 0

and

0→ B′′ → P ′′ → A→ 0,

we construct a new short exact sequence

0→ B → P → A→ 0

with the same property, that maps to each of the other two. For this, we consider
P1×AP2 → A and then take an epimorphism P → P1×AP2 such that Fi+1(P ) = 0.
This gives the independence of the choice of short exact sequence in the definition.
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In order to show that αi+1 is a natural transformation, consider a morphism
u : A′ → A. The commutativity that we need follows easily if we compute αi+1(A′)
and αi+1(A) using a commutative diagram with exact rows

0 // B′ //

��

P ′ //

��

A′ //

u

��

0

0 // B // P // A // 0,

such that Fi+1(P ) = 0 = Fi+1(P ′). This is easy to construct: given an epimorphism
P → A with Fi+1(P ) = 0, we consider P ×A A′ → A′ and choose an epimorphism
P ′ → P ×A A′ such that Fi+1(P ′) = 0.

Finally, given an arbitrary short exact sequence, we need to check the commu-
tativity of (14.2.1). We leave this as an exercise for the reader. �

Remark 14.2.6. If X is a projective variety, then for every coherent sheaf
ω◦X , the δ-functor

(
ExtiOX

(−, ω◦X)
)
i≥0

is coeefaceable. Indeed, given an ample line

bundle L on X, for every coherent sheaf F , if q � 0, then we have a surjective
morphism (L−q)⊕Nq → F and

ExtiOX
(L−q, ω◦X) ' Hi(X,ω◦X ⊗OX

Lq) = 0 for all i ≥ 1

if q � 0, by Theorem 11.2.1.
By Proposition 14.2.5, it follows that Serre duality holds in strong form on a

projective n-dimensional variety X if and only if the following two conditions hold:

i) There is a coherent sheaf ω◦X on X such that for every coherent sheaf F ,
we have a functorial isomorphism

HomOX
(F , ω◦X) ' Hn(X,F)∨.

ii) The δ-functor
(
Hn−i(X,−)∨

)
i≥0

is coeffaceable.

Motivated by i) above, we make the following

Definition 14.2.7. Given an n-dimensional complete variety X, a dualizing
sheaf on X is a coherent sheaf ω◦X that represents the functor Hn(X,−)∨; in other
words, for every coherent sheaf F on X, we have a functorial isomorphism

HomOX
(F , ω◦X) ' Hn(X,F)∨.

Like every object representing a functor, a dualizing sheaf is unique up to a canon-
ical isomorphism.

The starting point in the study of Serre duality is the case of the projective
space.

Proposition 14.2.8. The projective space Pn satisfies Serre duality in strong
form, with ω◦Pn = ωPn .

Proof. We only need to check conditions i) and ii) in Remark 14.2.6. For
ii), note that for every coherent sheaf F and every q � 0, we have a surjective
morphism OPn(−q)⊕Nq → F and

Hn−i(Pn,OPn(−q)
)

= 0 for i ≥ 1, q > 0

by Theorem 11.2.2. Therefore the δ-functor
(
Hn−i(Pn,−)∨

)
i≥0

is coeffaceable.
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In order to complete the proof, it is thus enough to show that a dualizing sheaf
on Pn is given by ωPn ' OPn(−n− 1). Recall that by Theorem 11.2.2 we have an
isomorphism Hn(Pn, ωPn) ' k. This induces a natural transformation

HomOPn (F , ωPn)→ Homk

(
Hn(Pn,F), Hn(Pn, ωPn)

)
' Hn(Pn,F)∨

for every coherent sheaf F . This is an isomorphism if F = OPn(m), with m ∈ Z,
by the last assertion in Theorem 11.2.2. For an arbitrary coherent sheaf F on Pn,
there is an exact complex

E2 → E1 → F → 0,

where both E1 and E2 are direct sums of line bundles. We thus have a commutative
diagram with exact rows

0 // HomOPn (F , ωPn)

φ0

��

// HomOPn (E1, ωPn)

φ1

��

// HomOPn (E2, ωPn)

φ2

��
0 // Hn(Pn,F)∨ // Hn(Pn, E1)∨ // Hn(Pn, E2)∨.

Since φ1 and φ2 are isomorphisms, it follows that φ0 is an isomorphism as well.
This completes the proof of the proposition. �

We next show that every projective variety has a dualizing sheaf. We actually
prove the following more general result.

Proposition 14.2.9. Let X be an n-dimensional closed subvariety of the com-
plete algebraic variety Y . If Y is Cohen-Macaulay, of pure dimension N , and
Serre duality holds on Y , with the dualizing sheaf ω◦Y being a line bundle, then
ExtrOY

(OX , ω◦Y ) is a dualizing sheaf on X, where r = N − n.

Proof. Note first that ω◦X := ExtrOY
(OX , ω◦Y ) is a coherent sheaf on Y by

Proposition 10.7.16. It is easy to see that it is annihilated by the radical ideal sheaf
IX corresponding to X, since this is the case for OX (this will follow, for example,
from the computation below, using an injective resolution of ω◦Y ). We may thus
consider ω◦X as a coherent sheaf on X.

We next observe that

(14.2.2) ExtiOY
(OX , ω◦Y ) = 0 for i < r.

Indeed, for every x ∈ Y , using the fact that ω◦Y is a line bundle, we have by
Proposition 10.7.16,

ExtiOY
(OX , ω◦Y )x ' ExtiOY,x

(OX,x,OY,x).

This is clearly 0 if x 6∈ X, while for x ∈ X, this vanishes by Theorem 12.1.5, since
Y being Cohen-Macaulay, of pure dimension N , we have

depth(IX,x,OY,x) = codim(IX,x) = N − dim(OX,x) ≥ r.
Given a coherent sheaf F on X, using Serre duality on Y , we have a functorial

isomorphism

(14.2.3) Hn(X,F)∨ ' Hn(Y,F)∨ ' ExtrOY
(F , ω◦Y ).

If r = 0, then we are done: in this case, for every coherent sheaf F on X, we
clearly have

HomOY
(F , ω◦Y ) ' HomOX

(
F ,HomOY

(OX , ω◦Y )
)

= HomOX
(F , ω◦X),
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hence we are done by (14.2.3). Suppose now that r ≥ 1, and consider a resolution
ω◦Y → I• by injective OY -modules. Consider the complex J • = HomOY

(OX , I•).
For every OX -module G and every i, we have a canonical isomorphism

HomOX
(G,J i) ' HomOY

(G, Ii),

hence J i is an injective OX -module. If we put Q = Im(J r−1 → J r), it follows
from what (14.2.2) that we have an exact complex

0→ J 0 → J 1 → . . .→ J r−1 → Q→ 0.

Since all J i are injective OX -modules, it follows that this sequence breaks into
split short exact sequences; in particular, Q is an injective OX -module, too. This
implies that if P = ker(J r → J r+1), the short exact sequence

(14.2.4) 0→ Q→ P → P/Q → 0

splits. First, note that by definition, we have ω◦X = P/Q. Second, for every
coherent sheaf F on X, we have

ExtrOY
(F , ω◦Y ) =

ker
(
HomOY

(F , Ir)→ HomOY
(F , Ir+1)

)
Im
(
HomOY

(F , Ir−1)→ HomOY
(F , Ir)

)
'

ker
(
HomOX

(F ,J r)→ HomOX
(F ,J r+1)

)
Im
(
HomOX

(F ,J r−1)→ HomOX
(F ,J r)

) ' HomOX
(F ,P)

HomOX
(F ,Q)

' HomOX
(F ,Q/P);

the second to last isomorphism follows from the left exactness of HomOX
(F ,−)

and the fact that the morphism J r−1 → Q is a split surjection, while the last
isomorphism follows from the fact that (14.2.4) splits. Using (14.2.3), we obtain a
functorial isomorphism

HomOX
(F , ω◦X) ' Hn(X,F)∨,

hence ω◦X is a dualizing sheaf of X. �

Remark 14.2.10. It will follow from Theorem 14.2.12 below that in the above
proposition, the condition that Serre duality holds on Y is a consequence of the
fact that Y is Cohen-Macaulay, of pure dimension. Also, the hypothesis that ω◦Y
can be dropped, but we will not need this degree of generality.

Corollary 14.2.11. Every projective variety X has a dualizing sheaf.

Proof. Since X is projective, we can embed X as a closed subvariety of some
PN . By Proposition 14.2.8, PN has a dualizing sheaf, namely ωPN , which is a line
bundle. Since PN is clearly Cohen-Macaulay, of pure dimension, the proposition
implies that X has a dualizing sheaf. �

We now come to the main result of this section.

Theorem 14.2.12. Given a projective, n-dimensional variety X, and a closed
embedding X ↪→ PN , the following are equivalent:

i) Serre duality holds on X.
ii) Serre duality holds on X in strong form.
iii) X is Cohen-Macaulay, of pure dimension.
iv) For every locally free sheaf E on X, if j � 0, then

Hi
(
X, E(−j)

)
= 0 for all i < n.
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v) For j � 0, we have

Hi
(
X,OX(−j)

)
= 0 for all i < n.

We will need the following characterization of projective dimension:

Lemma 14.2.13. If x ∈ X is a smooth point on an algebraic variety, R =
OX,x, and M is a finitely generated R-module, then pdR(M) ≤ r if and only if

ExtiR(M,R) = 0 for all i > r.

Proof. The “only if” part is clear (see Proposition 10.7.6). For the “if” part,
consider the minimal free resolution of M :

0→ Fq → . . .→ F1 → F0 →M

(note that this is finite by Proposition 12.2.16 and Corollary 12.1.18, since R is
the local ring of a smooth point). If q > r, then the hypothesis implies that the
induced map HomR(Fq−1, R) → HomR(Fq, R) is surjective. Being a morphism of
free modules, it is split surjective, contradicting the fact that modulo the maximal
ideal, it induces the 0 map. �

Proof of Theorem 14.2.12. The implication ii)⇒i) is trivial and i)⇒iv) fol-
lows from Remark 14.2.3: if E is locally free, then

Hi
(
X, E(−j)

)
' Hn−i(X,ω◦X ⊗OX

E∨(j)
)

and this vanishes for j � 0 and n− i > 0 by Theorem 11.2.1.
The implication iv)⇒v) is trivial, too and v)⇒ii) follows from Remark 14.2.6.

Indeed, since X has a dualizing sheaf by Corollary 14.2.11, we only need to show
that the contravariant δ-functor

(
Hn−i(X,−)∨

)
i≥0

is coeffaceable. Given a coher-

ent sheaf F on X, if q � 0, then we have a surjection OX(−j)⊕Nj → F . On the
other hand, it follows from v) that Hn−i(X,OX(−j)

)
= 0 for all i > 0 and j � 0,

proving coeffaceability.
In order to complete the proof, it is enough to show the equivalence iii)⇔v).

For every x ∈ X, we have depth(OX,x) ≤ dim(OX,x) ≤ n, hence iii) holds if and
only if for all x ∈ X, we have depth(OX,x) ≥ n. Note now that the depth of OX,x
is the same when considering it as a module over itself or as a module over OPN ,x.
Since OPN ,x is a regular local ring of dimension N , every finitely generated module
over it has finite projective dimension (see Proposition 12.2.16), and it follows from
the Auslander-Buchsbaum formula that the condition in iii) is equivalent to the
fact that

pdOPN,x
(OX,x) ≤ N − n = r for all x ∈ X.

Using again the fact that PN is smooth, it follows from Lemma 14.2.13 that the
above condition is equivalent to

ExtiOPN,x
(OX,x,OPN ,x) = 0 for all x ∈ X, i > r.

By Proposition 10.7.16, the above condition is equivalent to ExtiOPN
(OX , ωPN ) = 0

for i > r.
Recall now that by Proposition 10.7.13, for every j ∈ Z, we have a spectral

sequence

Ep,q2 = Hp
(
X, ExtiOPN

(OX , ωPN (j))
)
⇒p ExtOPN

(OX , ωPN (j)
)
.
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Note that by Example 10.7.10, we have

Ep,q2 ' Hp
(
X, ExtiOPN

(OX , ωPN )(j)
)
,

and thus Theorem 11.2.1 implies that for j � 0, we have Ep,q2 = 0 for p 6= 0, hence
the spectral sequence gives isomorphisms

(14.2.5) Γ
(
X, ExtiOPN

(OX , ωPN (j))
)
' ExtiOPN

(OX , ωPN (j)
)

for all q ≥ 0.

Moreover, for q � 0, the sheaf

ExtiOPN
(OX , ωPN (j)

)
' ExtiOPN

(OX , ωPN )⊗OPN
OPN (j)

is globally generated, hence by (14.2.5), we have ExtiOPN
(OX , ωPN ) = 0 if and only

if ExtiOPN
(OX , ωPN (j)

)
= 0. Finally, Serre duality on PN implies that

ExtiOPN
(OX , ωPN (j)

)
= 0 for i > r and j � 0

if and only if

HN−i(PN ,OX(−j)
)

= 0 for N − i < n and j � 0.

This completes the proof of the theorem. �

The same argument in the proof of the implication iii)⇒v) in the above theorem
gives the following

Corollary 14.2.14. If X ↪→ PN is a projective variety such that depth(OX,x) ≥
2 for every x ∈ X, then

H1
(
X,OX(−j)

)
= 0 for j � 0.

This in turn implies the following connectedness result:

Corollary 14.2.15 (Enriques-Zariski-Severi). Let X be an irreducible normal
projective variety, with dim(X) ≥ 2. If D is an effective Cartier divisor on X such
that OX(D) is ample, then Supp(D) is connected.

Proof. Let m > 0 be such that OX(mD) is a very ample line bundle, and
consider the closed immersion X ↪→ PN such that OX(1) ' OX(mD). Since X is
normal, irreducible, of dimension ≥ 2, it follows from Serre’s criterion for normality
(see Theorem 12.1.27) that depth(OX,x) ≥ 2 for every x ∈ X. We thus conclude
from the previous corollary that H1

(
X,OX(−qmD)

)
= 0 for q � 0. Given such q,

the long exact sequence in cohomology for the short exact sequence

0→ OX(−qmD)→ OX → OqmD → 0

gives an exact sequence

H0(X,OX)→ H0(X,OqmD)→ H1
(
X,OX(−qmD)

)
= 0.

Since X is connected, we have H0(X,OX) = k, hence H0(X,OqmD) = k (of
course, we can’t have D = 0, since OX(D) is ample and X has positive dimension).
Therefore Supp(qmD) = Supp(D) is connected. �

Our next goal is to describe more explicitly, under extra assumptions, the
dualizing sheaf.
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Proposition 14.2.16. Suppose that Y is a Cohen-Macaulay variety of pure
dimension N and X is a closed subvariety, regularly embedded in Y , of pure di-
mension n = N − r. If ω◦Y is a line bundle, then

ω◦X ' ω◦Y |X ⊗OX
det(NX/Y ).

In particular, ω◦X is a line bundle.

Proof. By Theorem 14.2.12, Y satisfies Serre duality, hence we may apply
Theorem 14.2.9 to deduce ω◦X ' Ext

r
OY

(OY , ω◦Y ). We will compute this Ext sheaf
locally. Suppose first that that there is a locally free sheaf E of rank r on Y and
a section s ∈ Γ(Y, E) such that the corresponding ideal I(s) is equal to the radical
ideal sheaf IX/Y corresponding to X. Since Y is Cohen-Macaulay, it follows that s
is a regular section and thus, by Example 12.2.22, we have a locally free resolution
of OX given by the Koszul complex associated to s:

0→ ∧rE∨ → ∧r−1E∨ → . . .→ E∨ → OY → OX → 0.

By Proposition 10.7.15, we can use this resolution to compute ω◦X and get

ω◦X ' Ext
r
OY

(OY , ω◦Y ) ' coker
(
ω◦Y ⊗OY

∧r−1E −∧s−−−→ ω◦Y ⊗OY
∧rE

)
.

Since E is locally free, of rank r, it is straightforward to see that

coker
(
∧r−1 E −∧s−−−→ ∧rE

)
' ∧rE ⊗OY

OX .

Using the isomorphism NY/X ' E|X (see Example 12.2.22), we obtain

ExtrOY
(OY , ω◦Y ) ' ω◦Y |X ⊗OX

det(E|X) ' ω◦Y |X ⊗OX
det(NY/X).

In general, there is no such vector bundle E . However, for every x ∈ X,
there is an open neighborhood U of x, a vector bundle E on U and s ∈ Γ(U, E)
such that I(s) = IX/Y |U . Indeed, we can choose an affine neighborhood U of
x such that we have f1, . . . , fr ∈ OY (U) that generate Γ(U, IX/Y ). In this case

s = (f1, . . . , fr) ∈ Γ(U,O⊕rU ) satisfies the required condition. The above argument
gives an isomorphism

ExtrOY
(OY , ω◦Y )|U '

(
ω◦Y |X ⊗OX

det(NY/X)
)
|U

and it is straightforward to check that this is independent of the choice of (E , s).
These isomorphisms thus glue to give the desired global isomorphism. �

Example 14.2.17. If X is a smooth, irreducible projective variety, then we
have a closed immersion X ↪→ PN . Note that X is regularly embedded in PN ,
since PN and X are smooth (see Example 12.3.19). We can thus apply the above
proposition to conclude that

ω◦X ' ω◦PN |X ⊗OX
det(NX/PN ) ' ωPN |X ⊗OX

det(NX/PN ).

Using Corollary 8.7.27, we conclude that ω◦X ' ωX .

Example 14.2.18. Let X be a smooth, irreducible, projective variety and Z a
closed subvariety of X, of pure codimension 1. In this case Z is an effective Cartier
divisor on X. Using the proposition and the previous example, we obtain

ω◦Z ' ωX |Z ⊗OZ(Z),

where OZ(Z) := OX(Z)|Z . This is known as the adjunction formula.
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Example 14.2.19. If X is a smooth, irreducible, n-dimensional projective va-
riety, then hp,q(X) = hn−p,n−q(X). Indeed, it follows from Remark 8.5.25 that

(ΩpX)∨ ' Ωn−pX ⊗OX
ω−1
X ,

hence Serre duality gives

hp,q(X) = hq(X,ΩpX) = hn−q
(
X,ωX⊗OX

(Ωn−pX )∨
)

= hn−q(X,Ωn−pX ) = hn−p,n−q(X).





CHAPTER 15

Algebraic curves

In this chapter we give an introduction to algebraic curves. In the first sec-
tion we introduce the degree of a divisor on a smooth projective curve, prove the
Riemann-Roch theorem, and give some applications. In the second section we dis-
cuss morphisms between curves. We begin by describing the equivalence between
the category of smooth, projective curves and that of finitely generated fields of
transcendence degree 1 over the ground field, and then turn to the case of finite
morphisms and prove, in particular, the Riemann-Hurwitz theorem. Finally, in the
last section we discuss several other topics about the geometry of curves: hyperel-
liptic curves, Clifford’s theorem, and the fact that every smooth projective curve
can be embedded in P3.

15.1. The Riemann-Roch theorem

Recall that a curve is an algebraically variety of pure dimension 1. Moreover,
in this chapter we assume that all curves are irreducible.

Remark 15.1.1. We will make extensive use of Serre duality, which implies
that for a vector bundle E on a smooth, projective curve, we have functorial iso-
morphisms

(15.1.1) Hi(X, E)∨ ' H1−i(X,ωX ⊗OX
E∨) for i = 0, 1.

Indeed, X satisfies Serre duality by Theorem 14.2.12, since it is is smooth, and
we have ω◦X ' ωX by Proposition 14.2.16. In fact, in this case we don’t need
Theorem 14.2.12: the isomorphism for i = 1 follows from the definition of the
dualizing sheaf, and by replacing E with ωX ⊗OX

E∨, we obtain the isomorphism
for i = 0. In what follows, we will only need the case when E is a line bundle.

Remark 15.1.2. Recall that if X is a complete curve, then the arithmetic genus
of X is given by

pa(X) = (−1)dim(X)
(
χ(OX)− 1

)
= h1(X,OX),

where we use the fact that h0(X,OX) = 1 sinceX is irreducible. A first consequence
of Serre duality is that if X is a smooth, projective curve, then h1(X,OX) =
h0(X,ωX), that is, the arithmetic genus and the geometric genus coincide. Hence
in this case, we simply call this the genus of X.

15.1.1. Degree of divisors on smooth, projective curves. We now in-
troduce the basic invariant of a divisor on a smooth, projective curve. Recall that
on smooth, irreducible varieties, we do not distinguish between Weil and Cartier
divisors.

383
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Definition 15.1.3. If D =
∑r
i=1 niPi is a divisor on the smooth projective

curve X, then the degree of D is given by

deg(D) :=

r∑
i=1

ni ∈ Z.

Remark 15.1.4. It is clear from definition that given two divisors D and E as
above, we have

deg(D + E) = deg(D) + deg(E).

The following result is the cornerstone of the theory of algebraic curves:

Theorem 15.1.5 (Riemann-Roch). If D is a divisor on a smooth, projective
curve X of genus g, then

(15.1.2) χ
(
X,OX(D)

)
= deg(D)− g + 1.

Proof. The theorem holds if D = 0, since

χ(X,OX) = h0(OX)− h1(X,OX) = 1− g.

By adding or subtracting one point at a time, we can get from D to 0, so that it is
enough to show that for every divisor D and every P ∈ X, the theorem holds for D
if and only if it holds for E = D−P . Of course, we have deg(E) = deg(D)−1, and
thus it is enough to show that χ

(
X,OX(E)

)
= χ

(
X,OX(D)

)
−1. By tensoring the

exact sequence

0→ OX(−P )→ OX → OP → 0

with the line bundle OX(D), we obtain the exact sequence

0→ OX(E)→ OX(D)→ OP → 0.

By taking Euler-Poincaré characteristics, we get

χ
(
X,OX(D)

)
− χ

(
X,OX(E)

)
= χ(X,OP ) = 1,

completing the proof of the theorem. �

Corollary 15.1.6. If D1 and D2 are linearly equivalent divisors on the smooth,
projective curve X, then

deg(D1) = deg(D2).

Proof. The assertion follows from the fact that the left-hand side of (15.1.2)
only depends on the line bundle associated to D. �

Definition 15.1.7. Let X be a smooth, projective curve. Recall that if L is
a line bundle on X, then there is a divisor D on X such that OX(D) ' L (see
Proposition 9.4.11). In this case, we define the degree deg(L) of L to be equal to
deg(D) (by the above corollary, this is independent of the choice of D).

Example 15.1.8. If L is a line bundle on a smooth, projective curve such that
h0(X,L) ≥ 1, then deg(L) ≥ 0, with equality if and only if L ' OX . Indeed, a
divisor D ∈ |L| is effective, hence we clearly have deg(D) ≥ 0, with equality if and
only if D = 0.
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Example 15.1.9. If L is a very ample line bundle on the smooth, projective
curve X, giving a closed immersion X ↪→ Pn such that L ' OX(1), then the degree
of L is equal to the degree of X with respect to this embedding. Indeed, the Hilbert
polynomial of X with respect to this embedding is given by

PX(m) = χ
(
X,OX(m)

)
= χ(X,Lm) = m · deg(L)− g + 1,

where the last equality follows from the Riemann-Roch theorem. This implies that
the degree of X is equal to deg(L).

We now give some easy consequences of the Riemann-Roch theorem.

Corollary 15.1.10. If X is a smooth, projective curve of genus g, then

deg(ωX) = 2g − 2.

Proof. The Riemann-Roch theorem gives

χ(X,ωX) = deg(ωX)− g + 1.

On the other hand, Serre duality gives

χ(X,ωX) = h0(X,ωX)− h1(X,ωX) = h1(X,OX)− h0(X,OX) = g − 1,

and we obtain the formula in the corollary. �

Example 15.1.11. If L is a line bundle on a smooth, projective curve of genus g,
such that h1(L) ≥ 1, then deg(L) ≤ 2g−2, with equality if and only if L ' ωX . In-
deed, Serre duality gives h0(ωX⊗OX

L−1) ≥ 1, and we deduce from Example 15.1.8
that

2g − 2− deg(L) = deg(ωX ⊗OX
L−1) ≥ 0,

with equality if and only if ωX ⊗OX
L−1 ' OX .

Remark 15.1.12. For a line bundle L, the Riemann-Roch formula allows us
to compute one of h0(X,L) and h1(X,L) whenever we know the other one; in
particular, it is useful to know when one of these is 0. Examples 15.1.8 and 15.1.11
provide such criteria.

More precisely, Example 15.1.8 says that if deg(L) < 0, then h0(X,L) = 0,
hence h1(X,L) = g− 1− deg(L). Similarly, Example 15.1.11 says that if deg(L) ≥
2g − 1, then h1(X,L) = 0, hence h0(X,L) = deg(L)− g + 1.

Remark 15.1.13. An immediate consequence of the Riemann-Roch theorem
is that if X is a smooth, projective curve of genus g, and L is a line bundle with
deg(L) ≥ g, then

h0(X,L) ≥ χ(X,L) ≥ 1.

The next proposition gives a necessary and sufficient condition for when a line
bundle on a smooth, projective curve is globally generated or very ample.

Notation 15.1.14. If L is a line bundle on a smooth projective curve and D
is a divisor on X, we put L(D) := L ⊗OX

OX(D).

Proposition 15.1.15. Let L be a line bundle on the smooth, projective curve
X.

i) The line bundle L is globally generated if and only if for every P ∈ X, we
have

h0
(
X,L(−P )

)
= h0(X,L)− 1.
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ii) The line bundle L is very ample if and only if for every P,Q ∈ X (not
necessarily distinct), we have

h0
(
X,L(−P −Q)

)
= h0(X,L)− 2.

Proof. For every P ∈ X, by tensoring with L the short exact sequence

0→ OX(−P )→ OX → OP → 0,

we obtain the exact sequence

0→ L(−P )→ L → L|P → 0.

By taking global sections, we obtain an exact sequence

0→ H0
(
X,L(−P )

)
→ H0(X,L)

φ−→ L(P ) ' k,

where φ(s) = s(P ). We thus conclude that we have either h0
(
X,L(−P )

)
=

h0(X,L) − 1 or h0
(
X,L(−P )

)
= h0(X,L), and that the former equality holds

if and only if P is not a base-point of |L|. This gives the assertion in i).
We now see that if the condition in ii) holds, then L is, in particular, globally

generated. We henceforth assume that this is the case. The equivalence in ii)
follows from the characterization in Proposition 11.5.18 if we show the following:

(α) Given two distinct points P,Q ∈ X, the complete linear system |L| sepa-
rates P and Q if and only if

h0
(
X,L(−P −Q)

)
= h0(X,L)− 2.

(β) Given P ∈ X, the complete linear system |L| separates the tangent direc-
tions at P if and only if

h0
(
X,L(−2P )

)
= h0(X,L)− 2.

We first consider (α). We have seen that for every P ∈ X, the codimension 1
linear subspace H0

(
X,L(−P )

)
⊆ H0(X,L) consists of those sections s ∈ H0(X,L)

such that s(P ) = 0. We deduce that for two distinct points P,Q ∈ X, the linear
system |L| separates P and Q if and only if H0

(
X,L(−P )

)
6= H0

(
X,L(−Q)

)
, which

is the case if and only if the intersection of these two subspaces has codimension 2
in H0(X,L). On the other hand, we have an exact sequence of sheaves on X

0→ OX(−P −Q)→ OX → O{P,Q} → 0,

which after tensoring with L and taking global sections gives an exact sequence

0→ H0
(
X,L(−P −Q)

)
→ H0(X,L)

ψ−→ L(P ) ⊕ L(Q) ' k⊕2,

where ψ(s) =
(
s(P ), s(Q)

)
. We thus have

H0
(
X,L(−P −Q)

)
= H0

(
X,L(−P )

)
∩H0

(
X,L(−Q)

)
.

This implies that the left-hand side has codimension 2 in H0(X,L) if and only if
|L| separates P and Q.

The argument for (β) is similar. For every P ∈ X, we have dimk TPX = 1,
hence |L| separates the tangent directions at P if and only if there is s ∈ H0(X,L)
such that s(P ) = 0, but sP 6∈ m2

PLP , where mP is the maximal ideal in OX,P . By
tensoring with L the short exact sequence of sheaves on X

0→ OX(−2P )→ OX → O2P → 0,
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and taking global sections, we obtain an exact sequence

0→ H0
(
X,L(−2P )

)
→ H0(X,L)→ H0(X,L ⊗OX

O2P ) ' OX,P /m2
P .

This identifies H0
(
L(−2P )

)
with the space of sections s ∈ H0(X,L) such that

sP ∈ m2
PLP . This immediately gives the assertion in (β). �

Corollary 15.1.16. Let X be a smooth, projective curve of genus g. If L is a
line bundle on X, with deg(L) ≥ 2g, then L is globally generated. If deg(L) ≥ 2g+1,
then L is very ample.

Proof. Note that if deg(L) ≥ 2g, then it follows from Remark 15.1.12 that
h0(X,L) = deg(L) − g + 1. Moreover, for every P ∈ X, we have deg

(
L(−P )

)
=

deg(L)− 1 ≥ 2g − 1, hence another application of the same remark gives

h0
(
X,L(−P )

)
= deg

(
L(−P )

)
− g + 1 = h0(X,L)− 1.

We deduce that L is globally generated using the first assertion in the proposition.
If deg(L) ≥ 2g + 1, we deduce similarly that L is very ample using the second
assertion in the proposition. �

Corollary 15.1.17. A line bundle L on a smooth, projective curve X is ample
if and only if deg(L) > 0.

Proof. If deg(L) > 0, then it follows from the previous corollary that Lm is
very ample for every m such that m · deg(L) ≥ 2g + 1, where g is the genus of
X. Conversely, suppose that L is ample, and let m > 0 be such that Lm is very
ample. By Example 15.1.9, we see that deg(Lm) = m ·deg(L) is equal to the degree
of X with respect to the embedding given by the complete linear system |Lm|; in
particular, this is a positive integer. �

When classifying curves, the basic trichotomy is the following.

Example 15.1.18 (Case g = 0). A smooth projective curve X has genus g = 0
if and only if X ' P1. Indeed, it is clear that pg(P

1) = 0. Conversely, if g = 0, and
P ∈ X is any point, then it follows from Proposition 15.1.15 that the line bundle
L = OX(P ) is very ample. Moreover, we have h0(X,L) = 2 by Remark 15.1.12,
hence |L| gives a closed immersion i : X ↪→ P1. Of course, this is an isomorphism.

