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CHAPTER 1

Affine and quasi-affine varieties

The main goal in this chapter is to establish a correspondence between various
geometric notions and algebraic ones. Some references for this chapter are [Har77,
Chapter I], [Mum88, Chapter I], and [Sha13, Chapter I].

1.1. Algebraic subsets and ideals

Let k be a fixed algebraically closed field. We do not make any assumption on
the characteristic. Important examples are C, Q, and Fp, for a prime integer p.

For a positive integer n we denote by An the n-dimensional affine space. For
now, this is just a set, namely kn. We assume that n is fixed and denote the
polynomial ring k[x1, . . . , xn] by R. Note that if f ∈ R and u = (u1, . . . , un), we
may evaluate f at u to get f(u) ∈ k. This gives a surjective ring homomorphism

k[x1, . . . , xn]→ k, f → f(u),

whose kernel is the (maximal) ideal (x1 − u1, . . . , xn − un).
Our goal in this section is to establish a correspondence between certain subsets

of An (those defined by polynomial equations) and ideals in R (more precisely,
radical ideals). A large part of this correspondence is tautological. The non-trivial
input will be provided by Hilbert’s Nullstellensatz, which we will be prove in the
next section.

Definition 1.1.1. Given a subset S ⊆ R, the zero-locus of S (also called the
subset of An defined by S) is the set

V (S) := {u ∈ An | f(u) = 0 for all f ∈ S}.
An algebraic subset of An is a subset of the form V (S) for some subset S of R.

Example 1.1.2. Any linear subspace of kn is an algebraic subset; in fact, it can
be written as V (S), where S is a finite set of linear polynomials (that is, polynomials
of the form

∑n
i=1 aixi). More generally, any translation of a linear subspace (that

is, an affine subspace) of kn is an algebraic subset.

Example 1.1.3. A union of two lines in A2 is an algebraic subset (see Propo-
sition 1.1.6). For example, the union of the two coordinate axes can be written as
V (x1x2).

Example 1.1.4. Another example of an algebraic subset of A2 is the hyperbola

{u = (u1, u2) ∈ A2 | u1u2 = 1}.

Remark 1.1.5. Recall that if S is a subset of R and I is the ideal of R generated
by S, then we can write

I = {g1f1 + . . .+ gmfm | m ≥ 0, f1, . . . , fm ∈ S, g1, . . . , gm ∈ R}.

1



2 1. AFFINE AND QUASI-AFFINE VARIETIES

It is then easy to see that V (S) = V (I). In particular, every algebraic subset of
An can be written as V (I) for some ideal I in R.

We collect in the following proposition the basic properties of taking the zero
locus.

Proposition 1.1.6. The following hold:

1) V (R) = ∅; in particular, the empty set is an algebraic subset.
2) V (0) = An: in particular, An is an algebraic subset.
3) If I and J are ideals in R with I ⊆ J , then V (J) ⊆ V (I).
4) If (Iα)α is a family of ideals in R, we have⋂

α

V (Iα) = V

(⋃
α

Iα

)
= V

(∑
α

Iα

)
.

5) If I and J are ideals in R, then

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

Proof. The assertions in 1)–4) are trivial to check. Note also that the inclu-
sions

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (I · J)

follow directly from 3). In order to show that V (I · J) ⊆ V (I) ∪ V (J), we argue
by contradiction: suppose that u ∈ V (I · J) r

(
V (I) ∪ V (J)

)
. We can thus find

f ∈ I such that f(u) 6= 0 and g ∈ J such that g(u) 6= 0. In this case fg ∈ I · J and
(fg)(u) = f(u)g(u) 6= 0, a contradiction with the fact that k is a domain. �

An important consequence of the assertions in the above proposition is that
the algebraic subsets of An form the closed subsets for a topology of An. This is
the Zariski topology on An.

The Zariski topology provides a convenient framework for dealing with algebraic
subsets of An. However, we will see that it has a lot less subsets than one is used
to from the case of the usual Euclidean space (over R or over C).

We now define a map in the other direction, from subsets of An to ideals in R.
Given a subset W of An, we put

I(W ) := {f ∈ R | f(u) = 0 for all u ∈W}.

It is straightforward to see that this is an ideal in R. In fact, it is a radical1 ideal:
indeed, since k is a reduced ring, if f(u)q = 0 for some positive integer q, then
f(u) = 0. We collect in the next proposition some easy properties of this definition.

Proposition 1.1.7. The following hold:

1) I(∅) = R.
2) If (Wα)α is a family of subsets of An, then I (

⋃
αWα) =

⋂
α I(Wα).

3) If W1 ⊆W2, then I(W2) ⊆ I(W1).

Proof. All assertions follow immediately from definition. �

1An ideal I in a ring R is radical if whenever fq ∈ I for some f ∈ R and some positive integer

q, we have f ∈ I. A related concept is that of a reduced ring: this is a ring such that whenever
fq = 0 for some f ∈ R and some positive integer q, we have f = 0. Note that an ideal I is radical

if and only if R/I is a reduced ring.



1.1. ALGEBRAIC SUBSETS AND IDEALS 3

We have thus set up two maps between subsets of An and ideals in R and we
are interested in the two compositions. Understanding one of these compositions is
tautological, as follows:

Proposition 1.1.8. For every subset Z of An, the set V
(
I(Z)

)
is equal to

the closure Z of Z, with respect to the Zariski topology. In particular, if Z is an
algebraic subset of An, then V

(
I(Z)

)
= Z.

Proof. We clearly have
Z ⊆ V

(
I(Z)

)
,

and since the right-hand side is closed by definition, we have

Z ⊆ V
(
I(Z)

)
.

In order to prove the reverse inclusion, recall that by definition of the closure of a
subset, we have

Z =
⋂
W

W,

where W runs over all algebraic subsets of An that contain Z. Every such W can
be written as W = V (J), for some ideal J in R. Note that we have J ⊆ I(W ),
while the inclusion Z ⊆ W gives I(W ) ⊆ I(Z). We thus have J ⊆ I(Z), hence
V
(
I(Z)

)
⊆ V (J) = W . Since V

(
I(Z)

)
is contained in every such W , we conclude

that
V
(
I(Z)

)
⊆ Z.

�

The interesting statement here concerns the other composition. Recall that if
J is an ideal in a ring R, then the set

{f ∈ R | fq ∈ J for some q ≥ 1}
is a radical ideal; in fact, it is the smallest radical ideal containing J , denoted
rad(J).

Theorem 1.1.9. (Hilbert’s Nullstellensatz) For every ideal J in R, we have

I
(
V (J)

)
= rad(J).

The inclusion J ⊆ I
(
V (J)

)
is trivial and since the right-hand side is a radical

ideal, we obtain the inclusion

rad(J) ⊆ I
(
V (J)

)
.

This reverse inclusion is the subtle one and this is where we use the hypothesis
that k is algebraically closed (note that this did not play any role so far). We will
prove this in the next section, after some preparations. Assuming this, we obtain
the following conclusion.

Corollary 1.1.10. The two maps I(−) and V (−) between the algebraic subsets
of An and the radical ideals in k[x1, . . . , xn] are inverse, order-reversing bijections.

Remark 1.1.11. It follows from Corollary 1.1.10 that via the above bijection,
the minimal nonempty algebraic subsets correspond to the maximal ideals in R.
It is clear that the minimal nonempty algebraic subsets are precisely the points
in An. On the other hand, given a = (a1, . . . , an) ∈ An, the ideal I(u) contains
the maximal ideal (x1 − a1, . . . , xn − an), hence the two ideals are equal. We thus
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deduce that every maximal ideal in R is of the form (x1 − a1, . . . , xn − an) for
some a1, . . . , an ∈ k. We will see in the next section that the general statement of
Theorem 1.1.9 is proved by reduction to this special case.

Exercise 1.1.12. Show that the closed subsets of A1 are A1 and its finite
subsets.

Exercise 1.1.13. Show that if W1 and W2 are algebraic subsets of An, then

I(W1 ∩W2) = rad
(
I(W1) + I(W2)

)
.

Exercise 1.1.14. For m and n ≥ 1, let us identify Amn with the set of all
matrices B ∈Mm,n(k). Show that the set

Mr
m,n(k) := {B ∈Mm,n(k) | rk(B) ≤ r}

is a closed algebraic subset of Mm,n(k).

Exercise 1.1.15. Show that the following subset of A3

W1 = {(t, t2, t3) | t ∈ k}
is a closed algebraic subset, and describe I(W1). Can you do the same for

W2 = {(t2, t3, t4) | t ∈ k}?
How about

W3 = {(t3, t4, t5) | t ∈ k}?

Exercise 1.1.16. For an arbitrary commutative ring R, one can define the
maximal spectrum MaxSpec(R) of R, as follows. As a set, this is the set of all
maximal ideals in R. For every ideal J in R, we put

V (J) := {m ∈ MaxSpec(R) | J ⊆ m}
and for every subset S ⊆ MaxSpec(R), we define

I(S) :=
⋂
m∈S

m.

i) Show that MaxSpec(R) has a structure of topological space in which the
closed subsets are the subsets of the form V (I), for an ideal I in R.

ii) Show that for every subset S of MaxSpec(R), we have V
(
I(S)

)
= S.

iii) Show that if R is an algebra of finite type over an algebraically closed field
k, then for every ideal J in S, we have I

(
V (J)

)
= rad(J).

iv) Show that if X ⊆ An is a closed subset, then we have a homeomorphism
X ' MaxSpec(R/J), where R = k[x1, . . . , xn] and J = I(X).

1.2. Noether normalization and Hilbert’s Nullstellensatz

The proof of Hilbert’s Nullstellensatz is based on the following result, known as
Noether’s normalization lemma. As we will see, this has many other applications.

Before stating the result, we recall that a ring homomorphism A→ B is finite
if B is finitely generated as an A-module. It is straightforward to check that a
composition of two finite homomorphisms is again finite. Moreover, if A → B
is a finite homomorphism, then for every homomorphism A → C, the induced
homomorphism C = A⊗AC → B⊗AC is finite. For details about finite morphisms
and the connection with integral morphisms, see Appendix A. One property that
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we will need is that if A ↪→ B is an injective finite homomorphism, with A and B
domains, then A is a field if and only if B is a field (see Proposition A.2.1).

Remark 1.2.1. If A ↪→ B is an injective, finite homomorphism between two
domains, and K = Frac(A) and L = Frac(B), then the induced injective homo-
morphism K ↪→ L is finite. Indeed, by tensoring the inclusion A ↪→ B with K, we
obtain a finite, injective homomorphism K ↪→ K⊗AB between domains. Note that
K⊗AB is a ring of fractions of B, hence the canonical homomorphism K⊗AB → L
is injective. Since K is a field, it follows that K⊗AB is a field, and thus K⊗AB = L.
In particular, we see that [L : K] <∞.

Theorem 1.2.2. Let k be a field and A a finitely generated k-algebra which
is an integral domain, with fraction field K. If trdeg(K/k) = n, then there is a
k-subalgebra B of A, such that

1) B is isomorphic as a k-algebra to k[x1, . . . , xn], and
2) The inclusion B ↪→ A is finite.

Proof. We only give the proof when k is infinite. This will be enough for our
purpose, since in all our applications the field k will always contain an algebraically
closed (hence infinite) field. For a proof in the general case, see [Mum88].

The fact that k is infinite will be used via the following property: for every
nonzero polynomial f ∈ k[x1, . . . , xr], there is λ ∈ kr such that f(λ) 6= 0. When
r = 1, this follows from the fact that a nonzero polynomial in one variable has
at most as many roots as its degree. The general case then follows by an easy
induction on r.

Let y1, . . . , ym ∈ A be generators of A as a k-algebra. In particular, we have
K = k(y1, . . . , ym), hence m ≥ n. We will show, by induction on m, that we can
find a change of variable of the form

yi =

n∑
j=1

bi,jzj , for 1 ≤ i ≤ m, with det(bi,j) 6= 0,

(so that we have A = k[z1, . . . , zm]) such that the inclusion k[z1, . . . , zn] ↪→ A is
finite. Note that this is enough: if B = k[z1, . . . , zn], then it follows from Re-
mark 1.2.1 that the induced field extension Frac(B) ↪→ K is finite. Therefore we
have

n = trdeg(K/k) = trdeg
(
k(z1, . . . , zn)/k

)
,

hence z1, . . . , zn are algebraically independent.
If m = n, there is nothing to prove. Suppose now that m > n, hence y1, . . . , ym

are algebraically dependent over k. Therefore there is a nonzero polynomial f ∈
k[x1, . . . , xm] such that f(y1, . . . , ym) = 0. Suppose now that we write

yi =

m∑
j=1

bi,jzj , with bi,j ∈ k, det(bi,j) 6= 0.

Let d = deg(f) and let us write

f = fd + fd−1 + . . .+ f0, with deg(fi) = i or fi = 0.

By assumption, we have fd 6= 0. If we write

f =
∑

α∈Zm
≥0

cαx
α1
1 · · ·xαm

m ,
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then we have

0 = f(y1, . . . , ym) =
∑
α

cα(b1,1z1 + . . .+ b1,mzm)α1 · · · (bm,1z1 + . . .+ bm,mzm)αm

= fd(b1,m, . . . , bm,m)zdm + lower degree terms in zm.

Since we assume that k is infinite, we may choose the bi,j such that

det(bi,j) · fd(b1,m, . . . , bm,m) 6= 0.

In this case, we see that after this linear change of variable, the inclusion

k[y1, . . . , ym−1] ↪→ k[y1, . . . , ym]

is finite, since the right-hand side is generated as a module over the left-hand side
by 1, ym, . . . , y

d−1
m . Note that by Remark 1.2.1, the induced extension

k(y1, . . . , ym−1) ↪→ k(y1, . . . , ym)

is finite, hence trdeg
(
k(y1, . . . , ym−1)/k

)
= n. By induction, we can do a linear

change of variable in y1, . . . , ym−1, after which the inclusion

k[y1, . . . , yn] ↪→ k[y1, . . . , ym−1]

is finite, in which case the composition

k[y1, . . . , yn] ↪→ k[y1, . . . , ym−1] ↪→ k[y1, . . . , ym]

is finite. This completes the proof of the theorem. �

We will use Theorem 1.2.2 to prove Hilbert’s Nullstellensatz in several steps.

Corollary 1.2.3. If k is a field, A is a finitely generated k-algebra, and K =
A/m, where m is a maximal ideal in A, then K is a finite extension of k.

Proof. Note that K is a field which is finitely generated as a k-algebra. It
follows from the theorem that if n = trdeg(K/k), then there is a finite injective
homomorphism

k[x1, . . . , xn] ↪→ K.

Since K is a field, it follows that k[x1, . . . , xn] is a field, hence n = 0. Therefore
K/k is finite. �

Corollary 1.2.4. (Hilbert’s Nullstellensatz, weak version) If k is an alge-
braically closed field, then every maximal ideal m in R = k[x1, . . . , xn] is of the
form (x1 − a1, . . . , xn − an), for some a1, . . . , an ∈ k.