Note that in this case, the line bundle ω−1
X is ample.

Example 15.1.19 (Case g = 1). A smooth projective curve X of genus g = 1 is
an elliptic curve. Note that by Corollary 15.1.10, in this case deg(ωX) = 0. In fact,
we have ωX ' OX : indeed, since h0(ωX) = 1 by assumption, we have an effective
divisor D such that ωX ' OX(D). Since deg(D) = 0, it follows that D = 0.

Note that if X is an elliptic curve, then for every line bundle L on X of de-
gree 3, it follows from Proposition 15.1.15 that L is very ample. Moreover, by
Remark 15.1.12, we have h0(X,L) = 3, hence the complete linear system |L| gives
a closed immersion X ↪→ P2, with X of degree 3 (see Remark 15.1.9). Conversely,
if X ⊆ P2 is a smooth curve of degree 3, then it follows from Corollary 8.7.27 that

ωX ' ωP2 ⊗OP2 OP2(X)|X ' OX ,

hence X is an elliptic curve.
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Example 15.1.20 (The general case). The case g ≥ 2 is the case when we
have deg(ωX) > 0, hence ωX is ample by Corollary 15.1.17. This is the “general
case”. We will see in Example 16.2.3 below that for every g ≥ 2, there are smooth,
projective curves of genus g.

We now give some examples of complete intersection curves. Suppose first
that X is a smooth curve in P2 of degree d ≥ 4. In this case, it follows from
Corollary 8.7.27 that ωX ' OX(d−3). In particular, it follows from Example 11.2.6
that the genus g of X is equal to dimk

(
k[x0, x1, x2]/(f)

)
d−3

, where f is an equation

of X. We thus obtain

g =

(
d− 1

2

)
.

More generally, suppose that X ⊆ Pn is a smooth curve, which is a complete
intersection of hypersurfaces of degrees d1, . . . , dn−1 ≥ 1. In this case, it follows
from Example 12.3.21 that ωX ' OX(d1 + . . .+ dn−1−n− 1). On the other hand,
a repeated application of the formula in Example 11.4.10 gives

deg
(
OX(1)

)
= d1 · · · dn−1,

and we deduce using Corollary 15.1.10 that if g is the genus of X, then

2g − 2 = d1 · · · dn−1(d1 + . . .+ dn−1 − n− 1).

Note that if X is non-degenerate (equivalently, di ≥ 2 for all i) and n ≥ 3, then
g ≥ 1, with equality if and only if n = 3 and d1 = d2 = 2.

Remark 15.1.21. The genus is the fundamental invariant in the classification
of smooth algebraic curves. An important result, going back to Riemann, says that
for every g ≥ 1, there is a moduli space Mg of smooth, projective curves of genus
g. This is an irreducible, quasi-projective variety whose points are in bijection with
the smooth, projective curves of genus g. If g = 1, then Mg is isomorphic to A1,
while for g ≥ 2,Mg has dimension 3g− 3. For a thorough discussion, see [HM98].

Remark 15.1.22. A basic result in the theory of curves is that if X is a
smooth, projective curve, then there is an irreducible projective variety Pic0(X)
whose points are in bijection with the isomorphism classes of line bundles of degree
0. Moreover, the tensor product of line bundles makes Pic0(X) an algebraic group
(a connected algebraic group which is a projective variety is an Abelian variety).
This is the Picard variety of X.

Exercise 15.1.23. Let X be a smooth projective curve.

i) Show that if for a vector bundle E on X, we put deg(E) := deg
(
det(E)

)
,

then we obtain a group homomorphism deg : K0(X)→ Z.
ii) Via the canonical isomorphism K0(X) → K0(X), the homomorphism in

i) gives a group homomorphism deg : K0(X) → Z. Show that if M is a
coherent sheaf that is supported on a finite set, then deg(M) = h0(X,M).

iii) Show that if E is a vector bundle on X, then the canonical morphism
π : P(E)→ X has a section s : X → P(E) (that is, we have π ◦ s = idX).
Deduce that there is a surjective morphism E → L, where L is a line
bundle.

iv) Show that every vector bundle E on X has a filtration

0 = E0 ⊆ E1 ⊆ . . . ⊆ Er = E
such that Ei/Ei−1 is a line bundle for every i, with 1 ≤ i ≤ r.
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v) Show that if E is a vector bundle of rank r, then we have the following
version of the Riemann-Roch formula:

χ(X, E) = deg(E)− rk(E) · (g − 1),

where g is the genus of X.

Exercise 15.1.24. Let X be a smooth projective curve and consider the group
homomorphism

α : K0(X)→ Pic(X)⊕ Z, α
(
[E ]
)

=
(
det(E), rank(E)

)
.

i) Show that we have a group homomorphism Pic(X)→ K0(X) that maps
the isomorphism class of L to [L]− [OX ].

ii) Deduce that α is an isomorphism.

15.1.2. Arithmetic genus of singular curves. We have not discussed so
far singular curves. We only prove one result, relating the arithmetic genus of a
singular curve to that of its normalization.

Given an arbitrary curve X, consider the normalization morphism π : X̃ → X.
The canonical morphism OX → π∗(OX̃) is injective and let M be its cokernel, so
that we have a short exact sequence

(15.1.3) 0→ OX → π∗(OX̃)→M→ 0.

Since π is an isomorphism over Xsm, it follows thatM is supported on the singular
locus of X. Moreover, for every P ∈ Xsing, we have

MP ' π∗(OP̃ )P /OX,P ' ÕX,P /OX,P ,

where ÕX,P is the integral closure of OX,P in k(X). We put δP = `OX,P
(MP ). It

is clear that δP > 0 for every singular point P .

Proposition 15.1.25. If X is a complete curve and π : X̃ → X is the normal-
ization morphism, then

pa(X) = pa(X̃) +
∑

P∈Xsing

δP .

In particular, we have pa(X) ≥ pa(X̃), with strict inequality if X is singular.

Proof. By taking the long exact sequence in cohomology corresponding to
(15.1.3), we obtain

0→ H0(X,OX)→ H0(X̃,OX̃)→ H0(X,M)

→ H1(X,OX)→ H1
(
X,π∗(OX̃)

)
→ H1(X,M)→ 0.

Since M is supported on a finite set, we have H1(X,M) = 0. Note also that the
morphism

H0(X,OX)→ H0(X̃,OX̃)

is an isomorphism, both cohomology groups being canonically isomorphic to k.
Finally, since π is a finite morphism, we have an isomorphism

H1
(
X,π∗(OX̃)

)
' H1(X̃,OX̃)

by Example 10.5.16. We thus have a short exact sequence

0→ H0(X,M)→ H1(X,OX)→ H1(X̃,OX̃)→ 0,

and the equality in the proposition follows. �
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Corollary 15.1.26. If X is a complete curve with pa(X) = 0, then X is
smooth; if X is projective1, then it is isomorphic to P1.

Proof. It follows from the proposition that if X is singular, then 0 = pa(X) >

pa(X̃) ≥ 0, a contradiction. Therefore X is smooth and if it is projective, then it
follows from Example 15.1.18 that X ' P1. �

15.2. Morphisms between algebraic curves

15.2.1. Rational maps vs. morphisms. We begin by discussing some gen-
eral facts about morphisms of curves. Note first that since we are in dimension 1,
smoothness is the same as normality. Second, we recall that by Remark 9.1.7, any
rational map X 99K Y , where X is a smooth curve and Y is a complete variety, is
a morphism.

Remark 15.2.1. Every non-constant morphism f : X → Y , where X and Y
are complete curves, is finite. Indeed, since f is non-constant, every fiber of f is
finite. Since X and Y are complete, f is proper by Remark 5.1.8, and thus f is
finite by Corollary 14.1.8.

Proposition 15.2.2. Every birational map between smooth, complete curves is
an isomorphism. Moreover, every smooth, complete curve is projective.

Proof. If φ : X 99K Y is a birational map between smooth, complete curves,
we have seen that both φ and φ−1 are morphisms. Therefore φ is an isomorphism.

Suppose now that X is an arbitrary smooth, complete curve. If U is an affine
open subset of X, by embedding U in an affine space An and taking the closure

in Pn, we see that X is birational to a projective curve Y . If π : Ỹ → Y is

the normalization map, since Y is projective, it follows that Ỹ is projective (see
Remark 11.6.18). We conclude that X is birational to the smooth, projective curve

Ỹ . By the first assertion in the proposition, X and Ỹ are isomorphic, hence X is
projective. �

Remark 15.2.3. The category of smooth, projective curves, with non-constant
morphisms, is equivalent to the category of finitely generated field extensions K/k,
with trdeg(K/k) = 1; this equivalence is given by the functor which associates to
X its function field. This follows from the the following two facts:

i) A dominant rational map between smooth, projective curves is the same
as a non-constant morphism.

ii) If K/k is a finitely generated field extension, of transcendence degree 1,
then there is a smooth, projective curve X such that k(X) ' K. For this,
we argue as in the proof of the above proposition: we have an affine curve
U such that k(U) ' K. By taking the closure of U in some projective
space and then taking the normalization, we obtain a smooth, projecctive
curve X with k(X) ' K.

Remark 15.2.4. If f : X → Y is a finite, birational morphism between two
curves, with Y smooth, then f is an isomorphism. This follows from the fact that
if A is a normal domain, then every finite extension of A contained in the fraction
field of A is equal to A.

1In fact, we will see in Proposition 15.2.2 below that if X is a smooth, complete curve, then
X is automatically projective.
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Remark 15.2.5. We can show that every complete curve X is projective. In-

deed, let π : X̃ → X be the normalization of X. If P is a smooth point of X, we
claim that the line bundle OX(P ) is ample, hence X is projective. Indeed, we have

seen that X̃ is projective. By assumption, f is an isomorphism over a neighborhood
of P , hence f∗

(
OX(P )

)
' OX̃

(
f−1(P )

)
is a line bundle of degree 1, hence ample

by Corollary 15.1.17. We conclude that OX(P ) is ample by Exercise 11.6.20.

Proposition 15.2.6. If X is a smooth curve, then there is an open immersion
X ↪→ Y , where Y is a smooth, projective curve. Moreover, any birational morphism
between smooth curves is an open immersion.

Proof. Choose a smooth projective curve Y such that k(X) ' k(Y ). We thus
have a birational map X 99K Y , hence a birational morphism f : X → Y . We will
show that this is an open immersion. We first show that if U is an affine open
subset of X, then the restriction of f to U is an open immersion. Let U be the
closure of U in some projective space and π : V → U the normalization morphism.
Since U is smooth, π is an isomorphism over U , hence we have an open immersion
U ↪→ V . The morphism f |U has an extension to a birational morphism g : V → Y ,
which is an isomorphism. This implies that f |U is an open immersion.

In order to conclude that f is an open immersion, it is enough to show that f is
injective. If this is not the case, then there are P 6= Q in X such that f(P ) = f(Q).
Let U be an affine open neigbourhood of P . Since f |U is an open immersion, it
follows that f maps U isomorphically onto an open subset f(U) of Y . In particular,
Q 6∈ U . If U ′ = U ∪{Q}, then U ′ is an open subset of X such that f induces a mor-
phism U ′ → f(U). Since the composition U ↪→ U ′ → f(U) is a closed immersion,
it follows that U ↪→ U ′ is a closed immersion (see Remark 5.1.8), contradicting the
fact that U ′ is connected. This completes the proof of the first assertion in the
proposition.

Suppose now that f : X0 → Y0 is an arbitrary birational morphism between
smooth curves. If Z is a smooth, projective curve that is birational to X0 and
Y0, we already know that we have open immersions X ↪→ Z and Y ↪→ Z. The
morphism f then extends to a birational morphism Z → Z, which must be an
isomorphism. This implies that f is an open immersion. �

Proposition 15.2.7. If X is a curve that is not projective, then X is affine.

Proof. Since X is not projective, it follows from Remark 15.2.5 that X is not

complete. Let π : X̃ → X be the normalization morphism. Since X̃ is smooth, it

follows from Proposition 15.2.6 that we have an open immersion X̃ ↪→ Y , where

Y is a smooth projective curve. Note that X̃ 6= Y , since X is not complete. The

complement Y r X̃ is a non-empty closed subset of Y , hence it is a finite set
{P1, . . . , Pr}, with r ≥ 1. If D =

∑r
i=1 Pi, then it follows from Corollary 15.1.17

that L = OY (D) is ample. Let m be a positive integer such that Lm is very ample
and let i : Y ↪→ Pn be the closed immersion defined by the complete linear system

|Lm|. Let H be a hyperplane in Pn such that H|Y = mD. We see that X̃ is a

closed subvariety of the affine variety Pn rH, hence X̃ is affine. Since π is finite
and surjective, we conclude that X is affine (see Exercise 10.5.21). �

15.2.2. Pull-back of divisors via finite morphisms. We now turn to the
study of non-constant morphisms between smooth, projective curves. Let f : X →
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Y be such a morphism. As we have already mentioned, f is finite. Moreover, it is
also flat: this follows, for example, from Example 12.3.10.

The ramification index eP (f) at a point P ∈ X is defined as follows. We
have an induced local homomorphism φ : OY,f(P ) → OX,P and if u ∈ OY,f(P ) and
v ∈ OX,P are local uniformizers (that is, generators for the respective maximal
ideals), then we can write φ(u) = vew for an invertible element w ∈ OX,P and a
non-negative integer e. We put eP (f) = e (it is clear that this is independent of
the choice of u and v). Note that eP (f) is the same as the multiplicity of P in the
fiber f−1

(
f(P )

)
. Proposition 13.1.1 thus gives the following

Proposition 15.2.8. If f : X → Y is a finite morphism between smooth, pro-
jective curves, then for every Q ∈ Y , we have∑

P∈f−1(Q)

eP (f) = deg(f).

If f : X → Y is as above, then for every Q ∈ Y , we may consider Q as a Cartier
divisor on Y , and we may consider its inverse image f∗(Q). It then follows from
definition that

f∗(Q) =
∑

P∈f−1(Q)

eP (f) · P.

In particular, the above proposition gives the following

Corollary 15.2.9. If f : X → Y is a finite morphism between smooth, pro-
jective curves, then for every divisor D on Y , we have

deg
(
f∗(D)

)
= deg(f) · deg(D).

Remark 15.2.10. If f : X → Y is a finite morphism between smooth, projective
curves, and if D is a divisor on X, then we may consider its push-forward f∗(D).
It follows from definition that deg

(
f∗(D)

)
= deg(D).

Remark 15.2.11. Let f : X → Y be a finite morphism between smooth, pro-
jective curves. Note that by definition f is unramified at P ∈ X if and only if
eP (f) = 1. By Remark 13.2.12, this is the case if and only if the induced mor-
phism dfP : TPX → Tf(P )Y is an isomorphism (which is the case if and only if it is
non-zero).

Example 15.2.12. We can use the above framework to see that every finite étale
morphism f : X → P1, where X is a connected variety, is an isomorphism. Indeed,
given such f , it follows from Proposition 13.2.10 that X is smooth, hence it is a
smooth, projective curve. Since f is étale, we have an isomorphism ωX ' f∗(ωY )
(see Remark 13.2.9) and using the formula for the degrees of the canonical line
bundles, we deduce that if g is the genus of X, then

2g − 2 = deg(f) · (−2).

If f is not birational, then deg(f) ≥ 2, hence 2g−2 ≤ −4, a contradiction. Therefore
f is birational, hence an isomorphism.

Example 15.2.13. Let us show that if X is a smooth, projective curve, which
is not isomorphic to P1, then for every point P ∈ X, we have h0

(
X,OX(P )

)
= 1.

Indeed, suppose that this is not the case, hence there is an effective divisor D on
X, linearly equivalent to P , and different from P . We have deg(D) = 1, hence
D = Q, for some point Q different from P . Since P ∼ Q, it follows that there
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is φ ∈ k(X) r {0} such that div(φ) = P − Q. Note that φ gives a rational map
X 99K P1, and thus a morphism f : X → P1. Note that div(φ) = f∗(0 −∞). We
thus see that f∗(0) = P and it follows from Corollary 15.2.9 that deg(f) = 1. This
means that f is birational, hence an isomorphism.

Example 15.2.14. We can now give an example of an ample line bundle which
is not globally generated; in particular, it is not very ample. Indeed, suppose that
X is a curve of genus ≥ 1 and let L = OX(P ) for some point P ∈ X. In this
case, L is ample by Corollary 15.1.17. On the other hand, it follows from the above
example that |L| has only one element, and thus P lies in the base-locus of L.

15.2.3. Degree of line bundles on singular curves. So far, we have only
considered the degree of a line bundle on a smooth, projective curve. We can extend
this to arbitrary projective curves, as follows.

Definition 15.2.15. If L is a line bundle on the projective curve X, and

π : X̃ → X is the normalization, then we define the degree of L to be

deg(L) := deg
(
π∗(L)

)
.

We can similarly define the degree of a Cartier divisor D on X and we have
deg(D) = deg

(
OX(D)

)
. It is clear that the degree gives a group homomorphism

Pic(X)→ Z.

Remark 15.2.16. The formula in Corollary 15.2.9 holds in this more general
setting. Indeed, suppose that f : X → Y is a finite morphism between two projec-

tive curves and let πX : X̃ → X and πY : Ỹ → Y be the corresponding normalization
morphisms. We thus obtain a dominant rational map π−1

Y ◦ f ◦πX , which is in fact

a morphism f̃ such that deg(f) = deg(f̃). Using the definition of degree on X and
Y and Corollary 15.2.9, we thus see that if L is a line bundle on Y , then

deg
(
f∗(L)

)
= deg

(
π∗X
(
f∗(L)

))
= deg

(
f̃∗
(
π∗Y (L)

))
= deg(f̃) · deg

(
π∗Y (L)

)
= deg(f) · deg(L).

Remark 15.2.17. If X is a projective curve embedded in Pn, then the formula
in Example 15.1.9 also holds in the possibly singular case, namely deg

(
OX(1)

)
=

deg(X). Indeed, let πX : X̃ → X be the normalization morphism. By tensoring
with OX(m) the short exact sequence

0→ OX → π∗(OX̃)→M→ 0

discussed in §15.1.2, we obtain using the projection formula the exact sequence

(15.2.1) 0→ OX(m)→ π∗
(
π∗(OX(m))

)
→M⊗OX

OX(m)→ 0.

Since M is supported on a finite set of points, we have M ⊗OX
OX(m) ' M

for every m. On the other hand, since π is a finite morphism, it follows from
Example 10.5.16 that

χ
(
X,π∗(π

∗(OX(m)))
)

= χ
(
X̃, π∗(OX(m))

)
.

By taking Euler-Poincaré characteristics in (15.2.1) and using the Riemann-Roch

formula on X̃, we thus obtain

χ
(
X,OX(m)

)
= χ

(
X̃, π∗(OX(m))

)
− χ(X,M)
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= deg
(
π∗(OX(1))

)
·m+

(
1− g − χ(X,M)

)
for all m ∈ Z, where g is the genus of X̃. We thus obtain

deg(X) = deg
(
π∗(OX(1))

)
= deg

(
OX(1)

)
.

Example 15.2.18. Suppose that X ⊆ Pn is a projective curve and Q ∈ PnrX.
The projection Pnr {Q} → Pn−1 induces a finite surjective morphism f : X → Y ,
with f∗

(
OY (1)

)
' OX(1). We thus see that

deg(X) = deg(f) · deg(Y ).

Exercise 15.2.19. Let Q ∈ Pn be a point and consider the projection map
φ : Pn r {Q} → Pn−1.

i) Show that if π : W → Pn is the blow-up of Pn at the point Q (that is, the
blow-up of the radical ideal sheaf corresponding to Q), then the rational
map φ ◦ π−1 is in fact a morphism f : W → Pn−1 such that

f∗
(
OPn−1(1)

)
' π∗

(
OPn(1)

)
⊗OW

OW (−E),

where E is the exceptional divisor on the blow-up.
ii) Suppose that X ⊆ Pn is a curve such that Q ∈ X is a smooth point.

Show that the induced morphism X̃ → X is an isomorphism, where X̃ is
the strict transform of X. Deduce that the restriction of π to X r {Q}
extends to a morphism f : X → Pn−1 such that

f∗
(
OPn−1(1)

)
' OX(1)⊗OX

OX(−Q).

Example 15.2.20. Let X ⊆ Pn be a projective curve and let Q ∈ X be a
smooth point. It follows from the above exercise that the projection map Pn r
{Q} → Pn−1 induces a surjective morphism f : X → Y ⊆ Pn−1. If X is not a line,
then Y is a curve and we have

deg(X)− 1 = deg(f) · deg(Y ).

Example 15.2.21. We have seen in Example 11.4.11 that if X ⊆ Pn is a
projective, non-degenerate curve, then deg(X) ≥ n. We now show that we have
deg(X) = n if and only if X is a rational normal curve. The “if” part is clear
(see Example 11.4.7), hence we only need to prove the “only if” part. We argue by
induction on n, the case n = 1 being trivial.

For the induction step, suppose that n ≥ 2 and let Q ∈ X be a smooth
point. If f : X → Y is the finite, surjective morphism induced by the projection
Pn r {Q} → Pn−1, then we have seen in the previous example that

deg(X)− 1 = deg(f) · deg(Y ).

It is clear that Y is non-degenerate, hence if deg(X) = n, we have

n− 1 = deg(f) · deg(Y ) ≥ deg(f) · (n− 1).

This implies that deg(f) = 1 and deg(Y ) = n − 1. By the inductive assumption,
Y is a rational normal curve in Pn−1. In particular, it is smooth, and since f is
birational, we conclude that f is an isomorphism (see Remark 15.2.4). Since Y is
isomorphic to P1, it follows that X is isomorphic to P1. Since deg(X) = n, we
have OX(1) ' OP1(n), and since h0

(
P1,OP1(n)

)
= n+ 1, is now clear that X is a

rational normal curve.
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15.2.4. The Riemann-Hurwitz theorem. Suppose that f : X → Y is a
finite morphism between smooth, projective curves. Our goal is to relate, in this
case, the canonical line bundles on X and Y . Recall that we have an exact sequence

(15.2.2) f∗(ωY )
α−→ ωX → ΩX/Y → 0

(see Proposition 8.7.20). Note that α is a morphism between two line bundles. This
implies that we have a section s ∈ Γ

(
X,ωX ⊗OX

f∗(ωY )−1
)

such that α is given

by tensoring with f∗(ωY ) the morphism OX → ωX ⊗OX
f∗(ωY )−1 corresponding

to s.
Suppose now that f is separable, that is, the induced finite field extension

k(X)/k(Y ) is separable (for example, this always holds if char(k) = 0). In this
case, it follows from Lemma 13.2.19 that there is an open subset U ⊆ X such that
the induced morphism U → Y is smooth, of relative dimension 0 (hence étale). This
implies that α|U is an isomorphism of line bundles. Equivalently, s|U is everywhere
non-zero, and thus s 6= 0. In particular, this implies that the morphism α in (15.2.2)
is injective. The ramification divisor of f , denoted by Ramf , is the effective divisor
on X corresponding to the section s; we thus have

OX(Ramf ) ' ωX ⊗OX
f∗(ωY )−1.

Note that we have

ΩX/Y ' f∗(ωY )⊗OY
ORamf

,

hence for every P ∈ X, the coefficient of P in Ramf is equal to `
(
(ΩX/Y )P

)
. In

order to compute this, we choose local uniformizers u ∈ OY,f(P ) and v ∈ OX,P
and write φ∗(u) = vew, where φ : OY,f(P ) → OX,P is the local homomorphism
induced by f at P and w ∈ OX,P is invertible; therefore e = eP (f). If mP is
the maximal ideal in OX,P , then we have an isomorphism (ΩX)(P ) ' mP /m

2
P

and our choice of v thus implies that d(v) generates the free OX,P -module (ΩX)P .
Similarly, d(u) generates the free OY,f(P )-module (ΩY )f(P ). The exact sequence

(15.2.2) thus implies that `
(
(ΩX/Y )P

)
is the smallest non-negative integer m such

that α
(
d(u)⊗ 1

)
lies in (vm) · d(v). Since φ(u) = vew, it follows that

α
(
d(u)⊗ 1

)
= d
(
φ(u)

)
= d(vew) = eve−1wd(v) + ved(w).

This shows that unless char(k) = p > 0 and p divides eP (f), the coefficient of P in
Ramf is equal to eP (f) − 1; on the other hand, if char(k) = p > 0 and p divides
eP (F ), then the only thing we can conclude is that this coefficient is ≥ eP (f).

We are thus led to the following terminology.

Definition 15.2.22. Let f : X → Y be a separable, finite morphism of smooth,
projective curves. We say that f is wildly ramified at P if char(k) = p > 0 and p
divides eP (f); otherwise, f is tamely ramified at P .

We collect in the following theorem, known as the Riemann-Hurwitz theorem,
the conclusion of the above discussion:

Theorem 15.2.23. If f : X → Y is a finite, separable morphism of smooth,
projective curves, then we have an effective divisor Ramf on X such that

(15.2.3) ωX ' f∗(ωY )⊗OX
OX(Ramf ).

Moreover, if we write Ramf =
∑
P∈X aPP , then for every P , we have aP = eP (f)−

1 if f is tamely ramified at P , and aP ≥ eP (f) if f is wildly ramified at P .
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Corollary 15.2.24. If f : X → Y is a finite, separable morphism of smooth,
projective curves, with gX and gY the genus of X and Y , respectively, then

2gX − 2 = deg(f) · (2gY − 2) + deg(Ramf ).

In particular, if f is tamely ramified, we have

2gX − 2 = deg(f) · (2gY − 2) +
∑
P∈X

(
eP (f)− 1

)
.

Proof. The assertion follows by computing the degrees on each side of (15.2.3).
�

Corollary 15.2.25. If f : X → Y is a finite, separable morphism of smooth,
projective curves, with gX and gY the genus of X and Y , respectively, then gX ≥ gY .
Moreover, equality holds if and only if f is an isomorphism, or X ' Y ' P1, or
both X and Y are elliptic curves.

Proof. Since Ramf is an effective divisor, it follows from the previous corol-
lary that

gX − 1 ≥ deg(f) · (gY − 1).

If gY = 0, then it is clear that gX ≥ gY . Moreover, if gX = gY , then X ' Y ' P1.
On the other hand, if gY ≥ 1, since deg(f) ≥ 1, we conclude that gX ≥ gY .

Moreover, in this case equality implies that either gX = gY = 1 or deg(f) = 1 (that
is, f is birational, hence an isomorphism). �

15.3. Hyperelliptic curves, Clifford’s theorem, and embeddings in P3

In this section we discuss some further topics concerning algebraic curves.

15.3.1. Hyperelliptic curves. We begin by discussing a new invariant of
smooth projective curves: the smallest degree of a finite morphism to P1. More
precisely, we make the following

Definition 15.3.1. Given a smooth, projective curve X, the gonality gon(X)
is the smallest degree of a line bundle L on X such that h0(X,L) ≥ 2.

Remark 15.3.2. Note that if L is a line bundle of minimal degree having
h0(X,L) ≥ 2, then for every P ∈ X, we have h0

(
X,L(−P )

)
< 2. First, this implies

that h0(X,L) = 2. Second, by Proposition 15.1.15, we see that L is globally gener-
ated, and thus it defines a finite morphism f : X → P1 such that f∗

(
OP1(1)

)
' L.

Therefore we have deg(f) = deg(L).
Conversely, given a finite morphism f : X → P1, the line bundle L = f∗

(
OP1(1)

)
clearly satisfies h0(X,L) ≥ 2 and deg(L) = deg(f). It follows that the gonality of
X is equal to the smallest degree of a finite morphism X → P1.

It follows from the above remark that gon(X) = 1 if and only if X = P1.
The next possible case is that of gonality 2. Note that a curve of genus g ≥ 1 has
gonality 2 if and only if there is a line bundle of degree 2 on X with h0(X,L) ≥ 2
(in which case, this is in fact an equality).

Example 15.3.3. Every elliptic curve has gonality 2. Indeed, if L is a line
bundle of degree 2 on an elliptic curve X, then it follows from Remark 15.1.12 that
h0(X,L) = 2.
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Definition 15.3.4. A smooth, projective curve of genus g ≥ 2 is hyperelliptic
if gon(X) = 2.

Example 15.3.5. Every smooth, projective curve of genus g = 2 is hyperellip-
tic. Indeed, we have h0(X,ωX) = g = 2 and deg(ωX) = 2g − 2 = 2.

Let X be a smooth, projective curve of genus g ≥ 2. We first note that the
line bundle ωX is globally generated. Indeed, by Proposition 15.1.15, it is enough
to show that

h0
(
X,ωX(−P )

)
= h0(X,ωX)− 1 for all P ∈ X.

By Serre duality, we have h0
(
X,ωX(−P )

)
= h1

(
X,OX(P )

)
. Since h0

(
X,OX(P )

)
=

1 by Example 15.2.13, the Riemann-Roch formula gives

h1
(
X,OX(P )

)
= 1− deg

(
OX(P )

)
+ g − 1 = g − 1 = h0(X,ωX)− 1.

Moreover, Proposition 15.1.15 implies that ωX is not very ample if and only if
there are P,Q ∈ X such that

h0
(
X,ωX(−P −Q)

)
= g − 1.

By Serre duality, this is equivalent to h1
(
X,OX(P+Q)

)
= g−1, and by Riemnann-

Roch, this is further equivalent to h0
(
X,OX(P +Q)

)
= 2. It is clear that we have

such P and Q if and only if X is hyperelliptic. We thus proved the following

Proposition 15.3.6. For every smooth, projective curve of genus g ≥ 2, the
line bundle ωX is globally generated, and it is very ample if and only if X is not
hyperelliptic.

Definition 15.3.7. A canonical curve is a non-hyperelliptic, smooth, projec-
tive curve X of genus g ≥ 3, embedded in Pg−1 by the complete linear system
|ωX |.

Example 15.3.8. The canonical curves of genus 3 are precisely the smooth
plane curves of degree 4.