Proof. It follows from Corollary 1.2.3 that if K = R/m, the field extension
K/k is finite. Since k is algebraically closed, the canonical homomorphism k → K
is an isomorphism. In particular, for every i there is ai ∈ R such that xi − ai ∈ m.
Therefore we have (x1 − a1, . . . , xn − an) ⊆ m and since both ideals are maximal,
they must be equal. �

We can now prove Hilbert’s Nullstellensatz, in its strong form.

Proof of Theorem 1.1.9. It follows from Corollary 1.2.4 that given any
ideal a of R, different from R, the zero-locus V (a) of a is nonempty. Indeed,
since a 6= R, there is a maximal ideal m containing a. By Corollary 1.2.4, we have

m = (x1 − a1, . . . , xn − an) for some a1, . . . , an ∈ k.



1.3. THE TOPOLOGY ON THE AFFINE SPACE 7

In particular, we see that a = (a1, . . . , an) ∈ V (m) ⊆ V (J). We will use this fact in
the polynomial ring R[y] = k[x1, . . . , xn, y]; this is Rabinovich’s trick.

It is clear that for every ideal J in R we have the inclusion

rad(J) ⊆ I
(
V (J)

)
.

In order to prove the reverse inclusion, suppose that f ∈ I
(
V (J)

)
. Consider now

the ideal a in R[y] generated by J and by 1 − fy. If a 6= R[y], we have seen that
there is (a1, . . . , an, b) ∈ V (a). By definition of a, this means that g(a1, . . . , an) = 0
for all g ∈ J (that is, (a1, . . . , an) ∈ V (J)) and 1 = f(a1, . . . , an)g(b). In particular,
we have f(a1, . . . , an) 6= 0, contradicting the fact that f ∈ I

(
V (J)

)
.

We thus conclude that a = R. Therefore we can find f1, . . . , fr ∈ J and
g1, . . . , gr+1 ∈ R[y] such that

(1.2.1)

r∑
i=1

fi(x)gi(x, y) +
(
1− f(x)y

)
gr+1(x, y) = 1.

We now consider the R-algebra homomorphism R[y]→ Rf that maps y to 1
f . The

relation (1.2.1) gives
r∑
i=1

fi(x)gi
(
x, 1/f(x)

)
= 1

and after clearing the denominators (recall that R is a domain), we see that there is
a positive integer N such that fN ∈ (f1, . . . , fr), hence f ∈ rad(J). This completes
the proof of the theorem. �

1.3. The topology on the affine space

In this section we begin making use of the fact that the ring k[x1, . . . , xn] is
Noetherian. Recall that a (commutative) ring R is Noetherian if the following
equivalent conditions hold:

i) Every ideal in R is finitely generated.
ii) There is no infinite strictly increasing sequence of ideals of R.
iii) Every nonempty family of ideals of R has a maximal element

For this and other basic facts about Noetherian rings and modules, see Appen-
dix B. A basic result in commutative algebra is Hilbert’s basis theorem: if R is a
Noetherian ring, then R[x] is Noetherian (see Theorem B.2.1). In particular, since
a field k is trivially Noetherian, a recursive application of the theorem implies that
every polynomial algebra k[x1, . . . , xn] is Noetherian.

As in the previous sections, we fix an algebraically closed field k and a positive
integer n. The fact that the ring R = k[x1, . . . , xn] is Noetherian has two immediate
consequences. First, since every ideal is finitely generated, it follows that for every
algebraic subset W ⊆ An, there are finitely many polynomials f1, . . . , fr such that
W = V (f1, . . . , fr). Second, we see via the correspondence in Corollary 1.1.10 that
there is no infinite strictly decreasing sequence of closed subsets in An.

Definition 1.3.1. A topological space X is Noetherian if there is no infinite
strictly decreasing sequence of closed subsets in X.

We have thus seen that with the Zariski topology An is a Noetherian topological
space. This implies that every subspace of An is Noetherian, by the following
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Lemma 1.3.2. If X is a Noetherian topological space and Y is a subspace of X,
then Y is Noetherian.

Proof. If we have a infinite strictly decreasing sequence of closed subsets of
Y

F1 ) F2 ) . . . ,

consider the corresponding sequence of closures in X:

F1 ⊇ F2 ⊇ . . . .
Since Fi is closed in Y , we have Fi ∩ Y = Fi for all i, which implies that Fi 6= Fi+1

for every i. This contradicts the fact that X is Noetherian. �

Remark 1.3.3. Note that every Noetherian topological space is quasi-compact:
this follows from the fact that there is no infinite strictly increasing sequence of open
subsets.

Example 1.3.4. The real line R, with the usual Euclidean topology, is not
Noetherian.

We now introduce an important notion.

Definition 1.3.5. A topological space X is irreducible if it is nonempty and
whenever we write X = X1 ∪X2, with both X1 and X2 closed, we have X1 = X
or X2 = X. We say that X is reducible when it is not irreducible.

Remark 1.3.6. By passing to complements, we see that a topological space is
irreducible if and only if it is nonempty and for every two nonempty open subsets
U and V , the intersection U ∩ V is nonempty (equivalently, every nonempty open
subset of X is dense in X).

Remarks 1.3.7. 1) If Y is a subset of X (with the subspace topology),
the closed subsets of Y are those of the form F ∩ Y , where F is a closed
subset of X. It follows that Y is irreducible if and only if it is nonempty
and whenever Y ⊆ Y1 ∪ Y2, with Y1 and Y2 closed in X, we have Y ⊆ Y1

or Y ⊆ Y2.
2) If Y is an irreducible subset of X and if Y ⊆ Y1∪. . .∪Yr, with all Yi closed

in X, then there is i such that Y ⊆ Yi. This follows easily by induction
on r.

3) If Y and F are subsets of X, with F closed, then Y ⊆ F if and only if
Y ⊆ F . It then follows from the description in 1) that Y is irreducible if
and only if Y is irreducible.

4) If X is irreducible and U is a nonempty open subset of X, then it follows
from Remark 1.3.6 that U is dense in X. Since X is irreducible, it follows
from 3) that U is irreducible.

In the case of closed subsets of An, the following proposition describes irre-
ducibility in terms of the corresponding ideal.

Proposition 1.3.8. If W ⊆ An is a closed subset, then W is irreducible if and
only if I(W ) is a prime ideal in R.

Proof. Note first that W 6= ∅ if and only if I(W ) 6= R. Suppose first that W
is irreducible and let f, g ∈ R be such that fg ∈ I(W ). We can then write

W =
(
W ∩ V (f)

)
∪
(
W ∩ V (g)
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Since both subsets on the right-hand side are closed and W is irreducible, it follows
that we have either W = W ∩ V (f) (in which case f ∈ I(W )) or W = W ∩ V (g)
(in which case g ∈ I(W )). Therefore I(W ) is a prime ideal.

Conversely, suppose that I(W ) is prime and we write W = W1 ∪W2, with W1

and W2 closed. Arguing by contradiction, suppose that W 6= Wi for i = 1, 2, in
which case I(W ) ( I(Wi), hence we can find fi ∈ I(Wi) r I(W ). On the other
hand, we have f1f2 ∈ I(W1) ∩ I(W2) = I(W ), contradicting the fact that I(W ) is
prime. �

Example 1.3.9. Since R is a domain, it follows from the proposition that An

is irreducible.

Example 1.3.10. If L ⊆ An is a linear subspace, then L is irreducible. Indeed,
after a linear change of variables, we have R = k[y1, . . . , yn] such that I(L) =
(y1, . . . , yr) for some r ≥ 1, and this is clearly a prime ideal in R.

Example 1.3.11. The union of two lines in A2 is a reducible closed subset.

Proposition 1.3.12. Let X be a Noetherian topological space. Given a closed,
nonempty subset Y , there are finitely many irreducible closed subsets Y1, . . . , Yr
such that

Y = Y1 ∪ . . . ∪ Yr.
We may clearly assume that the decomposition is minimal, in the sense that Yi 6⊆ Yj
for i 6= j. In this case Y1, . . . , Yr are unique up to reordering.

The closed subsets Y1, . . . , Yr in the proposition are the irreducible components
of Y and the decomposition in the proposition is the irreducible decomposition of
Y .

Proof of Proposition 1.3.12. Suppose first that there are nonempty closed
subsets Y of X that do not have such a decomposition. Since X is Noetherian, we
may choose a minimal such Y . In particular, Y is not irreducible, hence we may
write Y = Y1 ∪ Y2, with Y1 and Y2 closed and strictly contained in Y . Note that
Y1 and Y2 are nonempty, hence by the minimality of Y , we may write both Y1 and
Y2 as finite unions of irreducible subsets. In this case, Y is also a finite union of
irreducible subsets, a contradiction.

Suppose now that we have two minimal decompositions

Y = Y1 ∪ . . . ∪ Yr = Y ′1 ∪ . . . ∪ Y ′s ,

with the Yi and Y ′j irreducible. For every i ≤ r, we get an induced decomposition

Yi =

s⋃
j=1

(Yi ∩ Y ′j ),

with the Yi ∩ Y ′j closed for all j. Since Yi is irreducible, it follows that there is
j ≤ s such that Yi = Yi ∩ Y ′j ⊆ Y ′j . Arguing in the same way, we see that there is
` ≤ r such that Y ′j ⊆ Y`. In particular, we have Yi ⊆ Y`, hence by the minimality
assumption, we have i = `, and therefore Yi = Y ′j . By iterating this argument and
by reversing the roles of the Yα and the Y ′β , we see that r = s and the Yα and the

Y ′β are the same up to relabeling. �
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Remark 1.3.13. It is clear that if X is a Noetherian topological space, W is a
closed subset ofX, and Z is a closed subset ofW , then the irreducible decomposition
of Z is the same whether considered in W or in X.

Recall that by a theorem due to Gauss, if R is a UFD, then the polynomial ring
R[x] is a UFD. A repeated application of this result gives that every polynomial
ring k[x1, . . . , xn] is a UFD. In particular, a nonzero polynomial f ∈ k[x1, . . . , xn]
is irreducible if and only if the ideal (f) is prime.

Example 1.3.14. Given a polynomial f ∈ k[x1, . . . , xn] r k, the subset V (f)
is irreducible if and only if f is a power of an irreducible polynomial. In fact, if
the irreducible decomposition of f is f = cfm1

1 · · · fmr
r , for some c ∈ k∗, then the

irreducible components of V (f) are V (f1), . . . , V (fr).

Exercise 1.3.15. Let Y be the algebraic subset of A3 defined by the two
polynomials x2 − yz and xz − x. Show that Y is a union of three irreducible
components. Describe them and find the corresponding prime ideals.

Exercise 1.3.16. Show that if X and Y are topological spaces, with X irre-
ducible, and f : X → Y is a continuous map, then f(X) is irreducible.

Exercise 1.3.17. Let X be a topological space, and consider a finite open
cover

X = U1 ∪ . . . ∪ Un,
where each Ui is nonempty. Show that X is irreducible if and only if the following
hold:

i) Each Ui is irreducible.
ii) For every i and j, we have Ui ∩ Uj 6= ∅.

Exercise 1.3.18. Let X be a Noetherian topological space and Y a subset
X. Show that if Y = Y1 ∪ . . . ∪ Yr is the irreducible decomposition of Y , then
Y = Y1 ∪ . . . ∪ Yr is the irreducible decomposition of Y .

Exercise 1.3.19. Let X be a Noetherian topological space and Y a nonempty
closed subset of X, with irreducible decomposition

Y = Y1 ∪ . . . ∪ Yr.
Show that if U is an open subset of X, then the irreducible decomposition of U ∩Y
is given by

U ∩ Y =
⋃

i,U∩Yi 6=∅

(U ∩ Yi).

We end these general topological considerations by discussing the notion of
locally closed subsets.

Definition 1.3.20. Let X be a topological space. A subset V of X is locally
closed if for every x ∈ V , there is an open neighborhood Ux of x in X such that
Ux ∩ V is closed in Ux.

Remark 1.3.21. One should contrast the above definition with the local char-
acterization of closed subsets: V is closed in X if and only if for every x ∈ X, there
is an open neighborhood Ux of x in X such that Ux ∩ V is closed in Ux.

Proposition 1.3.22. If V is a subset of a topological space X, then the follow-
ing are equivalent:
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i) V is a locally closed subset.
ii) V is open in V .
iii) We can write V = U ∩ F , with U open and F closed.

Proof. If V is locally closed, let us choose for every x ∈ V an open neighbor-
hood Ux of x as in the definition. In this case V is closed in U by Remark 1.3.21,
hence V = U ∩ F for some F closed in X, proving i)⇒iii). In order to see iii)⇒ii),
note that if if V = U ∩F , with U open and F closed, then V ⊆ F , hence V = U ∩V
is open in V . Finally, the implication ii)⇒i) is clear: if V = W ∩ V for some W
open in X, then for every x ∈ V , if we take Ux = W , we have Ux ∩ V closed in
Ux. �

Let X ⊆ An be a closed subset. We always consider on X the subspace
topology. We now introduce a basis of open subsets on X.

Definition 1.3.23. A principal affine open subset of X is an open subset of
the form

DX(f) := X r V (f) = {x ∈ X | f(x) 6= 0},
for some f ∈ k[x1, . . . , xn].

Note that DX(f) is nonempty if and only if f 6∈ I(X). It is clear that DX(f)∩
DX(g) = DX(fg). Every open subset of X can be written as X r V (J) for some
ideal J in R. Since J is finitely generated, we can write J = (f1, . . . , fr), in which
case

X r V (J) = DX(f1) ∪ . . . ∪DX(fr).

Therefore every open subset of X is a finite union of principal affine open subsets of
X. We thus see that the principal affine open subsets give a basis for the topology
of X.

Exercise 1.3.24. Let X be a topological space and Y a locally closed subset
of X. Show that a subset Z of Y is locally closed in X if and only if it is locally
closed in Y .

1.4. Regular functions and morphisms

Definition 1.4.1. An affine algebraic variety (or affine variety, for short) is a
a closed subset of some affine space An. A quasi-affine variety is a locally closed
subset of some affine space An, or equivalently, an open subset of an affine algebraic
variety. A quasi-affine variety is always endowed with the subspace topology.

The above is only a temporary definition: a (quasi)affine variety is not just
a topological space, but it comes with more information that distinguishes which
maps between such objects are allowed. We will later formalize this as a ringed
space. We now proceed describing the “allowable” maps.

Definition 1.4.2. Let Y ⊆ An be a locally closed subset. A regular function
on Y is a map φ : Y → k that can locally be given by a quotient of polynomial
functions, that is, for every y ∈ Y , there is an open neighborhood Uy of y in Y ,
and polynomials f, g ∈ k[x1, . . . , xn] such that

g(u) 6= 0 and φ(u) =
f(u)

g(u)
for all u ∈ Uy.
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We write O(Y ) for the set of regular functions on Y . If Y is an affine variety, then
O(Y ) is also called the coordinate ring of Y . By convention, we put O(Y ) = 0 if
Y = ∅.

Remark 1.4.3. It is easy to see that O(Y ) is a subalgebra of the k-algebra of
functions Y → k, with respect to point-wise operations. For example, suppose that
φ1 and φ2 are regular functions, y ∈ Y and U1 and U2 are open neighborhoods of
y, and f1, f2, g1, g2 ∈ k[x1, . . . , xn] are such that for all u ∈ Uy we have

gi(u) 6= 0 and φi(u) =
fi(u)

gi(u)
for i = 1, 2.

If we take U = U1 ∩ U2 and f = f1g2 + f2g1, g = g1g2, then for all u ∈ U , we have

g(u) 6= 0 and (φ1 + φ2)(u) =
f(u)

g(u)
.

Remark 1.4.4. It follows from definition that if φ : Y → k is a regular function
such that φ(y) 6= 0 for every y ∈ Y , then the function 1

φ is a regular function, too.

Example 1.4.5. If X is a locally closed subset of An, then the projection πi
on the ith component, given by

πi(a1, . . . , an) = ai

induces a regular function X → k. Indeed, if fi = xi ∈ k[x1, . . . , xn], then πi(a) =
fi(a) for all a ∈ X.

When Y is closed in An, one can describe more precisely O(Y ). It follows by
definition that we have a k-algebra homomorphism

k[x1, . . . , xn]→ O(Y )

that maps a polynomial f to the function
(
u→ f(u)

)
. By definition, the kernel of

this map is the ideal I(Y ). With this notation, we have the following

Proposition 1.4.6. The induced k-algebra homomorphism

k[x1, . . . , xn]/I(Y )→ O(Y )

is an isomorphism.

A similar description holds for principal affine open subsets of affine varieties.
Suppose that Y is closed in An and U = DY (h), for some h ∈ k[x1, . . . , xn]. We
have a k-algebra homomorphism

Φ: k[x1, . . . , xn]h → O(U),

that maps f
hm to the map

(
u → f(u)/h(u)m

)
. With this notation, we have the

following generalization of the previous proposition.

Proposition 1.4.7. The above k-algebra homomorphism induces an isomor-
phism

k[x1, . . . , xn]h/I(Y )h → O
(
DY (h)

)
.

Of course it is enough to prove this more general version.
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Proof of Proposition 1.4.7. The kernel of Φ consists of those fractions f
hm

such that f(u)
h(u) = 0 for every u ∈ DY (h). It is clear that this condition is satisfied if

f ∈ I(Y ). Conversely, if this condition holds, then f(u)h(u) = 0 for every u ∈ Y .

Therefore fh ∈ I(Y ), hence f
hm = fh

hm+1 ∈ I(Y )h. This shows that Φ is injective.

We now show that Φ is surjective. Consider φ ∈ O
(
DY (h)

)
. Using the hy-

pothesis and the fact that DY (h) is quasi-compact (being a Noetherian topological
space), we can write

DY (h) = V1 ∪ . . . ∪ Vr
and we have fi, gi ∈ k[x1, . . . , xn] for 1 ≤ i ≤ r such that gi(u) 6= 0 and φ(u) = fi(u)

gi(u)

for all u ∈ Vi and all i. Since the principal affine open subsets form a basis
for the topology on Y , we may assume that Vi = DY (hi) for all i, for some
hi ∈ k[x1, . . . , xn] r I(Y ). Since gi(u) 6= 0 for all u ∈ Y r V (hi), it follows from
Theorem 1.1.9 that

hi ∈ rad
(
I(Y ) + (gi)

)
.

After possibly replacing each hi by a suitable power, and then by a suitable element
with the same class mod I(Y ), we may and will assume that hi ∈ (gi). Finally,
after multiplying both fi and gi by a suitable polynomial, we may assume that
gi = hi for all i.

We know that on DY (gi) ∩DY (gj) = DY (gigj) we have

fi(u)

gi(u)
=
fj(u)

gj(u)
.

Applying the injectivity statement for DY (gigj), we conclude that

fi
gi

=
fj
gj

in k[x1, . . . , xn]gigj/I(Y )gigj .

Therefore there is a positive integer N such that

(gigj)
N (figj − fjgi) ∈ I(Y ) for all i, j.

After replacing each fi and gi by fig
N
i and gN+1

i , respectively, we may assume that

figj − fjgi ∈ I(Y ) for all i, j.

On the other hand, we have

DY (h) =

r⋃
i=1

DY (gi),

hence Y ∩ V (h) = Y ∩ V (g1, . . . , gr), and by Theorem 1.1.9, we have

rad
(
I(Y ) + (h)

)
= rad

(
I(Y ) + (g1, . . . , gr)

)
.

In particular, we can write

hm −
r∑
i=1

aigi ∈ I(Y ) for some m ≥ 1 and a1, . . . , ar ∈ k[x1, . . . , xn].

We claim that

φ = Φ

(
a1f1 + . . .+ arfr

hm

)
.
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Indeed, for u ∈ DY (gj), we have

fj(u)

gj(u)
=
a1(u)f1(u) + . . .+ ar(u)fr(u)

h(u)m

since

h(u)mfj(u) =

r∑
i=1

ai(u)gi(u)fj(u) =

(
r∑
i=1

ai(u)fi(u)

)
gj(u).

This completes the proof of the claim and thus that of the proposition. �

Example 1.4.8. In general, it is not the case that a regular function admits
a global description as the quotient of two polynomial functions. Consider, for
example the closed subset W of A4 defined by x1x2 = x3x4. Inside W we have the
plane L given by x2 = x3 = 0. We define the regular function φ : W rL→ k given
by

φ(u1, u2, u3, u4) =

{
u1

u3
, ifu3 6= 0;

u4

u2
, ifu2 6= 0.

It is an easy exercise to check that there are no polynomials P,Q ∈ k[x1, x2, x3, x4]
such that

Q(u) 6= 0 and φ(u) =
P (u)

Q(u)
for all u ∈W r L.

We now turn to maps between quasi-affine varieties. If Y is a subset of Am and
f : X → Y is a map, then the composition X → Y ↪→ Am is written as (f1, . . . , fm),
with fi : X → k. We often abuse notation writing f = (f1, . . . , fm).

Definition 1.4.9. If X ⊆ An and Y ⊆ Am are locally closed subsets, a map
f = (f1, . . . , fm) : X → Y is a morphism if fi ∈ O(X) for all i.

Remark 1.4.10. It follows from definition that f : X → Y is a morphism if
and only if the composition

X → Y ↪→ Am

is a morphism

Remark 1.4.11. If X ⊆ An is a locally closed subset, then a morphism X →
A1 is the same as a regular function X → k.

Example 1.4.12. If X is a locally closed of An, then the inclusion map ι : X →
An is a morphism (this follows from Example 1.4.5). This implies that the identity
map 1X : X → X is a morphism.

Proposition 1.4.13. If X and Y are quasi-affine varieties, then every mor-
phism f : X → Y is continuous.

Proof. Suppose that X and Y are locally closed in An and Am, respectively,
and write f = (f1, . . . , fm). We will show that if V ⊆ Y is a closed subset, then
f−1(V ) is a closed subset of X. By assumption, we can write

V = Y ∩ V (I) for some ideal I ⊆ k[x1, . . . , xn].

In order to check that f−1(V ) is closed, it is enough to find for every x ∈ X
an open neighborhood Ux of x in X such that Ux ∩ f−1(V ) is closed in Ux (see
Remark 1.3.21). Since each fi is a regular function, after replacing X by a suitable
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open neighborhood of x, we may assume that there are Pi, Qi ∈ k[x1, . . . , xn] such
that

Qi(u) 6= 0 and fi(u) =
Pi(u)

Qi(u)
for all u ∈ X.

For every h ∈ I, there are polynomials Ah, Bh ∈ k[x1, . . . , xn] such that

Bh(u) 6= 0 and h

(
P1(u)

Q1(u)
, . . . ,

Pm(u)

Qm(u)

)
=
Ah(u)

Bh(u)
for all u ∈ X.

It is then clear that for u ∈ X we have u ∈ f−1(V ) if and only if Ah(u) = 0 for all
h ∈ I. Therefore f−1(V ) is closed. �

Proposition 1.4.14. If f : X → Y and g : Y → Z are morphisms between
quasi-affine varieties, the composition g ◦ f is a morphism.

Proof. Suppose that X ⊆ Am, Y ⊆ An and Z ⊆ Aq are locally closed
subsets and let us write f = (f1, . . . , fn) and g = (g1, . . . , gq). We need to show
that gi ◦ f ∈ O(X) for 1 ≤ i ≤ q. Let us fix such i, a point x ∈ X, and let
y = f(x). Since gi ∈ O(Y ) is a morphism, there is an open neighborhood Vy of y
and P,Q ∈ k[x1, . . . , xn] such that

Q(u) 6= 0 and gi(u) =
P (u)

Q(u)
for all u ∈ Vy.

Similarly, since f is a morphism, we can find an open neighborhood Ux of x and
Aj , Bj ∈ k[x1, . . . , xm] for 1 ≤ j ≤ n such that

Bj(u) 6= 0 and fj(u) =
Aj(u)

Bj(u)
for all u ∈ Ux.

It follows from Proposition 1.4.13 that Ux ∩ f−1(Vy) is open and we have

gi ◦ f(u) =
P
(
A1(u)
B1(u) , . . . ,

An(u)
Bn(u)

)
Q
(
A1(u)
B1(u) , . . . ,

An(u)
Bn(u)

) .
After clearing the denominators, we see that indeed, gi ◦ f is a regular function in
the neighborhood of x. �

It follows from Proposition 1.4.14 (and Example 1.4.12) that we may consider
the category of quasi-affine varieties over k, whose objects are locally closed subsets
of affine spaces over k, and whose arrows are the morphisms as defined above.
Moreover, since a regular function on X is the same as a morphism X → A1, we
see that if f : X → Y is a morphism of quasi-affine varieties, we get an induced
map

f# : O(Y )→ O(X), f#(φ) = φ ◦ f.
This is clearly a morphism of k-algebras. By mapping every quasi-affine variety X
to O(X) and every morphism f : X → Y to f#, we obtain a contravariant functor
from the category of quasi-affine varieties over k to the category of k-algebras.

Definition 1.4.15. A morphism f : X → Y is an isomorphism if it is an
isomorphism in the above category. It is clear that this is the case if and only if f
is bijective and f−1 is a morphism.



16 1. AFFINE AND QUASI-AFFINE VARIETIES

The following result shows that for affine varieties, this functor induces an anti-
equivalence of categories. Let AfV ark be the full subcategory of the category of
quasi-affine varieties whose objects consist of the closed subsets of affine spaces
over k and let Ck denote the category whose objects are reduced, finitely generated
k-algebras and whose arrows are the morphisms of k-algebras.

Theorem 1.4.16. The contravariant functor

AfV ark → Ck

that maps X to O(X) and f : X → Y to f# : O(Y )→ O(X) is an anti-equivalence
of categories.

Proof. Note first that if X is an affine variety, then O(X) is indeed a reduced,
finitely generated k-algebra. Indeed, if X is a closed subset of An, then it follows
from Proposition 1.4.6 that we have an isomorphism O(X) ' k[x1, . . . , xn]/I(X),
which gives the assertion.

In order to show that the functor is an anti-equivalence of categories, it is
enough to check two things:

i) For every affine varieties X and Y , the map

HomAfV ark(X,Y )→ HomCk
(
O(Y ),O(X)

)
, f → f#

is a bijection.
ii) For every reduced, finitely generated k-algebra A, there is an affine variety

X with O(X) ' A.
The assertion in ii) is clear: since A is finitely generated, we can find an isomorphism
A ' k[x1, . . . , xm]/J , for some positive integer m and some ideal J . Moreover,
since A is reduced, J is a radical ideal. If X = V (J) ⊆ Am, then it follows from
Theorem 1.1.9 that J = I(X) and therefore O(X) ' A by Proposition 1.4.6.

In order to prove the assertion in i), suppose that X ⊆ Am and Y ⊆ An are
closed subsets. By Proposition 1.4.6, we have canonical isomorphisms

O(X) ' k[x1, . . . , xm]/I(X) and O(Y ) ' k[y1, . . . , yn]/I(Y ).

If f : X → Y is a morphism and we write f = (f1, . . . , fn), then f#(yi) = f i. Since
f is determined by the classes f1, . . . , fn mod I(X), it is clear that the map in i) is
injective.

Suppose now that α : O(Y ) → O(X) is a morphism of k-algebras and let fi ∈
k[x1, . . . , xm] be such that fi = α(yi) ∈ O(X). It is then clear that f = (f1, . . . , fn)
gives a morphism X → An. Its image lies inside Y since for every g ∈ I(Y ) we
have g(f1, . . . , fn) ∈ I(X), hence g

(
f(u)

)
= 0 for all u ∈ X. Therefore f gives a

morphism X → Y such that f# = α. �

Definition 1.4.17. We extend somewhat the notion of affine variety by saying
that a quasi-affine variety is affine if it is isomorphic (in the category of quasi-affine
varieties) to a closed subset of some affine space.

An important example that does not come directly as a closed subset of an
affine space is provided by the following proposition.
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Proposition 1.4.18. Let X be a closed subset of An and U = DX(g), for
some g ∈ k[x1, . . . , xn]. If J is the ideal in k[x1, . . . , xn, y] generated by I(X) and
1− g(x)y, then U is isomorphic to V (J). In particular, U is an affine variety2.

Proof. Define φ : U → V (J) by φ(u) =
(
u, 1/g(u)

)
. It is clear that φ(u)

lies indeed in V (J) and that φ is a morphism. Moreover, we also have a mor-
phism ψ : V (J) → U induced by the projection onto the first n components. It is
straightforward to check that φ and ψ are inverse to each other. �

Notation 1.4.19. If X is a quasi-affine variety and f ∈ O(X), then we put

DX(f) = {u ∈ X | f(u) 6= 0}.

If X is affine, say it is isomorphic to the closed subset Y of An, then f corresponds
to the restriction to Y of some g ∈ k[x1, . . . , xn]. In this case, it is clear that DX(f)
is isomorphic to DY (g), hence it is an affine variety.

Remark 1.4.20. If X is a locally closed subset of An, then X is open in X.
Since the principal affine open subsets of X give a basis of open subsets for the
topology of X, it follows from Proposition 1.4.18 that the open subsets of X that
are themselves affine varieties give a basis for the topology of X.

Exercise 1.4.21. Suppose that f : X → Y is a morphism of affine algebraic
varieties, and consider the induced homomorphism f ] : O(Y )→ O(X). Show that
if u ∈ O(Y ), then

i) We have f−1(DY (u)) = DX(w), where w = f ](u).
ii) The induced ring homomorphism

O(DY (u))→ O(DX(w))

can be identified with the homomorphism

O(Y )u → O(X)w

induced by f ] by localization.