Proposition 15.3.9. If X is a hyperelliptic curve of genus g ≥ 2, then there is a
unique line bundle L on X, up to isomorphism, with h0(X,L) = 2 and deg(L) = 2.
We have an isomorphism ωX ' Lg−1; moreover, every E ∈ |ωX | can be written as
D1 + . . .+Dg−1, where D1, . . . , Dg−1 ∈ |L|.

Proof. Let L be any line bundle on X with h0(X,L) = 2 and deg(L) = 2.
For every P ∈ X, we have h0

(
X,L(−P )

)
= 1, hence there is a unique σ(P ) ∈ X

such that P + σ(P ) ∈ |L|.
Consider the morphism f : X → P

(
H0(X,ωX)∨

)
' Pg−1 associated to |ωX |

and let Y be its image. In this case, we have

(15.3.1) 2g − 2 = deg(ωX) = deg(f) · deg(Y ).

By definition, Y is non-degenerate in Pg−1, hence deg(Y ) ≥ g − 1 by Exam-
ple 11.4.11.

We claim that f is not birational, hence deg(f) ≥ 2. Indeed, for every P ∈ X,
the argument in the proof of Proposition 15.3.6 shows that

H0
(
X,ωX(−P )

)
= H0

(
X,ωX(−P − σ(P ))

)
.

Therefore one of the following conditions hold:
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i) If σ(P ) 6= P , then f(P ) = f
(
σ(P )

)
, hence f is not injective over U , for

every open neighborhood U of f(P ).
ii) If σ(P ) = P , then dfP is the 0 map, hence f is not an isomorphism over

U , for every open neighborhood U of f(P ).

This holds for every P ∈ X, hence f is not birational.
Since deg(f) ≥ 2, we conclude from (15.3.1) that deg(Y ) = g− 1 and deg(f) =

2. In particular, it follows from Example 15.2.21 that Y is a rational normal curve in
Pg−1. We thus have an isomorphism φ : P1 → Y such that φ∗

(
OY (1)

)
' OP1(g−1).

Let us consider the degree 2 morphism ψ = φ−1 ◦ f : X → P1. It is clear that if
M = ψ∗

(
OP1(1)

)
, then

Mg−1 ' f∗
(
OY (1)

)
' ωX .

Moreover, every element of |ωX | is of the form f∗(H|Y ) for some hyperplane H in
Pg−1. Since φ∗(H|Y ) is a divisor on P1 of degree g − 1, it follows that we have
Q1, . . . , Qg−1 ∈ P1 such that

f∗(H|Y ) = ψ∗(P1 + . . .+ Pg−1) = D1 + . . .+Dg−1, where Di = ψ∗(Qi) ∈ |M|.
In order to complete the proof of the proposition, it is enough to show that

L ' M. Given any P ∈ X, consider Q ∈ X such that P + Q = ψ∗
(
ψ(P )

)
. This

implies that ψ(P ) = ψ(Q) and if P = Q, then dψP is the 0 map. Since dψP = 0 if
and only if dfP = 0 and similarly, ψ(P ) = ψ(P ′) if and only if f(P ) = f(P ′), it is
now straightforward to see that Q = σ(P ), and thus M' L. �

15.3.2. The Clifford theorem. When L is a line bundle on a smooth, pro-
jective curve X, of genus g, the Riemann-Roch formula gives the lower bound
h0(X,L) ≥ deg(L)−g+ 1, with equality if h1(X,L) = 0. Similarly, we always have
the lower bound h1(X,L) ≥ g−1−deg(L), with equality if h0(X,L) = 0. However,
when both h0(X,L) > 0 and h1(X,L) > 0, we have the following interesting upper
bound for h0(X,L), known as Clifford’s theorem.

Theorem 15.3.10. If L is a line bundle on a smooth, projective curve X, of
genus g, such that h0(X,L) > 0 and h1(X,L) > 0, then

h0(X,L) ≤ 1

2
deg(L) + 1.

Moreover, equality holds if and only if we are in one of the following situations:

i) L ' OX or L ' ωX (with g > 0).
ii) X is a hyperelliptic curve and L ' Mr, with 1 ≤ r ≤ g − 1, where M is

the unique line bundle of degree 2 on X, with h0(X,M) = 2.

In fact, the first part of the theorem holds much more generally. In order to
state the result, we introduce the following

Definition 15.3.11. Let U , V , and W be finite-dimensional vector spaces
over k. A linear map φ : U ⊗k V → W is 1-generic if for every u ∈ U r {0} and
v ∈ V r {0}, we have φ(u, v) 6= 0.

Example 15.3.12. If X is an irreducible variety and E1 and E2 are locally free
sheaves on X, then multiplication of sections gives a linear map

H0(X, E1)⊗k H0(X, E2)→ H0(X, E1 ⊗OX
E2)

which is 1-generic.
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Proposition 15.3.13. If φ : U ⊗k V → W is a 1-generic linear map, with U
and V non-zero, finite dimensional k-vector spaces, then

dimk(W ) ≥ dimk(U) + dimk(V )− 1.

Proof. If ker(φ) = 0, then

dim(W ) ≥ dim(U ⊗k V ) = dimk(U) · dimk(V ) ≥ dimk(U) + dimk(V )− 1,

since dimk(U),dimk(V ) ≥ 1. From now on we assume that ker(φ) 6= 0. Moreover,
after replacing W by the image of φ, we may assume that φ is surjective.

We here switch from our usual convention and denote by P(V ) the projective
space parametrizing the lines in V . Inside the projective space P(U ⊗k V ) we have
the linear subspace P

(
ker(φ)

)
. We also have the image of the Segre embedding

P(U)×P(V ) ↪→ P(U ⊗k V ),
(
[u], [v]

)
→ [u⊗ v].

By assumption, these two subvarieties do not intersect, hence by Corollary 4.2.12,
we have

dim
(
P(ker(φ))

)
+ dim

(
P(U)×P(V )

)
≤ dim

(
P(U ⊗k V )

)
− 1.

We thus obtain

dimk(U ⊗k V )− dimk(W )− 1 = dim
(

ker(φ)
)
− 1 = dim

(
P
(
ker(φ)

))
≤ dim

(
P(U⊗kV )

)
−dim

(
P(U)×P(V )

)
−1 = dim(U⊗kV )−dimk(U)−dimk(V ),

which gives the inequality in the proposition. �

By combining this with Example 15.3.12, we obtain the following

Corollary 15.3.14. If E1 and E2 are vector bundles on the irreducible variety
X, with H0(X, E1) 6= 0 and H0(X, E2) 6= 0, then

h0(X, E1 ⊗OX
E2) ≥ h0(X, E1) + h0(X, E2)− 1.

Proof of Theorem 15.3.10. By assumption, we have h0(X,L) > 0 and
h0(X,ωX ⊗OX

L−1) = h1(X,L) > 0, hence we may apply Corollary 15.3.14 with
E1 = L and E2 = ωX ⊗OX

L−1, to deduce

(15.3.2) g ≥ h0(X,L) + h1(X,L)− 1.

On the other hand, the Riemann-Roch formula gives

(15.3.3) deg(L)− g + 1 = h0(X,L)− h1(X,L).

By adding (15.3.2) and (15.3.3), we obtain the inequality in the theorem.
The analysis of the equality case follows closely the proof of [Har77, Theo-

rem IV.5.4], which in turn is based on an argument of Saint-Donat. It is clear that
for L = OX or L = ωX , the inequality in the theorem is an equality. Conversely,
if L is a line bundle for which we have equality and h0(L) = 1 or h1(L) = 1, then
L ' OX or, respectively, L ' ωX (this follows from Examples 15.1.8 and 15.1.11).

Suppose now that h0(X,L) = 1
2deg(L)+1, with h0(X,L) ≥ 2 and h1(X,L) ≥ 2.

We show by induction on deg(L), which is a positive even number, that X is
hyperelliptic. If deg(L) = 2, then h0(X,L) = 2, hence X is clearly hyperelliptic
(note that g ≥ 3, since g + 1 = h0(X,L) + h1(X,L) ≥ 4). Suppose now that
deg(L) ≥ 4. Since h1(X,L) ≥ 2, we can find E ∈ |ωX ⊗OX

L−1| and E 6= 0. We
can thus choose P ∈ Supp(E) and Q ∈ XrSupp(E). Since h0(X,L) ≥ 3, it follows
that we can choose D ∈ |L| such that D−(P+Q) is effective. Let D′ = min{D,E};
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in other words, if D =
∑
i aiPi and E =

∑
i biPi, then D′ =

∑
i min{ai, bi}Pi.

Note that D′ is an effective divisor. By the assumptions on P and Q, we have
P ∈ Supp(D′) and Q 6∈ Supp(D′). In particular, we have 0 < deg(D′) < deg(D).

Note that we have a short exact sequence

0→ OX(D′)
α−→ OX(D)⊕OX(E)

β−→ OX(D + E −D′)→ 0,

where we consider all these sheaves as subsheaves of the constant sheaf k(X), with
α(u) = (u, u) and β(u, v) = u− v. For the surjectivity of β, note that every point
of X has a neighborhood where D′ = D or D′ = E. By taking global sections, we
conclude that

h0
(
X,OX(D′)

)
+ h1

(
X,OX(D′)

)
= h0

(
X,OX(D′)

)
+ h0

(
X,OX(D + E −D′)

)
≥ h0

(
X,OX(D)

)
+ h0

(
X,OX(E)

)
= h0

(
X,OX(D)

)
+ h1

(
X,OX(D)

)
= g + 1.

On the other hand, we have

h0
(
X,OX(D′)

)
+ h1

(
X,OX(D′)

)
≤ g + 1

by Corollary 15.3.14, and using the Riemann-Roch formula, we conclude that

h0
(
X,OX(D′)

)
=

1

2
deg(D′) + 1.

Since deg(D′) > 0, we have h0
(
X,OX(D′)

)
≥ 2, while the fact that D − D′ is

effective implies, via Serre duality, that

h1
(
X,OX(D′)

)
≥ h1

(
X,OX(D)

)
≥ 2.

The induction hypothesis thus gives that X is hyperelliptic.
Suppose now that X is hyperelliptic andM is the unique line bundle of degree

2 such that h0(X,M) = 2. Recall that by Proposition 15.3.9, we have ωX ' Lg−1.
Note first that for every i, with 1 ≤ i ≤ g− 2, we have h0(X,Mi) = 1

2deg(Mi) + 1.
Indeed, we have already seen that

h0(X,Mi) ≤ 1

2
deg(Mi) + 1 = i+ 1, h0(X,Mg−1−i) ≤ 1

2
deg(Mg−1−i) + 1 = g− i,

while Corollary 15.3.14 implies

g = h0(X,ωX) ≥ h0(X,Mi) + h0(X,Mg−1−i)− 1,

which gives our assertion.
Suppose now that X is hyperelliptic and L is an arbitrary line bundle with

h0(X,L) ≥ 2, h1(X,L) ≥ 2, and h0(X,L) = 1
2deg(L) + 1. If i = 1

2deg(L), con-

sider the line bundle L′ = L ⊗OX
Mg−1−i. Note that deg(L′) = 2g − 2, while

Corollary 15.3.14 gives

h0(X,L′) ≥ h0(X,L) + h0(X,Mg−1−i)− 1 = (i+ 1) + (g − i)− 1 = g,

hence we deduce from Example 15.1.11 that L′ ' ωX , and thus L ' Mi. This
completes the proof. �
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15.3.3. Embeddings in P3. We now want to show that every smooth, pro-
jective curve, admits a closed immersion to P3. More generally, we will prove the
following

Theorem 15.3.15. If X is a smooth, irreducible, projective variety of dimen-
sion n, then there is a closed immersion X ↪→ P2n+1.

Since every projective variety can be embedded in a projective space, the the-
orem will follow from the following more precise statement:

Proposition 15.3.16. Let X be a smooth, irreducible, closed subvariety of PN .
If N > 2n + 1, where n = dim(X), and p ∈ PN r X is a general point, then the
projection from p induces a closed immersion X ↪→ PN−1.

We begin with some preparations. For an irreducible, closed subvariety X ⊆
PN , the secant variety Sec(X) is the closure of the union of all lines in PN joining
two distinct points of X, that is,

Sec(X) =
⋃

(p,q)∈X×Xr∆X

〈p, q〉,

where 〈p, q〉 denotes the line spanned by the distinct points p, q ∈ PN .
Let G = G(2, N + 1) be the Grassmann variety parametrizing lines in PN .

Note that we have a map

Φ: PN ×PN r ∆PN → G,

that maps (p, q) to the line in PN spanned by p and q. It is straightforward to see
that this is a morphism: if p = [a0, . . . , aN ] and q = [b0, . . . , bN ], then Φ(p, q) is the
point in G corresponding to the matrix(

a0 a1 . . . aN
b0 b1 . . . bN

)
.

If dim(X) = n, then it is clear that the closure Sec(X) of Φ(X ×X r ∆X) in G is
irreducible, of dimension ≤ 2n.

Recall that we have the incidence correspondence Z ⊆ PN × G consisting of
those pairs

(
q, [L]

)
, with q ∈ L. The projections onto the 2 components induce

morphisms
π1 : Z → PN and π2 : Z → G.

Note that we have

Sec(X) = π1

(
π−1

2 (Φ(X ×X r ∆X))
)

= π1

(
π−1

2 (Sec(X))
)
,

where the first equality follows from the definition of the secant variety and the
second one follows using the fact that π1 is a closed map and π2 is locally trivial,
with fiber P1 (see Exercise 7.1.10). Since Sec(X) is irreducible, of dimension ≤ 2n,
and π2 is locally trivial with fiber P1, it follows that π−1

2

(
Sec(X)

)
is irreducible,

of dimension ≤ 2n+ 1, and thus Sec(X) is irreducible, of dimension ≤ 2n+ 1.
Suppose now that X ⊆ PN is a smooth, irreducible subvariety of dimension n.

The tangent variety Tan(X) is defined by

Tan(X) =
⋃
q∈X

TqX ⊆ PN .

For now, this is just a subset of PN ; we will see momentarily that it is a closed
subset.
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As above, we consider the Grassmann variety G′ = G(n+1, N+1) parametriz-
ing n-dimensional linear subspaces of PN . The assumption on X implies that we
can define a map Ψ: X → G′ by Ψ(q) = TqX. It is easy to see that this is a
morphism: if f1, . . . , fr generate the homogeneous ideal corresponding to X, then
Ψ(q) is given by the kernel of the linear map kN+1 → kr corresponding to the

Jacobian matrix
(
∂fi
∂xj

(q)
)

. This matrix has rank N −n at every point and on each

open subset of PN where a certain minor of the matrix in non-zero, we can write
Ψ(q) explicitly using Cramer’s rule.

Let us consider again the incidence correspondence Z ′ ↪→ PN × G′, with the
two maps

π1 : Z ′ → PN and π2 : Z ′ → G′

induced by the two projections. It is clear that

Tan(X) = π1

(
π−1

2

(
Ψ(X)

))
.

Since both Ψ and π1 are closed maps, it follows that Tan(X) is a closed subset of
PN . Moreover, it is clear that Ψ(X) is irreducible, of dimension ≤ n. Since π2 is
locally trivial, with fiber Pn, it follows that π−1

2

(
Ψ(X)

)
is irreducible, of dimension

≤ 2n, and thus Tan(X) is irreducible, of dimension ≤ 2n. We collect the conclusion
of the above discussion in the following

Proposition 15.3.17. Let X ⊆ Pn be an irreducible, closed subvariety, of
dimension n.

i) The secant variety Sec(X) is irreducible, of dimension ≤ 2n+ 1.
ii) If X is smooth, then the tangent variety Tan(X) is irreducible, of dimen-

sion ≤ 2n.

We can now prove the main result of this section.

Proof of Proposition 15.3.16. Since N > 2n+ 1, it follows from Proposi-
tion 15.3.17 that both Sec(X) and Tan(X) are proper closed subsets of PN . We
choose p ∈ PN r

(
Sec(X) ∪ Tan(X)

)
, let H be a hyperplane in PN that does not

contain p, and let π : PN r {p} → H ' PN−1 be the projection map. We claim
that the induced morphism f : X → H is a closed immersion.

It follows from Proposition 11.5.18 (see also its proof) that f is a closed im-
mersion if and only if f is injective and dfq is injective for every q ∈ X. Recall that
by definition, f(q) is the intersection of H with the line spanned by p and q. It
follows that f is not injective if and only if there are two distinct points q1, q2 ∈ X
such that p lies on the line spanned by q1 and q2. However, in this case we have
p ∈ Sec(X), a contradiction. This shows that f is injective.

We similarly argue to show that dfq is injective for every q ∈ X. Note that
for every q ∈ Pn r {p}, we may consider TqP

n ⊆ TqP
n = Pn and Tπ(q)H ⊆

Tπ(q)H = H. It is easy to see that the linear map dπq : TqP
n → Tπ(q)H extends to

the rational map TqP
n 99K Tπ(q)H, which is precisely π. By assumption, for every

q ∈ X, we have p 6∈ TqX, hence π induces an injective map TqX → Tf(q)H = H.
This implies that dfq is injective, completing the proof. �

We end this section with two examples, showing that certain embeddings in P3

are complete intersections.
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Example 15.3.18. Let X be a smooth elliptic curve and L a line bundle of
degree 4 on X. It follows from Remark 15.1.12 that h0(X,L) = 4, while Corol-
lary 15.1.16 implies that L is very ample. Consider the closed immersion X ↪→ P3

given by the complete linear series |L|. Note that by Example 15.1.9, we have
deg(X) = 4. Since deg(X) = 4 and pa(X) = 1, it follows that the Hilbert polyno-
mial of X is PX(t) = 4t. Let IX denote the ideal sheaf in OP3 corresponding to
X.

By construction, X is not contained in any hyperplane in P3, that is, we have
H0
(
P3, IX(1)

)
= 0. By tensoring with OP3(2) the short exact sequence

0→ IX → OP3 → OX → 0

and taking global sections, we obtain an exact sequence

0→ H0
(
P3, IX(2)

)
→ H0

(
P3,OP3(2)

)
→ H0

(
X,OX(2)

)
= H0(X,L2).

Note that h0
(
P3,OP3(2)

)
=
(

5
2

)
= 10, while Remark 15.1.12 gives h0(X,L2) = 8,

hence using the above exact sequence we get h0
(
P3, IX(2)

)
≥ 2. We thus have

two linearly independent polynomials Q1 and Q2, homogeneous of degree 2, such
that X ⊆ V (Q1, Q2). Note that since X is not contained in any hyperplane,
both Q1 and Q2 are irreducible. Since V (Q1) and V (Q2) have no common ir-
reducible components, it follows that codimP3

(
V (Q1, Q2)

)
= 1. It follows from

Remark 12.3.22 that Q1, Q2 form a regular sequence and they generate a saturated
ideal in S = k[x0, x1, x2, x3]. Let J be the ideal sheaf corresponding to (Q1, Q2).
Since the Hilbert polynomial of a quadric in P3 is given by(

t+ 3

3

)
−
(
t+ 1

3

)
= (t+ 1)2

(see Example 11.4.6), it follows from Example 11.4.10 that

POP3/J (t) = (t+ 1)2 − (t− 1)2 = 4t.

This implies that J = ĨX , and since both IX and (Q1, Q2) are saturated, we
conclude that IX = (Q1, Q2).

Conversely, if X ⊆ P3 is a smooth curve which is a complete intersection of 2
quadrics, then it follows from Example 15.1.20 that X has genus 1. Since OX(1) is
a line bundle of degree 4, we have h0

(
X,OX(1)

)
= 4, and since X does not lie in

any hyperplane, it follows that X is embedded in P3 by the complete linear system
|OX(1)|.

Example 15.3.19. Suppose now that X is a non-hyperelliptic smooth, projec-
tive curve of genus 4. In this case, we know that ωX is a very ample line bundle,
and the complete linear system |ωX | gives a closed immersion X ↪→ P3. Again, we
know that X is not contained in any hyperplane, and we consider the short exact
sequence

0→ H0
(
P3, IX(2)

)
→ H0

(
P3,OP3(2)

)
→ H0

(
X,OX(2)

)
= H0(X,ω2

X).

Since deg(ω2
X) = 12 ≥ 2 ·4−1, we have h1(ω2

X) = 0 and the Riemann-Roch formula
gives h0(X,ω2

X) = 9. Using the fact that h0
(
P3,OP3(2)

)
= 10, we deduce from the

above exact sequence that there is a homogeneous polynomial g of degree 2 that
vanishes on X. Note that this is irreducible, since X is non-degenerate. Consider
now the similar exact sequence

0→ H0
(
P3, IX(3)

)
→ H0

(
P3,OP3(3)

)
→ H0

(
X,OX(3)

)
= H0(X,ω3

X).
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We compute h0
(
P3,OP3(3)

)
= 20 and h0(X,ω3

X) = 15, and we conclude that

h0
(
P3, IX(3)

)
≥ 5. This implies that there is a homogeneous polynomial h of

degree 3 that vanishes on X and such that h is not of the form g`, for any linear
form `. We deduce that codimP3

(
V (g, h)

)
= 1. Arguing as in the previous example,

we see that in fact IX = (g, h), hence X is a complete intersection.
Conversely, if X ⊆ P3 is a smooth curve which is a complete intersection

of hypersurfaces of degrees 2 and 3, then it follows from Example 15.1.20 that
X has genus 4. Moreover, we have ωX ' OX(1) by Example 12.3.21, hence
h0
(
X,OX(1)

)
= 4. Since X is non-degenerate, it follows that it is embedded by the

complete linear series |ωX |. Since ωX is ample, we see that X is not hyperelliptic.



CHAPTER 16

Intersection numbers of line bundles

Our goal in this chapter is to define and study the basic properties of intersec-
tion numbers of line bundles on complete varieties. We follow here [Kle66]. We
discuss in detail the case of surfaces, proving the Riemann-Roch formula in this
context and the Hodge index theorem. Finally, we end this chapter with a proof of
the Nakai-Moishezon ampleness criterion.

16.1. Intersection numbers

The starting point is the following result of Snapper, a wide generalization of
the existence of Hilbert polynomials.

Theorem 16.1.1. If L1, . . . ,Lr are line bundles on a complete variety X and
F is a coherent sheaf on X, then the function

Zr 3 (m1, . . . ,mr)→ χ(X,F ⊗ Lm1
1 ⊗ . . .⊗ Lmr

r ) ∈ Z

is polynomial, of total degree ≤ dim
(
Supp(F)

)
.

We begin with a general lemma.

Lemma 16.1.2. If F is a coherent sheaf on a variety X, then there is a filtration

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fr = F ,

such that for every i, with 1 ≤ i ≤ r, the ideal sheaf AnnOX
(Fi/Fi−1) ⊆ OX is the

radical ideal sheaf corresponding to a closed irreducible subvariety of X.

Proof. We argue by Noetherian induction on Supp(F). We have seen in
Remark 8.4.21 that if I is the radical ideal sheaf defining Supp(F), then we have a
finite filtration of F such that I annihilates each successive quotient. If V (I) 6= X,
then by the inductive assumption, each of these successive quotients has a filtration
as in the lemma, and thus F has one as well. Therefore we may and will assume
that V (I) = X, that is, AnnOX

(F) = 0.
Let X1, . . . , Xn be the irreducible components of X. If n = 1, then we are

done. Otherwise, if Ij is the radical ideal sheaf defining Xj in X, then we have
I1 ∩ . . . ∩ In = 0. Since I1F is annihilated by I2 ∩ . . . ∩ In 6= 0 and F/I1F is
annihilated by I1 6= 0, it follows from the inductive assumption that both I1F and
F/I1F have filtrations as in the lemma, hence so does F , �

Proof of Theorem 16.1.1. We argue by induction on d = dim
(
Supp(F)

)
.

The assertion is clear if d = −1 (we here make the convention that dim(∅) = −1
and the zero polynomial has degree −1).

We note that if we have a short exact sequence of coherent sheaves on X

0→ G′ → G → G′′ → 0,

405
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then for every m1, . . . ,mr ∈ Z, we have

χ(X,G⊗Lm1
1 ⊗. . .⊗Lmr

r ) = χ(X,G′⊗Lm1
1 ⊗. . .⊗Lmr

r )+χ(X,G′′⊗Lm1
1 ⊗. . .⊗Lmr

r ).

This implies that if two of these functions are polynomial, of degree ≤ d, then the
third one satisfies the same property, too.

In particular, it follows from the lemma that we may assume that AnnOX
(F)

is the radical ideal sheaf defining an irreducible closed subvariety Y of X. After
replacing X by Y , we may thus assume that X is irreducible and AnnOX

(F) = 0,
hence d = dim(X).

Suppose first that X is projective. In this case, it follows from Remark 11.6.10
that we can write L1 ' M1 ⊗OX

M−1
2 , where M1 and M2 are very ample line

bundles. Let A ∈ |M1| and B ∈ |M2| be general elements, so that, in particular,
A and B do not contain any associated subvarieties of F . First, this gives exact
sequences

0→ F ⊗OX(−B)⊗ Lm1−1
1 → F ⊗Lm1

1 → F ⊗OA ⊗ Lm1
1 → 0

and

0→ F ⊗OX(−B)⊗ Lm1−1
1 → F ⊗Lm1−1

1 → F ⊗OB ⊗ Lm1−1
1 → 0.

By tensoring these with Lm2
2 ⊗ . . . ⊗ Lmr

r and taking the long exact sequences in
cohomology, we obtain using the additivity of the Euler-Poincaré characteristic

χ(X,F ⊗ Lm1
1 ⊗ . . .⊗ Lmr

r )− χ(X,F ⊗ Lm1−1
1 ⊗ . . .⊗ Lmr

r )

= χ(X,F ⊗OA ⊗ Lm1
1 ⊗ . . .⊗ Lmr

r )− χ(X,F ⊗OB ⊗ Lm1−1
1 ⊗ . . .⊗ Lmr

r ).

Second, it is clear that dim
(
Supp(F⊗OA)

)
≤ d−1 and dim

(
Supp(F⊗OB)

)
≤ d−1.

It follows from these inequalities and the inductive assumption that the function

Zr 3 (m1, . . . ,mn)→ χ(X,F ⊗ Lm1
1 ⊗ . . .⊗ Lmr

r )− χ(F ⊗ Lm1−1
1 ⊗ . . .⊗ Lmr

r )

is polynomial of total degree ≤ (d− 1). Since the same assertion clearly also holds
with respect to the other variables, it is now easy to deduce, using Lemma 11.4.2,
that the function

Zr 3 (m1, . . . ,mr)→ χ(F ⊗ Lm1
1 ⊗ . . .⊗ Lmr

r )

is polynomial, of total degree ≤ d. This completes the proof in the case when X is
projective.

In the general case we use Chow’s lemma to obtain a birational morphism
f : Y → X, where Y is an irreducible projective variety. Let G = f∗(F) and
consider the canonical morphism φ : F → f∗(G). Note that f∗(G) is coherent since
f is proper; moreover, since f is birational, it follows that φ is an isomorphism on
some open subset of X, hence

dim
(
coker(φ)

)
≤ d− 1 and dim

(
ker(φ)

)
≤ d− 1.

Using the exact sequences

0→ Im(φ)→ f∗(G)→ coker(φ)→ 0

and
0→ ker(φ)→ F → Im(φ)→ 0,

the observation at the beginning of the proof, and the inductive assumption, we see
that it is enough to prove that the function

Zr 3 (m1, . . . ,mr)→ χ
(
X, f∗(G)⊗ Lm1

1 ⊗ . . .⊗ Lmr
r

)
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is polynomial, of total degree ≤ d.
The projective case implies that the function

Zr 3 (m1, . . . ,mr)→ χ
(
Y,G ⊗ f∗(L1)m1 ⊗ . . .⊗ f∗(Lr)mr

)
is polynomial, of total degree ≤ d. On the other hand, the Leray spectral sequence,
the additivity of the Euler-Poincaré characteristic, and the projection formula give

χ
(
Y,G ⊗f∗(L1)m1 ⊗ . . .⊗f∗(Lr)mr

)
=
∑
p≥0

(−1)pχ
(
X,Rpf∗(G)⊗Lm1

1 ⊗ . . .⊗Lmr
r

)
.

Note that the sum on the right-hand side is a finite sum. Moreover, for every p > 0,
we have dim

(
Supp(Rpf∗(G))

)
≤ d− 1 (we use again the fact that f is birational),

hence the inductive assumption implies that the function

Zr 3 (m1, . . . ,mr)→ χ
(
X,Rpf∗(G)⊗ Lm1

1 ⊗ . . .⊗ Lmr
r

)
is polynomial, of total degree ≤ d − 1. We thus conclude that the corresponding
function for p = 0 is also polynomial, of total degree ≤ d, completing the proof of
the theorem. �

Definition 16.1.3. Let X be a complete variety. If L1, . . . ,Lr are line bundles
on X and F is a coherent sheaf on X with dim

(
Supp(F)

)
≤ r, then the inter-

section number (L1 · . . . · Lr;F) is defined as the coefficient of m1 · · ·mr in the
polynomial P (m1, . . . ,mr) such that P (m1, . . . ,mr) = χ(F ⊗Lm1

1 ⊗ . . .⊗Lmr
r ) for

all (m1, . . . ,mr) ∈ Zr.

If F = OY , for a closed subvariety Y of X, then we write (L1 · . . . · Lr · Y )
instead of (L1 · . . . · Lr;OY ) and simply (L1 · . . . · Lr) if Y = X. Of course, we have

(L1 · . . . · Lr · Y ) = (L1|Y · . . . · Lr|Y ).

Furthermore, if L1 = . . . = Lr = L, then we write (Lr;F), (Lr · Y ) and (Lr) for
the corresponding intersection numbers. If D1, . . . , Dr are Cartier divisors on an
irreducible complete variety X and F is as above, then we also write (D1 ·. . .·Dr;F)
for
(
OX(D1) · . . . · OX(Dr);F

)
and similarly for the other variants of intersection

numbers.
The following elementary lemma will allow us to describe the intersection num-

bers as alternating sums of Euler-Poincaré characteristics.

Lemma 16.1.4. If P ∈ R[x1, . . . , xr] is a polynomial with coefficients in a ring
R such that the total degree of P is ≤ r, then the coefficient of x1 · · ·xr in P is
equal to ∑

J⊆{1,...,r}

(−1)|J|P (δJ,1, . . . , δJ,r),

where the sum is over all subsets J of {1, . . . , r} (including the empty subset) and
where δJ,j = −1 if j ∈ J and δJ,j = 0 if j 6∈ J .