Exercise 1.4.22. Let X be an affine algebraic variety, and let O(X) be the
ring of regular functions on X. For every ideal J of O(X), let

V (J) := {p ∈ X | f(p) = 0 for all f ∈ J}.

For S ⊆ X, consider the following ideal of O(X)

IX(S) := {f ∈ O(X) | f(p) = 0 for all p ∈ S}.

Show that for every subset S of X and every ideal J in O(X), we have

V
(
IX(S)

)
= S and IX

(
V (J)

)
= rad(J).

In particular, the maps V (−) and IX(−) define order-reversing inverse bijections
between the closed subsets of X and the radical ideals in O(X). Via this corre-
spondence, the irreducible closed subsets correspond to the prime ideals in O(X)
and the points of X correspond to the maximal ideals in O(X). This generalizes
the case X = An that was discussed in Section 1.1.

2This justifies calling these subsets principal affine open subsets.
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We have seen that a morphism f : X → Y between affine varieties is determined
by the corresponding k-algebra homomorphism f# : O(Y ) → O(X). For such a
morphism, it follows from the above exercise that the closed subsets in X and Y
are in bijection with the radical ideals in O(X) and, respectively, O(Y ). In the
next proposition we translate the operations of taking the image and inverse image
as operations on ideals.

Proposition 1.4.23. Let f : X → Y be a morphism of affine varieties and
φ = f# : O(Y ) → O(X) the corresponding k-algebra homomorphism. For a point
x in X or Y , we denote by mx the corresponding maximal ideal.

i) If x ∈ X and y = f(x), then my = φ−1(mx).

ii) More generally, if a is an ideal in O(X) and W = V (a), then IY
(
f(W )

)
=

φ−1
(
IX(W )

)
.

iii) In particular, we have IY
(
f(X)

)
= ker(φ). Therefore f(X) = Y if and

only if φ is injective.
iv) If b is an ideal in O(Y ) and Z = V (b), then f−1(Z) = V

(
b · O(X)

)
.

Proof. The assertion in i) is a special case of that in ii), hence we begin by
showing ii). We have

IY
(
f(W )

)
= IY

(
f(W )

)
= {g ∈ O(Y ) | g

(
f(x)

)
= 0 for all x ∈W}

= {g ∈ O(Y ) | φ(g) ∈ IX(W )} = φ−1
(
IX(W )

)
.

By taking W = X, we obtain the assertion in iii)
Finally, if b and Z are as in iv), we see that

f−1(Z) = {x ∈ X | g
(
f(x)

)
= 0 for all g ∈ b} = V

(
b · O(X)

)
.

�

Remark 1.4.24. If f : X → Y is a morphism of affine varieties, then f# : O(Y )→
O(X) is surjective if and only if f factors as X

g−→ Z
ι−→ Y , where Z is a closed

subset of Y , ι is the inclusion map, and g is an isomorphism.

Exercise 1.4.25. Let Y ⊆ A2 be the cuspidal curve defined by the equation
x2 − y3 = 0. Construct a bijective morphism f : A1 → Y . Is it an isomorphism ?

Exercise 1.4.26. Suppose that char(k) = p > 0, and consider the map
f : An → An given by f(a1, . . . , an) = (ap1, . . . , a

p
n). Show that f is a morphism of

affine algebraic varieties, and that it is a homeomorphism, but it is not an isomor-
phism.

Exercise 1.4.27. Use Exercise 1.3.16 to show that the affine variety

Mr
m,n(k) := {B ∈Mm,n(k) | rk(B) ≤ r}

is irreducible.

Exercise 1.4.28. Let n ≥ 2 be an integer.

i) Show that the set

Bn =

{
(a0, a1, . . . , an) ∈ An+1 | rank

(
a0 a1 . . . an−1

a1 a2 . . . an

)
≤ 1

}
is a closed subset of An+1.
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ii) Show that

Bn = {(sn, sn−1t, . . . , tn) | s, t ∈ k}.
Deduce that Bn is irreducible.

Exercise 1.4.29. In order to get an example of a quasi-affine variety which
is not affine, consider U = A2 r {0}. Show that the canonical homomorphism
O(A2)→ O(U) is an isomorphism and deduce that U is not affine.

Exercise 1.4.30. Show that A1 is not isomorphic to any proper open subset
of itself.

Exercise 1.4.31. Show that if X is a quasi-affine variety such that O(X) = k,
then X consists of only one point.

1.5. Local rings and rational functions

Let X be a quasi-affine variety and W an irreducible closed subset of X.

Definition 1.5.1. The local ring of X at W is the k-algebra

OX,W := lim−→
U∩W 6=∅

O(U).

Here the direct limit is over the open subsets of X with U ∩W 6= ∅, ordered by
reverse inclusion, and where for U1 ⊆ U2, the map O(U2) → O(U1) is given by
restriction of functions.

Remark 1.5.2. Note that the poset indexing the above direct limit is filtering:
given any two open subsets U1 and U2 that intersect W nontrivially, we have U1 ∩
U2 ∩ W 6= ∅ (we use here the fact that W is irreducible). Because of this, the
elements of OX,W can be described as pairs (U, φ), where U is open with W ∩U 6= ∅
and φ ∈ O(U), modulo the following equivalence relation:

(U1, φ1) ∼ (U2, φ2)

if there is an open subset U ⊆ U1 ∩ U2, with U ∩W 6= ∅, such that φ1|U = φ2|U .
Operations are defined by restricting to the intersection: for example, we have

(U1, φ1) + (U2, φ2) = (U1 ∩ U2, φ1|U1∩U2
+ φ2|U1∩U2

).

In order to describe OX,W , we begin with the following lemma.

Lemma 1.5.3. If W is an irreducible closed subset of X and V is an open subset
of X with V ∩W 6= ∅, we have a canonical k-algebra isomorphism

OX,W ' OV,W∩V .

Proof. The assertion follows from the fact that the following subset

{U ⊆ V | U open, U ∩W 6= ∅} ⊆ {U ⊆ X | U open, U ∩W 6= ∅}
is final. Explicitly, we have the morphism

OV,W∩V → OX,W , (U, φ)→ (U, φ),

with inverse

OX,W → OV,W∩V , (U, φ)→ (U ∩ V, φ|U∩V ).

�
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Given a quasi-affine variety X, the open subsets of X that are affine varieties
give a basis for the topology of X (see Remark 1.4.20). By Lemma 1.5.3, we see
that it is enough to compute OX,W when X is an affine variety. This is the content
of the next result.

Proposition 1.5.4. Let X be an affine variety and W an irreducible closed
subset of X. If p ⊆ O(X) is the prime ideal corresponding to W , then we have a
canonical isomorphism

OX,W ' O(X)p.

In particular, OX,W is a local ring, with maximal ideal consisting of classes of pairs
(U, φ), with φU∩W = 0.

Proof. Since the principal affine open subsets of X form a basis for the topol-
ogy of X, we obtain using Proposition 1.4.7 a canonical isomorphism

OX,W ' lim−→
f

O(X)f ,

where the direct limit on the right-hand side is over those f ∈ O(X) such that
DX(f) ∩W 6= ∅. This condition is equivalent to f 6∈ p and it is straightforward to
check that the maps O(X)f → O(X)p induce an isomorphism

lim−→
f

O(X)f ' O(X)p.

The last assertion in the proposition follows easily from the fact that O(X)p is a
local ring, with maximal ideal pO(X)p �

There are two particularly interesting cases of this definition. First, if we take
W = {x}, for a point x ∈ X, we obtain the local ring OX,x of X at x. Its elements
are germs of regular functions at x. This is a local ring, whose maximal ideal
consists of germs of functions vanishing at x. As we will see, this local ring is
responsible for the properties of X in a neighborhood of x. If X is an affine variety
and m is the maximal ideal corresponding to x, then Proposition 1.5.4 gives an
isomorphism

OX,x ' O(X)m.

Exercise 1.5.5. Let f : X → Y be a morphism of quasi-affine varieties, and let
Z ⊆ X be a closed irreducible subset. Recall that by Exercise 1.3.16, we know that
W := f(Z) is irreducible. Show that we have an induced morphism of k-algebras

g : OY,W → OX,Z
and that g is a local homomorphism of local rings (that is, it maps the maximal
ideal of OY,W inside the maximal ideal of OX,Z). If X and Y are affine varieties,
and

p = IX(Z) and q = IY (W ) = (f#)−1(p),

then via the isomorphisms given by Proposition 1.5.4, g gets identified to the ho-
momorphism

O(Y )q → O(X)p

induced by f# via localization.

Exercise 1.5.6. Let X and Y be quasi-affine varieties. By the previous exer-
cise, if f : X → Y is a morphism, p ∈ X is a point, and f(p) = q, then f induces a
local ring homomorphism φ : OY,q → OX,p.
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i) Show that if f ′ : X → Y is another morphism with f ′(p) = q, and induced
homomorphism φ′ : OY,y → OX,x, then φ = φ′ if and only if there is an
open neighborhood U of p such that f |U = g|U .

ii) Show that given any local morphism of local k-algebras ψ : OY,q → OX,p,
there is an open neighborhood W of p, and a morphism g : W → Y with
g(p) = q, and inducing ψ.

iii) Deduce that OX,p and OY,q are isomorphic as k-algebras if and only if
there are open neighborhoods W of p and V of q, and an isomorphism
h : W → V , with h(p) = q.

Another important example of local ring of X occurs when X is an irreducible
variety and we take W = X. The resulting local ring is, in fact, a field, the field
of rational functions k(X) of X. Indeed, if U ⊆ X is an affine open subset, then
it follows from Lemma 1.5.3 and Proposition 1.5.4 that k(X) is isomorphic to the
field of fractions of the domain O(X). The elements of k(X) are rational functions
on X, that is, pairs (U, φ), where U is a nonempty open subset of X and φ : U → k
is a regular function, where we identify two such pairs if the two functions agree
on some nonempty open subset of their domains (in fact, as we will see shortly, in
this case they agree on the intersection of their domains). We now discuss in more
detail rational functions and, more generally, rational maps.

Lemma 1.5.7. If X and Y are quasi-affine varieties and f1 and f2 are two
morphisms X → Y , then the subset

{a ∈ X | f1(a) = f2(a)} ⊆ X
is closed.

Proof. If Y is a locally closed subset in An, then we write fi = (fi,1, . . . , fi,n)
for i = 1, 2. With this notation, we have

{a ∈ X | f1(a) = f2(a)} =

n⋂
j=1

{a ∈ X | (f1,j − f2,j)(a) = 0},

hence this set is closed in X, since each function f1,j − f2,j is regular, hence con-
tinuous. �

Definition 1.5.8. Let X and Y be quasi-affine varieties. A rational map
f : X 99K Y is given by a pair (U, φ), where U is a dense, open subset of X and
φ : U → Y is a morphism, and where we identify (U1, φ1) with (U2, φ2) if there is
an open dense subset V ⊆ U1 ∩ U2 such that φ1|V = φ2|V . In fact, in this case we
have φ1|U1∩U2 = φ2|U1∩U2 by Lemma 1.5.7. We also note that since U1 and U2 are
dense open subsets of X, then also U1 ∩ U2 is a dense subset of X.

Remark 1.5.9. If f : X 99K Y is a rational map and (Ui, φi) are the repre-
sentatives of f , then we can define a map φ : U =

⋃
i Ui → Y by φ(u) = φi(u) if

u ∈ Ui. This is well-defined and it is a morphism, since its restriction to each of the
Ui is a morphism. Moreover, (U, φ) is a representative of f . The open subset U ,
the largest one on which a representative of f is defined, is the domain of definition
of f .

Definition 1.5.10. Given a quasi-affine variety X, the set of rational functions
X 99K k is denoted by k(X). Since the intersection of two dense open sets is again
open and dense, we may define the sum and product of two rational functions. For
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example, given two rational functions with representatives (U1, φ1) and (U2, φ2),
we define their sum by the representative

(U1 ∩ U2, φ1|U1∩U2 + φ2|U1∩U2),

and similarly for the product. It is straightforward to see that using also scalar
multiplication, k(X) is a k-algebra. Note that when X is irreducible, we recover
our previous definition.

Exercise 1.5.11. Let X be a quasi-affine variety, and let X1, . . . , Xr be its
irreducible components. Show that there is a canonical isomorphism

k(X) ' k(X1)× · · · × k(Xr).

Exercise 1.5.12. Let W be the closed subset in A2, defined by x2 + y2 = 1.
What is the domain of definition of the rational function on W given by 1−y

x ?

Our next goal is to define a category in which the arrows are given by rational
function. For simplicity, we only consider irreducible varieties.

Definition 1.5.13. A morphism f : X → Y is dominant if Y = f(X). Equiv-
alently, for every nonempty open subset V ⊆ Y , we have f−1(V ) 6= ∅. Note that
if U is open and dense in X, then f is dominant if and only if the composition

U ↪→ X
f−→ Y is dominant. We can thus define the same notion for rational

maps: if f : X 99K Y is a rational map with representative (U, φ), we say that f is
dominant if φ : U → Y is dominant.

Suppose that X, Y , and Z are irreducible quasi-affine varieties and f : X 99K Y
and g : Y 99K Z are rational maps, with f dominant. In this case we may define the
composition g◦f , which is a rational map; moreover, if g is dominant, too, then g◦f
is dominant. Indeed, choose a representative (U, φ) for f and a representative (V, ψ)
for g. Since the morphism φ : U → Y is dominant, it follows that W := φ−1(V ) is
nonempty. We then take g◦f to be the rational function defined by the composition

W
f |W−→ V −→ Z.

It is straightforward to see that this independent of the representatives for f and
g. Moreover, if g is dominant, then g ◦ f is dominant: if Z ′ is a nonempty open
subset of Z, then ψ−1(Z ′) is nonempty and open since g is dominant and therefore
φ−1

(
ψ−1(Z ′)

)
is nonempty, since f is dominant.

It is clear that the identity map is dominant. Moreover, composition of dom-
inant rational map is associative. We thus obtain a category in which the objects
are the irreducible quasi-affine varieties over k and the set Homrat(X,Y ) of arrows
from X to Y consists of the dominant rational maps X 99K Y , with the composition
defined above. We are then led to the following important concept.

Definition 1.5.14. A rational dominant map f : X 99K Y between irreducible
quasi-affine varieties is birational if it is an isomorphism in the above category.
More precisely, this is the case if there is a dominant rational map g : Y 99K X such
that

g ◦ f = 1X and f ◦ g = 1Y .

A birational morphism is a morphism which is birational as a rational map. Two
irreducible quasi-affine varieties X and Y are birational if there is a birational map
X 99K Y .
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This notion plays a fundamental role in the classification of algebraic varieties.
On one hand, birational varieties share interesting geometric properties. On the
other hand, classifying algebraic varieties up to birational equivalence turns out to
be a more reasonable endeavor than classifying varieties up to isomorphism.

Example 1.5.15. If U is an open subset of the irreducible quias-affine variety
X, then the inclusion map i : U ↪→ X is a birational morphism. Its inverse is given
by the rational map represented by the identity morphism of U .

Example 1.5.16. An interesting example, which we will come back to later, is
given by the morphism

f : An → An, f(x1, . . . , xn) = (x1, x1x2, . . . , x1xn).

Note that the linear subspace given L = (x1 = 0) is mapped to 0, but f induces an
isomorphism

An r L = f−1(An r L)→ An r L,

with inverse given by g(y1, . . . , yn) = (y1, y2/y1, . . . , yn/y1).

Example 1.5.17. Let X be the closed subset of A2 (on which we denote the
coordinates by x and y), defined by x2− y3 = 0. Let f : A1 → X be the morphism
given by f(t) = (t3, t2). Note that f is birational: if g : X r {(0, 0)} → A1 is the
morphism given by g(u, v) = u

v , then g gives a rational map X 99K A1 that is

an inverse of f . Note that since f−1(0, 0) = {0}, it follows that the morphism f
is bijective, However, f is not an isomorphism: otherwise, by Theorem 1.4.16 the
induced homomorphism

f# : O(X) = k[x, y]/(x2 − y3)→ k[t], f#(x) = t3, f#(y) = t2

would be an isomorphism. However, it is clear that t is not in the image.

If f : X 99K Y is a rational, dominant map, then by taking Z = A1, we see
that by precomposing with f we obtain a map

f# : k(Y )→ k(X).

It is straightforward to see that this is a field homomorphism.

Theorem 1.5.18. We have an anti-equivalence of categories between the cate-
gory of irreducible quasi-affine varieties and dominant rational maps and the cate-
gory of finite type field extensions of k and k-algebra homomorphisms, that maps a
variety X to k(X) and a rational dominant map f : X 99K Y to f# : k(Y )→ k(X).

Proof. It is clear that we have a contravariant functor as described in the
theorem. Note that if X is an irreducible quasi-affine variety, then k(X) is a finite
type extension of k: indeed, if U is an affine open subset of X, then we have
k(X) ' k(U) ' Frac

(
O(U)

)
.

In order to show that this functor is an anti-equivalence, it is enough to prove
the following two statements:

i) Given any two quasi-affine varieties X and Y , the map

Homrat(X,Y )→ Homk−alg

(
k(Y ), k(X)

)
is bijective.

ii) Given any finite type field extension K/k, there is an irreducible quasi-
affine variety X such that k(X) ' K.
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The assertion in ii) is easy to see: if K = k(a1, . . . , an), let A = k[a1, . . . , an].
We can thus write A ' k[x1, . . . , xn]/P for some (prime) ideal P and if X = V (P ) ⊆
An, then X is irreducible and k(X) ' K.

In order to prove i), suppose that X and Y are locally closed in Am and,
respectively, An. Since X and Y are open in X and Y , respectively, by Proposi-
tion 1.3.22, and since inclusions of open subsets are birational, it follows that the
inclusions X ↪→ X and Y ↪→ Y induce an isomorphism

Homrat(X,Y ) ' Homrat(X,Y ),

and also isomorphisms

k(X) ' k(X) and k(Y ) ' k(Y ).

We may thus replace X and Y by X and Y , respectively, in order to assume that
X and Y are closed subsets of the respective affine spaces.

It is clear that

Homrat(X,Y ) =
⋃

g∈O(X)

Homdom

(
DX(g), Y

)
,

where each set on the right-hand side consists of the dominant morphisms DX(g)→
Y . Moreover, since O(Y ) is a finitely generated k-algebra, we have

Homk−alg

(
k(Y ), k(X)

)
=

⋃
g∈O(X)

Hominj

(
O(Y ),O(X)g

)
,

where each set on the right-hand side consists of the injective k-algebra homomor-
phisms O(Y )→ O(X)g. Since the map f → f# gives a bijection

Homdom

(
DX(g), Y

)
' Hominj

(
O(Y ),O(X)g

)
by Theorem 1.4.16 and Proposition 1.4.23, this completes the proof. �

Corollary 1.5.19. A dominant rational map f : X → Y between irreducible
quasi-affine varieties X and Y is birational if and only if the induced homomorphism
f# : k(Y )→ k(X) is an isomorphism.

Remark 1.5.20. A rational map f : X 99K Y between the irreducible quasi-
affine varieties X and Y is birational if and only if there are open subsets U ⊆ X
and V ⊆ Y such that f induces an isomorphism U ' V . The “if” assertion is clear,
so we only need to prove the converse. Suppose that f is defined by the morphism
φ : X ′ → Y and its inverse g is defined by the morphism ψ : Y ′ → X, where X ′ ⊆ X
and Y ′ ⊆ Y are open subsets. The equality f ◦ g = 1Y as rational functions implies
by Lemma 1.5.7 that the composition

ψ−1(X ′)
ψ−→ X ′

φ−→ Y

is the inclusion. In particular, we deduce that

ψ
(
ψ−1(X ′)

)
⊆ φ−1

(
ψ−1(X ′)

)
⊆ φ−1(Y ′).

Similarly, the equality of rational functions g ◦ f = 1X shows that the composition

φ−1(Y ′)
φ−→ Y ′

ψ−→ X

is the inclusion; in particular, we obtain

φ
(
φ−1(Y ′)

)
⊆ ψ−1(X ′).
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It is now clear that φ and ψ induce inverse morphisms between φ−1(Y ′) and
ψ−1(X ′).

Exercise 1.5.21. Let X ⊂ An be a hypersurface defined by an equation
f(x1, . . . , xn) = 0, where f = fd−1 +fd, with fd−1 and fd nonzero, homogeneous of
degrees d−1 and d, respectively. Show that if X is irreducible, then X is birational
to An−1.

1.6. Products of (quasi-)affine varieties

We begin by showing that for positive integers m and n, the Zariski topology
on Am ×An = Am+n is finer than the product topology.

Proposition 1.6.1. If X ⊆ Am and Y ⊆ An are closed subsets, then X × Y
is a closed subset of Am+n.

Proof. The assertion follows from the fact that if X = V (I) and Y = V (J),
for ideals I ⊆ k[x1, . . . , xm] and J ⊆ k[y1, . . . , yn], then

X × Y = V (I ·R+ J ·R),

where R = k[x1, . . . , xm, y1, . . . , yn]. �

Corollary 1.6.2. If X ⊆ Am and Y ⊆ An are open (respectively, locally
closed) subsets, then X×Y is an open (respectively, locally closed) subset of Am+n =
Am×An. In particular, the topology on Am×An is finer than the product topology.

Proof. The assertion for open subsets follows from Proposition 1.6.1 and the
fact that

Am+n rX × Y =
(
Am × (An r Y )

)
∪
(
(Am rX)×An

)
.

The assertion for locally closed subsets follows immediately from the assertions for
open and closed subsets. �

Corollary 1.6.3. Given any quasi-affine varieties X and Y , the topology on
X × Y is finer than the product topology.

Proof. If X and Y are locally closed subsets of Am and An, respectively,
then X × Y is a locally closed subset of Am+n. Since the topology on Am+n is
finer than the product topology by the previous corollary, we are done. �

Example 1.6.4. The topology on Am ×An is strictly finer than the product
topology. For example, the diagonal in A1×A1 is closed (defined by x−y ∈ k[x, y]),
but it is not closed in the product topology.

Remark 1.6.5. If X ⊆ Am and Y ⊆ An are locally closed subsets, then
X×Y ⊆ Am+n is a locally closed subset, and the two projections induce morphisms
p : X×Y → X and q : X×Y → Y . These make X×Y the product of X and Y in the
category of quasi-affine varieties over k. Indeed, given two morphisms f : Z → X
and g : Z → Y , it is clear that there is a unique morphism φ : Z → X × Y such
that p ◦ φ = f and q ◦ φ = g, namely φ = (f, g).

This implies, in particular, that if f : X → X ′ and g : Y → Y ′ are isomorphisms,
then the induced map X × Y → X ′ × Y ′ is an isomorphism.
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Proposition 1.6.6. If X ⊆ Am and Y ⊆ An are locally closed subsets, then
the two projections p : X × Y → X and q : X × Y → Y are open3.

Proof. We show that p is open, the argument for q being entirely similar.
Note first that by Remark 1.6.5, we may replace X and Y by isomorphic quasi-
affine varieties. Moreover, if we write X =

⋃
iXi and Y =

⋃
j Yj , then for any open

subset W of X × Y , we have

p(W ) = p

⋃
i,j

W ∩ (Xi × Yj)

 ,

hence if order to show that p is open, it is enough to show that each projection
Xi × Yj → Xi is open. By Remark 1.4.20, both X and Y can be covered by open
subsets that are affine varieties. We may thus assume that X ⊆ Am and Y ⊆ An

are closed subsets. Let k[x1, . . . , xm] and k[y1, . . . , yn] be the rings corresponding
to Am and An, respectively. Using again the fact that every open subset of X ×Y
is a union of principal affine open subsets, we see that it is enough to show that
p(W ) is open in Am for a nonempty subest W = DX×Y (h), where h ∈ k[x, y].

Let us write

(1.6.1) h =

r∑
i=1

fi(x)gi(y).

We may and will assume that for the given set W , h and the expression (1.6.1) are
chosen such that r is minimal. Note that in this case, the classes g1, . . . , gr in O(Y )
are linearly independent over k. Indeed, if this is not the case and

∑r
i=1 λigi =

P (y) ∈ I(Y ), such that λj 6= 0 for some j, then we may take h′ = h−λ−1
j fj(x)P (y);

we then have DX×Y (h′) = DX×Y (h) and we can write

h′ =
∑
i,i 6=j

(
fi(x)− λiλ−1

j fj(x)
)
gi(y),

contradicting the minimality of r.
Suppose now that u ∈ p(W ). This implies that u ∈ X such that there is v ∈ Y ,

with h(u, v) 6= 0. In particular, there is j such that fj(u) 6= 0. It is enough to
show that in this case DX(fj), which contains u, is contained in p(W ). Suppose,
arguing by contradiction, that there is u′ ∈ DX(fj) r p(W ). This implies that for
every v ∈ Y , we have

∑r
i=1 fi(u

′)gi(v) = 0, hence
∑r
i=1 fi(u

′)gi ∈ I(Y ). Since
fj(u

′) 6= 0, this contradicts the fact that the classes g1, . . . , gr in O(Y ) are linearly
independent over k. �

Corollary 1.6.7. If X and Y are irreducible quasi-affine varieties, then X×Y
is irreducible.

Proof. We need to show that if U and V are nonempty, open subsets of
X × Y , then U ∩ V is nonempty. Let p : X × Y → X and q : X × Y → Y be the
two projections. By the proposition, the nonempty subsets p(U) and p(V ) of X
are open. Since X is irreducible, we can find a ∈ p(U) ∩ p(V ). In this case, the
subsets {b ∈ Y | (a, b) ∈ U} and {b ∈ Y | (a, b) ∈ V } of Y are nonempty. They
are also open: this follows from the fact that the map Y → X × Y , y → (a, y) is

3Recall that a continuous map φ : Z1 → Z2 is open if for every open subset U of Z1, its image
φ(U) is open in Z2.
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a morphism, hence it is continuous. Since Y is irreducible, these two subsets must
intersect, hence there is a point (a, b) ∈ U ∩ V . �

Our next goal is to describe the ideal defining the product of two affine varieties.
Suppose that X ⊆ Am and Y ⊆ An are closed subsets. We have seen in the proof of
Proposition 1.6.1 that if I(X) ⊆ O(Am) and I(Y ) ⊆ O(An) are the ideals defining
X and Y , respectively, then X × Y is the algebraic subset of Am+n defined by

J := I(X) · O(Am+n) + I(Y ) · O(Am+n).

We claim that, in fact, J is the ideal defining X × Y , that is, J is a radical ideal.
Note that O(Am+n) is canonically isomorphic to O(Am) ⊗k O(An) and by the
right-exactness of the tensor product, we have

O(Am+n)/J ' O(X)⊗k O(Y ).

The assertion that J is a radical ideal (or equivalently, thatO(Am+n)/J is a reduced
ring is the content of the following

Proposition 1.6.8. If X and Y are affine varieties, then the ring O(X) ⊗k
O(Y ) is reduced.

Before giving the proof of the proposition, we need some algebraic preparations
concerning separable extensions.

Lemma 1.6.9. If k is any field and K/k is a finite, separable field extension,
then for every field extension k′/k, the ring K ⊗k k′ is reduced.

Proof. SinceK/k is finite and separable, it follows from the Primitive Element
theorem that there is an element u ∈ K such that K = k(u). Moreover, separability
implies that if f ∈ k[x] is the minimal polynomial of u, then all roots of f in some
algebraic closure of k are distinct. The isomorphism K ' k[x]/(f) induces an
isomorphism

K ⊗k k′ ' k′[x]/(f).

If g1, . . . , gr are the irreducible factors of f in k′[x], any two of them are relatively
prime (otherwise f would have multiple roots in some algebraic closure of k). It
then follows from the Chinese Remainder theorem that we have an isomorphism

K ⊗k k′ '
r∏
i=1

k′[x]/(gi).

Since each factor on the right-hand side is a field (the polynomial gi being irre-
ducible), the product is a reduced ring. �

Lemma 1.6.10. If k is a perfect4 field and K/k is a finitely generated field
extension, then there is a transcendence basis x1, . . . , xn of K over k such that K
is separable over k(x1, . . . , xn).

Proof. Of course, the assertion is trivial if char(k) = 0, hence we may assume
that char(k) = p > 0. Let us write K = k(x1, . . . , xm). We may assume that
x1, . . . , xn give a transcendence basis of K/k, and suppose that xn+1, . . . , xn+r are
not separable over K ′ := k(x1, . . . , xn), while xn+r+1, . . . , xm are separable over
K ′. If r = 0, then we are done. Otherwise, since xn+1 is not separable over K ′,

4Recall that a field k is perfect if char(k) = 0 or char(k) = p and k = kp. Equivalently, a
field is perfect if every finite extension K/k is separable.



28 1. AFFINE AND QUASI-AFFINE VARIETIES

it follows that there is an irreducible polynomial f ∈ K ′[T ] such that f ∈ K ′[T p]
and such that f(xn+1) = 0. We can find a nonzero u ∈ k[x1, . . . , xn] such that
g = uf ∈ k[x1, . . . , xn, T

p].

We claim that there is i ≤ n such that ∂g
∂xi
6= 0. Indeed, otherwise we have

g ∈ k[xp1, . . . , x
p
n, T

p], and since k is perfect, we have k = kp, hence g = hp for some
h ∈ k[x1, . . . , xn, T ]; this contradicts the fact that f is irreducible.