Proof. The assertion follows by induction on r, the case r = 1 being trivial.
For the induction step, it is enough to show that the coefficient of x1 · · ·xr in P is
equal to the coefficient of x1 · · ·xr−1 in

Q(x1, . . . , xr−1) = P (x1, . . . , xr−1, 0)− P (x1, . . . , xr−1,−1),

whose total degree is ≤ (r − 1). This in turn follows by considering the effect of
taking the difference on the right-hand side for each of the monomials in P . �
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Corollary 16.1.5. If L1, . . . ,Lr are line bundles on a complete variety X and
F is a coherent sheaf on X with dim

(
Supp(F)

)
≤ r, then

(L1 · . . . · Lr;F) =
∑

J⊆{1,...,r}

(−1)|J|χ
(
F ⊗ (⊗j∈JL−1

j )
)
.

In the next proposition we give the basic properties of intersection numbers.

Proposition 16.1.6. Let L1, . . . ,Lr be line bundles on the complete variety X
and F a coherent sheaf on X, with dim

(
Supp(F)

)
≤ r.

i) If dim
(
Supp(F)

)
< r, then (L1 · . . . · Lr;F) = 0.

ii) The intersection number (L1 · . . . · Lr;F) is an integer. The map

Pic(X)r 3 (L1, . . . ,Lr)→ (L1 · . . . · Lr;F) ∈ Z

is multilinear and symmetric.
iii) If Y1, . . . , Ys are the r-dimensional irreducible components of Supp(F),

then

(16.1.1) (L1 · . . . · Lr;F) =

s∑
i=1

`OX,Yi
(FYi) · (L1 · . . . · Lr · Yi).

iv) (Projection formula) Suppose that f : X → Y is a surjective morphism
of complete irreducible varieties, with dim(X) ≤ r. Given line bundles
Mi on Y such that Li ' f∗(Mi) for every i, we have (L1 · . . . · Lr) =
d·(M1 ·. . . ·Mr) if f is generically finite of degree d, and (L1 ·. . . ·Lr) = 0,
otherwise.

v) If X is irreducible and Lr = OX(D) for some effective Cartier divisor D
that does not contain any associated subvariety of F , then

(L1 · . . . · Lr;F) = (L1 · . . . · Lr−1;F ⊗OD),

with the convention that when r = 1, the right-hand side is equal to
h0(X,F ⊗OD).

Proof. The assertion in i) follows from definition and Theorem 16.1.1. The
fact that intersection numbers are integers is clear by Corollary 16.1.5. The sym-
metry of the application in ii) is obvious, hence in order to prove ii) we only need
to show that

(16.1.2)
(
(L1⊗L′1) ·L2 · . . . ·Lr;F

)
− (L1 ·L2 · . . . ·Lr;F)− (L′1 ·L2 · . . . ·Lr;F) = 0.

An easy computation using the formula in Corollary 16.1.5 shows that the difference
in (16.1.2) is equal to −(L1 · L′1 · L2 · . . . · Lr;F), which vanishes by i).

We note that iii) clearly holds if dim(Supp(F)) < r. It follows from definition
and the additivity of the Euler-Poincaré characteristic that if

0→ F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on X, then

(16.1.3) (L1 · . . . · Lr;F) = (L1 · . . . · Lr;F ′) + (L1 · . . . · Lr;F ′′).
Since `OX,Yi

(FYi
) = `OX,Yi

(F ′Yi
) + `OX,Yi

(F ′′Yi
) for every i, we conclude that if

(16.1.3) holds for two of F ′, F , and F ′′, then it also holds for the third one.
Recall that by Lemma 16.1.2, F has a finite filtration such that the annihilator

of each of the successive quotients is the radical ideal corresponding to an irreducible
closed subset of X. We conclude that in order to prove (16.1.2), we may assume
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that X is an irreducible variety. We also see that if G is another sheaf such that
we have a morphism φ : F → G that is an isomorphism over a non-empty open
subset of X, then (16.1.2) holds for F if and only if it holds for G (note that in this
case both ker(φ) and coker(φ) are supported in dimension < r). In particular, by
replacing F by F ⊗ OX(D), where D is a suitable effective divisor, with OX(D)
ample, we may assume that F is generated by global sections. If d is the dimension
over k(X) of the stalk of F with respect to X, and s1, . . . , sd ∈ Γ(X,F) are general

sections, then the induced morphism O⊕dX → F is an isomorphism on some non-

empty open subset of X. Since (16.1.2) clearly holds for O⊕dX , this completes the
proof of iii).

In order to prove iv), note first that the additivity of the Euler-Poincaré char-
acteristic, the Leray spectral sequence, and the projection formula imply that

χ(X,Lm1
1 ⊗ . . .⊗ Lmr

r ) =
∑
i≥0

(−1)iχ
(
Y,Rif∗(OX)⊗Mm1

1 ⊗ . . .⊗Mmr
r

)
,

hence by definition of intersection numbers we have

(L1 · . . . · Lr) =
∑
i≥0

(−1)i
(
M1 · . . . · Mr;R

if∗(OX)
)
.

If f is not generically finite, then all intersection numbers on the right-hand side
are zero since dim(Y ) < r. Suppose now that f is generically finite and deg(f) = d.
In this case we have an open subset U ⊆ Y such that f has finite fibers over U ,
hence it is finite by Corollary 14.1.8. This implies that for all i ≥ 1, the support
of Rif∗(OX) is contained in Y r U , while the dimension over k(Y ) of the stalk of
f∗(OX) with respect to Y is d. The formula in iv) now follows from iii) and i).

In order to prove v), we use Corollary 16.1.5 by considering first the subsets
contained in {1, . . . , r − 1}, and then the ones contaning r. We obtain(

L1 · . . .Lr−1 · OX(D);F
)

=
∑

J⊆{1,...,r−1}

(−1)|J|χ
(
X,F ⊗ (⊗i∈JL−1

i )
)

+
∑

J⊆{1,...,r−1}

(−1)|J|+1χ
(
F ⊗OX(−D)⊗ (⊗i∈JL−1

i )
)

=
∑

J⊆{1,...,r−1}

(−1)|J|χ
(
(⊗i∈JL−1

i )⊗F ⊗OD
)

= (L1 · . . . · Lr−1;F ⊗OD),

where the second equality follows by tensoring the exact sequence

0→ OX(−D)→ OX → OD → 0

with F ⊗ (⊗i∈JL−1
i ), and using the additivity of the Euler-Poincaré characteristic.

This completes the proof of the proposition. �

Remark 16.1.7. Suppose that X is an n-dimensional Cohen–Macaulay, irre-
ducible variety, and D1, . . . , Dn are effective Cartier divisors on X such that

dim(D1 ∩ . . . ∩Di) = n− i for 1 ≤ i ≤ n.

In this case, at every point x ∈ D1 ∩ . . . ∩ Di, the local equations of D1, . . . , Di

form a regular sequence in OX,x. By successively applying assertion v) in the above
proposition, we see that

(D1 · . . . ·Dn) = (D2 · . . . ·Dn;OD1
) = . . . = h0(X,OD1

⊗ . . .⊗ODn
).
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If, in addition, the intersection points of D1, . . . , Dn are smooth points of X and
of each of the Di and the intersection is transversal, then (D1 · . . . ·Dn) is equal to
the number of points in D1 ∩ . . . ∩Dn.

Remark 16.1.8. It is easy to see that properties i)–v) in Proposition 16.1.6
uniquely determine the intersection numbers (L1 · . . . · Lr;F). Indeed, we argue
by induction on r. It follows from iii) that a general such intersection number is
determined if we know the intersection numbers of the form (L1 · . . .Lr) when X
is an r-dimensional complete variety. Moreover, by Chow’s lemma we can find a
birational morphism f : W → X, with W a projective variety, and property iv)
gives (L1 · . . .Lr) =

(
f∗(L1) · . . . · f∗(Lr)

)
. Therefore we may assume that X is

projective. By multilinearity, if we write Lr ' OX(A−B), with A and B effective
Cartier divisors, then

(L1 · . . . · Lr) =
(
L1 · . . . · Lr−1 · OX(A)

)
−
(
L1 · . . . · Lr−1 · OX(B)

)
.

On the other hand, property v) gives(
L1 · . . . · Lr−1 · OX(A)

)
= (L1 · . . . · Lr−1;OA) and(

L1 · . . . · Lr−1 · OX(B)
)

= (L1 · . . . · Lr−1;OB),

hence we are thus done by induction.

Remark 16.1.9. If Q(x) is a polynomial in one variable of degree d and we
consider the polynomial in r variables P (x1, . . . , xr) = Q(x1 + . . . + xr), then the
total degree of P is d and the coefficient of x1 · · ·xr in P is d! · a, where a is the
coefficient of xd in Q. It follows from Theorem 16.1.1 that if L is a line bundle on
an n-dimensional complete variety X, then we have a polynomial Q(x) of degree
≤ n such that Q(m) = χ(X,Lm) for all m ∈ Z. We deduce that

χ(X,Lm) = Q(m) =
(Ln)

n!
mn + lower order terms in m.

This expression is known as the asymptotic Riemann-Roch formula.

Remark 16.1.10. Suppose that L is a very ample line bundle on the projective
variety X, with dim(X) = n, and consider a closed immersion X ↪→ PN such that
L ' OX(1). If PX is the Hilbert polynomial of X with respect to this embedding,
then PX(m) = χ(X,Lm) for every m ∈ Z. It follows from Remark 16.1.9 that
(Ln) = deg(X). In particular, we have (Ln) > 0.

This implies, more generally, that ifM is an ample line bundle on X, then for
every closed subvariety V of X of dimension r, we have (Mr · V ) > 0. Indeed, if
Mm is very ample and L =Mm|V , then

(Mr · V ) =
1

mr
(Lr) > 0.

From now on, we will often use this property without further comment.

Example 16.1.11. Suppose that X is an irreducible, projective curve. We
claim that if L is a line bundle on X, then (L) = deg(L). First, we may assume

that X is smooth: if π : X̃ → X is the normalization morphism, then we have

deg(L) = deg
(
π∗(L)

)
and (L) =

(
π∗(L)

)
,

where the first equality follows from the definition of degree and the second equality
follows from assertion iv) in Proposition 16.1.6. In this case, by additivity, it is
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enough to show that if L = OX(P ), for some P ∈ X, then (L) = 1. This follows
from assertion v) in Proposition 16.1.6.

Applying Corollary 16.1.5, we thus obtain deg(L) = χ(X,OX) − χ(X,L−1
)
.

By replacing L with L−1, we conclude that

χ(X,L) = deg(L) + χ(X,OX).

This is an extension of the Riemann-Roch theorem to the singular case.

Example 16.1.12. Suppose that X is a smooth, complete surface. If L and
M are line bundles on X and we write L = OX(D), where D =

∑r
i=1 aiDi, then

it follows from assertion v) in Proposition 16.1.6 and the previous example that

(L ·M) =

r∑
i=1

ai · deg(M|Di
).

We end this section by introducing the relation of numerical equivalence.

Definition 16.1.13. If X is a complete variety, then two line bundles L1 and
L2 are numerically equivalent (written L1 ≡ L2) if

(L1 · C) = (L2 · C)

for every irreducible curve C ⊆ X. We similarly define numerical equivalence for
Cartier divisors on an irreducible variety. It is clear that the set of isomorphism
classes of line bundles that are numerically trivial (that is, they are numerically
equivalent to 0) is a subgroup of Pic(X). The quotient group N1(X) := Pic(X)/ ≡
is the Néron-Severi group of X.

Proposition 16.1.14. If f : X → Y is a morphism of complete algebraic vari-
eties and L ∈ Pic(Y ) is such that L ≡ 0, then f∗(L) ≡ 0. The converse holds if f
is surjective.

Proof. Let C be an irreducible curve in X. It follows from the projection
formula that

(
f∗(L) · C

)
= 0 if f(C) is a point and we have(

f∗(L) · C
)

= d · (L · C ′)
if C ′ = f(C) is a curve and d is the degree of the induced morphism C → C ′.
This gives the first assertion in the proposition and the second one also follows if
we show that if f is surjective, then for every irreducible curve C ′ in Y , there is
an irreducible curve C in X, whose image is C ′. This is a consequence of the more
general lemma below. �

Lemma 16.1.15. If f : X → Y is a morphism of algebraic varieties, with Y
irreducible and f(X) dense in Y , then there is an irreducible, closed subvariety X ′

of X, with dim(X ′) = dim(Y ), and such that f(X ′) is dense in Y .

Proof. After replacing X with an irreducible component that dominates Y ,
we may assume that X is irreducible. We know that dim(X) ≥ dim(Y ). If equality
holds, then we can take X ′ = X. Otherwise, arguing by induction on dim(X) −
dim(Y ), it is enough to show that there is an irreducible closed subvariety Z of
X that dominates Y and such that dim(Z) = dim(X) − 1. By Theorem 3.4.2,
there is a non-empty open subset V ⊆ Y such that every fiber f−1(y), with y ∈ V ,
has pure dimension equal to dim(X) − dim(Y ). Let U ⊆ f−1(V ) be a non-empty
affine open subset and consider a closed immersion U ↪→ An. Given x ∈ U , a
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general affine hyperplane H ⊆ An containing x does not contain any irreducible
component of f−1

(
f(x)

)
. If W is an irreducible component of H ∩ U containing

x, then dim(W ) = dim(X)− 1 and dim
(
W ∩ f−1(f(x))

)
= dim(X)− dim(Y )− 1.

By Theorem 3.4.1, it follows that W dominates Y , hence we may take Z to be the
closure of W in X. �

Proposition 16.1.14 implies that for every morphism of complete varieties f : X →
Y , we have an induced group homomorphism

f∗ : N1(Y )→ N1(X), L → f∗(L).

This is injective if f is surjective. Moreover, if g : Y → Z is another morphism of
complete varieties, then it is clear that (g ◦ f)∗ = f∗ ◦ g∗.

By definition, two line bundles are numerically equivalent if and only if their
restrictions to irreducible curves have the same degree. The next proposition shows
that in fact, their intersection numbers with any other line bundles on X are equal.

Proposition 16.1.16. Let L1 and L2 be line bundles on the complete variety
X. If L1 ≡ L2, then for every line bundles M2, . . . ,Mr ∈ Pic(X) and every
coherent sheaf F on X such that dim

(
Supp(F)

)
≤ r, we have

(L1 · M2 · . . . · Mr;F) = (L2 · M2 · . . . · Mr;F).

Proof. We argue by induction on r ≥ 1. Note that by property iii) in Propo-
sition 16.1.6, we may assume that X is irreducible and F = OX . In this case,
if r = 1, then we are done by definition. Note also that we may assume that
X is projective. Indeed, by Chow’s lemma, we can find a birational morphism
f : W → X, with W projective. Since f∗(L1) ≡ f∗(L2) by Proposition 16.1.14, the
reduction follows using property iv) in Proposition 16.1.6. If r ≥ 2, then we can
writeMr ' OX(A−B), for effective Cartier divisors A and B, and property v) in
Proposition 16.1.6 gives

(L1 · M2 · . . . · Mr) = (L1 · M2 · . . . · Mr−1;OA)− (L1 · M2 · . . . · Mr−1;OB)

and similarly

(L2 · M2 · . . . · Mr) = (L2 · M2 · . . . · Mr−1;OA)− (L2 · M2 · . . . · Mr−1;OB).

We conclude using the inductive hypothesis. �

The following is a fundamental result concerning the Néron-Severi groups,
known as the theorem of the base. It was proved by Severi over the complex numbers
and by Néron in general. The proof, however, goes beyond the methods discussed
in these notes.

Theorem 16.1.17. If X is a complete variety, then N1(X) is a finitely gener-
ated Abelian group.

We note that it is a trivial consequence of the definition that N1(X) has no
torsion. The above theorem says that its rank, called the Picard rank of X and
denoted by ρ(X), is finite. It is often convenient to tensor with R and consider the
finite-dimensional real vector space

N1(X)R := N1(X)⊗Z R.
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16.2. Intersection numbers on surfaces

In this section we consider the case when X is a smooth projective surface
(always assumed to be irreducible) and discuss some results concerning the inter-
section form on line bundles that we defined in the previous section. We follow
closely the presentation in [Har77]. In general, it is more convenient to use the di-
visorial notation when computing intersection numbers, so we begin by introducing
the following notation.

Notation 16.2.1. If X is a smooth, irreducible variety, then we write KX for
any divisor on X such that OX(KX) ' ωX . Of course, this is only defined up to
linear equivalence.

We first give a useful consequence of adjunction.

Proposition 16.2.2 (Adjunction formula). If C is an irreducible curve on the
smooth, projective surface X, then

2pa(C)− 2 = (C2) + (C ·KX).

Proof. Since X is smooth, it follows from Example 14.2.18 that we have
ω◦C ' OX(KX + C)|C . In particular, ω◦C is a line bundle. On the other hand, we
have (

(KX + C) · C
)

= deg
(
OX(KX + C)|C

)
,

hence it is enough to show that

2pa(C)− 2 = deg(ω◦C).

We know this when C is smooth and the argument extends easily to our setting,
as follows. Note that by definition of the dualizing sheaf, for every line bundle L on
C, we have h1(C,L) = h0(C,ω◦C ⊗L−1). Applying this with L = ω◦C and L = OC ,
we obtain

h1(C,ω◦C) = h0(C,OC) = 1 and h0(C,ω◦C) = h1(C,OC) = pa(C).

By the Riemann-Roch formula in the singular case (see Example 16.1.11), we have

χ(C,ω◦C) = deg(ω◦C) + χ(C,OC),

and thus

deg(ω◦C) =
(
pa(C)− 1

)
−
(
1− pa(C)

)
= 2pa(C)− 2.

�

Example 16.2.3. Let X = P1 × P1 and π1 : X → P1 and π2 : X → P1 be
the projections onto the first and second component, respectively. It follows from
Example 9.4.29 that Pic(X) is freely generated by the line bundles associated to L1

and L2, where L1 = π∗1(Q1) and L2 = π∗2(Q2), for some points Q1, Q2 ∈ P1. Since
any two points on P1 are linearly equivalent, it is clear that L1 is independent, up
to linear equivalence, of the choice of the point Q1, and similarly for L2. Moreover,
since any two distinct fibers of π1 do not intersect, it follows that (L2

1) = 0 and
similarly (L2

2) = 0. Since a fiber of π1 and a fiber of π2 are smooth and they
intersect transversally in a point, it follows that (L1 · L2) = 1.

Suppose now that C is an arbitrary irreducible curve in P1 ×P1. We say that
C is of type (a, b) if C ∼ aL1 + bL2. Note that we have a, b ≥ 0. Indeed, if π1(C)
is not a point, then C ∩ L1 is a finite set, hence b = (C · L1) > 0. On the other
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hand, if π1(C) is a point, then we clearly have b = (C · L1) = 0. We similarly see
that a = (C · L2) ≥ 0, with equality if and only if π2(C) is a point.

Recall that ωX ' π∗1(ωP1) ⊗ π∗2(ωP1), hence KX ∼ −2L1 − 2L2. We thus
conclude from the adjunction formula that if C has type (a, b), then

2pa(C)− 2 =
(
(aL2 + bL2) · ((a− 2)L1 + (b− 2)L2)

)
= a(b− 2) + b(a− 2),

and we get pa(C) = (a− 1)(b− 1).
In particular, for every g ≥ 1, we may consider a general element of Cg ∈

|OX(2, g + 1)|. Such a curve is smooth and irreducible by Theorem 6.4.1 and
Corollary 14.2.15 and the above computation shows that it has genus g. Note that
Cg is hyperelliptic: the morphism π2 induces a morphism f : C → P1 such that
deg
(
f∗(Q2)

)
= (C · L2) = 2, hence deg(f) = 2.

Theorem 16.2.4 (Riemann-Roch). If L is a line bundle on the smooth, pro-
jective surface X, then

χ(X,L) = χ(X,OX) +
1

2

(
(L2)− (L · ωX)

)
.

Proof. Given two line bundles L1 and L2 on X, if we apply the formula in
Corollary 16.1.5 for L−1

1 and L−1
2 , we obtain

(L1 · L2) = (L−1
1 · L

−1
2 ) = χ(X,OX)− χ(X,L1)− χ(X,L2) + χ(X,L1 ⊗ L2).

If we take L1 = L and L2 = ωX ⊗ L−1, we obtain

(16.2.1) − (L2) + (L · ωX) = χ(X,OX)− χ(X,L)− χ(X,ωX ⊗L−1) + χ(X,ωX).

Serre duality gives χ(X,L) = χ(X,ωX ⊗ L−1) and χ(X,OX) = χ(X,ωX), hence
(16.2.1) implies the formula in the theorem. �

The following consequence of the Riemann-Roch theorem is often useful:

Corollary 16.2.5. If L is a line bundle on the smooth, projective surface X
such that (L2) > 0, then there is c > 0 such that we have either h0(X,Lm) > cm2

for m � 0 or h0(X,L−m) > cm2 for m � 0. Moreover, if M is an ample line
bundle, then (L ·M) 6= 0 and we are in the first situation above if (L ·M) > 0 and
in the second situation if (L ·M) < 0.

Proof. Note that since (L2) > 0 we have L 6≡ 0 by Proposition 16.1.16. If C is
an irreducible curve on X such that (L·C) 6= 0, and if we write OX(C) ' L1⊗L−1

2 ,
with L1 and L2 ample, we see that (L · L1) 6= 0 or (L · L2) 6= 0. We thus have an
ample line bundle M′ such that (L ·M′) 6= 0. After possibly replacing L by L−1,
we may assume that (L ·M′) > 0.

The Riemann-Roch theorem implies that for every m ∈ Z, we have

χ
(
X,Lm) = χ(X,OX) +

1

2
(L2) ·m2 − 1

2
(L · ωX) ·m.

Since (L2) > 0, this implies that there is c > 0 such that

(16.2.2) h0(X,Lm) + h2(X,Lm) ≥ χ(X,Lm) > cm2 for m� 0.

In particular, we see that for m � 0, at least one of h0(X,Lm) and h2(X,Lm) is
> 0. Note that by Serre duality, we have h2(X,Lm) = h0(X,ωX ⊗ L−m), and if
this is positive, then

(ωX · M′)−m · (L ·M′) > 0,
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which gives a contradiction for m� 0, since (L ·M′) > 0. We thus conclude that
for m� 0 we have h2(X,Lm) = 0, and thus h0(X,Lm) > cm2.

Finally, given any ample line bundle M, we note that since h0(X,Lm) > 0 for
m� 0, we have

(L,M) =
1

m
(Lm · M) > 0.

This completes the proof of the corollary. �

We end this section with the following result, known as the Hodge index theo-
rem.

Theorem 16.2.6. Let X be a smooth projective surface. If H is an ample line
bundle on X and D is a divisor on X such that (H · D) = 0, then (D2) ≤ 0.
Moreover, we have (D2) = 0 if and only if D ≡ 0.

Proof. Note first that if (D2) > 0, then (D · H) 6= 0 by Corollary 16.2.5, a
contradiction. Suppose now that (D2) = 0. If D 6≡ 0, then we can find a divisor
A on X such that (D · A) 6= 0. After replacing A by (H2)A − (A ·H)H, we may
assume that (A · H) = 0 and after possibly replacing A by −A, we may assume
that (D ·A) > 0. Since

(
(mD +A) ·H

)
= 0, we have seen that

0 ≥
(
(mD +A)2) = 2m · (D ·A) + (A2).

By taking m� 0, we obtain a contradiction. �

Remark 16.2.7. Let us explain the name of the above result. If X is a smooth,
projective surface, then in follows from definition of numerical equivalence that we
have the a symmetric, bilinear map

N1(X)×N1(X)→ Z, (L,M)→ (L ·M).

This induces a corresponding symmetric bilinear form of real vector spaces, the
intersection form

N1(X)R ×N1(X)R → R.

Again, it follows from definition of numerical equivalence that the induced linear
map

N1(X)R → N1(X)∨R

is injective. By Theorem 16.1.17, the real vector space N1(X)R is finite-dimensional,
and thus the intersection form is non-degenerate. Like every non-degenerate bilin-
ear form on a real vector space, it has a signature and an index : we can find
L1, . . . ,Lρ ∈ Pic(X) giving a basis of N1(X)R such that (Li ·Lj) = 0 for i 6= j, and
if r is the number of those i with (L2

i ) > 0 and s = ρ(X)− r is the number of those
i with (L2) < 0, then the signature is (r, s) and the index is s. The above theorem
thus says that the signature of the intersection form on N1(X)R is (1, ρ− 1).

This in turn leads to a stronger version of the theorem: if H is any divisor on
X such that (H2) > 0 and D is a divisor such that (D · H) = 0, then (D2) ≤ 0,
with equality if and only if D ≡ 0.

Example 16.2.8. The stronger version of the Hodge Index theorem in the
above remark has the following useful consequence. Suppose that f : X → Y is a
surjective morphism between projective surfaces, with X smooth. If E1, . . . , Er are
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irreducible curves on X that are contracted by f (that is, each f(Ei) is a point),
then the intersection matrix (

(Ei · Ej)
)

1≤i,j≤r

is negative definite. Equivalently, for every divisor E =
∑r
i=1 aiEi, we have (E2) ≤

0, with equality if and only if E = 0.
Indeed, if H is an ample divisor on Y , then it follows from the projection

formula that
(
f∗(H)2

)
= deg(f) · (H2) > 0 and

(
f∗(H) · Ei

)
= 0 for all i. The

version of the Hodge Index theorem in Remark 16.2.7 thus implies that if E =∑r
i=1 aiEi, then (E2) ≤ 0, with equality if and only if E ≡ 0. In order to obtain

our assertion, it is enough to show that if E ≡ 0, then ai = 0 for all i. Let us write

E =
∑
i,ai>0

aiEi and E− = −
∑
i,ai<0

aiEi,

hence E = E+ − E−. Arguing by contradiction, let us assume that at least one
of E+ and E− is non-zero. After replacing E by −E, we may assume that E+ is
non-zero. Using what we have already proved and the fact that E ≡ 0, we obtain

0 ≥ (E2
+) = (E+ · E−).

On the other hand, since E+ and E− have no common components, we obtain
(E+ · E−) ≥ 0, hence (E2

+) = 0 and thus E+ ≡ 0. On the other hand, since E+ is
a non-zero effective divisor, if M is an ample divisor on X, then (E+ ·M) > 0, a
contradiction. This completes the argument.

Exercise 16.2.9. Show that if X is a smooth projective surface and H is a
divisor on X, with (H2) > 0, then for every divisor D on X we have

(D2) · (H2) ≤ (D ·H)2,

with equality if and only if we have integers a and b, not both of them 0, such that
aD + bH ≡ 0.

Exercise 16.2.10. Let C be a smooth projective curve of genus g ≥ 1. Consider
X = C × C and the two projections π1 : X → C and π2 : X → C.

i) Show that if `1 = π∗1(Q1) and `2 = π∗2(Q2), for points Q1, Q2 ∈ C, then
the classes of `1 and `2 in N1(X) are independent of the choice of Q1 and
Q2, and we have

(`21) = 0, (`22) = 0, and (`1 · `2) = 1.

ii) Show that if ∆ ⊆ X is the diagonal, then

(∆ · `1) = 1, (∆ · `2) = 1, and (∆2) = −(2g − 2).

Deduce that the image of ∆ in N1(X)R does not lie in the linear span of
`1 and `2, hence ρ(X) ≥ 3.

16.3. The Nakai-Moishezon ampleness criterion

Our goal in this section is to prove the following numerical ampleness criterion.

Theorem 16.3.1 (Nakai-Moishezon). If L is a line bundle on the complete
variety X, then X is ample if and only if for every irreducible closed subvariety Y
of X, of dimension r > 0, we have (Lr · Y ) > 0.
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Proof. The “only if” part follows from Remark 16.1.10, hence we only need
to prove the “if” part. Suppose that (Lr · Y ) > 0 for every r ≥ 1 and every
r-dimensional irreducible closed subset of X. Assertion iii) in Proposition 16.1.6
implies that the same inequality holds for all r-dimensional subvarieties Y of X.
Arguing by Noetherian induction, we may assume that L|Y is ample for every closed
subvariety Y of X, different from X. If X1, . . . , Xs are the irreducible components
of X and if L|Xi

is ample for all i, then L is ample (see Exercise 11.6.19). We may
thus assume that X is irreducible and let n = dim(X). If n = 0, then every line
bundle on X is ample. Suppose now that n > 0.
Step 1. We have limm→∞ χ(X,Lm) = ∞. This follows from the asymptotic
Riemann-Roch formula (see Remark 16.1.9) and the fact that by assumption (Ln) >
0.
Step 2. We now show that limm→∞ h0(X,Lm) = ∞. Since X is irreducible, we
have a Cartier divisor E on X such that L ' OX(E). This gives an embedding
of L−1 ' OX(−E) in the constant sheaf k(X) and consider I = L−1 ∩ OX and
J = I ⊗ L ' I · L ↪→ OX . Therefore both I and J are coherent ideal sheaves on
X. Consider the following short exact sequences on X:

0 // I ⊗ Lm

∼=
��

// Lm // (OX/I)⊗ Lm // 0

0 // J ⊗ Lm−1 // Lm−1 // (OX/J )⊗ Lm−1 // 0.

Since I and J are non-zero ideal sheaves, it follows from the inductive assumption
that L|V (I) and L|V (J ) are ample. We deduce that

Hi
(
X, (OX/I)⊗ Lm

)
= 0 and Hi

(
X, (OX/J )⊗ Lm−1

)
= 0

for all i ≥ 1 and m � 0 (see Remark 11.6.15). Using the long exact sequences in
cohomology for the above short exact sequences, we conclude that for m � 0, we
have hi(X,Lm) = hi(X,Lm−1) for all i ≥ 2. It follows that we have C ∈ Z such
that for all m� 0, we have

h0(X,Lm)− h1(X,Lm) = χ(X,Lm) + C.

We thus deduce from Step 1 that limm→∞ h0(X,Lm) =∞.
Step 3. Let us fix m > 0 such that h0(X,Lm) > 0. Since X is irreducible, we have
an effective Cartier divisor D such that OX(D) ' Lm. For every positive integer
p, we get a short exact sequence

0→ L(p−1)m → Lpm → Lpm|D → 0,

and the following piece from the corresponding long exact sequence

H0(X,Lpm)
φ→ H0(X,Lpm ⊗OD)→

→ H1(X,L(p−1)m)
ψ→ H1(X,Lpm)→ H1(X,Lpm ⊗OD).