After relabeling the variables, we may assume that i = n. The assumption on
i says that xn is (algebraic and) separable over K ′′ := k(x1, . . . , xn−1, xn+1). Note
that since xn is algebraic over K ′′ and K is algebraic over k(x1, . . . , xn−1, xn), it
follows that K is algebraic over K ′′, and since all transcendence bases of K over
k have the same number of elements, we conclude that x1, . . . , xn−1, xn+1 is a
transcendence basis of K over k. We may thus switch xn and xn+1 to lower r.
After finitely many steps, we obtain the conclusion of the lemma. �

Proposition 1.6.11. If k is a perfect field, then for every field extensions K/k
and k′/k, the ring K ⊗k k′ is reduced.

Proof. We may assume that K is finitely generated over k. Indeed, we can
write

K = lim−→
i

Ki,

where the direct limit is over all k ⊆ Ki ⊆ K, with Ki/k finitely generated. Since
we have an induced isomorphism

K ⊗k k′ ' lim−→
i

Ki ⊗k k′,

and a direct limit of reduced rings is reduced, we see that it is enough to prove the
proposition when K/k is finitely generated.

In this case we apply Lemma 1.6.10 to find a transcendence basis x1, . . . , xn of
K/k such that K is separable over K1 := k(x1, . . . , xn). We have

K ⊗k k′ = K ⊗K1 K1 ⊗k k′.
Since K1 ⊗k k′ is a ring of fractions of k′[x1, . . . , xn], we have an injective homo-
morphism

K1 ⊗k k′ ↪→ K2 := k′(x1, . . . , xn).

By tensoring with K, we get an injective homomorphism

K ⊗k k′ ↪→ K ⊗K1
K2.

Since K/K1 is a finite separable extension, we deduce from Lemma 1.6.9 that
K ⊗K1

K2 is reduced, hence K ⊗k k′ is reduced. �

We can now prove our result about the coordinate ring of the product of two
affine varieties.

Proof of Proposition 1.6.8. We will keep using the fact that the tensor
product over k is an exact functor. Note first that we may assume that X and
Y are irreducible. Indeed, let X1, . . . , Xr be the irreducible components of X and
Y1, . . . , Ys the irreducible components of Y . Since X = X1 ∪ . . . ∪ Xr, it is clear
that the canonical homomorphism

O(X)→
r∏
i=1

O(Xi)
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is injective. Similarly, we have an injective homomorphism

O(Y )→
s∏
j=1

O(Yi)

and we thus obtain an injective homomorphism

O(X)⊗k O(Y ) ↪→
∏
i,j

O(Xi)⊗k O(Yj).

The right-hand side is a reduced ring if each O(Xi)⊗k O(Yj) is reduced, in which
case O(X)⊗k O(Y ) is reduced. We thus may and will assume that both X and Y
are irreducible.

We know that in this case O(X) and O(Y ) are domains and let k(X) and k(Y )
be the respective fraction fields. Since k is algebraically closed, it is perfect, hence
k(X)⊗k k(Y ) is a reduced ring by Proposition 1.6.11. The inclusions

O(X) ↪→ k(X) and O(Y ) ↪→ k(Y )

induce an injective homomorphism

O(X)⊗k O(Y ) ↪→ k(X)⊗k k(Y ),

which implies that O(X)⊗k O(Y ) is reduced. �

We now give another application of Lemma 1.6.10. We first make a definition.

Definition 1.6.12. A hypersurface in An is a closed subset of the form

{u ∈ An | f(u) = 0} for some f ∈ k[x1, . . . , xn] r k.

Proposition 1.6.13. Every irreducible variety is birational to an (irreducible)
hypersurface in an affine space An.

Proof. Let X be an irreducible variety, with function field K = k(X). By
Lemma 1.6.10, we can find a transcendence basis x1, . . . , xn of K/k such that K
is separable over k(x1, . . . , xn). In this case, it follows from the Primitive Element
theorem that there is u ∈ K such that K = k(x1, . . . , xn, u). If f ∈ k(x1, . . . , xn)[t]
is the minimal polynomial of u, then

K ' k(x1, . . . , xn)[t]/(f).

It is easy to see that after multiplying u by a suitable nonzero element of k[x1, . . . , xn],
we may assume that f ∈ k[x1, . . . , xn, t] and f is irreducible. In this case, we see
by Theorem 1.5.18 that X is birational to the affine variety V (f) ⊆ An+1. �

We end this section with some exercises about linear algebraic groups. We
begin with a definition.

Definition 1.6.14. A linear algebraic group over k is an affine variety G over k
that is also a group, and such that the multiplication µ : G×G→ G, µ(g, h) = gh,
and the inverse map ι : G → G, ι(g) = g−1 are morphisms of algebraic varieties.
If G1 and G2 are linear algebraic groups, a morphism of algebraic groups is a
morphism of affine varieties f : G1 → G2 that is also a group homomorphism.

Linear algebraic groups over k form a category. In particular, we have a notion
of isomorphism between linear algebraic groups: this is an isomorphism of affine
algebraic varieties that is also a group isomorphism.
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Exercise 1.6.15. i) Show that (k,+) and (k∗, ·) are linear algebraic
groups.

ii) Show that the set GLn(k) of n× n invertible matrices with coefficients in
k has a structure of linear algebraic group.

iii) Show that the set SLn(k) of n×n matrices with coefficients in k and with
determinant 1 has a structure of linear algebraic group.

iv) Show that if G and H are linear algebraic groups, then the product G×H
has an induced structure of linear algebraic group. In particular, the (al-
gebraic) torus (k∗)n is a linear algebraic group with respect to component-
wise multiplication.

Definition 1.6.16. Let G be a linear algebraic group and X a quasi-affine
variety. An algebraic group action of G on X is a (say, left) action of G on X such
that the map G×X → X giving the action is a morphism of algebraic varieties.

Exercise 1.6.17. Show that GLn(k) has an algebraic action on An.

Exercise 1.6.18. Let G be a linear algebraic group acting algebraically on an
affine variety X. Show that in this case G has an induced linear action on O(X)
given by

(g · φ)(u) = φ
(
g−1(u)

)
.

While O(X) has in general infinite dimension over k, show that the action of G on
O(X) has the following finiteness property: every element f ∈ O(X) lies in some
finite-dimensional vector subspace V of O(X) that is preserved by the G-action
(Hint: consider the image of f by the corresponding k-algebra homomorphism
O(X)→ O(G)⊗k O(X)).

Exercise 1.6.19. Let G and X be as in the previous problem. Consider a
system of k-algebra generators f1, . . . , fm of O(X), and apply the previous problem
to each of these elements to show that there is a morphism of algebraic groups
G → GLN (k), and an isomorphism of X with a closed subset of AN , such that
the action of G on X is induced by the standard action of GLN (k) on AN . Use a
similar argument to show that every linear algebraic group is isomorphic to a closed
subgroup of some GLN (k).

Exercise 1.6.20. Show that the linear algebraic group GLm(k)×GLn(k) has
an algebraic action on the space Mm,n(k) (identified to Amn), induced by left and
right matrix multiplication. What are the orbits of this action ? Note that the
orbits are locally closed subsets of Mm,n(k) (as we will see later, this is a general
fact about orbits of algebraic group actions).

1.7. Affine toric varieties

In this section we discuss a class of examples of affine varieties that are associ-
ated to semigroups.

Definition 1.7.1. A semigroup is a set S endowed with an operation + (we
will use in general the additive notation) which is commutative, associative and
has a unit element 0. If S is a semigroup, a subsemigroup of S is a subset S′ ⊆ S
closed under the operation in S and such that 0S ∈ S′ (in which case, S′ becomes a
semigroup with the induced operation). A map φ : S → S′ between two semigroups
is a semigroup morphism if φ(u1 + u2) = φ(u1) + φ(u2) for all u1 and u2, and if
φ(0) = 0.
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Example 1.7.2. i) Every Abelian group is a semigroup.
ii) The field k, endowed with the multiplication, is a semigroup.
iii) The set N of non-negative integers, with the addition, is a semigroup.
iv) The set {m ∈ N | m 6= 1} is a subsemigroup of N.
v) If S1 and S2 are semigroups, then S1×S2 is a semigroup, with component-

wise addition.

Given a semigroup S, we consider the semigroup algebra k[S]. This has a basis
over k indexed by the elements of S. We denote the elements of this basis by χu,
for u ∈ S. The multiplication is defined by χu1 ·χu2 = χu1+u2 (hence 1 = χ0). This
is a k-algebra. Note that if φ : S1 → S2 is a morphism of semigroups, then we get
a morphism of k-algebras k[S1]→ k[S2] that maps χu to χφ(u).

Example 1.7.3. We have an isomorphism

k[Nr] ' k[x1, . . . , xr], χei → xi,

where ei is the tuple that has 1 on the ith component and 0 on all the others. We
similarly have an isomorphism

k[Zr] ' k[x1, x
−1
1 , . . . , xr, x

−1
r ].

Example 1.7.4. In general, if S1 and S2 are semigroups, we have a canonical
isomorphism

k[S1 × S2] ' k[S1]⊗k k[S2].

We will assume that our semigroups satisfy two extra conditions. First, we will
assume that they are finitely generated : a semigroup S satisfies this property if it
has finitely many generators u1, . . . , ur ∈ S (this means that every element in S
can be written as

∑r
i=1 aiui, for some a1, . . . , ar ∈ N). In other words, the unique

morphism of semigroups Nr → S that maps ei to ui for all i is surjective. Note
that in this case, the induced k-algebra homomorphism

k[x1, . . . , xr] ' k[Nr]→ k[S]

is onto, hence k[S] is finitely generated.
We will also assume that S is integral, that is, it is isomorphic to a subsemigroup

of a finitely generated, free Abelian group. Since we have an injective morphism
of semigroups S ↪→ Zr, we obtain an injective k-algebra homomorphism k[S] ↪→
k[x1, x

−1
1 , . . . , xr, x

−1
r ]. In particular, k[S] is a domain.

Exercise 1.7.5. Suppose that S is the image of a morphism of semigroups
φ : Nr → Zm (this is how semigroups are usually described). Show that the kernel
of the induced surjective k-algebra homomorphism

k[x1, . . . , xr] ' k[Nr]→ k[S]

is the ideal (
xa − xb | a, b ∈ Nr, φ(a) = φ(b)

)
.

We have seen that if S is an integral, finitely generated semigroup, then k[S] is
a finitely generated k-algebra, which is also a domain. Therefore it corresponds to
an irreducible affine variety over k, uniquely defined up to canonical isomorphism.
We will denote this variety5 by TV(S). Its points are in bijection with the maximal
ideals in k[S], or equivalently, with the k-algebra homomorphisms k[S]→ k. Such

5This is not standard notation in the literature.
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homomorphisms in turn are in bijection with the semigroup morphisms S → (k, ·).
Via this bijection, if we consider φ : S → (k, ·) as a point in TV(S) and χu ∈ k[S],
then

χu(φ) = φ(u) ∈ k.
Given a morphism of finitely generated, integral semigroups S → S′, the k-algebra
homomorphism k[S]→ k[S′] corresponds to a morphism TV(S′)→ TV(S).

The affine variety TV (S) carries more structure, induced by the semigroup S,
which we now describe. First, we have a morphism

TV (S)× TV (S)→ TV (S)

corresponding to the k-algebra homomorphism

k[S]→ k[S]⊗k k[S], χu → χu ⊗ χu.

At the level of points (identified, as above, to semigroup morphisms to k), this is
given by

(φ, ψ)→ φ · ψ, where (φ · ψ)(u) = φ(u) · ψ(u).

It is clear that the operation is commutative, associative, and has an identity ele-
ment, given by the morphism S → k that takes constant value 1.

Remark 1.7.6. If S → S′ is a morphism between integral, finitely generated
semigroups, it is clear that the induced morphism of affine varieties TV(S′) →
TV(S) is compatible with the operation defined above.

Example 1.7.7. If S = Nr, then the operation that we get on TV(S) = Ar is
given by

(a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn).

In particular, note that TV(S) is not a group.

Example 1.7.8. With the operation defined above, TV(Z) is a linear algebraic
group isomorphic to (k∗, ·). In general, if M is a finitely generated, free Abelian
group, then the above operation makes TV(M) a linear algebraic group. In fact,
we have M ' Zr, for some r, and therefore TV(M) is isomorphic, as an algebraic
group, to the torus (k∗)r (see Exercise 1.6.15 for the definition of the algebraic tori).
It follows from the lemma below that we can recover M from TV(M), together with
the group structure, as

M ' Homalg−gp

(
TV(M), k∗

)
.

Lemma 1.7.9. For every finitely generated, free Abelian groups M and M ′, the
canonical map

HomZ(M,M ′)→ Homalg−gp

(
TV(M ′),TV(M)

)
is a bijection.

Proof. A morphism of algebraic groups TV(M ′) → TV(M) is given by a
k-algebra homomorphism f : k[M ]→ k[M ′] such that the induced diagram

k[M ] k[M ′]

k[M ]⊗ k[M ] k[M ′]⊗ k[M ′],

f

αM αM′

f⊗f
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is commutative, where αM and αM ′ are the k-algebra homomorphisms inducing
the group structure. Given u ∈M , we see that if f(χu) =

∑
u′∈M ′ au,u′χ

u′ , then∑
u′∈M ′

au,u′χ
u′ ⊗ χu

′
=

∑
u′,v′∈M ′

au,u′au,v′χ
u′ ⊗ χv

′
.

First, this implies that if u′, v′ ∈ M ′ are distinct, then au,u′ · au,v′ = 0. Therefore
there is a unique u′ ∈ M ′ such that au,u′ 6= 0 (note that χu ∈ k[M ] is invertible,
hence f(χu) 6= 0). Moreover, for this u′ we have a2

u,u′ = au,u′ , hence au,u′ = 1.

This implies that we have a (unique) map φ : M → M ′ such that f is given by
f(χu) = χφ(u). Since f is a ring homomorphism, we see that φ is a semigroup
morphism. This shows that the map in the lemma is bijective. �

Exercise 1.7.10. Given an integral semigroup S, show that there is an injec-
tive semigroup morphism ι : S ↪→ Sgp, where Sgp is a finitely generated Abelian
group, that satisfies the following universal property: given any semigroup mor-
phism h : S → A, where A is an Abelian group, there is a unique group morphism
g : Sgp → A such that g ◦ ι = h. Hint: if S ↪→ M is an injective semigroup mor-
phism, where M is a finitely generated, free Abelian group, then show that one can
take Sgp to be the subgroup of M generated by S. Note that it follows from this
description that Sgp is finitely generated (since M is) and Sgp is generated as a
group by S.

Suppose now that S is an arbitrary integral, finitely generated semigroup. The
semigroup morphism ι : S → Sgp induces a k-algebra homomorphism k[S]→ k[Sgp]
and correspondingly a morphism of affine algebraic varieties j : TV(Sgp)→ TV(S).