Since L|Supp(D) is ample by the inductive assumption, we have H1(X,Lpm⊗OD) =

0 for p � 0 by Remark 11.6.15. This gives h1(X,Lpm) ≤ h1(X,L(p−1)m) for
p � 0. Therefore the sequence

(
h1(X,Lpm)

)
p≥1

is eventually constant, which in

turn implies that for p � 0, in the above exact sequence ψ is an isomorphism,
hence φ is surjective. Note that the base-locus of Lpm is clearly contained in
Supp(D). On the other hand, since L|Supp(D) is ample, the sheaf Lpm ⊗ OD is
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globally generated for p � 0 (see Exercise 11.6.16). The surjectivity of φ hence
implies that Supp(Lpm) ∩ Supp(D) = ∅, and we conclude that Lpm is globally
generated for p � 0. Let f : X → PN be the morphism defined by |Lpm|, so that
Lpm ' f∗

(
OPN (1)

)
. If C is a curve contracted by f , then the projection formula

gives (L·C) = 0, a contradiction with our hypothesis. Corollary 14.1.8 then implies
that f is a finite morphism, and since Lpm is the pull-back via f of an ample line
bundle, we conclude that L is ample using Corollary 11.6.17. This completes the
proof of the theorem. �

Remark 16.3.2. It follows from the above theorem and Proposition 16.1.16
that if L1 and L2 are numerically equivalent line bundles on the complete variety
X, then L1 is ample if and only if L2 is ample.



CHAPTER 17

A glimpse of birational geometry

In this chapter we give an introduction to birational maps, proving in particular
some basic results in dimension two. In the first section we discuss some general
facts about birational morphisms and birational maps and do some computations
for smooth blow-ups in arbitrary dimension. We also discuss resolutions of curves
on smooth surfaces via successive blow-ups. In the second section we prove the
main results about birational morphisms and birational maps between smooth al-
gebraic surfaces. Finally, in the last section we prove Castelnuovo’s criterion for
constructing a blow-down morphism.

17.1. Generalities about birational morphisms and blow-ups

We begin with a discussion of exceptional loci of proper, birational morphisms.

17.1.1. Birational morphisms and exceptional loci. The starting point
is the following easy consequence of Zariski’s Main theorem.

Proposition 17.1.1. If f : X → Y is a proper, birational morphism of ir-
reducible algebraic varieties, with Y normal, and U is the domain of the inverse
rational map f−1, then the following hold:

i) We have an induced isomorphism f−1(U)→ U .
ii) For every y ∈ Y r U , the fiber f−1(y) is connected, of dimension ≥ 1.
iii) We have codimX(Y r U) ≥ 2

Proof. The assumptions imply that f∗(OX) = OY (see Example 14.1.6),
hence all fibers of f are connected by Zariski’s Main theorem. Note that every
fiber is non-empty, since f(X) is closed and dense in Y . Let W ⊆ Y be the
subset of Y consisting of all points y ∈ Y such that f−1(y) is finite (this is open
in Y by Theorem 5.4.1). If y ∈ Y r W , then f−1(y) is a connected subvariety
of X of dimension ≥ 1. On the other hand, for y ∈ W , the fiber f−1(y) is finite
and connected, hence it consists of only one point. It follows that the induced
morphism g : f−1(W ) → W is bijective, and being continuous and closed, it is a
homeomorphism. Since g∗(Of−1(W )) = OW , we conclude that g is an isomorphism.

It follows from this that the domain U of f−1 contains W . Moreover, since f
and f−1 induce inverse morphisms between f−1(U) and U , we deduce that U ⊆W ,
hence U = W . The assertion in iii) follows from the fact that f is proper and Y is
normal by Proposition 9.1.6. �

With the notation in the above proposition, the closed subset f−1(XrU) is the
exceptional locus Exc(f) of f . A prime divisor onX is exceptional (or f -exceptional,
if f is not understood from the context) if it is contained in the exceptional locus
of f . An arbitrary Weil divisor on X is exceptional if it is a linear combination of
prime exceptional divisors.

419
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Remark 17.1.2. It follows from the proposition that the complement X r
Exc(f) can be characterized as the largest open subset V of X such that f |V : V →
Y is an open immersion.

Remark 17.1.3. Note that a prime divisor E on X is f -exceptional if and only
if dim

(
f(E)

)
< dim(E). Indeed, the “only if” part follows from assertion iii) in

Proposition 17.1.1, while the “if” part follows from the fact that if E intersects the
open subset f−1(U) in the proposition, then the induced morphism E → f(E) is
birational.

Suppose now that f : X → Y is a proper, birational morphism between normal,
irreducible varieties, and U ⊆ Y is the domain of the rational map f−1. If D is a
prime divisor on Y , then D ∩ U 6= ∅. The closure of f−1(D ∩ U) is a prime divisor

on X, the strict transform (or proper transform) D̃ of D on X (note that this is
consistent with the terminology we used in the case of blow-ups). More generally,

if D =
∑r
i=1 aiDi is an arbitrary Weil divisor on Y , then D̃ :=

∑r
i=1 aiD̃i is the

strict transform of D. Note that a prime divisor E on X is either f -exceptional or
it is the strict transform of a prime divisor on Y (namely f(E)).

Proposition 17.1.4. If f : X → Y is a proper, birational morphism between
smooth, irreducible varieties, then Exc(f) has pure codimension 1. Moreover, there
is a unique effective divisor KX/Y on X, with Supp(KX/Y ) = Exc(f), such that

(17.1.1) OX(KX/Y ) ' ωX ⊗OX
f∗(ωY )−1.

The divisor KX/Y is the relative canonical divisor of f .

Proof of Proposition 17.1.4. Recall that by Proposition 8.7.20, we have
an exact sequence

f∗(ΩY )
φ−→ ΩX → ΩX/Y → 0.

Moreover, if W is an open subset of X such that f |W is an open immersion, then
φ|W is an isomorphism. Since f∗(ΩY ) is locally free, this easily implies that φ is
injective.

Consider now the morphism induced by φ at the level of top exterior powers:

ψ : f∗(ωY )→ ωX .

This is a morphism of line bundles, hence it is determined by tensoring with f∗(ωY )
the morphism OX → ωX ⊗OX

f∗(ωY )−1 corresponding to a section s of the line
bundle ωX ⊗OX

f∗(ωY )−1. Since φ|W is an isomorphism, so is ψ|W , hence s 6= 0.
Let KX/Y be the effective divisor on X corresponding to s. In particular, (17.1.1)
holds.

If U is as in Proposition 17.1.1, then f−1(U)→ U is an isomorphism; as we have
already seen, in this case φ|f−1(U) is an isomorphism, hence Supp(KX/Y )∩f−1(U) =

∅. Let us show that conversely, if x 6∈ f−1(U), then x ∈ Supp(KX/Y ). If this is
not the case, then φx is an isomorphism. Let V be an open neighborhood of x
such that φ|V is an isomorphism. This implies that for every z ∈ V , the linear
map dfz : TzX → Tf(z)Y is an isomorphism, hence f |V is étale. In this case, the

fiber f−1
(
f(x)

)
∩V is 0-dimensional, contradicting the fact that since x 6∈ f−1(U),

every irreducible component of f−1
(
f(x)

)
containing x has dimension ≥ 1. We thus

conclude that Supp(KX/Y ) = Exc(f); in particular, Exc(f) has pure dimension 1
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in X. Finally, the uniqueness of KX/Y is a consequence of the general lemma
below. �

Lemma 17.1.5. If f : X → Y is a proper morphism of irreducible varieties,
with X and Y normal, and D is an exceptional divisor on X such that D ∼ 0, then
D = 0.

Proof. By assumption, we have a non-zero φ ∈ k(X) = k(Y ) such that

divX(φ) = D. If E is a prime divisor on Y and Ẽ is the strict transform of
E, then ordE(φ) = ordẼ(φ) = 0, since D is exceptional. We thus conclude that
φ ∈ O∗Y (Y ), hence φ ∈ O∗X(X), which implies D = 0. �

Remark 17.1.6. If f : X → Y and g : Y → Z are proper, birational morphisms
between irreducible, normal varieties, then

Exc(g ◦ f) = f−1
(
Exc(g)

)
∪ Exc(f).

The inclusion “⊆” follows from the fact that each of the following two morphisms

X r
(
f−1

(
Exc(g)

)
∪ Exc(f)

)
→ Y r Exc(g)→ Z

is an open immersion, hence the composition is an open immersion. For the reverse
inclusion, it is enough to show that for every x ∈ f−1

(
Exc(g)

)
∪Exc(f), there is an

irreducible subset W of positive dimension of the fiber of g ◦ f over z = g
(
f(x)

)
,

such that x ∈ W . This is clear if x ∈ Exc(f) since we have such a subset in the
fiber of f over y = f(x). Suppose now that if x ∈ f−1

(
Exc(g)

)
r Exc(f). In this

case there is an irreducible subset T of positive dimension in the fiber of g over z
such that y ∈ T . Since f is an isomorphism over a suitable open neigborhood V of
y, we can take W to be the closure of f−1(T ∩ V ).

When dealing with birational maps, instead of birational morphisms, a useful
construction is that of the graph of the map. This can be defined, more generally,
for arbitrary rational maps.

Definition 17.1.7. Given a rational map φ : X 99K Y , with X irreducible,
choose a morphism f : U → Y representing φ. The graph Γφ of φ is the closure in
X × Y of the graph

Γf = {(x, y) ∈ U × Y | y = f(x)}

of f . It is straightforward to check that this is independent of the choice of mor-
phism representing φ.

Remark 17.1.8. With the notation in the definition, note that the projections
from X × Y onto the two components induce morphisms

p : Γφ → X and q : Γφ → Y.

The induced morphism p−1(U)→ U is an isomorphism with inverse x→
(
x, f(x)

)
(since Γf is closed in U × Y , we have Γφ ∩ (U × Y ) = Γf ). Therefore p is a
birational morphism and we clearly have the equality of rational maps φ = q ◦ p−1.
In particular, we see that φ is birational if and only if q is birational. The graph
construction thus gives a canonical way to write a birational map as the composition
of a birational morphism with the inverse of another birational morphism.
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Remark 17.1.9. If φ : X 99K Y is a birational map between irreducible va-
rieties, then there are open subsets U in X and V in Y such that φ induces an
isomorphism U ' V . This implies that the isomorphism X × Y → Y × X that
maps (P,Q) to (Q,P ) maps Γφ onto Γφ−1 .

Remark 17.1.10. Suppose that we have proper morphisms α : X → S and
β : Y → S, with X irreducible, and φ : X 99K Y is a rational map of varieties over
S (that is, we have β ◦ φ = α). If U is an an open subset of X such that φ is
represented by a morphism f : U → Y , then it is clear that Γf ⊆ X ×S Y , hence
Γφ is a closed subset of X×S Y . Since α and β are proper, we deduce that also the
two morphisms p : Γφ → X and q : Γφ → Y are proper.

Under these assumptions, for a closed subset Z of X, we define its image by φ
to be

φ(Z) := q
(
p−1(Z)

)
.

Note that since q is proper, this is a closed subset of Y . Of course, if φ is a
morphism, then p is an isomorphism, and this definition agrees with the usual one
for the image of Z by φ.

Proposition 17.1.11. Let X and Y be proper varieties over S, with X normal
and irreducible, and φ : X 99K Y a rational map of varieties over S. If T ∈ X is a
point that does not lie in the domain of φ, then φ(T ) is a connected, closed subset
of Y , of dimension ≥ 1.

Proof. Consider the canonical morphisms p : Γφ → X and q : Γφ → Y . Since
T is not in the domain of φ, it follows that it is not in the domain of p−1, hence
Proposition 17.1.1 implies that p−1(T ) is a connected, closed subset of Γφ, of di-
mension ≥ 1. The assertion in the statement now follows from the fact that the
restriction of q to p−1(T ) ⊆ {T} × Y is a closed immersion. �

Proposition 17.1.12. Let φ : X 99K Y and ψ : Y 99K Z be rational maps,
where X and Y are irreducible and φ is dominant.

i) We have a canonical isomorphism

Γψ◦φ ' Γφ ×Y Γψ.

ii) Suppose that X, Y , and Z are proper over S and the rational maps are
maps of varieties over S. If W is a closed subset of X, then

(17.1.2) (ψ ◦ φ)(W ) ⊆ ψ
(
φ(W )

)
,

with equality if ψ is a morphism.

Proof. The assertion in i) is straightforward to check when both φ and ψ
are morphisms. The general case follows by choosing morphisms representing the
two maps such that they can be composed, and by taking the closures of the
corresponding graphs. Consider now the Cartesian diagram

Γψ◦φ

ũ

��

q̃ // Γψ

u

��
Γφ q

// Y.
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The inclusion in (17.1.2) follows from the obvious inclusion

q̃
(
ũ−1(p−1(W ))

)
⊆ u−1

(
q(p−1(W ))

)
.

Moreover, this is an equality if ψ is a morphism, since in this case u and ũ are
isomorphisms. We thus obtain equality in (17.1.2). �

17.1.2. General properties of smooth blow-ups. We now turn to the
study of some very concrete birational transformations, the smooth blow-ups. We

begin with a property of more general blow-ups. Recall that if f : X̃ → X is the
blow-up of an irreducible variety X along a non-zero coherent ideal sheaf I, then
the ideal I · OX̃ is locally principal.

Proposition 17.1.13. Let X be an irreducible variety, I a non-zero coherent

ideal sheaf on X, and f : X̃ → X the blow-up of X along I. For every irreducible
variety Y and every morphism g : Y → X such that the ideal I · OY is locally

principal, there is a unique morphism h : Y → X̃ such that f ◦ h = g.

Proof. By assumption, I ·OY 6= 0, hence g(Y ) is not contained in V (I). Since
f is an isomorphism over X r V (I), it is clear that there is at most one morphism
h as in the proposition. Because of uniqueness, the existence is a local problem.
First, we consider an affine open cover X =

⋃
i∈I Ui. It is enough to show that

for every i, if fi : f
−1(Ui)→ Ui and gi : g

−1(Ui)→ Ui are the induced morphisms,
there is hi : g

−1(Ui)→ f−1(Ui) such that fi ◦hi = gi. We thus may assume that X
is affine and let A = OX(X) and I = I(X). Let a1, . . . , ar be generators of I. By
assumption, we have a finite cover Y =

⋃
j∈J Vj by affine open subsets such that

for every j ∈ J , there is i with 1 ≤ i ≤ r such that I ·OY (Vj) = ai ·OY (Vj) and this
is a non-zero ideal. It is enough to show that for every such j, there is hj : Vj → X
such that f ◦ hj = g|Vj , hence we may assume that Y is affine, with A′ = OY (Y ),
and we have i, with 1 ≤ i ≤ r, such that if φ : A→ A′ is the morphism induced by
g, then I ·A′ =

(
φ(ai)

)
and φ(ai) 6= 0.

Recall that X̃ = Proj(S), where S =
⊕

m≥0 I
m and consider the element

ai ∈ S1. We have the affine open subset W = DX̃(ai) ⊆ X̃, so that OX̃(W ) = S(ai).
By assumption, for every u ∈ Im, we can write φ(u) = φ(ai)

m ·ψm(u) for a unique
element ψm(u) ∈ A′ (recall that φ(ai) 6= 0 and A′ is a domain). We can thus define
a map

S(ai) → A′,
u

ami
→ ψm(u)

and it is straightforward to see that this is a morphism of A-algebras. This corre-

sponds to a morphism of algebraic varieties h : Y →W ⊆ X̃ such that f ◦h = g. �

From now on we assume that X is a smooth, irreducible variety, Z is a smooth,

irreducible, closed subvariety of X, of codimension r, and f : X̃ → X is the blow-up
of X along Z (that is, the blow-up of X along the radical ideal sheaf IZ correspond-

ing to Z). Recall that IZ · OX̃ = OX̃(1) = OX̃(−E), for a Cartier divisor E on X̃.

Moreover, E is a smooth, irreducible subvariety of X̃ (see Example 6.3.24). In fact,
if S =

⊕
m≥0 ImZ , then E ' Proj(S/IZS) (see Remark 4.3.18). We thus conclude

that

E ' Proj(
⊕
m≥0

ImZ /Im+1
Z

)
' Proj

(
Sym•(IZ/I2

Z)
)
,
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where the second isomorphism follows from Proposition 6.3.21. We thus see that
the induced morphism E → Z makes E a projective bundle over Z, such that
OX̃(E)|E ' OE(−1).

Example 17.1.14. If f : X̃ → X is the blow-up of a smooth, complete, n-
dimensional variety at a point, and E is the exceptional divisor, then E ' Pn−1

and

(En) =
(
OPn−1(−1)n−1

)
= (−1)n−1.

Proposition 17.1.15. If f : X̃ → X is the blow-up of the smooth, irreducible
variety X along the smooth, irreducible, closed subvariety Z, of codimension r ≥ 2,
and if E is the exceptional divisor, then the map

φ : Pic(X)⊕ Z→ Pic(X̃),
(
L,m)→ f∗(L)⊗O

X̃
OX̃(mE)

is an isomorphism. Moreover, this induces an isomorphism ψ : N1(X) ⊕ Z '
N1(X̃).

Proof. Recall that on smooth varieties, we can identify the Picard group

and the class group. Let U = X r Z. Since X̃ r f−1(U) = E, it follows from
Example 9.3.5 that we have a short exact sequence

Z
α−→ Pic(X̃)

β−→ Pic
(
f−1(U)

)
→ 0,

where α(m) = OX(mE) and β(L) = L|f−1(U). Similarly, the restriction map

Pic(X)→ Pic(U), L → L|U
is surjective (in fact, it is an isomorphism, since codimX(Z) ≥ 2). Since f−1(U)→
U is an isomorphism, we immediately deduce that the morphism φ in the proposi-
tion is surjective, hence also ψ is surjective.

We next show that if D is a divisor on X such that f∗D+mE ≡ 0, then D ≡ 0
and m = 0, hence ψ is injective. Since r ≥ 2, for every q ∈ Z, the fiber F = f−1(q)
is a positive-dimensional projective space and OX̃(E)|F ' OF (−1). The projection
formula thus implies that if C is a curve in F , then

0 =
(
(f∗(D) +mE) · C

)
= m · (E · C) = −m · deg(C).

Therefore m = 0 and we get D ≡ 0 since f is surjective (see Proposition 16.1.14).
It is now clear that also φ is injective: if D is a divisor on X such that f∗(D) +

mE ∼ 0, then in particular f∗(D) + mE ≡ 0, hence m = 0. The fact that D ∼ 0
follows from the fact that π∗(OX̃) ' OX (one can use, for example, Example 14.1.6),

hence by the projection formula, the isomorphism f∗
(
OX(D)

)
' OX̃ gives an

isomorphism

OX ' f∗
(
f∗(OX(D))

)
' OX(D)⊗OX

f∗(OX̃) ' OX(D).

�

Proposition 17.1.16. If Z is a smooth, irreducible, closed subvariety of the

smooth, irreducible variety X, with corresponding radical ideal sheaf IZ , and f : X̃ →
X is the blow-up of X along Z, with exceptional divisor E, then for every m ≥ 0,
the canonical morphism

ImZ → f∗
(
OX̃(−mE)

)
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is an isomorphism and Rif∗
(
OX̃(−mE)

)
= 0 for all i ≥ 1. In particular, for every

line bundle L on X, we have a canonical isomorphism

Hi(X,L) ' Hi
(
X̃, f∗(L)

)
for all i ≥ 0.

Proof. For every m ≥ 0, consider the short exact sequence

0→ OX̃
(
− (m+ 1)E

)
→ OX̃(−mE)→ OX̃(−mE)|E → 0.

Recall that E is isomorphic over Z to the projective bundle Proj
(
Sym(IZ/I2

Z)
)
,

such that OX̃(E)|E ' OE(−1). We deduce that for every m ≥ 0, we have

Riπ∗
(
OE(m)

)
= 0 for all i ≥ 1 and the canonical morphism

βm : ImZ /Im+1
Z → f∗

(
OE(m)

)
is an isomorphism (see Example 11.2.7). First, we see that for every i ≥ 1 and
m ≥ 0, we have an exact sequence

Rif∗
(
OX̃(−(m+ 1)E)

)
→ Rif∗

(
OX̃(−mE)

)
→ Rif∗

(
OX̃(−mE)|E

)
= 0.

On the other hand, since OX̃(−E) = OX̃(1), by applying Theorem 11.2.1 over

the elements of a finite affine open cover of X, we obtain Rif∗
(
OX̃(−mE)

)
= 0

for all i ≥ 1 and all m � 0. Using the above exact sequence, we then obtain
Rif∗

(
OX̃(−mE)

)
= 0 for all i ≥ 1 and all m ≥ 0.

Note now that for every m ≥ 0, we have a commutative diagram with exact
rows

0 // Im+1
Z

//

αm+1

��

ImZ //

αm

��

ImZ /I
m+1
Z

//

βm

��

0

0 // f∗
(
OX̃(−(m+ 1)E)

)
// f∗
(
OX̃(−mE)

)
// f∗
(
OE(m)

)
// 0,

where we use the fact that R1f∗
(
OX̃(−(m+ 1)E)

)
= 0. By Corollary 11.2.3, αm is

an isomorphism for m� 0. Since βm is an isomorphism for all m ≥ 0, we conclude
that αm is an isomorphism for all m ≥ 0.

The last assertion in the theorem now follows easily using the Leray spectral
sequence and the projection formula. �

In order to do computations on smooth blow-ups, it is convenient to recall the
description via equations. We first introduce a useful notion on arbitrary smooth
varieties.

Definition 17.1.17. If U is an open subset of a smooth variety X, the regular
functions x1, . . . , xn ∈ OX(U) form a system of algebraic coordinates (or simply, a
system of coordinates) on U if the corresponding sections dx1, . . . , dxn of ΩX give
an isomorphism O⊕nU ' ΩX |U . In other words, the morphism f : U → An given
by (x1, . . . , xn) has the property that f∗(ΩAn) ' ΩU ; equivalently, f is an étale
morphism (see Proposition 13.2.8). Algebraically, the condition says that for every
P ∈ U , the images of x1 − x1(P ), . . . , xn − xn(P ) in OX,P form a regular system
of parameters. In fact, note that if this condition holds at some P ∈ U , then
dx1(P ), . . . , dxn(P ) ∈ (ΩX)(P ) form a basis and there is an open neighborhood
V ⊆ U of P such that x1, . . . , xn give a system of coordinates on V .



426 17. A GLIMPSE OF BIRATIONAL GEOMETRY

Suppose now that X is a smooth, irreducible variety and Z ⊆ X is a smooth,
irreducible, closed subvariety, of codimension r. Given any point P ∈ Z, there is
an affine open neighborhood U of P and a system of coordinates x1, . . . , xn on U
such that x1, . . . , xr generate the ideal of Z ∩ U in U (see Proposition 6.3.21).

Let f : X̃ → X be the blow-up of X along Z. We have seen in Example 6.3.24
that we have a closed embedding

f−1(U) ↪→ U ×Pr−1

over U such that if y1, . . . , yr are the homogeneous coordinates on Pr−1, then
f−1(U) is defined by the equations

xiyj = xjyi for 1 ≤ i, j ≤ r.
We can thus cover f−1(U) by the affine charts V1, . . . , Vr, with Vi defined by yi 6= 0,
such that on Vi we have algebraic coordinates u1, . . . , un, where f#(xj) = uj if j = i
or j > r and f#(xj) = uiuj if 1 ≤ j ≤ r, with j 6= i.

Proposition 17.1.18. If Z is a smooth, irreducible, closed subvariety of the

smooth, irreducible variety X, with codimX(Z) = r ≥ 1, and if f : X̃ → X is the
blow-up of X along Z, with exceptional divisor E, then KX̃/X = (r − 1)E. In

particular, we have
ωX̃ ' f

∗(ωX)⊗O
X̃
OX̃
(
(r − 1)E

)
.

Proof. We know that KX̃/X = aE for some a ∈ Z and need to show that

a = r−1. In order to do this, choose a point p ∈ E and let q = f(p). We have seen
that we can choose algebraic coordinates x1, . . . , xn ∈ OX(U) in some affine open
neighborhood U of q and algebraic coordinates u1, . . . , un ∈ OX̃(V ) in some affine
open neighborhood V of p, such that the ideal of Z∩U in U is equal to (x1, . . . , xr)
and we have

x1 = u1, xi = u1ui for 2 ≤ i ≤ r, and xi = ui for r + 1 ≤ i ≤ n.
In this case, the morphism α : f∗(ΩX)→ ΩX̃ is given by α

(
f∗(dxi)

)
= dui for i = 1

or r + 1 ≤ i ≤ n and

α
(
f∗(dxi)

)
= u1dui + uidu1 for 2 ≤ i ≤ r.

We thus see that det(α) maps dx1 ∧ . . . ∧ dxn to ur−1
1 du1 ∧ . . . ∧ dun, which shows

that a = r − 1. �

Definition 17.1.19. If Z is a smooth, irreducible, closed subvariety of the
smooth, irreducible variety X, then for an effective divisor D on X, we define
the multiplicity (or order) ordZ(D) of D along Z, as follows. If R = OX,Z , with
maximal ideal m, and if h ∈ R is the image of an equation defining D in some
affine open subset intersecting Z, then ordZ(D) is the largest r such that h ∈ mr;
note that since h is non-zero, this is a well-defined non-negative integer by Krull’s
Intersection theorem (see Theorem C.4.1). Note that ordZ(D) ≥ 1 if and only if
Z ⊆ Supp(D).

Example 17.1.20. Let Z be a smooth, irreducible, closed subvariety of the

smooth, irreducible variety X, and f : X̃ → X the blow-up of X along Z, with
exceptional divisor E. We claim that if D =

∑r
i=1 aiDi is an effective divisor on

X and D̃ is the strict transform of D on X̃, then

f∗(D) = D̃ + aE, where a = ordE(D).
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Since f is an isomorphism over the complement of Z, it is clear that we have

f∗(D) = D̃+ aE for some a ∈ Z, hence we only need to compute a. This is a local

computation, that can be done by choosing local coordinates on X and on X̃, and
which we leave as an exercise for the reader.

17.1.3. Resolution of curves on a smooth surface. We now illustrate the
above results about smooth blow-ups by describing the change of arithmetic genus
for curves on a smooth surface under blow-ups. As we will see, this implies that
every such curve can be resolved after finitely many blow-ups.

Proposition 17.1.21. Let X be a smooth, projective surface, P ∈ X a point,

and f : X̃ → X the blow-up of X at P . If C is a curve on X and C̃ is its strict

transform on X̃, then

pa(C̃) = pa(C)− m(m− 1)

2
, where m = ordP (C).

Proof. We have seen in Example 17.1.20 that f∗(C) = C̃ + mE. Also, we
deduce from Proposition 17.1.18 that we may take KX̃ = f∗(KX) + E. Finally,
note that by general properties of intersection numbers, for any divisors D and D′

on X, we have(
f∗(D) · f∗(D′)

)
= (D ·D′) and

(
f∗(D) · E) = deg

(
f∗(D)|E

)
= 0.

The Adjunction formula thus gives

2pa(C̃)− 2 = (C̃2) + (C̃ ·KX̃)

=
(
(f∗(C)−mE)2

)
+
(
(f∗(C)−mE) · (f∗(KX) +E)

)
= (C2)−m2 + (C ·KX) +m

= 2pa(C)− 2−m2 +m,

and we obtain the formula in the statement. �

Recall that for every curve X, we have a resolution of singularities provided
by the normalization. While this is a very convenient theoretical construction, in
practice it is difficult to compute. The above proposition shows that for curves on
smooth, projective surfaces, we can obtain the resolution of singularities via a finite
sequence of blow-ups.

Corollary 17.1.22. If C is a curve on the smooth, projective surface X, then
there is a finite sequence

Cr → Cr−1 → . . .→ C1 = C,

with Cr smooth, where each morphism is the blow-up of the radical ideal defining a
singular point,

Proof. It follows from the proposition that if P ∈ C is a singular point (equiv-

alently, we have ordP (C) ≥ 2), then pa(C̃) ≤ pa(C)−1. Note also that the induced

morphism C̃ → C is the blow-up of C with respect to the ideal of P . Since the
arithmetic genus of a curve is a non-negative integer (recall that a curve is as-
sumed to be irreducible), it follows that this process has to stop after finitely many
steps. �
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The connection discussed in §15.1.2 between arithmetic genus and δ-invariants
of curve singularities suggests another approach to resolving curves by blow-ups,
which also applies to non-complete curves and to curves that do not lie on surfaces.
Recall that for an (irreducible) curve C and for P ∈ C, we put

δP = `OC,P
(ÕC,P /OC,P ) = dimk(ÕC,P /OC,P ),

where ÕC,P is the integral closure of OC,P in k(C). Note that δP = 0 if and only
if P is a smooth point of C. We also put

δ(C) :=
∑
P∈C

δP .

Proposition 17.1.23. Let C be a curve.

i) If f : C̃ → C is the blow-up along the radical ideal defining a point P ∈ C,
then f is an isomorphism if and only if P is a smooth point.

iii) If f : C ′ → C is a finite, birational morphism, which is not an isomor-
phism, then δ(C ′) < δ(C).

Proof. The assertion in i) is a special case of the fact that if f : X̃ → X is
the blow-up of the irreducible variety X along I, then f is an isomorphism if and
only if I is a locally principal ideal. This is clear.

For the assertion in ii), note first that if P ∈ C is a smooth point, then we have
an open neighborhood U ⊆ C of P which is smooth, and thus f is an isomorphism
over U (see Remark 15.2.4). In order to prove the assertion in ii), for every P ∈
C such that f is not an isomorphism around P , we can choose an affine open
neighborhood VP of P such that VP ∩ Csing = {P}. Since δ(C) =

∑
P δ(VP ) and

δ(C ′) =
∑
P δ
(
f−1(VP )

)
, it is enough to show that for every such P , we have

δ(VP ) > δ
(
f−1(VP )

)
. Consider

A = OC(VP ) ↪→ B = OC′
(
f−1(VP )

)
↪→ Ã,

where Ã is the integral closure of A and B in k(C). In this case we have

δ(VP )− δ
(
f−1(VP )

)
= dimk(Ã/A)− dimk(Ã/B) = dimk(B/A) > 0,

where the inequality follows from the fact that B 6= A, since f is not an isomorphism
over VP . This completes the proof. �

We now deduce the following generalization of Corollary 17.1.22.