Lemma 1.7.11. With the above notation, the morphism j : TV(Sgp)→ TV(S)
is an isomorphism onto a principal affine open subset of TV(S).

Proof. Suppose that u1, . . . , ur is a finite system of generators of S. In this
case Sgp is generated as a semigroup by u1, . . . , ur, and −(u1 + . . . + ur). This
shows that we can identify the homomorphism k[S]→ k[Sgp] with the localization
homomorphism of k[S] at χu1+...+us . �

Since the morphism TV(Sgp) → TV(S) is compatible with the operations on
the two varieties, we conclude that in particular, the action of the torus TV(Sgp),
considered as an open subset of TV(S), extends to an action of TV(Sgp) on TV(S).
We are thus led to the following

Definition 1.7.12. An affine toric variety is an irreducible affine variety X,
together with an open subset T that is (isomorphic to) a torus, such that the action
of the torus on itself extends to an action of T of X.

We note that in the literature, it is common to require an affine toric variety
to be normal, but we do not follow this convention. For the definition of normality
and for the description in the context of toric varieties, see Definition 1.7.26 and
Proposition 1.7.30 below.

We have seen that for every (integral, finitely generated) semigroup S, we
obtain a toric variety TV(S). The following proposition shows that, in fact, every
affine toric variety arises in this way.

Proposition 1.7.13. Let X be an irreducible affine variety, T ⊆ X an open
subset which is a torus such that the action of T on itself extends to an action on
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X. Then there is a finitely generated, integral semigroup S and an isomorphism
X ' TV(S) which induces an isomorphism of algebraic groups T ' TV(Sgp), and
which is compatible with the action.

Proof. Let M = Homalg−gp(T, k∗), so that we have a canonical isomorphism
T ' TV(M). The dominant inclusion morphism T → X induces an injective
k-algebra homomorphism f : O(X) → O(T ) = k[M ], hence we may assume that
O(X) is a subalgebra of k[M ]. The fact that the action of T on itself extends to
an action of T on X is equivalent to the fact that the k-algebra homomorphism

k[M ]→ k[M ]⊗k k[M ], χu → χu ⊗ χu

induces a homomorphismO(X)→ k[M ]⊗kO(X). In other words, if f =
∑
u∈M auχ

u

lies in O(X), then
∑
u∈M auχ

u ⊗ χu lies in k[M ] ⊗k O(X). This implies that
for every u ∈ M such that au 6= 0, we have χu ∈ O(X). It follows that if
S = {u ∈ M | χu ∈ O(X)}, then O(X) = k[S]. It is clear that S is integral
and since k[S] is a finitely generated k-algebra, it follows easily that S is a finitely
generated semigroup. In order to complete the proof of the proposition, it is enough
to show that M = Sgp.

It follows from Exercise 1.7.10 that we may take Sgp to be the subgroup of M
generated by S. By hypothesis, the composition

TV (M)
g−→ TV(Sgp)

h−→ X = TV(S)

is an isomorphism onto an open subset of X. Since we also know that h is an
isomorphism onto an open subset of X, it follows that g gives is an isomorphism
onto an open subset of TV(Sgp). In particular, this implies that g is injective. We
now show that M = Sgp.

Since M is a finitely generated, free Abelian group, we can find a basis e1, . . . , en
of M such that Sgp has a basis given by a1e1, . . . , arer, for some r ≤ n and some
positive integers a1, . . . , ar. In this case g gets identified to the morphism

(k∗)n → (k∗)r, (t1, . . . , tn)→ (ta11 , . . . , tarr ).

Since g is injective, we see that r = n. Moreover, if aj > 1 for some j, then
char(k) = p > 0 and for every i we have ai = pei for some nonnegative integer ei.
It is easy to see that in this case g is surjective (cf. Exercise 1.4.26). Since we know
that it gives an isomorphism of TV(M) with an open subset of TV(Sgp), it follows
that g is an isomorphism. However, this implies ai = 1 for all i. Therefore we have
Sgp = M . �

We now turn to the description of toric morphisms. Suppose that X and Y are
affine toric varieties, with tori TX ⊆ X and TY ⊆ Y .

Definition 1.7.14. With the above notation, a toric morphism X → Y is a
morphism of algebraic varieties f : X → Y that induces a morphism of algebraic
groups g : TX → TY .

Remark 1.7.15. Note that if f : X → Y is a toric morphism as above, then f
is a morphism of varieties with torus action, in the sense that

f(t · x) = g(t) · f(x) for every t ∈ TX , x ∈ X.

Indeed, this follows by Lemma 1.5.7 from the fact that we have this equality for
(t, x) ∈ TX × TX .
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If φ : S1 → S2 is a semigroup morphism between two integral, finitely generated
semigroups, we get an induced group morphism Sgp

1 → Sgp
2 . We then obtain an

induced morphism f : TV(S2)→ TV(S1) that restricts to a morphism of algebraic
groups TV(Sgp

2 ) → TV(Sgp
1 ); therefore f is a toric morphism. The next propo-

sition shows that all toric morphisms arise in this way, from a unique semigroup
homomorphism.

Proposition 1.7.16. If S1 and S2 are finitely generated, integral semigroups,
then the canonical map

Homsemigp(S1, S2)→ Homtoric

(
TV(S2),TV(S1)

)
is a bijection.

Proof. By definition, a toric morphism TV(S2) → TV(S1) is given by a
k-algebra homomorphism k[S1] → k[S2] such that the induced homomorphism
f : k[Sgp

1 ] → k[Sgp
2 ] gives a morphism of algebraic groups TV(Sgp

2 ) → TV(Sgp
1 ).

It follows from Lemma 1.7.9 that we have a group morphism φ : Sgp
1 → Sgp

2 such

that f(χu) = χφ(u) for every u ∈ Sgp
1 . Since f induces a homomorphism k[S1] →

k[S2], we have φ(S1) ⊆ S2, hence φ is induces a semigroup morphism S1 → S2.
This shows that the map in the proposition is surjective and the injectivity is
straightforward. �

Remark 1.7.17. We can combine the assertions in Proposition 1.7.13 and
1.7.16 as saying that the functor from the category of integral, finitely generated
semigroups to the category of affine toric varieties, that maps S to TV(S), is an
anti-equivalence of categories.

Example 1.7.18. If S = Nr, then TV(S) = Ar, with the torus (k∗)r ⊆ Ar

acting by component-wise multiplication.

Example 1.7.19. If S = {m ∈ N | m 6= 1}, then Sgp = Z. If we embed X in
A2 as the curve with equation u3 − v2 = 0, then the embedding T ' k∗ ↪→ X is
given by λ→ (λ2, λ3). The action of T on X is described by λ · (u, v) = (λ2u, λ3v).

Exercise 1.7.20. Show that if X and Y are affine toric varieties, with tori
TX ⊆ X and TY ⊆ Y , then X × Y has a natural structure of toric variety, with
torus TX × TY . Describe the semigroup corresponding to X × Y in terms of the
semigroups of X and Y .

Exercise 1.7.21. Let S be the sub-semigroup of Z3 generated by e1, e2, e3

and e1 + e2 − e3. These generators induce a surjective morphism f : k[N4] =
k[t1, . . . , t4] → k[S]. Show that the kernel of f is generated by t1t2 − t3t4. We
have Sgp = Z3, the embedding of T = (k∗)3 ↪→ X is given by (λ1, λ2, λ3) →
(λ1, λ2, λ3, λ1λ2/λ3), and the action of T on X is induced via this embedding by
component-wise multiplication.

The following lemma provides a useful tool for dealing with torus-invariant
objects. Consider X = TV(S) and let T = TV(Sgp) be the corresponding torus.
As in the case of any algebraic group action, the action of T on X induces an action
of T on O(X) (see Exercise 1.6.18). Explicitly, in our setting this is given by

φ · χu = φ(u)−1χu for all u ∈ S, φ ∈ Homgp(Sgp, k∗).
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Lemma 1.7.22. With the above notation, a subspace V ⊆ k[S] is T -invariant
(that is, t · g ∈ V for every g ∈ V ) if and only if it is S-homogenous, in the sense
that for every g =

∑
u∈S auχ

u ∈ V , we have χu ∈ V whenever au 6= 0.

Proof. We only need to prove the “only if” part, the other direction being
straightforward. By definition, V is T -invariant if and only if for every group
morphism φ : Sgp → k∗ and every g =

∑
u∈S auχ

u ∈ V , we have∑
u∈S

auφ(u)−1χu ∈ V.

Iterating, we obtain

(1.7.1)
∑
u∈S

auφ(u)−mχu ∈ V for all m ≥ 1.

Claim. Given pairwise distinct u1, . . . , ud ∈ S, we can find φ ∈ T such that
φ(ui) 6= φ(ui′) for i 6= i′. Indeed, let us choose an isomorphism Sgp ' Zn, so
that each ui corresponds to (ai,1, . . . , ai,n). After adding to each (ai,1, . . . , ai,n) the
element (m, . . . ,m) for m� 0, we may assume that ai,j ≥ 0 for all i and j. Since
each polynomial

Qi,i′ =

n∏
j=1

x
ai,j
j −

n∏
j=1

x
ai′,j
j , for i 6= i′

is nonzero, it follows that the open subset Ui,i′ defined by Qi,i′ 6= 0 is a nonempty
subset of An. Since An is irreducible, it follows that the intersection

(k∗)n ∩
⋂
i 6=i′

Ui,i′

is nonempty, giving the claim.
By applying the claim to those u ∈ S such that au 6= 0, we deduce from (1.7.1)

and from the formula for the Vandermonde determinant that χu ∈ V for all u such
that au 6= 0. �

In the next two exercises we describe the torus-invariant subvarieties of TV(S)
and the orbits of the torus action. We begin by defining the corresponding concept
at the level of the semigroup.

Definition 1.7.23. A face F of a semigroup S is a subsemigroup such that
whenever u1, u2 ∈ S have u1 + u2 ∈ F , we have u1 ∈ F and u2 ∈ F .

Note that if F is a face of S, then S r F is a subsemigroup of S. Moreover, if
S is generated by u1, . . . , un. then a face F of S is generated by those ui that lie in
F . In particular, if S is an integral, finitely generated semigroup, then S has only
finitely many faces, and each of these is an integral, finitely generated semigroup.

Exercise 1.7.24. Let X = TV(S) be an affine toric variety, with torus T ⊂ X.
A subset Y of X is torus-invariant if t · Y ⊆ Y for every t ∈ T .

i) Show that a closed subset Y of X is torus-invariant if and only if each
irreducible component of Y is torus-invariant.

ii) Show that the torus-invariant irreducible closed subsets of X are precisely
the closed subsets defined by ideals of the form⊕

u∈SrF
kχu,
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where F is a face of S.
iii) Show that if Y is the closed subset defined by the ideal in ii), then we

have O(Y ) ' k[F ], hence Y has a natural structure of affine toric variety.

Exercise 1.7.25. Let X = TV(S) be an affine toric variety, with torus TX ⊆
X.

i) Show that if M ↪→M ′ is an injective morphism of finitely generated, free
Abelian groups, then the induced morphism of tori TV(M ′)→ TV(M) is
surjective.

ii) Show that if F is a face of S with corresponding closed invariant subset
Y , then the inclusion of semigroups F ⊆ S induces a morphism of toric
varieties fY : X → Y , which is a retract of the inclusion Y ↪→ X. Show
that the torus OF in Y is an orbit for the action of TX on X.

iii) Show that the map F → OF gives a bijection between the faces of S and
the orbits for the TX -action on X.

We now discuss normality for the varieties we defined. Recall that if R→ S is
a ring homomorphism, then the set of elements of S that are integral over R form
a subring of S, the integral closure of R in S (see Proposition A.2.2).

Definition 1.7.26. An integral domain A is integrally closed if it is equal to its
integral closure in its field of fractions. It is normal if, in addition, it is Noetherian.
An irreducible, affine variety X is normal if O(X) is a normal ring.

Remark 1.7.27. If A is an integral domain and B is the integral closure of A
in its fraction field, then B is integrally closed. Indeed, the integral closure of B in
K is integral over A (see Proposition A.2.3), hence it is contained in B.

Example 1.7.28. Every UFD is integrally closed. Indeed, suppose that A
is a UFD and u = a

b lies in the fraction field of A and it is integral over A.
We may assume that a and b are relatively prime. Consider a monic polynomial
f = xm + c1x

m−1 + . . . cm ∈ A[x] such that f(u) = 0. Since

am = −b · (c1am−1 + . . . cmb
m−1),

it follows that b divides am. Since b and a are relatively prime, it follows that b is
invertible, hence u ∈ A.

In particular, we see that every polynomial ring k[x1, . . . , xn] is integrally
closed.

Definition 1.7.29. An integral, finitely generated semigroup S is saturated if
whenever mu ∈ S for some u ∈ Sgp and some positive integer m, we have u ∈ S.

Proposition 1.7.30. If S is an integral, finitely generated semigroup, the va-
riety TV(S) is normal if and only if S is saturated.

Proof. The rings k[S] ⊆ k[Sgp] have the same fraction field, and k[Sgp] '
k[t±1

1 , . . . , t±1
n ] for some n, so k[Sgp] is normal, being a UFD. Therefore k[S] is

normal if and only if it is integrally closed in k[Sgp].
Suppose first that k[S] is normal. If u ∈ Sgp and if mu ∈ S, then (χu)m ∈ k[S]

and χu ∈ k[Sgp]. As k[S] is integrally closed in k[Sgp], it follows that χu ∈ k[S], so
u ∈ S.

Conversely, let us assume that S is saturated, and let R be the integral closure
of k[S] in k[Sgp]. It is clear that R is a torus-invariant linear subspace of k[Sgp],



38 1. AFFINE AND QUASI-AFFINE VARIETIES

hence it follows from Lemma 1.7.22 that it is Sgp-homogeneous. In order to show
that R = k[S] it is thus enough to check that for every χu ∈ R, we have u ∈ S. By
assumption, χu satisfies an equation of the form

(χu)m + a1(χu)m−1 + . . .+ amχ
vm = 0,

for a positive integer m and a1, . . . , am ∈ k[S]. By only considering the scalar
multiples of χmu, we may assume that in fact ai = ciχ

vi for some ci ∈ k and
vi ∈ S. It follows that vi + (m − i)u = mu if ai 6= 0, hence iu = vi. Since some
ai must be nonzero, we have iu ∈ S for some i ≥ 1, and because S is saturated we
deduce u ∈ S. �

Exercise 1.7.31. We have seen in Exercise 1.7.24 that if X is an affine toric
variety and Y is a torus-invariant irreducible subset, then Y has a natural structure
of toric variety. Show that if X is normal, then every such Y is normal.