Proposition 17.1.24. Given a curve C, there is a finite sequence

Cr → Cr−1 → . . .→ C1 = C,

with Cr smooth, where each morphism is the blow-up of the radical ideal defining a
singular point.

Proof. If C is smooth, then there is nothing to prove. Otherwise, pick P ∈ C
and let C2 → C be the blow-up along the ideal of P . Assertion i) in the proposition
implies that f is not an isomorphism and assertion ii) implies that δ(C2) < δ(C).
Since δ(C ′) is a non-negative integer for any curve C ′, it follows that after finitely
many blow-ups we obtain a smooth curve. �
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17.2. Birational morphisms between smooth surfaces

Our goal in this section is to prove a structural result about birational mor-
phisms in dimension 2, and then discuss some consequences concerning birational
maps between smooth surfaces. The key result is the following

Proposition 17.2.1. Let f : X → Y be a proper, birational morphism between
smooth surfaces. If P ∈ Y is a point that does not lie in the domain of f−1 and if

π : Ỹ → Y is the blow-up of Y at P , then f factors through π, that is, the rational
map π−1 ◦ f is a morphism.

Proof. Suppose that there is a point Q ∈ X that does not lie in the domain
of φ = π−1 ◦ f . Note first that since π−1 is defined on Y r {P}, we have f(Q) = P .
Second, it follows from Proposition 17.1.11 that φ(Q) is connected, of dimension 1.
Moreover, by Proposition 17.1.12, we have π

(
φ(Q)

)
= f(Q) = P , hence φ(Q) ⊆ E,

and thus φ(Q) = E. Let U ⊆ Ỹ be the domain of φ−1 and g : U → X the

corresponding morphism. Since Ỹ r U is a finite set, we have U ∩ E 6= ∅. We
have seen that {Q} × E ⊆ Γφ, hence E × {Q} ⊆ Γφ−1 (see Remark 17.1.9), and
therefore g(E ∩ U) = {Q}. Since P is not in the domain of f−1, it follows from
Proposition 17.1.1 that f−1(P ) is connected, of dimension 1. Let C be an irreducible
component of f−1(P ) containing Q. Choose R ∈ U ∩ E and consider the ring
extensions induced by f and g:

OY,P ↪→ OX,Q ↪→ OỸ ,R
and let mY,P , mX,Q, and mỸ ,R be the corresponding maximal ideals. Note that the

above extensions are morphisms of local rings.
We choose regular systems of parameters y1, y2 ∈ mY,P and u1, u2 ∈ mỸ ,R such

that y1 = u1 and y2 = u1u2. Therefore the image in OỸ ,R of an equation defining

E around R is u1. If v ∈ mX,Q is the image of an equation defining C around
Q, since f(C) = {P}, it follows that we can write y1 = v · w1 and y2 = v · w2,
for some w1, w2 ∈ OX,Q. Since y1 6∈ m2

Ỹ ,R
, it follows that w1 6∈ mX,Q, and thus

y2/y1 ∈ OX,Q. On the other hand, we have y2/y1 ∈ mỸ ,R, and we conclude that

y2/y1 ∈ mX,Q. Finally, since g(E ∩ U) = {Q}, it follows that mX,Q ⊆ u1 · OỸ ,R.

We thus deduce that u2 = y2/y1 lies in u1 · OỸ ,R, contradicting the fact that u1

and u2 generate mỸ ,R. This completes the proof. �

Corollary 17.2.2. Every proper, birational morphism f : X → Y , where X
and Y are smooth surfaces, can be written as a composition f1 ◦ . . .◦fn, with n ≥ 0,
where each fi is the blow-up of a smooth surface at a point.

Proof. Recall that the exceptional locus Exc(f) has pure codimension 1 (see
Proposition 17.1.4). We argue by induction on the number r of irreducible com-
ponents in Exc(f). Note that r = 0 if and only if f is an isomorphism, and in
this case the assertion in the corollary trivially holds. Suppose now that f is not
an isomorphism and let P ∈ Y be a point that is not in the domain of f−1. If

π : Ỹ → Y is the blow-up of Y at P , then it follows from the proposition that we

have a morphism g : X → Ỹ such that f = π ◦ g. Note that g is again proper and
birational, hence we are done by induction if we show that the number of irreducible
components of Exc(g) is < r. By Remark 17.1.6, we have

Exc(f) = Exc(g) ∪ g−1
(
Exc(π)

)
= Exc(g) ∪ g−1(E),
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where E is the exceptional divisor of π. Since the strict transform Ẽ of E on X lies
in Exc(f), but it clearly does not lie in Exc(g), it follows that the set of irreducible
components of Exc(g) is a proper subset of the set of irreducible components of
Exc(f). This completes the proof of the induction step. �

Remark 17.2.3. Starting with dimension 3, it is not true that every birational
morphism f : X → Y , with X and Y smooth projective varieties, factors as a
composition of smooth blow-ups.

Remark 17.2.4. Suppose thatX and Y are proper varieties over S and φ : X 99K
Y is a birational map of varieties over S. Let us assume that we are in a set-
ting where resolution of singularities is known to hold1. In this case, if X and Y
are smooth, we can find a smooth variety Z, with proper birational morphisms
f : Z → X and g : Z → Y , such that φ = g ◦ f−1. Indeed, it is enough to consider
a resolution of singularities Z → Γφ of the graph of φ. For a proof in dimension 2
that does not rely on resolution of singularities (but which assumes that X and Y
are projective), see [Har77, Theorem 5.5].

Remark 17.2.5. In dimension 2, by combining the assertion in the previous
remark with Corollary 17.2.2, we conclude that if φ : X 99K Y is a birational map
of proper surfaces over S, with both X and Y smooth, then there is a smooth
surface Z with morphisms f : Z → X and g : Z → Y , both of which factor as
compositions of blow-ups of smooth varieties along smooth subvarieties, and such
that φ = g ◦ f−1. The same assertion in higher dimension is known as the Strong
Factorization conjecture and it is widely open. A weaker statement, known as
the Weak Factorization theorem, was proved by Abramovich, Karu, Matsuki, and
W lodarczyk when char(k) = 0, see [W lo03] and [AKMW02]. One version of this
says that if φ : X 99K Y is a birational map between smooth, irreducible, complete
varieties, then φ factors as f1 ◦ . . . ◦ fn, where each fi : Zi 99K Zi−1 is either the
blow-up of a smooth, irreducible, complete variety along a smooth, irreducible,
closed subvariety, or the inverse of such map. This result provides a powerful
tool for proving that various invariants of smooth, complete varieties are birational
invariants. To give one easy example: it implies that if X and Y are birational
smooth, complete varieties, then hi(X,OX) = hi(Y,OY ) for all i; in particular,
we have pa(X) = pa(Y ). Indeed, by Weak Factorization, it is enough to prove
this when we have a morphism f : X → Y which is the blow-up along the smooth
subvariety Z of Y . In this case, the assertion follows from Proposition 17.1.16.

17.3. Castelnuovo’s contractibility criterion

We have seen in Remark 16.2.8 that if X is a smooth, projective surface and
f : X → Y is a morphism to another surface such that f(C) is a point for some
(irreducible) curve C on X, then (C2) < 0. The main result in this section is a
converse when the curve C is smooth and rational.

Theorem 17.3.1. Let X be a smooth projective surface and C a curve on X
such that C ' P1 and (C2) = −n, for some n > 0. In this case there is a morphism

1In other words, suppose that either char(k) = 0 or that dim(X) = dim(Y ) ≤ 3. Note

that resolution of singularities in positive characteristic was proved in dimension 2 by Abhyankar
[Abh56] and in dimension 3 by Abhyankar [Abh66] for char(k) > 5, with the remaining cases

treated by Cossart and Piltant [CP08] and [CP09].
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f : X → Y , where Y is a projective surface, such that f(C) is a point P ∈ Y and
f induces an isomorphism f−1(Y r {P}) = X r C → Y r {P}. Moreover, if R is
the local ring at the origin of the affine cone over a rational normal curve in Pn,

then we have an isomorphism ÔY,P ' R̂.

Proof. Let D be a very ample divisor on X. After replacing D by a suitable
multiple, we may assume that the following conditions hold:

α) H1
(
X,OX(D)

)
= 0.

β) (D · C) = k = jn for some integer j ≥ 1.

Note first that for every i, with 0 ≤ i ≤ j, we have
(
(D + iC) · C

)
= (j − i)n, and

since C ' P1, we get

OX(D + iC)|C ' OP1

(
(j − i)n

)
.

Claim 1. For every i, with 0 ≤ i ≤ j, we have H1
(
X,OX

(
D + iC)

)
= 0. In order

to see this, we argue by induction in i, the case i = 0 being covered by α) above.
For the induction step, note that for i ≥ 1, we have a short exact sequence

0→ OX
(
D + (i− 1)C)

)
→ OX(D + iC)→ OX(D + iC)|C → 0.

The long exact sequence in cohomology gives for i ≤ j

H1
(
X,OX(D + (i− 1)C)

)
→ H1

(
X,OX(D + iC)

)
→ H1

(
P1,OP1((j − i)n)

)
= 0,

so that H1
(
X,OX(D + (i − 1)C))

)
= 0 implies H1

(
X,OX(D + iC)

)
= 0. This

completes the proof of the above claim.
Claim 2. The line bundle OX(D + jC) is globally generated. First, since OX(D)
is globally generated, it follows that the base locus of OX(D + jC) is contained
in C. Second, since the restriction OX(D + jC)|C is isomorphic to OC , which is
globally generated, and since the short exact sequence

0→ OX(D + (j − 1)C)
)
→ OX(D + jC)→ OX(D + jC)|C → 0

induces by Claim 1 a surjective map

H0
(
X,OX(D + (j − 1)C)

)
→ H0

(
X,OX(D + jC)

)
,

we deduce that C does not intersect the base locus of OX(D + jC). We thus
conclude that OX(D + jC) is globally generated.

Consider the morphism g : X → PN defined by the complete linear system
|OX(D+jC)| and let Y0 be the image. Note first that since deg

(
OX(D+jC)|C

)
= 0,

it follows from the projection formula that g(C) is a point P0 in Y0. Since OX(D)
is very ample, for every point Q ∈ X r C, we have a section of OX(D + jC)
which vanishes on Q, but does not vanish on some point of C; therefore X r C =
g−1(Y0 r {P0}). Moreover, from the very ampleness of OX(D), it follows that the
linear syatem |OX(D+jC)| separates the points in XrC and the tangent directions
at the points in X r C. By Proposition 11.5.18 (see also Remark 11.5.19), we see
that the induced morphism X r C → Y0 r {P0} is an isomorphism. In particular,
Y0 r {P0} is smooth.

Consider the normalization morphism h : Y → Y0. Since X is normal, we have
a unique morphism f : X → Y such that g = h ◦ f (see Proposition 9.1.9). The
image f(C) is a point P in Y with h(P ) = P0 (this follows from the fact that h
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has finite fibers). Moreover, since Y0 r {P0} is normal, h is an isomorphism over
Y0 r {P0}, hence f induces an isomorphism

X r C → h−1(Y0 r {P0}) = Y r {P}
(note that if P ′ ∈ Y is such that h(P ′) = P , then P ′ ∈ f(C) = {P}).

Since f is birational and Y is normal, we have f∗(OX) = OY (see Exam-
ple 14.1.6). By the Formal Function theorem (see also Remark 14.1.12), we have

ÔY,P ' f∗(OX )̂P ' lim←−H
0(X,OX/J i+1),

where J is the radical ideal sheaf defining C in X. Since both X and C are smooth,
we have

J i/J i+1 ' SymOX/JJ /J
2 for all i ≥ 0

(see Proposition 6.3.21). Using the fact that J /J 2 ' OX(−C)|C ' OP1(n), we
thus conclude that

J i/J i+1 ' OP1(ni) for all i ≥ 0.

The exact sequence

0→ OP1(ni)→ OX/J i+1 → OX/J i → 0

induces an exact sequence

(17.3.1) 0→ H0
(
P1,OP1(ni)

)
→ H0(X,OX/J i+1)→ H0(X,OX/J i)→ 0.

Note that if S is the coordinate ring for the affine cone over the rational normal
curve in Pn, then we have a canonical injective map

φ : S →
⊕
i≥0

H0
(
P1,OP1(ni)

)
,

which is an isomorphism in degree 1. In fact, since the canonical maps

SymiH0
(
P1,OP1(n)

)
→ H0

(
P1,OP1(ni)

)
are surjective, it follows that φ is an isomorphism. It is now straightforward to see
that if m is the maximal ideal in S corresponding to the origin, then using the exact
sequences (17.3.1), we can construct a k-algebra isomorphism

lim←−H
0(X,OX/J i+1) ' lim←−S/m

i+1 ' R̂.
This completes the proof of the theorem. �

Definition 17.3.2. Given a smooth, projective surface X, a curve C on X is
an exceptional curve of the first kind if C ' P1 and (C2) = −1.

Of course, if Y is a smooth, projective surface and f : X → Y is the blow-up
of Y at a point, with exceptional divisor E, then E is an exceptional curve of the
first kind. An important consequence of Theorem 17.3.1, known as Castelnuovo’s
Contractibility criterion, says that the converse holds: every exceptional curve of
the first kind is the exceptional divisor of a blow-down map. More precisely, we
have the following

Corollary 17.3.3. If X is a smooth, projective surface and C ⊆ X is an
exceptional curve of the first kind, then we have a morphism f : X → Y , where
Y is a smooth, projective surface, and we have a point P ∈ Y such that X is
isomorphic over Y to the blow-up of Y at P , and C corresponds to the exceptional
divisor.
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Proof. It follows from Theorem 17.3.1 that we have a morphism f : X → Y ,
where Y is a projective surface, and we have a point P ∈ Y such that f−1(P ) = C
and the induced morphism X rC → Y r {P} is an isomorphism. Moreover, since

(C2) = −1, it follows from the theorem that ÔY,P ' k[[x, y]] and thus P is a smooth
point of Y (see Remark 9.2.5). Therefore Y is smooth. Since f is birational and P

is not in the domain of f−1, it follows from Proposition 17.2.1 that if π : Ỹ → Y is
the blow-up of Y at P , then the rational map g = π−1 ◦ f is a morphism. If E is

the exceptional divisor of π, then its strict transform Ẽ on X maps to P , hence it
is equal to C. It follows that there are no g-exceptional curves on X, hence g is an
isomorphism by Proposition 17.1.4. �

Remark 17.3.4. Another interesting case of Theorem 17.3.1 is that of a (−2)-
curve, that is, a curve C ' P1 such that (C2) = −2. In this case, it follows from
the theorem that we have a morphism f : X → Y such that if f(C) = P , then

ÔY,P ' R̂, where R is the local ring at the origin for the affine cone over a smooth

conic in P2 (for example, if char(k) 6= 2, we have ÔY,P ' k[[x, y, x]]/(x2 + y2 + z2)).
Such a singular point is an A1-singularity. It is not hard to see that in this case the
blow-up of Y at P is smooth and then deduce that X is isomorphic over Y with
this blow-up.

Definition 17.3.5. A smooth projective surface X is a minimal surface if there
is no morphism f : X → Y , where Y is a smooth surface. Note that by combining
Corollaries 17.2.2 and 17.3.3, X is minimal if and only if there is no exceptional
curve of the first kind in X.

Proposition 17.3.6. If X is a smooth, projective surface, then there is a finite
sequence of morphisms

X = X1 → X2 → . . .→ Xr = Y

such that all Xi are smooth, projective surfaces, with Y minimal, such that each
Xi−1 is isomorphic over Xi to the blow-up of Xi at a point Pi ∈ Xi, for 2 ≤ i ≤ r.

Proof. If X contains no exceptional curve of the first kind, then X is minimal
and we are done. If there is such a curve C, then by Corollary 17.3.3, X is isomor-
phic to the blow-up of a smooth variety X2 at a point P2 ∈ X2. We then repeat.
The only thing we need to prove is that this process stops after finitely many steps.
This is a consequence of the fact that rank

(
N1(Xi+1)

)
= rank

(
N1(Xi)

)
− 1 by

Proposition 17.1.15 and the fact that these ranks are finite by the theorem of the
base. �

The starting point in the classification of surfaces says if X is a minimal surface,
then either X is a minimal model (this means that (KX · C) ≥ 0 for every curve
C on X) or X ' P(E), where E is a rank 2 vector bundle on a smooth, projective
curve C. For a thorough discussion of classification of surfaces, see [Bea96] for a
treatment over C and [Băd01] for the case of arbitrary ground fields.





APPENDIX A

Finite and integral homomorphisms

A running assumption for all the appendices is that all rings are commutative,
unital (that is, they have multiplicative identity), and all homomorphisms are of
unital rings (that is, they map the identity to the identity). In this appendix we dis-
cuss the definition and basic properties of integral and finite ring homomorphisms.

A.1. Definitions

Let ϕ : R → S be a ring homomorphism. One says that ϕ is of finite type if
S becomes, via ϕ, a finitely generated R-algebra. One says that ϕ is finite if S
becomes, via ϕ, a finitely generated R-module. One says that ϕ is integral if every
element y ∈ S is integral over R, that is, there is a positive integer n, and elements
a1, . . . , an ∈ R, such that

yn + a1y
n−1 + . . .+ an = 0 in S.

Remark A.1.1. It is clear that if ϕ is finite, then it is of finite type: if
y1, . . . , ym ∈ S generate S as an R-module, then they also generate it as an R-
algebra. The converse is of course false: for example, the inclusion R ↪→ R[x] is
finitely generated, but not finite (the R-submodule of R[x] generated by finitely
many polynomials consists of polynomials of bounded degree).

Remark A.1.2. If ϕ is of finite type and integral, then it is finite. Indeed, if
y1, . . . , yr generate S as an R-algebra, and we can write

ydii + ai,1y
di−1
i + . . .+ ai,di = 0

for some positive integers di and some ai,j ∈ R, then it is easy to see that

{ya11 · · · yarr | 0 ≤ ai ≤ di − 1}

generate S as an R-module.

Proposition A.1.3. If ϕ is finite, then it is integral.

Proof. The assertion follows from the determinantal trick : suppose that
b1, . . . , bn generate S as an R-module. For every y ∈ S, we can write for each
1 ≤ i ≤ n:

ybi =

n∑
j=1

ai,jbj for some ai,j ∈ R.

If A is the matrix (ai,j)1≤i,j≤n and I is the identity matrix, then we see that

(yI −A) ·

 b1
. . .
bn

 = 0.

435
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By multiplying with the classical adjoint of yI−A, we see that if D = det(yI−A),
then Dbi = 0 for all i. This implies D ·S = 0, and in particular D ·1S = 0. However,
it is clear that we can write

D = yn + c1y
n−1 + . . .+ cn for some c1, . . . , cn ∈ R.

We thus see that y is integral over R. �

Remark A.1.4. We will almost always consider homomorphisms of finite type.
For such a homomorphism ϕ, it follows from Remark A.1.2 and Proposition A.1.3
that ϕ is finite if and only if it is integral.

A.2. Easy properties

The following property of integral morphisms is very useful.

Proposition A.2.1. If ϕ : R ↪→ S is an integral injective homomorphism of
integral domains, then R is a field if and only if S is a field.

Proof. Suppose first that R is a field, and let u ∈ Sr {0}. Since u is integral
over R, it follows that we can write

un + a1u
n−1 + . . .+ an = 0

for some positive integer n, and some a1, . . . , an ∈ R. We may assume that n is
chosen to be minimal; in this case, since u 6= 0, we have an 6= 0. We see that we
have uv = 1, where

v = (−an)−1 · (un−1 + . . .+ an−2u+ an−1),

hence u is invertible. Since this holds for every nonzero u, it follows that S is a
field.

Conversely, suppose that S is a field and let a ∈ Rr {0}. Let b = 1
a ∈ S. Since

b is integral over R, we can write

br + α1b
r−1 + . . .+ αr = 0

for some positive integer r and some α1, . . . , αr ∈ R. Since

1

a
= −α1 − α2a− . . .− αrar−1 ∈ A,

we conclude that a in invertible in R. Since this holds for every nonzero a, it follows
that R is a field. �

Proposition A.2.2. Given a ring homomorphism ϕ : R→ S, the subset

S′ := {y ∈ S | y integral overR}
is a subring of S. This is the integral closure of R in S.

Proof. Since it is clear that 1S ∈ S′, we only need to check that for every
y1, y2 ∈ S′, we have y1 − y2, y1y2 ∈ S′. Since y1 and y2 are integral over R, the
subring R[y1, y2] of S is finite over R (the argument is the same as in Remark A.1.2).
In particular, it is integral over R by Proposition A.1.3. This implies that y1 − y2

and y1y2, which lie in R[y1, y2], are integral over R. �

Proposition A.2.3. Let R
ϕ−→ S

ψ−→ T be two ring homomorphisms. If both
ϕ and ψ are of finite type (respectively finite, integral), then ψ ◦ ϕ has the same
property.
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Proof. The assertion is straightforward for finite and finite type morphisms.
Suppose now that ϕ and ψ are integral. Given u ∈ T , we can write

un + b1u
n−1 + . . .+ bn = 0

for some positive integer n and b1, . . . , bn ∈ S. Since b1, . . . , bn are integral over R,
it follows that R′ := R[b1, . . . , bn] is finite over R (see Remark A.1.2). Since u is
integral over R′, it follows that R′[u] is finite over R′, and therefors it is finite over
R. By Proposition A.1.3, we conclude that u is integral over R. �





APPENDIX B

Noetherian rings and modules

In this appendix we discuss the definition and basic properties of Noetherian
rings and modules. The main result is Hilbert’s basis theorem.

B.1. Definitions

Proposition B.1.1. Given a ring R and an R-module M , the following are
equivalent:

i) Every submodule N of M is finitely generated.
ii) There is no infinite strictly increasing chain of submodules of M :

N1 ( N2 ( N3 ( . . . .

iii) Every nonempty family of submodules of M contains a maximal element.

An R-module M is Noetherian if it satisfies the equivalent conditions in the
proposition. The ring R is Noetherian if it is Noetherian as an R-module.

Proof of Proposition B.1.1. Suppose first that i) holds. If there is an
infinite strictly increasing sequence of submodules of M as in ii), consider N :=⋃
i≥1Ni. This is a submodule of M , hence it is finitely generated by i). If u1, . . . , ur

generate N , then we can find m such that ui ∈ Nm for all m. In this case we have
N = Nm, contradicting the fact that the sequence is strictly increasing.

The implication ii)⇒iii) is clear: if a nonempty family F has no maximal
element, let us choose N1 ∈ F . Since this is not maximal, there is N2 ∈ F such
thatN1 ( N2, and we continue in this way to construct an infinite strictly increasing
sequence of submodules of M .

In order to prove the implication iii)⇒i), let N be a submodule of M and
consider the family F of all finitely generated submodules of N . This is nonempty,
since it contains the zero submodule. By iii), F has a maximal element N ′′. If N ′′ 6=
N , then there is u ∈ N rN ′′ and the submodule N ′′ + Ru is a finitely generated
submodule of N strictly containing N ′′, a contradiction. Therefore N ′′ = N and
thus N is finitely generated. �

Proposition B.1.2. Given a short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules, M is Noetherian if and only if both M ′ and M ′′ are Noetherian.

Proof. Suppose first that M is Noetherian. Since every submodule of M ′ is a
submodule of M , hence finitely generated, it follows that M ′ is Noetherian. Since
every submodule of M ′′ 'M/M ′ is isomorphic toN/M ′, for a submodule N of M
that contains M ′, and since N being finitely generated implies that N/M ′ is finitely
generated, we conclude that M ′′ is Noetherian.
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Conversely, suppose that both M ′ and M ′′ 'M/M ′ are Noetherian, and let N
be a submodule of M . Since N ∩M ′ is a submodule of M ′, it is finitely generated,
and since N/(N∩M ′) is isomorphic to a submodule of M/M ′, we have that N/(N∩
M ′) is finitely generated. Finally, since both N ∩M ′ and N/(N ∩M ′) are finitely
generated, it is clear that N is finitely generated. �

Corollary B.1.3. If R is a Noetherian ring, then an R-module M is Noe-
therian if and only if it is finitely generated.

Proof. We only need to show that if M is finitely generated, then it is Noe-
therian, since the converse follows from definition. Since M is finitely generated, we
have a surjective morphism R⊕n →M , and it follows from the proposition that it
is enough to show that R⊕n is Noetherian. This follows again from the proposition
by induction on n. �

Remark B.1.4. If R is a Noetherian ring and I is an ideal in R, then R/I is
a Noetherian ring. This is an immediate application of Corollary B.1.3.

Remark B.1.5. If R is a Noetherian ring and S ⊆ R is a multiplicative system,
then the fraction ring S−1R is Noetherian. Indeed, every ideal in S−1R is of the
form S−1I for some ideal I of R. If I is generated by a1, . . . , ar, then S−1I is
generated as an ideal of S−1R by a1

1 , . . . ,
ar
r .

B.2. Hilbert’s basis theorem

The following theorem is one of the basic results in commutative algebra.

Theorem B.2.1 (Hilbert). If R is a Noetherian ring, then the polynomial ring
R[x] is Noetherian.

Proof. Let I be an ideal in R[x]. We consider the following recursive con-
struction. If I 6= 0, let f1 ∈ I be a polynomial of minimal degree. If I 6= (f1), then
let f2 ∈ I r (f1) be a polynomial of minimal degree. Suppose now that f1, . . . , fn
have been chosen. If I 6= (f1, . . . , fn), let fn+1 ∈ I r (f1, . . . , fn) be a polynomial
of minimal degree.

If this process stops, then I is finitely generated. Let us assume that this is not
the case, aiming for a contradiction. We write

fi = aix
di + lower degree terms, with ai 6= 0.

By our minimality assumption, we have

d1 ≤ d2 ≤ . . . .
Let J be the ideal of R generated by the ai, with i ≥ 1. Since R is Noetherian, J is
a finitely generated ideal, hence there is m such that J is generated by a1, . . . , am.
In particular, we can find u1, . . . , um ∈ R such that

am+1 =

m∑
i=1

aiui.

In this case, we have

h := fm+1 −
m∑
i=1

uix
dm+1−difi ∈ I r (f1, . . . , fm)

and deg(h) < dm+1, a contradiction. This completes the proof of the theorem. �
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By applying Theorem B.2.1 several times, we obtain

Corollary B.2.2. If R is a Noetherian ring, then the polynomial ring R[x1, . . . , xn]
is Noetherian for every positive integer n.

In particular, since a field is clearly Noetherian, we obtain

Corollary B.2.3. For every field k and every positive integer n, the polyno-
mial ring k[x1, . . . , xn] is Noetherian.

A similar argument to the one in the proof of Theorem B.2.1 gives the following
variant for formal power series. We do not give a proof, since we will not really need
it (the result will only be used in the proof of Proposition G.2.7, which in turn,
will only be needed for the proof of Lemma 13.2.14). For a proof, see [Mat89,
Theorem 3.3].

Theorem B.2.4. If R is a Noetherian ring, then the formal power series ring
R[[x]] is Noetherian. More generally, for every n ≥ 1, the ring R[[x1, . . . , xn]] is
Noetherian.





APPENDIX C

Nakayama’s lemma and Krull’s intersection
theorem

In this appendix we collect a few basic results on local rings and localization.
We begin with Nakayama’s lemma and an application to finitely generated projec-
tive modules over local rings. We then overview some general results concerning
the behavior of certain properties of modules under localization. We prove the
Artin-Rees lemma and deduce Krull’s Intersection theorem. In the last section we
introduce discrete valuation rings (we will return to this topic in a later appendix).

C.1. Nakayama’s lemma

The following is one of the most basic results in commutative algebra, known
as Nakayama’s lemma.

Proposition C.1.1. If (A,m) is a local ring and M is a finitely generated
module over A such that M = mM , then M = 0.

Proof. The proof is another application of the determinantal trick. Let
u1, . . . , un be generators of M over A. Since M = mM , for every i we can write

ui =

n∑
j=1

ai,juj for some ai,j ∈ m.

If A is the matrix (ai,j)1≤i,j≤n and I is the identity matrix, then we can rewrite
the above relations as

(I −A) ·

u1

. . .
un

 = 0.

By multiplying with the classical adjoint of I−A, we conclude that det(I−A)·ui = 0
for all i. Since all entries of A lie in m, it is clear that

det(I −A) ≡ 1 (modm).

Since A is local, it follows that det(I − A) is invertible, and therefore we conclude
that ui = 0 for all i, hence M = 0. �

This is sometimes applied in the following form.

Corollary C.1.2. If (A,m) is a local ring, M is a finitely generated module
over A, and N is a submodule of M such that M = N + mM , then N = M .

Proof. The assertion follows by applying the proposition to M/N . �
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Remark C.1.3. The above corollary implies, in particular, that given elements
u1, . . . , ur of M , they generate M if and only if their classes u1, . . . , ur ∈ M/mM
generate M/mM over k = A/m. We thus see that the cardinality of every minimal
system of generators of M is equal to dimkM/mM .

C.2. Projective modules over local rings

Proposition C.2.1. If (A,m) is a local Noetherian ring and M is a finitely
generated A-module, then M is projective if and only if M is free.

Proof. Consider a minimal system of generators u1, . . . , un for M and the
surjective morphism of A-modules

φ : F = A⊕n →M, φ(ei) = ui for 1 ≤ i ≤ n.
If N = ker(φ), since A is Noetherian and F is a finitely generated A-module, it
follows that N is a finitely generated A-module. Since M is projective, the exact
sequence

0→ N → F →M → 0

is split, hence tensoring with k = A/m gives an exact sequence

0→ N/mN → k⊕n →M/mM → 0.

However, we have seen in Remark C.1.3 that the elements u1, . . . , un ∈ M/mM
form a basis, so that we deduce from the above exact sequence that N/mN = 0.
Since N is finitely generated, it follows from Nakayama’s lemma that N = 0, hence
M ' F is free. �

Remark C.2.2. It is a result of Kaplansky (see [Kap58]) that if M is any
projective module over a local ring, then M is free.

C.3. Modules and localization

We collect in this section some easy properties relating statements about mod-
ules to corresponding statements about certain localizations.

Proposition C.3.1. Given an A-module M , the following are equivalent:

i) M = 0.
ii) Mp = 0 for all maximal ideals p in A.
iii) Mp = 0 for all prime ideals p in A.
iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and Mfi = 0

for all i.

Proof. The implication iv)⇒iii) follows from the fact that if f1, . . . , fr gener-
ate the unit ideal, then for every prime ideal p in A, there is i such that fi 6∈ p, in
which case Mp is a localization of Mfi . Since the implications i)⇒iv) and iii)⇒ii)
are trivial, in order to complete the proof it is enough to prove the implication
ii)⇒i). Let u ∈ M and consider AnnA(u). For every maximal ideal p in A, we
have u

1 = 0 in Mp, hence AnnA(u) 6⊆ p. This implies that AnnA(u) = A, hence
u = 0. �

Remark C.3.2. The same argument in the proof of the above proposition shows
that if M is an A-module and u ∈M , then the following assertions are equivalent:

i) u = 0.
ii) u

1 = 0 in Mp for all maximal ideals p in A.
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iii) u
1 = 0 in Mp for all prime ideals p in A.

iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and u
1 = 0

in Mfi for all i.

Corollary C.3.3. If M is an A-module and M ′, M ′′ are submodules of M ,
then the following are equivalent:

i) M ′ ⊆M ′′.
ii) M ′p ⊆M ′′p for all maximal ideals p in A.
iii) M ′p ⊆M ′′p for all prime ideals p in A.
iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and M ′fi ⊆

M ′′fi for all i.

Proof. We can simply apply Proposition C.3.1 for theA-module (M ′+M ′′)/M ′′.
�

Corollary C.3.4. Given two morphisms of A-modules

M ′
φ−→M

ψ−→M ′′,

the following are equivalent:

i) The above sequence is exact.
ii) The induced sequence

M ′p →Mp →M ′′p

is exact for every prime (maximal) ideal p in A.
iii) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and each

induced sequence

M ′fi →Mfi →M ′′fi

is exact

Proof. The exactness of the sequence in the statement is equivalent to the
two inclusions

Im(φ) ⊆ ker(φ) and ker(φ) ⊆ Im(φ).

The equivalence in the statement now follows by applying Corollary C.3.3 for the
submodules Im(φ) and ker(ψ) of M (note that localization is an exact functor,
hence it commutes with taking the image and kernel). �

Corollary C.3.5. Given an A-module M , the following are equivalent:

i) M is a finitely generated A-module.
ii) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and each

Mfi is a finitely generated Afi-module.

Proof. For every i, we may choose finitely many ui,j ∈M such that
{ui,j

1 | j
}

generate Mfi as an Afi-module. It follows that if N is the A-submodule of M
generated by all ui,j , then N is finitely generated and (M/N)fi = 0 for all i. We
then deduce from Proposition C.3.1 that M = N . �
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C.4. Krull’s Intersection theorem

Theorem C.4.1. If I is an ideal in a Noetherian ring A, M is a finitely gen-
erated A-module, and N =

⋂
m≥1 I

mM , then IN = N . In particular, if (A,m) is
a local ring and I ⊆ m, then N = 0.

We will deduce the theorem from the following result, known as the Artin-Rees
lemma.

Lemma C.4.2. Let A be a Noetherian ring and I an ideal in A. If M is a
finitely generated A-module and N is a submodule of M , then for every n ≥ 0,
there is m ≥ 0 such that

ImM ∩N ⊆ InN.

Proof. Consider the N-graded ring

R(A, I) :=
⊕
j≥0

Intn ⊆ A[t].

Note that if I is generated by a1, . . . , ar, then R(A, I) is generated over A by
a1t, . . . , art. In particular, R(A, I) is a Noetherian ring.

Consider now the N-graded R(A, I)-module

T =
⊕
j≥0

IjMtj ⊆M [t] = M ⊗A A[t].

Since M is finitely generated over A, it is clear that T is a finitely generated
R(A, I)-module. Consider the R(A, I)-submodule of T given by⊕

j≥0

(N ∩ IjM)tj .

Since M is a finitely generated module over a Noetherian ring, it follows that M
is Noetherian, hence N is finitely generated. Choose generators of N of the form
ujt

dj for some uj ∈ N ∩ IdjM , with 1 ≤ j ≤ r. Given any u ∈ N ∩ ImM we can
thus write

utm =

r∑
j=1

(ajt
bj ) · (ujtdj )

for some aj ∈ Ibj , where bj = m−dj . We thus see that if m ≥ n+dj for all j, then

N ∩ ImM ⊆ InN.
This completes the proof of the lemma. �

Proof of Theorem C.4.1. Of course, we only need to show that N ⊆ IN .
We apply the lemma for the submodule N of M to get a non-negative integer m
such that ImM ∩N ⊆ IN . However, since N ⊆ ImM , this implies N ⊆ IN . The
last assertion in the theorem is a consequence of Nakayama’s lemma. �

C.5. Discrete Valuation Rings

Recall that a discrete valuation on a field K is a surjective map v : K → Z∪{∞}
that satisfies the following properties:

i) v(a) =∞ if and only if a = 0.
ii) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.
iii) v(ab) = v(a) + v(b) for all a, b ∈ K.
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Proposition C.5.1. Given an integral domain R, with fraction field K, the
following are equivalent:

i) There is a discrete valuation v on K such that R = {a ∈ K | v(a) ≥ 0}.
ii) R is a local PID, which is not a field.

iii) R is local, Noetherian, and the maximal ideal is principal and non-zero.

A ring that satisfies the above equivalent properties is a discrete valuation ring
(or DVR, for short).

Proof. Let us show first that i)⇒ii). Let m = {a ∈ K | v(a) > 0}. It follows
from the definition of a discrete valuation that m is an ideal in R and that for every
u ∈ Rrm, we have u−1 ∈ R. Therefore R is local and m is the maximal ideal of R.
Given any non-zero ideal I in R, consider a ∈ I such that v(a) is minimal. Given
any other b ∈ I, we have v(b) ≥ v(a), hence v(ba−1) ≥ 0, and therefore b ∈ (a).
This shows that I = (a) and therefore R is a PID. Note that R is not a field, since
an element a ∈ K with v(a) = 1 is a non-invertible element of R.

Since the implication ii)⇒iii) is trivial, in order to complete the proof, it is
enough to prove iii)⇒i). Suppose that (R,m) is a Noetherian local domain and m =
(π), for some π 6= 0. Given any non-zero element α, it follows from Theorem C.4.1
that there is j ≥ 0 such that α ∈ mj r mj+1. Therefore we can write α = uπj ,
with u invertible. Since K is the fraction ring of R, it follows that every non-zero
element β in K can be written as β = uπj for some j ∈ Z and u ∈ R r m. If we
put v(β) = j, then it is straightforward to check that v is a discrete valuation and
R = {a ∈ K | v(a) ≥ 0}. �

Remark C.5.2. Note that if R is a DVR, then dim(R) = 1. Indeed, we have
seen in the above proof that if the maximal ideal m is generated by π, then every
nonzero ideal of R is generated by some πr, with r ≥ 0. This implies that the only
prime ideals of R are (0) and m.





APPENDIX D

The norm map for finite field extensions

In this appendix we define and prove some basic properties of the norm map
for a finite field extension.

D.1. Definition and basic properties

Let K/L be a finite field extension. Given an element u ∈ K, we define
NK/L(u) ∈ L as the determinant of the L-linear map

ϕu : K → K, v → uv.

This is the norm of u with respect to K/L.
We collect in the first proposition some easy properties of this map.

Proposition D.1.1. Let K/L be a finite field extension.

i) We have NK/L(0) = 0 and NK/L(u) 6= 0 for every nonzero u ∈ K.
ii) We have

NK/L(u1u2) = NK/L(u1) ·NK/L(u2) for every u1, u2 ∈ K.

iii) For every u ∈ L, we have

NK/L(u) = u[K:L].

Proof. The first assertion in i) is clear and the second one follows from the
fact that ϕu is invertible for every nonzero u. The assertion in ii) follows from the
fact that

ϕu1 ◦ ϕu2 = ϕu1u2 for every u1, u2 ∈ K
and the multiplicative behavior of determinants. Finally, iii) follows from the fact
that for u ∈ L, the map ϕu is given by scalar multiplication. �

Proposition D.1.2. Let K/L be a finite field extension and u ∈ K. If f ∈ L[x]
is the minimal polynomial of u over L and char(ϕu) is the characteristic polynomial
of ϕu:

char(ϕu) = det(x · Id− ϕu),

then char(ϕu) = fr, where r = [K : L(u)]. In particular, we have

NK/L(u) = (−1)[K:L] · f(0)r.

Proof. Let char′(ϕu) be the characteristic polynomial of ϕ′u = ϕu|L(u). We
write

f = xm + a1x
m−1 + . . .+ am,
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where m = [L(u) : L]. By writing the linear map ϕ′u in the basis 1, u, . . . , um−1 of
L(u) over L, we see that x · Id− ϕ′u is given by the matrix

A =


x 0 . . . 0 am
1 x . . . 0 am−1

. . . . . . . . . . . . . . .
0 0 . . . x a2

0 0 . . . 1 a1

 ,

whose determinant can be easily computed to be equal to f . If e1, . . . , er is a basis
of K over L(u) and we write x · Id−ϕu with respect to the basis given by uiej , for
0 ≤ i ≤ m− 1 and 1 ≤ j ≤ r (suitably ordered), this is the block diagonal matrix A 0 . . . 0

0 A . . . 0
0 0 . . . A

 .

The first assertion in the proposition follows. The last assertion is a consequence
of the fact that the constant term in char(ϕu) is (−1)[K:L] · det(ϕu). �

D.2. A property of the norm for integrally closed domains

Recall that an integral domain A with fraction field K is integrally closed if
every element of K that is integral over A lies in A.

Proposition D.2.1. Let B ↪→ A be an integral ring extension of integral do-
mains such that the corresponding field extension L ↪→ K between the two fraction
fields is finite. If B is integrally closed, then for every element u ∈ A, we have
v := NK/L(u) ∈ B. Moreover, if u ∈ J , where J is an ideal in A, then v ∈ J ∩B.

Proof. Let f = xm + a1x
m−1 + . . .+ am ∈ L[x] be the minimal polynomial of

u over L. Since u is integral over B, there is a monic polynomial g ∈ B[x] such that
g(u) = 0. Note that f divides g in L[x]. Every other root of f (in some algebraic
closure K of K) is automatically a root of g, and therefore it is again integral over
B. Since the set of elements of K integral over B is a ring (see Proposition 2.2. in
Review Sheet 1), and every ai is (up to sign) a symmetric function of the roots of
f , we conclude that ai is integral over B. Finally, since B is integrally closed in L
and the ai lie in L, we conclude that the ai lie in B. By Proposition D.1.2, we can
write NK/L(u), up to sign, as a power of am, hence NK/L(u) ∈ B.

Suppose now that u ∈ J , for an ideal J in A. Since

am = −u(um−1 + a1u
m−2 + . . .+ am−1),

and ai ∈ B ⊆ A for all i, we deduce that am ∈ J . Arguing as before, we conclude
that NK/L(u) ∈ J ∩B. �



APPENDIX E

Zero-divisors in Noetherian rings

In the first section we prove a basic result about prime ideals, the prime avoid-
ance lemma. In the second section we give a direct proof for the fact that minimal
prime ideals consist of zero-divisors. Finally, in the last section we discuss more
generally zero-divisors on finitely generated modules over a Noetherian ring and
primary decomposition.

E.1. The prime avoidance lemma

The following result, known as the Prime Avoidance lemma, is often useful.

Lemma E.1.1. Let R be a commutative ring, r a positive integer, and p1, . . . , pr
ideals in R such that pi is prime for all i ≥ 3. If I is an ideal in R such that
I ⊆ p1 ∪ . . . ∪ pr, then I ⊆ pi for some i ≥ 1.

Proof. The assertion is trivial for r = 1. We prove it by induction on r ≥ 2.
If r = 2 and I 6⊆ p1 and I 6⊆ p2, then we may choose a ∈ I r p1 and b ∈ I r p2.
Note that since I ⊆ p1 ∪ p2, we have a ∈ p2 and b ∈ p1. Note that a+ b ∈ I, hence
a + b ∈ p1 or a + b ∈ p2. In the first case, we see that a = (a + b) − b ∈ p1, a
contradiction and in the second case, we see that b = (a+ b)−a ∈ p2, leading again
to a contradiction. This settles the case r = 2.

Suppose now that r ≥ 3 and that we know the assertion for r − 1 ideals. If
I 6⊆ pi for every i, it follows from the induction hypothesis that given any i, we
have I 6⊆

⋃
j 6=i pj . Let us choose

ai ∈ I r
⋃
j 6=i

pj .

By hypothesis, we must have ai ∈ pi for all i.
Since pr is a prime ideal and ai 6∈ pr for i 6= r, it follows that

∏
1≤j≤r−1 aj 6∈ pr.

Consider now the element

u = ar +
∏

1≤j≤r−1

aj ∈ I.

By assumption, we have u ∈ p1 ∪ . . . ∪ pr. If u ∈ pr, since ar ∈ pr, we deduce
that

∏
1≤j≤r−1 aj ∈ pr, a contradiction. On the other hand, if u ∈ pi for some

i ≤ r − 1, since
∏

1≤j≤r−1 aj ∈ pi, we conclude that ar ∈ pi, a contradiction. We
thus conclude that I ⊆ pi for some i, completing the proof of the induction step. �

E.2. Minimal primes and zero-divisors

Let R be a Noetherian ring. We refer to Exercise 3.1.4 for the definition of the
topological space Spec(R). Since R is a Noetherian ring, Spec(R) is a Noetherian
topological space, hence we can apply Proposition 1.3.12 to write it as the union
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of finitely many irreducible components. Since the irreducible closed subsets of
Spec(R) are those of the form V (p), with p a prime ideal in R, we conclude that
there are finitely many minimal primes p1, . . . pr in Spec(R). The decomposition

Spec(R) = V (p1) ∪ . . . ∪ V (pr)

says that

rad(0) =

r⋂
i=1

pi.

Proposition E.2.1. With the above notation, every minimal prime ideal pi is
contained in the set of zero-divisors of R.

Proof. Given a ∈ pi, we choose for every j 6= i an element bj ∈ pj r pi. If
b =

∏
j 6=i bj , then b 6∈ pi, but b ∈ pj for all j 6= i. We thus have

ab ∈ p1 ∩ . . . ∩ pr = rad(0),

hence (ab)N = 0 for some positive integer N . If a is a non-zero-divisor, we would
get that bN = 0, hence b ∈ pi, a contradiction. �

Remark E.2.2. If R is reduced, then the set of zero-divisors of R is precisely
the union of the minimal prime ideals. Indeed, in this case we have

⋂r
i=1 pi = 0.

It follows that if ab = 0 and a 6∈ pi for all i, then b ∈ pi for all i, hence b = 0. In
the next section we will discuss the set of zero-divisors for an arbitrary Noetherian
ring (and, more generally, for a finitely generated module over such a ring).

E.3. Associated primes and zero-divisors

In this section we give a brief treatment of associated primes and primary
decomposition. When dealing with associated primes, it is convenient to work more
generally with modules, instead of just with the ring itself. Let us fix a Noetherian
ring R.

Definition E.3.1. If M is a finitely generated R-module, an associated prime
of M is a prime ideal p in R such that

p = AnnR(u) for some u ∈M,u 6= 0.

The set of associated primes of M is denoted Ass(M) (we write AssR(M) if the
ring is not understood from the context).

Recall that if M is an R-module, an element a ∈ R is a zero-divisor of M if
au = 0 for some u ∈ M r {0}; otherwise a is a non-zero-divisor of M . Note that
for M = R, we recover the usual notion of zero-divisor in R. The third assertion
in the next proposition is the main reason why associated primes are important:

Proposition E.3.2. If M is a finitely generated R-module, then the following
hold:

i) The set Ass(M) is finite.
ii) If M 6= 0, then Ass(M) is non-empty.

iii) The set of zero-divisors of M is equal to⋃
p∈Ass(M)

p.

We begin with the following easy lemma:
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Lemma E.3.3. Given an exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

we have

Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′).

Proof. The first inclusion is obvious, hence we only prove the second one.
Suppose that p ∈ Ass(M), and let us write p = AnnR(u), for some nonzero u ∈M .
If u ∈M ′, then clearly p ∈ Ass(M ′). Otherwise, the image u of u in M ′′ is non-zero
and it is clear that p ⊆ AnnR(u). If this is an equality, then p ∈ Ass(M ′′), hence
let us assume that there is a ∈ AnnR(u) r p. In this case au ∈ M ′ r {0}, and the
fact that p is prime implies that the obvious inclusion AnnR(u) ⊆ AnnR(au) is an
equality. Therefore p ∈ Ass(M ′). �

Proof of Proposition E.3.2. We may assume that M is nonzero, as other-
wise all assertions are trivial. Consider the set P consisting of the ideals of R of the
form AnnR(u), for some u ∈ M r {0}. Since R is Noetherian, there is a maximal
element p ∈ P. We show that in this case p is a prime ideal, so that p ∈ Ass(M).

By assumption, we can write p = AnnR(u), for some u ∈Mr{0}. Since u 6= 0,
we have p 6= R. If b ∈ Rr p, then bu 6= 0 and we clearly have

AnnR(u) ⊆ AnnR(bu).

By the maximality of p, we conclude that this is an equality, hence for every a ∈ R
such that ab ∈ p, we have a ∈ p; we thus conclude that p is a prime ideal.

In particular, this proves ii). We thus know that if M is non-zero, then we can
find u ∈ M r {0} such that AnnR(u) = p1 is a prime ideal. The map R → M ,
a→ au induces thus an injection R/p ↪→M , so that we have a short exact sequence

0→M1 →M →M/M1 → 0,

with M1 ' R/p1. Note now that since p1 is a prime ideal in R, then we clearly
have Ass(R/p1) = {p1}, and the lemma implies

Ass(M) ⊆ Ass(M/M1) ∪ {p}.
Therefore in order to prove that Ass(M) is finite it is enough to show that Ass(M/M1)
is finite. If M/M1 6= 0, we can repeat this argument and find M1 ⊆ M2 such that
M2/M1 ' R/p2, for some prime ideal p2 in R. Since M is a Noetherian module, this
process must terminate, hence after finitely many steps we conclude that AssR(M)
is finite.

We now prove the assertion in iii). It is clear from definition that for every
p ∈ Ass(M), the ideal p is contained in the set of zero-divisors of M . On the
other hand, if a ∈ R is a zero-divisor, then a ∈ I, for some I ∈ P. If we choose
a maximal p in P that contains I, then we have seen that p ∈ AssR(M), hence a
lies in the union of the associated primes of M . This completes the proof of the
proposition. �

We record in the next corollary a useful assertion that we obtained in the above
proof.

Corollary E.3.4. If M is a finitely generated R-module, then there is a se-
quence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M
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such that Mi/Mi−1 ' R/pi for 1 ≤ i ≤ r, where each pi is a prime deal in R.

Remark E.3.5. The results in Proposition E.3.2 are often applied as follows:
if an ideal I in R has no non-zero-divisors on M , then it is contained in the union
of the associated primes. Since there are finitely such prime ideals, the Prime
Avoidance lemma implies that I is contained in one of them. Therefore there is
u ∈M non-zero such that I · u = 0.

Remark E.3.6. If M is a finitely generated R-module, then for every multi-
plicative system S in R, if we consider the finitely generated S−1R-module S−1M ,
we have

AssS−1R(S−1M) = {S−1p | p ∈ Ass(M), S ∩ p 6= 0}.
Indeed, if p = AnnR(u) and p ∩ S = ∅, then S−1p = AnnS−1R

(
u
1

)
. Conversely, if

S−1p = AnnS−1R

(
v
s

)
, for some prime ideal p in R, with p ∩ S = ∅, then it is easy

to see that p = AnnR(v).

Remark E.3.7. Let M be a finitely generated R-module and I = AnnR(M).
It is clear from definition that if p ∈ Ass(M), then I ⊆ p. Moreover, we have

AssR/I(M) = {p/I | p ∈ AssR(M)}.
We recall the easy fact that since M is a finitely generated R-module, for every

prime ideal p in R, we have Mp 6= 0 if and only if I ⊆ p (see Proposition 8.4.11
and its proof). We note that every prime ideal in R that contains I and is min-
imal with this property lies in AssR(M) (in particular, we recover the assertion
in Proposition E.2.1). Indeed, the Rp-module Mp is nonzero, hence AssRp

(Mp) is
non-empty by Proposition E.3.2. However, there is a unique prime ideal in Rp that
contains AnnRp

(Mp) = Ip, namely pRp. Using again the previous remark, we see
that p ∈ AssR(M). The primes in AssR(M) that are not minimal over AnnR(M)
are called embedded primes.

Example E.3.8. If I is a radical ideal in R, then it follows from Remark E.2.2
that the set of zero-divisors in R/I is the union of the minimal prime ideals con-
taining I. We deduce using Proposition E.3.2 and the Prime Avoidance lemma that
every p ∈ AssR(R/I) is a minimal prime containing I.

We end by discussing primary decomposition and its connection to associated
primes. Since we will only need this for ideals, for the sake of simplicity, we stick
to this case.

Definition E.3.9. An ideal q in R is primary if whenever a, b ∈ R are such
that ab ∈ q and a 6∈ q, then b ∈ rad(q). It is straightforward to see that in this case
p := rad(q) is a prime ideal; one also says that q is a p-primary ideal. A primary
decomposition of an ideal I is an expression

I = q1 ∩ . . . ∩ qn,

where all qi are primary ideals.

Remark E.3.10. It follows from definition that if I ⊆ q are ideals in R, then
q/I is a primary ideal in R/I if and only if q is a primary ideal in R.

Proposition E.3.11. If q is an ideal in R, then q is a primary ideal if and
only if AssR(R/q) has only one element. Moreover, in this case the only associated
prime of R/q is rad(q).
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Proof. Suppose first that q is p-primary. Note that p is the only minimal
prime containing q, hence p ∈ Ass(R/q) by Remark E.3.7. On the other hand, since
q is p-primary, it follows that every zero-divisor of R/q lies in p. Since the set of zero-
divisors of R/q is the union of the associated primes of R/q by Proposition E.3.2,
and each of these associated primes contains AnnR(R/q) = q, we conclude that p
is the only element of AssR(R/q).

Conversely, suppose that AssR(R/q) has only one element p. In this case, it
follows from Remark E.3.7 that p is the unique minimal prime containing q, hence
p = rad(p). Moreover, it follows from Proposition E.3.2 that the set of non-zero-
divisors of R/q is equal to p, which implies, by definition, that q is a primary
ideal. �

Proposition E.3.12. Every ideal I in R has a primary decomposition.

Proof. After replacing R by R/I, we may assume that I = 0. We claim
that for every p ∈ Ass(R), there is a primary ideal q in R such that p 6∈ Ass(q).
Indeed, consider the ideals J in R such that p 6∈ Ass(J) (the set is non-empty
since it contains 0) and since R is Noetherian, we may choose an ideal q which
is maximal with this property. Note that q 6= R, hence Ass(R/q) is non-empty.
By Proposition E.3.11, in order to show that q is a primary ideal, it is enough to
show that for every prime ideal p′ 6= p, we have p′ 6∈ Ass(R/q). If p′ ∈ Ass(R/q),
then we obtain an ideal q′ ⊇ q such that q′/q ' R/p′. We assumed p′ 6= p, while
Lemma E.3.3 implies

Ass(q′) ⊆ Ass(q) ∪Ass(q′/q) = Ass(q) ∪ {p′},
hence p 6∈ Ass(q′), contradicting the maximality of q.

We thus conclude that if p1, . . . , pr are the associated primes of R, we can find
primary ideals q1, . . . , qr such that pi 6∈ Ass(qi) for all i. If a = q1 ∩ . . . ∩ qr, then
Ass(a) ⊆ Ass(R) and at the same time Ass(a) ⊆ Ass(qi) for all i, hence pi 6∈ Ass(a).
This implies that a has no associated primes, hence a = 0. �

Remark E.3.13. Note that if q1, . . . , qn are p-primary ideals, then q1 ∩ . . . ∩
qn is a p-primary ideal. It is thus straightforward to see that given any ideal I
and any primary decomposition I = q1, . . . ∩ qr, we can obtain a minimal such
decomposition, in the sense that the following conditions are satisfied:

i) We have rad(qi) 6= rad(qj) for all i and j, and
ii) For every i, with 1 ≤ i ≤ r, we have

⋂
j 6=i qj 6= I.

Given such a minimal primary decomposition, if pi = rad(qi), then p1, . . . , pr
are the distinct associated primes of R/I. Indeed, the injective morphism

R/I ↪→
r⊕
i=1

R/qi

implies that Ass(R/I) ⊆ {p1, . . . , pr}. On the other hand, for every i, there is
u ∈

⋂
j 6=i qj such that u 6∈ qi. Moreover, after multiplying u by a suitable element

in pmi , for some non-negative integer m, we may assume that u · pi ⊆ qi. In this
case, pi is the annihilator of the image of u in R/I, hence pi ∈ Ass(R/I).

Remark E.3.14. In general, the primary ideals in a minimal primary decom-
position of I are not unique. However, if p is a minimal prime containing I, then the
corresponding p-primary ideal q in a primary decomposition of I is unique. Indeed,
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it is easy to check that I · Rp = q · Rp and deduce, using that q is p-primary, that
q = I ·Rp ∩R.

E.4. An application: a characterization of DVRs

For the definition of a DVR, see § C.5. We can now prove the following char-
acterization of DVRs:

Proposition E.4.1. A ring R is a DVR if and only if it is a local Noetherian
domain, of dimension 1, which is integrally closed.

We begin with a lemma that we will also use in the next section:

Lemma E.4.2. If R is a normal domain, then for every non-zero a ∈ R and
every p ∈ Ass

(
R/(a)

)
, pRp is a principal ideal and codim(p) = 1.

Proof. By assumption, there is b ∈ R such that

(E.4.1) p = {h ∈ R | hb ∈ (a)}.

In particular, we have b
a 6∈ Rp and pRp · ba ⊆ Rp. If pRp · ba ⊆ pRp, then the

determinantal trick (see, for example, the proof of Proposition A.1.3) implies that
b
a is integral over Rp; since R is integrally closed, it follows that Rp is integrally

closed (see Lemma 9.1.1), and thus b
a ∈ Rp, a contradiction. Therefore pRp · ba =

Rp, that is, a
b ∈ pRp. Moreover, if u ∈ pRp, then it follows from (E.4.1) that

u ∈ a
b · Rp. Therefore pRp = a

b · Rp, hence Rp is a DVR by Proposition C.5.1 and
thus codim(p) = dim(Rp) = 1 by Remark C.5.2. �

Proof of Proposition E.4.1. It follows from Proposition C.5.1 that if R is
a DVR, then it is a local PID. In particular, it is a local Noetherian domain, and
it is a UFD, hence it is normal (see Example 1.7.28). Moreover, it follows from
Remark C.5.2 that dim(R) = 1.

We now prove the converse: by Proposition C.5.1, it is enough to show that
the maximal ideal m is principal. Since R is not a field, it follows from Nakayama’s
lemma that m 6= m2. Let a ∈ mrm2. By Proposition E.3.2, we have AssR

(
R/(a)

)
6=

∅, and since (0) and m are the only prime ideals inR, it follows that m ∈ AssR
(
R/(a)

)
.

Lemma E.4.2 implies that m is principal, completing the proof of the proposi-
tion. �

E.5. A characterization of normal rings

The following characterization of normal rings is a variant of a criterion due to
Serre.

Proposition E.5.1. A Noetherian domain R is integrally closed if and only if
the following two conditions hold:

i) For every prime ideal p in R, with codim(p) = 1, the ring Rp is a DVR.
ii) We have R =

⋂
codim(p)=1Rp, where the intersection is over all prime

ideals p in R, of codimension 1.

Moreover, in general condition ii) is equivalent to the following variant:

ii’) For every a ∈ R nonzero, and every p ∈ AssR
(
R/(a)

)
, we have codim(p) =

1.
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Proof. Let K be the fraction field of R. We first prove the equivalence of
ii) and ii’). Suppose first that ii’) holds and consider 0 6= b

a ∈ K that lies in
Rp for all prime ideals p in R of codimension 1. We consider a minimal primary
decomposition

(a) = q1 ∩ . . . ∩ qr.

It follows from Remark E.3.13 that if pj = rad(qj), then pj ∈ AssR
(
R/(a)

)
, hence

codim(pj) = 1 for all j by ii’). By hypothesis, we have b
a ∈ Rpj

for all j, hence there
is sj ∈ R r pj such that sjb ∈ (a) ⊆ qj . Since qj is a primary ideal, we conclude

that b ∈ qj for all j, hence b
a ∈ R.

Conversely, suppose that ii) holds and consider 0 6= a ∈ R and p ∈ AssR
(
R/(a)

)
.

It follows that there is b ∈ R such that p = {u ∈ R | ub ∈ (a)}. In particular, we
have b 6∈ (a), and thus by assumption, we can find a prime ideal q with codim(q) = 1,
such that b

a 6∈ Rq. This implies that

p = {u ∈ R | ub ∈ (a)} ⊆ q.

Since p 6= 0 (since a ∈ p) and q has codimension 1, we conclude that p = q, and
thus codim(p) = 1.

Suppose now that conditions i) and ii) hold. It follows from i) that if p is
a codimension 1 prime ideal in R, then Rp is integrally closed. We then deduce
from ii) that R is integrally closed: if u ∈ K is integral over R, then it is clearly
integral over Rp, for every prime ideal p in R of codimension 1, and thus u ∈⋂

codim(p)=1Rp = R.

On the other hand, if R is integrally closed, then for every prime ideal p in
R, the ring Rp is integrally closed (see Lemma 9.1.1). Since dim(Rp) = 1, we
deduce from Proposition E.4.1 that Rp is a DVR. Moreover, property ii’) follows
from Lemma E.4.2. This completes the proof. �





APPENDIX F

A characterization of UFDs

F.1. The UFD condition for Noetherian rings

Recall that an integral domain R is a UFD if every non-zero element is either
invertible or can be written as a product of finitely many irreducible elements; more-
over, this decomposition is unique, up to reordering and replacing an irreducible
element a ∈ R by ua, where u is an invertible element.

Remark F.1.1. If R is Noetherian, then the decomposition as a product of
irreducible elements is automatic. Indeed, if there are non-zero non-invertible el-
ements a ∈ R that are not products of irreducible elements, then we may choose
such a with the ideal (a) maximal among the ideals associated to such elements. In
particular, a is not irreducible, hence we can write a = a1a2, with both a1 and a2

non-invertible. Moreover, at least one of a1 and a2 (say, it is a1) is not a product
of irreducible elements. Since the ideal (a1) strictly contains (a), we contradict the
maximality of (a) in the choice of a.

Remark F.1.2. It is well-known (and easy to check) that if a domain R has
the property that every element is a product of irreducible elements, then R is a
UFD if and only if every irreducible element a ∈ R is prime (that is, the ideal (a)
is a prime ideal).

Proposition F.1.3. If R is a UFD, then for every f, g ∈ R, the ideal

(f) : (g) = {h ∈ R | hg ∈ (f)}
is principal. Conversely, if R is a Noetherian domain that satisfies this condition,
then R is a UFD.

Proof. Suppose first that R is a UFD. The assertion is clear if f = 0 or g = 0,
hence we may assume that f and g are non-zero. Let us write

f = uπm1
1 · · ·πmr

r and vπn1
1 · · ·πnr

r ,

with u and v invertible and π1, . . . , πr elements generating mutually distinct prime
ideals. It is then straightforward to see that (f) : (g) is generated by

r∏
i=1

π
min{mi−ni,0}
i .

In order to prove the converse, note that by Remark F.1.2, we only need to
show that if π ∈ R is an irreducible element, then π is prime. Suppose that π
divides ab, hence b ∈ (π) : (a). Let h ∈ R be such that (π) : (a) = (h). We thus
have π ∈ (h) and since π is irreducible, we conclude that either h is invertible or
(π) = (h). In the former case we have π divides a, while in the latter case, π divides
b. This completes the proof. �

459
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Proposition F.1.4. A Noetherian domain R is a UFD if and only if every
prime ideal p in A of codimension 1 is principal.

Proof. Suppose first that R is a UFD. If p is a prime ideal of codimension
1, let us choose a non-zero a ∈ p. If we write a = a1 · · · ar, with all ai irreducible
elements, since p is prime, it follows that ai ∈ p for some i. Since R is a UFD, the
ideal (ai) is a prime ideal, and since codim(p) = 1, it follows that p = (ai).

Conversely, suppose that every codimension 1 prime ideal in R is principal. By
Remarks F.1.1 and F.1.2, we see that in order to show that R is a UFD, it is enough
to show that if π is an irreducible element in R, then (π) is a prime ideal. Let p be
a minimal prime ideal containing (π). If follows from the Principal Ideal theorem1

that codim(p) = 1. By assumption, p is a principal ideal. If we write p = (b), the
inclusion (π) ⊆ (b) implies that π = bc, for some c ∈ R. Since π is irreducible, it
follows that c is invertible, hence (π) = (b) is a prime ideal. �

1In these notes, we only apply the present proposition in the case when R is a (localization of
an) algebra of finite type over an algebraically closed field k; this is the case in which we proved the

Principal Ideal theorem in Chapter 3. However, for a proof in the general case, see Appendix J.



APPENDIX G

Completion

In this appendix we review the basic results about completion of rings and
modules. For a more general treatment, we refer to [Mat89, §8]. By way of
motivation, let us recall the construction of the ring of p-adic integers, where p is
a positive prime integer. One defines a topology on Z such that two integers are
“close” if their difference is divisible by a large power of p; in other words, a basis
of neighborhoods of m ∈ Z is given by (m + pnZ)n≥1. The topology comes from
a metric space structure, but the choice of metric is not important. The ring of
p-adic integers Zp is the completion of Z with respect to this topology. It can be
described as the quotient of the set of Cauchy sequences in Z modulo a suitable
equivalence relation; however, algebraically it is more convenient to describe it as

Zp = lim←−Z/pnZ.

In what follows we consider a similar construction for rather general rings and
modules.

G.1. Completion with respect to an ideal

In what follows we fix a Noetherian ring A and let I be a fixed ideal in A.
Note that for every n ≥ 1 we have a canonical surjective homomorphism A/In+1 →
A/In. By taking the inverse limit of these homomorphisms we obtain the completion
of A with respect to I:

Â := lim←−A/I
n.

This is a ring and we have a canonical ring homomorphism ψA : A→ Â that maps
a ∈ A to (amod In)n≥1.

Suppose now that M is an A-module. For every n ≥ 1, we have a surjective
morphism of A-modules M/In+1M →M/InM . The completion of M with respect
to I is

M̂ := lim←−M/InM.

This is an A-module and we have a canonical morphism of A-modules ψM : M → M̂
that maps u ∈ M to (umod InM)n≥1. In fact, since each M/InM is an A/In-

module, we have a natural Â-module structure on M̂ that induces, by restriction

of scalars via ψA, the original A-module structure on M̂ .
If φ : M → N is a morphism of A-modules, we obtain an induced morphism of

Â-modules M̂ → N̂ . This gives a functor from A-modules to Â-modules.

Example G.1.1. If A = R[x1, . . . , xn] for some Noetherian ring R, and I =

(x1, . . . , xn), then Â is isomorphic, as an A-algebra, to R[[x1, . . . , xn]].

461
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Remark G.1.2. If we have a sequence of submodules (Mn)n≥1 of M such that
Mn+1 ⊆Mn for every n ≥ 1, then we have canonical morphismsM/Mn+1 →M/Mn

and we can consider lim←−M/Mn. If InM ⊆Mn for every n, then we have an induced
morphism

(G.1.1) M̂ → lim←−M/Mn.

If, in addition, for every n we can find ` such that M` ⊆ InM , then (G.1.1) is
an isomorphism (this follows easily using the fact that the inverse limit does not
change if we pass to a final subset).

In particular, we see that the completion of M with respect to two ideals I and
J are canonically isomorphic if rad(I) = rad(J).

Remark G.1.3. If there is n such that InM = 0, then it is clear that the

morphism M → M̂ is an isomorphism.

Remark G.1.4. By definition, the kernel of the morphism ψM : M → M̂ is
equal to

⋂
n≥1 I

nM = 0. We thus see that if (A,m) is a local Noetherian ring,
I ⊆ m, and M is a finitely generated A-module, then ψM is injective by Krull’s
Intersection theorem (see Theorem C.4.1).

Remark G.1.5. If φ : A → B is a ring homomorphism and I ⊆ A and J ⊆ B

are ideals such that I ·B ⊆ J , then we have a ring homomorphism φ̂ : Â→ B̂ such

that φ̂ ◦ ψA = ψB ◦ φ (where the completions of A and B are taken with respect
to I and J , respectively). Indeed, for every n, we have an induced homomorphism

A/In → B/Jn, and by taking the inverse limit over n, we get the morphism φ̂ that
satisfies the required commutativity condition.

G.2. Basic properties of completion

We now derive some properties of Â and of the completion functor. We assume
that A is a Noetherian ring and I is an ideal in A.

Proposition G.2.1. Given a short exact sequence of finitely generated A-
modules

0 −→M ′
α−→M

β−→M ′′ −→ 0,

the induced sequence

0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0

is exact, too.

Proof. For every n ≥ 1, we have an induced exact sequence of A/In-modules

0→M ′/(InM ∩M ′)→M/InM →M ′′/InM ′′ → 0.

A well-known (and easy to check) property of inverse limits implies that by passing
to inverse limit we obtain an exact sequence

0→ lim←−M
′/(InM ∩M ′)→ M̂ → M̂ ′′.

Note first that we have a canonical morphism

M̂ ′ = lim←−M
′/InM ′ → lim←−M

′/(InM ∩M ′)

and we deduce from the Artin-Rees lemma (see Lemma C.4.2) and Remark G.1.2
that this is an isomorphism.
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In order to complete the proof it is thus enough to show that the morphism

M̂ → M̂ ′′ is surjective. Consider u ∈ M̂ ′′ given by (un mod InM)n≥1, where the
elements un ∈ M ′′ are such that un − un+1 ∈ InM ′′. We construct recursively
elements vn ∈M such that the following hold for all n ≥ 1:

i) un = β(vn) and
ii) vn − vn+1 ∈ InM .

We begin by choosing v1 ∈ M such that β(v1) = u1 (this is possible since β is
surjective). Suppose now that v1, . . . , vr are chosen such that i) holds for 1 ≤ n ≤ r
and ii) holds for 1 ≤ n ≤ r− 1. Since ur − ur+1 ∈ IrM ′′, we can write ur − ur+1 =∑s
j=1 ajwj , with aj ∈ Ir and wj ∈M ′′. We choose w̃j ∈M such that β(w̃j) = wj

and put vr+1 = vr−
∑s
j=1 ajw̃j . It is then clear that i) holds also for n = r+ 1 and

ii) holds also for n = r. By ii), we can thus consider v = (vn mod InM)n≥1 ∈ M̂
and it follows from i) that v maps to u ∈ M̂ ′′. This completes the proof of the
proposition. �

Corollary G.2.2. For every finitely generated A-module M , the canonical
morphism

Â⊗AM → M̂

induced by ψM is an isomorphism. In particular, M̂ is a finitely generated Â-
module.

Proof. The assertion is clear if M is a finitely generated, free A-module. For
the general case, consider an exact sequence of A-modules

F1 → F0 →M → 0,

where F1 and F0 are finitely generated, free modules. We then obtain a commuta-
tive diagram

Â⊗A F1

��

// Â⊗A F0

��

// Â⊗AM

��

// 0

F̂1
// F̂0

// M̂ // 0.

The top row is exact by right-exactness of the tensor product, while the bottom
row is exact by the proposition. Since the first and the second vertical maps are
isomorphisms, it follows that the third one is an isomorphism as well. �

Corollary G.2.3. The A-algebra Â is flat.

Proof. We need to show that for every injective morphism of A-modules
φ : M ′ ↪→M , the induced morphism

1Â ⊗ φ : Â⊗AM ′ → Â⊗AM
is injective. We can write M = lim−→

i∈I
Mi, where the Mi are the finitely generated sub-

modules of M and similarly M ′ = lim−→
i∈I

φ−1(Mi). Since the tensor product commutes

with direct limits and a filtered direct limit of injective morphisms is injective, we
see that it is enough to consider the case when M (and thus also M ′) is finitely
generated. In this case, the assertion follows by combining the proposition and the
previous corollary. �
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Corollary G.2.4. For every n ≥ 1 and every finitely generated A-module M ,
we have

ÎnM = InM̂ = ÎnM̂.

Moreover, the morphism M → M̂ induces an isomorphism M/InM → M̂/InM̂ .

Proof. Since Â is flat over A, the canonical morphism Â⊗A In → Â is injec-

tive; its image is InÂ = (IÂ)n. Moreover, by Proposition G.2.1 and Corollary G.2.2,

this is also the image of the morphism În → Â, which is injective. By taking n = 1,

we see that IÂ = Î, and thus

În = InÂ = În.

Given the finitely generated A-module M , by applying Proposition G.2.1 to
the exact sequence

0→ InM →M →M/InM → 0,

we obtain an exact sequence

0→ ÎnM → M̂
p→ M̂/InM → 0.

Note also that we have an isomorphism

M/InM ' M̂/InM

such that p gets identified to the canonical projection M̂ → M/InM that comes
from the definition of the projective limit (see Remark G.1.3). On one hand, it
follows from Corollary G.2.2 that

ÎnM = Im(Â⊗A InM → Â⊗AM = M̂) = InM̂.

On the other hand, it follows from what we have already proved that

InM̂ = (InÂ) · M̂ = ÎnM̂.

This completes the proof of the proposition. �

Given a ring A, an ideal I in A, and an A-module M , we say that M is complete

(with respect to I) if the canonical morphism M → M̂ is an isomorphism. This
applies, in particular, in the case M = A.

Example G.2.5. Given a Noetherian ring A and a finitely generated A-module

M , it follows from Corollary G.2.4 that M̂ is complete as an A-module (with respect

to I) and as an Â-module (with respect to Î = IÂ).

Remark G.2.6. Let φ : A→ B be a ring homomorphism and I ⊆ A and J ⊆ B
be ideals such that I · B ⊆ J . If ψA : A → Â is the morphism to the completion
(with respect to I) and if B is complete (with respect to J), then there is a unique

ring homomorphism ρ : Â→ B such that ρ ◦ ψA = φ.

Indeed, recall from Remark G.1.5 that we have a homomorphism φ̂ : Â → B̂

such that φ̂ ◦ ψA = ψB ◦ φ. Since ψB is an isomorphism by assumption, we may

take ρ = ψ−1
B ◦ φ̂ and this clearly satisfies the required condition.

In order to prove uniqueness, note that if φ̂ is as in the statement, then φ̂

induces for every n a morphism φn : Â/In · Â → B/JnB, whose composition with

the isomorphism A/In → Â/InÂ is the morphism A/In → B/Jn induced by φ.

Since we have ψB ◦ φ̂ = lim←−φn, we obtain the uniqueness of φ̂.
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Proposition G.2.7. If A is Noetherian and I is an ideal in A, then the com-

pletion Â is again Noetherian.

Proof. Since A is Noetherian, we can find a1, . . . , ad ∈ I that generate I as

an ideal. It is enough to show that Â ' A[[x1, . . . , xd]]/(x1 − a1, . . . , xd − ad); if we
know this, then the assertion follows from Theorem B.2.4.

Let B = A[x1, . . . , xd]. On B, we consider the following two ideals: a =
(x1, . . . , xd) and b = (x1 − a1, . . . , xd − ad). Note that we have an isomorphism
B/b ' A, and via this isomorphism, we have an · A = In for every n ≥ 1, hence

the completion Â is isomorphic to the completion of A with respect to the ideal a
in B. Since B is Noetherian, by considering the completion with respect to a, we
thus obtain

Â ' B̂/b ' B̂/bB̂ ' A[[x1, . . . , xd]]/(x1 − a1, . . . , xd − ad).
�

Remark G.2.8. An important case is that when (A,m) is a local Noetherian

ring and I = m. Note that in this case the morphism ψA : A → Â is injective (see

Remark G.1.4). Note also that mÂ is a maximal ideal, with Â/mÂ ' A/m (see
Corollary G.2.4).

In fact, mÂ is the unique maximal ideal of Â. In order to see this, it is enough

to show that if u ∈ ÂrmÂ, then 1−u is invertible. This follows from the fact that

Â ' lim←− Â/(mÂ)n and if we put an =
∑n−1
j=0 u

j for every n ≥ 1, then the element

in Â corresponding to (an)n≥1 is an inverse of 1− u.

Remark G.2.9. We did not mention the topology on the ring A associated to
the ideal I, since we do not need it. However, for the interested reader, we mention
the notions of Cauchy sequences and convergent sequences that come out of the
topological considerations. Given a ring A, the ideal I in A, and an A-module M ,
we say that a sequence (xn)n≥1 of elements in M is a Cauchy sequence if for every
m, there is N such that xn− xn+1 ∈ ImM for all n ≥ N . The sequence has a limit
x ∈M if for every m, there is N such that xn − x ∈ ImM for all n ≥ N . One can
show that M is complete if and only if every Cauchy sequence in M has a limit
and this limit is unique. We leave the proof as an exercise for the reader.





APPENDIX H

Modules of finite length

We review the definition of modules of finite length and their characterization
over Noetherian rings.

H.1. Finite length

Let R be a commutative ring. Recall that an R-module M is simple if M 6= 0
and for every submodule M ′ of M , we have either M ′ = 0 or M ′ = M . It is
straightforward to see that a module M is simple if and only if it is isomorphic to
A/m, for some maximal ideal m of R.

Definition H.1.1. An R-module M is of finite length if it has a composition
series, that is, a sequence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M

such that Mi/Mi−1 is a simple module for 1 ≤ i ≤ r. It is a consequence of
the Jordan-Hölder theorem that if M satisfies this property, then the quotients
Mi/Mi−1 are independent of the choice of composition series, up to reordering. In
particular, the length r only depends on M ; this is the length of M , denoted `(M)
(or `R(M) if the ring is not clear from the context).

Example H.1.2. If R is a DVR with discrete valuation v, then for every a ∈ R,
we have `

(
R/(a)

)
= v(a).

We begin with some easy properties regarding finite length modules.

Proposition H.1.3. Given an exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the module M has finite length if and only if both M ′ and M ′′ have finite length,
and in this case

`(M) = `(M ′) + `(M ′′).

Proof. It is clear that if M ′ and M ′′ have finite length, then we obtain a
composition series for M by concatenating the composition series for M ′ and M ′′.
This implies that `(M) = `(M ′) + `(M ′′). The converse follows from the fact, easy
to check, that given a composition series forM , by intersecting each submodule with
M ′ (respectively, by taking the image of each submodule in M ′′) we obtain after
removing repeated submodules a composition series for M ′ (respectively, M ′′). �

Remark H.1.4. Every R-module of finite length is Artinian: if

M = M0 )M1 ) . . .

467



468 H. MODULES OF FINITE LENGTH

is a strictly decreasing sequence of submodules, then it follows from the above
proposition that we have a strictly decreasing sequence of non-negative integers

`(M0) > `(M1) > . . . ,

a contradiction.

Proposition H.1.5. If R is a Noetherian ring, then an R-module M has finite
length if and only if M is finitely generated and dim

(
R/AnnR(M)

)
= 0.

Proof. Suppose first that M has a composition series

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

with Mi/Mi−1 ' R/mi for 1 ≤ i ≤ r, where each mi is a maximal ideal of R.
Since each Mi/Mi−1 is finitely generated, we conclude that M is finitely generated.
Moreover, we have

∏r
i=1 mi ⊆ AnnR(M), hence the only primes containing Ann(R)

are the mi. This implies that dim
(
R/AnnR(M)

)
= 0.

Conversely, if M is finitely generated over a Noetherian ring, then it follows
from Corollary E.3.4 that we have submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

such that Mi/Mi−1 ' A/pi for 1 ≤ i ≤ r, where each pi is a prime ideal in R. If we
have dim

(
R/AnnR(M)

)
= 0, then every prime ideal in R/AnnR(M) is a maximal

ideal. Since we clearly have AnnR(M) ⊆ pi for all i, we conclude that each quotient
Mi/Mi−1 is a simple module, hence M has finite length. �

Example H.1.6. If (R,m) is a Noetherian local ring, then an R-module M has
finite length if and only if it is finitely generated and mr ·M = 0 for some r ≥ 1.

Remark H.1.7. We note that if R is a Noetherian ring, with dim(R) = 0, then
R is the product of finitely many local rings. Indeed, given a minimal primary
decomposition

(0) = q1 ∩ . . . ∩ qr,

by the Chinese Remainder theorem we have

R '
r∏
i=1

R/qi

(note that the ideals rad(qi) are mutually distinct maximal ideals, hence qi+qj = R
whenever i 6= j).

Example H.1.8. If k is a field and A is a finite k-algebra, then A is clearly
Noetherian and dim(A) = 0 (if p is a prime ideal in A, then A/p is a domain which
is a finite k-algebra, hence it is a field by Proposition A.2.1). In particular, we see
that A has finite length as a module over itself. The previous remark implies that
A is the product of finitely many local, finite k-algebras.

Corollary H.1.9. If φ : R→ S is a finite homomorphism of Noetherian rings,
with (R,m) a local ring, then an S-module M has finite length over S if and only
if it has finite length over R, and in this case, if q1, . . . , qr are the maximal ideals
in S, then

`R(M) =

r∑
i=1

`Sqi
(Mqi

) · [S/qi : R/m].
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Proof. Note first that since φ is finite, the maximal ideals in S are precisely
those prime ideals whose inverse image in R is equal to m and there are indeed only
finitely many of these. Since rad(mS) = q1∩ . . .∩qr, it folows that M is annihilated
by a power of m if and only if it is annihilated by some power of q1∩. . .∩qr. Since it
is clear that M is finitely generated over S if and only if it is finitely generated over
R, we deduce from Proposition H.1.5 the first assertion in the corollary. Suppose
now that M has finite length and consider a composition series over S:

0 = M0 ⊆ . . . ⊆Mn = M.

Since the formula in the corollary is additive in short exact sequences, by considering
the short exact sequences

0→Mi−1 →Mi →Mi/Mi−1 → 0,

we see that it is enough to prove the formula when M = S/qj for some j. In this
case the formula follows from the fact that

`R(S/qj) = `R/m(S/qj) = [S/qj : R/m].

�

H.2. The valuation of the norm of an element

In this section we prove a result that is needed for computing the push-forward
of principal Weil divisors.

Lemma H.2.1. If R is a DVR, with discrete valuation v, and M is a finitely
generated, free R-module, then for every injective morphism φ : M → M , the R-
module coker(φ) has finite length, and

`
(
coker(φ)

)
= v
(
det(φ)

)
.

Proof. It follows from general results on submodules of free modules over
a PID that we can find a basis e1, . . . , en of M such that φ(M) is generated by
a1e1, . . . , anen for a1, . . . , an ∈ R r {0}. In this case, we have an invertible matrix
B ∈ Mn(R) such that det(φ) = det(B) ·

∏n
i=1 ai, hence v

(
det(φ)

)
= v(a1 · · · an).

On the other hand, we have

coker(φ) '
n⊕
i=1

R/(ai),

hence

`
(
coker(φ)

)
=

n∑
i=1

`
(
R/(ai)

)
=

n∑
i=1

v(ai) = v(a1 · · · an).

�

Proposition H.2.2. Let f : R ↪→ S be a finite, injective homomorphism, where
(R,m) is a DVR, with discrete valuation v, and S is a domain, and denote by
q1, . . . , qr the maximal ideals of S. If K = Frac(R) and L = Frac(S), then for
every non-zero b ∈ S, we have

v
(
NL/K(b)

)
=

r∑
i=1

`Sqi

(
Sqi/(b)

)
· [S/qi : R/m].

For a much more general result, see [Ful98, Chapter A.2].
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Proof of Proposition H.2.2. Note first that since S is finite over R, the
maximal ideals of S are precisely the prime ideals in S lying over m. Since S
has no torsion as an R-module, it follows from the structure theorem of finitely
generated modules over a PID that S is a free R-module. Consider the injective
morphism φ : S → S given by multiplication by b. Since L = S ⊗R K, we have
NL/K(b) = det(φ) and applying the lemma, we obtain

v
(
NL/K(b)

)
= `R

(
coker(φ)

)
.

On the other hand, it follows from Corollary H.1.9 that

`R
(
coker(φ)

)
=

r∑
i=1

`Sqi

(
Sqi

/(b)
)
· [S/qi : R/m].

This completes the proof of the proposition. �



APPENDIX I

Embeddings in injective modules

Let R be a ring (not necessarily commutative). Recall that a left R-module Q is
injective if the functor HomR(−, Q) is exact. Since this functor is always left exact,
Q is injective if and only if for every injective morphism of R-modules M ′ ↪→ M ,
the induced morphism of Abelian groups

HomR(M,Q)→ HomR(M ′, Q)

is surjective. In this appendix we show the basic fact that the category of left
R-modules has enough injectives.

I.1. The Baer criterion and embeddings in injective modules

Proposition I.1.1. For every left R-module M , there is an injective morphism
M ↪→ Q, where Q is an injective left R-module.

The proof proceeds by first treating the case when R = Z. In this case, the key
fact is the characterization of injective Z-modules as divisible groups. This in turn
follows from the following criterion for a module to be injective:

Proposition I.1.2. (Baer) A left R-module Q is injective if and only if for
every left ideal I in R, the induced morphism of Abelian groups

Q = HomR(R,Q)→ HomR(I,Q)

is surjective.

Proof. Of course, we only need to prove the “if” part. Suppose that M is a
left R-module and M ′ is a submodule. We need to show that for every morphism
φ′ : M ′ → Q, there is a morphism φ : M → Q such that φ|M ′ = φ′. We consider
the setM of all pairs (M1, φ1), where M1 is a submodule of M containing M ′ and
φ1 : M1 → Q is a morphism such that φ1|M ′ = φ′. We order this set by putting
(M1, φ1) ≤ (M2, φ2) if M1 ⊆M2 and φ2|M1

= φ1.
Since we have (M ′, φ′) ∈ M, we see that M is non-empty. Moreover, given

a family (Mi, φi)i∈I of elements of M, any two of them comparable, we can take
M ′′ =

⋃
i∈IMi and φ′′ : M ′′ → Q such that φ′′|Mi

= φi for all i; in this case
(M ′′, φ′′) ∈M is the supremum of the family (Mi, φi)i∈I .

We can thus apply Zorn’s lemma to choose a maximal element (M0, φ0) inM.
We claim that M0 = M , which would complete the proof. Suppose that this is not
the case and let u ∈ M rM0. We will show that there is an extension of φ0 to a
morphism φ1 : M0 +Ru→ Q; this would contradict the maximality of (M0, φ0).

Let I = {a ∈ R | au ∈ M0}. Note that I is a left ideal of R and we can define
a morphism ψ : I → Q by ψ(a) = φ0(au). By assumption, there is w ∈ Q such that
ψ(a) = aw for every a ∈ I. It is then straightforward to see that if we put

φ1(v + au) = φ0(v) + aw for v + au ∈M0 +Ru,
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then φ1 is well-defined and gives a morphism M0 +Ru→ Q such that φ1|M0
= φ0.

This completes the proof. �

Recall that an Abelian group A is divisible if for every positive integer n, the

multiplication map A
·n−→ A is surjective.

Corollary I.1.3. A Z-module Q is injective if and only if it is a divisible
Abelian group.

Proof. Since every ideal of Z is of the form nZ, for some non-negative integer
n, it follows from the proposition that Q is injective if and only if for every such n,
the induced morphism of Abelian groups

Q→ HomZ(nZ, Q)

is surjective. This is clearly the case if n = 0. If n > 0, then this morphism gets
identified to the morphism Q→ Q given by multiplication by n, and we obtain the
assertion in the corollary. �

We can now prove the existence of embeddings in injective modules.

Proof of Proposition I.1.1. Suppose first that R = Z. In this case, by the
above corollary, we need to show that every Abelian group M can be embedded in a
divisible Abelian group A. WriteM ' F/G, where F ' Z(I) is a free Abelian group.
Since F is free, it has no torsion, and thus the canonical morphism F ↪→ F ⊗Z Q '
Q(I) is injective. We thus have an injective morphism M ↪→ A := (F ⊗Z Q)/G. It
is clear that F ⊗Z Q is divisible, and thus its image A is divisible, too.

Consider now the general case. By considering on M the underlying structure of
Z-module and applying what we have already proved, we get an injective morphism
of Z-modules j : M ↪→ A, where A is an injective Z-module. We claim that if we
consider on HomZ(R,A) the left R-module structure induced by the right R-module
structure of R (that is, we have

(λ · φ)(r) = φ(rλ) for all λ, r ∈ R,φ ∈ HomZ(R,A)),

then HomZ(R,A) is an injective R-module. In order to see this, it is enough to note
that by the adjoint property of R ⊗R − and HomZ(R,−), for every left R-module
N , we have a canonical isomorphism

HomR

(
N,HomZ(R,A)

)
' HomZ(R⊗R N,A) ' HomZ(N,A).

Finally, we note that we have an injective morphism of left R-modules given
by

M → HomZ(R,A), M 3 v → φv, where φv(r) = j(rv).

This completes the proof. �



APPENDIX J

The Principal Ideal theorem: a proof in the
general case

In this appendix we give a proof of the Principal Ideal theorem for arbitrary
Noetherian rings. While this is not necessary for the geometric results in these
notes, the argument is so simple, assuming the results in Appendix H, that we give
it for completeness.

J.1. The statement and the proof

Theorem J.1.1. If R is a Noetherian ring and p is a minimal prime ideal
containing a principal ideal (x), then codim(p) ≤ 1.

Proof. After replacing R by Rp, we may assume that R is a local ring and p
is the maximal ideal. It is enough to show that for every prime ideal q ( p in R,
we have codim(q) = 0.

The ring R/(x) is Noetherian and by hypothesis, has only one prime ideal,
namely p/(x). It follows from Proposition H.1.5 that R/(x) is an R-module of finite
length, hence Artinian (see Remark H.1.4). Note that if we put q(n) := qnRq ∩ R
for n ≥ 1, then we have the non-increasing chain of R-modules in R/(x):(

q(1) + (x)
)
/(x) ⊇

(
q(2) + (x)

)
/(x) ⊇ . . .

(
q(n) + (x)

)
/(x) . . . ,

which thus must stabilize. We deduce that we have n ≥ 1 such that q(n) + (x) =
q(n+1) + (x). This implies that for every u ∈ q(n), there are a ∈ R and v ∈ q(n+1)

such that u = v + ax. Since ax ∈ q(n) and x 6∈ q, we have a ∈ q(n). We thus
conclude that q(n) = x ·q(n) +q(n+1). Since x lies in the unique maximal ideal in R,
it follows from Nakayama’s lemma (see Corollary C.1.2) that q(n) = q(n+1). This
implies that qnRq = qn+1Rq, and using Nakayama’s lemma in Rq, we conclude
that qnRq = 0. This implies that codim(q) = 0 and thus completes the proof of
the theorem. �

The above theorem is usually applied in the following more general form.

Corollary J.1.2. If R is a Noetherian ring and p is a minimal prime ideal
containing (x1, . . . , xn), then codim(p) ≤ n.

Proof. The reduction to the theorem proceeds as in the proof of Corol-
lary 3.3.7. We leave the task of rewriting algebraically that argument as an exercise
for the reader. �

We also have the following partial converse to the corollary:

Proposition J.1.3. If p is a prime ideal in a Noetherian ring R and codim(p) =
n, then there are x1, . . . , xn ∈ p such that p is a minimal prime containing (x1, . . . , xn).
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Proof. It is enough to translate algebraically the argument in the proof of
Proposition 3.3.16. We leave this, as well, as an exercise for the reader. �
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