CHAPTER 2

General algebraic varieties

In this chapter we introduce general algebraic varieties. Roughly speaking,
these are objects obtained by gluing finitely many affine algebraic varieties and by
imposing an analogue of the Hausdorff condition. The gluing could be expressed in
terms of atlases (as in differential geometry), but the usual language for handling
this is that of ringed spaces and we take this approach, following [Mum88]. We thus
begin with a brief discussion of sheaves that is needed for the definition of algebraic
varieties. A more detailed treatment of sheaves will be given in Chapter 8.

2.1. Presheaves and sheaves

Let X be a topological space. Recall that associated to X we have a category
Cat(X), whose objects consist of the open subsets of X and such that for every open
subsets U and V of X, the set of arrows U → V contains precisely one element if
U ⊆ V and it is empty, otherwise.

Definition 2.1.1. Given a topological space X and a category C, a presheaf
on X of objects in C is a contravariant functor F : Cat(X) → C. Explicitly, this
means that for every open subset U of X, we have an object F(U) in C, and for
every inclusion of open sets U ⊆ V , we have a restriction map

ρV,U : F(V )→ F(U)

that satisfies:

i) ρU,U = IdF(U) for every open subset U ⊆ X, and
ii) ρV,U ◦ ρW,V = ρW,U for every open subsets U ⊆ V ⊆W of X.

It is common to denote ρV,U (s) by s|U . The elements of F(U) are the
sections of F over U . A common notation for F(U) is Γ(U,F).

The important examples for us are when C is the category of R-modules or
the category of commutative R-algebras (where R is a fixed commutative ring). In
particular, when R = Z, we have the category of Abelian groups and the category
of rings.

We now introduce sheaves: these are presheaves in which the sections can be
described locally. For the sake of concreteness, whenever dealing with sheaves, we
assume that C is a subcategory of the category of sets and that a morphism in C
is an isomorphism if and only if it is bijective (note that this is the case for the
categories mentioned above).

Definition 2.1.2. Let X be a topological space. A presheaf F on X of objects
in C is a sheaf if for every family of open subsets (Ui)i∈I of X, with U =

⋃
i∈I Ui,

given si ∈ F(Ui) for every i such that

si|Ui∩Uj
= sj |Ui∩Uj

for every i, j ∈ I,

39
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there is a unique s ∈ F(U) such that s|Ui
= si for all i ∈ I.

Remark 2.1.3. A special case of the condition in the definition of a sheaf is
that when I = ∅: in this case it says that F(∅) has exactly one element.

Example 2.1.4. If X is a topological space, then we have a presheaf CX,R of
R-algebras on X, where CX,R(U) is the R-algebra of continuous functions U → R,
with the restriction maps given by restriction of functions. It is clear that this is a
sheaf, the sheaf of continuous functions on X.

Example 2.1.5. If X is a C∞-manifold, then we have a sheaf of R-algebras
C∞X,R on X, where C∞X,R(U) is the R-algebra of C∞ functions U → R, with the
restriction maps being given by restriction of functions.

Example 2.1.6. IfX is a quasi-affine variety over an algebraically closed field k,
then we have a sheaf OX of k-algebras, such that OX(U) is the k-algebra of regular
functions U → k, with the restriction maps given by restriction of functions. This
is the sheaf of regular functions on X.

Example 2.1.7. Given a continuous map f : X → Y of topological spaces, we
have a sheaf of sets F on Y such that F(U) is the set of sections of f over U ,
that is, of continuous maps s : U → X such that f

(
s(y)

)
= y for all y ∈ U ; the

restriction maps given by restriction of functions.

Remark 2.1.8. If C is the category of R-modules, for a ring R, it is sometimes
convenient to rewrite the sheaf condition for F as follows: given an open cover
U =

⋃
i Ui, we have an exact sequence

0 −→ F(U)
α−→
∏
i

F(Ui)
β−→ F(Ui ∩ Uj),

where
α(s) = (s|Ui

)i and β((si)i∈I) = (si|Ui∩Uj
− sj |Ui∩Uj

)i,j∈I .

Definition 2.1.9. If F and G are presheaves on X of objects in C, a mor-
phism of presheaves φ : F → G is given by a functorial transformation between the
two contravariant functors. Explicitly, for every open subset U ⊆ X, we have a
morphism φU : F(U)→ G(U) in C such that if U ⊆ V are open subsets of X, then

φU (s|U ) = φV (s)|U for every s ∈ F(V ).

The same definition applies for sheaves to give the notion of morphism of sheaves.

It is clear that morphisms of presheaves can be composed and in this way
the presheaves on X of objects in C form a category. We also have the category
of sheaves on X of objects in C, that forms a full subcategory of the category
of presheaves. In particular, we may consider isomorphisms of presheaves or of
sheaves.

Definition 2.1.10. Given a presheaf F on X (of objects in some category C)
and an open subset W of X, we obtain a presheaf F|W on W such that for every
open subset U of W , we take F|W (U) = F(U), with the restriction maps given by
those for F . This presheaf is the restriction of F to W . It is clear that if F is a
sheaf, then F|W is a sheaf. If φ : F → G is a morphism of presheaves on X, then
we obtain in the obvious way an induced morphism φ|W : F|W → G|W . We thus
get a functor from the category of presheaves on X of objects in C to the category
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of presheaves on U of objects in C and a similar functor between the corresponding
categories of sheaves.

From now on we assume, for simplicity, that the category C is either the category
of R-modules or the category of R-algebras, where R is a commutative ring.

Definition 2.1.11. If F is a presheaf on X (of R-modules or of R-algebras),
then the stalk of F at a point x ∈ X is

Fx := lim−→
U3x
F(U),

where the direct limit is over all open neighborhoods of x, ordered by reverse
inclusion. Note that both categories we consider have direct limits. More generally,
if W is an irreducible, closed subset of X, then the stalk of F at W is

FW := lim−→
U∩W 6=∅

F(U),

where the direct limit is over all open subsets U of X, with U ∩W 6= ∅.
Example 2.1.12. IfOX is the sheaf of regular functions on a quasi-affine variety

X and W is an irreducible closed subset of X, then the stalk of OX at W is the local
ring OX,W of X at W . On general topological spaces, we typically only consider
the stalks at the points of X, but in the case of algebraic varieties, it is sometimes
natural to also consider the more general stalks.

Remark 2.1.13. As in the case of a quasi-affine variety, we see that in general,
the poset in the definition of FW is filtering: given two open subsets U and V with
U ∩W 6= ∅ and V ∩W 6= ∅, we have (U ∩ V ) ∩W 6= ∅, by the irreducibility of W .
As a result, we may describe FW as the set of all pairs (U, s), for some open subset
U with U ∩W 6= ∅ and some s ∈ F(U), modulo the equivalence relation given by
(U, s) ∼ (U ′, s′) if there is an open subset V ⊆ U ∩ U ′, with V ∩W 6= ∅ and such
that s|V = s′|V . If s ∈ F(U), for some open subset U with U ∩W 6= ∅, we write
sW for the image of s in FW .

Remark 2.1.14. Note that if φ : F → G is a morphism of presheaves on X,
then for every irreducible closed subset W ⊆ X, we have an induced morphism
φW : FW → GW , that maps (U, s) to

(
U, φ(s)

)
. We thus obtain a functor from the

category of sheaves on X with values in C to C.
Remark 2.1.15. If F is a sheaf on X and s, t ∈ F(U) are such that sx = tx

for every x ∈ U , then s = t.

Definition 2.1.16. Let F be a presheaf of R-modules or R-algebras on a
topological space X. A subpresheaf of F is a presheaf G such that for every open
subset U of X, G(U) is a submodule (respectively, an R-subalgebra) of F(U) and
such that the restriction maps for G are induced by those for F . In this case we
write F ⊆ G. It is clear that in this case the inclusion maps define a morphism of
presheaves G → F . If both F and G are sheaves, we say that G is a subsheaf of F .

Example 2.1.17. If X is a C∞-manifold, then C∞X,R is a subsheaf of CX,R.

Definition 2.1.18. Let C be a category. If f : X → Y is a continuous map
between two topological spaces and F is a presheaf on X of objects in C, then we
define the presheaf f∗F on Y by

f∗F(U) = F
(
f−1(U)

)
,
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with the restriction maps being induced by those of F . Moreover, if φ : F → G is a
morphism of presheaves on X, we clearly get a morphism f∗F → f∗G of presheaves
on Y , so that we have the push-forward functor from the category of presheaves on
X to the category of presheaves on Y . It is easy to see that if F is a sheaf on X,
then f∗F is a sheaf on Y .

Example 2.1.19. If f : X → Y is a continuous map between topological spaces,
then we have a morphism of sheaves

CY,R → f∗CX,R, CY,R(U) 3 φ→ φ ◦ f ∈ CX,R
(
f−1(U)

)
.

The following exercises illustrate the advantages of working with sheaves, as
opposed to presheaves.

Exercise 2.1.20. Show that if φ : F → G is a morphism of sheaves, then the
following are equivalent:

i) The morphism φ is an isomorphism.
ii) There is an open cover X =

⋃
i Ui such that φ|Ui

is an isomorphism for
all i.

iii) For every x ∈ X, the induced morphism φx is an isomorphism.

Exercise 2.1.21. Let F be a sheaf and F1 and F2 be subsheaves of F .

i) Show that if there is an open cover X =
⋃
i∈I Ui such that F1|Ui

⊆ F2|Ui

for every i, then F1 ⊆ F2.
ii) Show that if F1,x ⊆ F2,x for every x ∈ X, then F1 ⊆ F2.

Exercise 2.1.22. (Gluing morphisms of sheaves) Let X be a topological space
and F and G be sheaves on X (of objects in some subcategory C that satisfies our
usual requirements). If we have an open cover X =

⋃
i∈I Ui and for every i ∈ I we

have a morphism of sheaves φi : F|Ui
→ G|Ui

such that for every i, j ∈ I we have
φi|Ui∩Uj

= φj |Ui∩Uj
, then there is a unique morphism of sheaves φ : F → G such

that φ|Ui
= φi for all i ∈ I.

Exercise 2.1.23. (Gluing sheaves). Let X be a topological space and suppose
that X =

⋃
i∈I Ui is an open cover. Suppose that for every i ∈ I we have a sheaf

Fi on Ui (of objects in some subcategory C of the category of sets) and for every
i, j ∈ I we have isomorphisms

φj,i : Fi|Uij
→ Fj |Uij

, where Uij = Ui ∩ Uj
that satisfy the following compatibility conditions:

i) We have φi,i = IdF|Ui
for every i ∈ I, and

ii) We have

φk,j |Uijk
◦ φj,i|Uijk

= φk,i|Uijk
for all i, j, k ∈ I,

where Uijk = Ui ∩ Uj ∩ Uk. In this case there is a sheaf F on X with
isomorphisms φi : F|Ui → Fi for all i ∈ I, such that

(2.1.1) φj,i ◦ φi|Uij
= φj |Uij

for all i, j ∈ I.

Moreover, if G is another such sheaf, with isomorphisms ψi : G → F|Ui
for

every i ∈ I that satisfy the compatibility conditions (2.1.1), then there is
a unique morphism α : F → G such that ψi ◦ α|Ui = φi for all i ∈ I.
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2.2. Prevarieties

Let k be a fixed algebraically closed field. Given a topological space X and an
open subset U of X, we consider the k-algebra FunX(U) of functions U → k, with
point-wise operations. It is clear that this gives a sheaf FunX of k-algebras on
X, with the restriction maps being induced by restriction of functions. Note that
if f : X → Y is a continuous map of topological spaces, then we have a canonical
morphism of sheaves

FunY → f∗FunX , mapping FunY (U) 3 φ→ φ ◦ f ∈ FunX
(
f−1(U)

)
.

We begin by defining a category T opk of topological spaces endowed with a
sheaf of k-algebras, whose sections are functions on the given topological space.
More precisely, the objects of this category are pairs (X,OX), with X a topological
space and OX a sheaf of k-algebras on X which is a subsheaf of FunX . The sheaf
OX is the structure sheaf. A morphism in this category f : (X,OX) → (Y,OY ) is
given by a continuous map f : X → Y such that the morphism of sheaves FunY →
f∗FunX induces a morphism OY → f∗OX ; in other words, for every open subset
U of Y and every φ ∈ OY (U), we have φ ◦ f ∈ OX

(
φ−1(U)

)
. It is clear that

composition of continuous maps induces a composition of morphisms that makes
T opk a category.

Example 2.2.1. Let (X,OX) be an object in T opk. If U is an open subset of
X, then we obtain another object (U,OU ) in T opk, where OU = OX |U . Note that
the inclusion map induces a morphism (U,OU )→ (X,OX) in T opk.

Remark 2.2.2. Let (X,OX) and (Y,OY ) be two objects in T opk. If X =⋃
i∈I Ui is an open cover and αi : Ui → X is the inclusion map, then a map f : X →

Y is a morphism if and only if each f ◦αi is a morphism. Indeed, this follows from
the fact that continuity is a local property and the fact that OX is a sheaf.

Example 2.2.3. An isomorphism (X,OX)→ (Y,OY ) in T opk is a homeomor-
phism f : X → Y such that for every open subset U of Y and every φ : U → k, we
have φ ∈ OY (U) if and only if φ ◦ f ∈ OX

(
f−1(U)

)
.

Example 2.2.4. If X is a locally closed subset of some An, then (X,OX) is
an object in T opk. Note that if U is an open subset of X, then OU = OX |U .

Example 2.2.5. If X and Y are locally closed subsets of Am and An, re-
spectively, then a morphism f : X → Y as defined in Chapter 1 is the same as a
morphism (X,OX) → (Y,OY ) in T opk. Indeed, we know that if f : X → Y is a
morphism, then f is continuous and for every open subset U in Y and every regular
function φ : U → k, the composition φ ◦ f is regular (see Propositions 1.4.13 and
1.4.14). Conversely, if f : X → Y gives a morphism in T opk and if pi : Y → k is
induced by the ith projection An → k, then it follows from definition that pi ◦ f
is a regular function on X for every i; therefore f is a morphism as defined in
Chapter 1.

We enlarge one more time our notion of affine variety, as follows.

Definition 2.2.6. We say that an object (X,OX) in T opk is an affine variety
if it is isomorphic to (V,OV ) for some closed subset of an affine space An. We say
that (X,OX) is a quasi-affine variety if it is isomorphic to (V,OV ) for some locally
closed subspace of an affine space An.
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Definition 2.2.7. An algebraic prevariety over k (or simply prevariety) is a
pair (X,OX), with X a topological space and OX of subsheaf of k-algebras of
FunX , such that there is a finite open covering X =

⋃r
i=1 Ui, with each (Ui,OUi)

being an affine variety.

Example 2.2.8. A quasi-affine variety (V,OV ) is a prevariety. Indeed, we may
assume that V is a locally closed subset of some An and we know that there is a
finite cover by open subsets V = V1, . . . , Vr such that each (Vi,OVi

) is isomorphic
to an affine variety (see Remark 1.4.20).

Notation 2.2.9. By an abuse of notation, we often denote a prevariety (X,OX)
simply by X.

Definition 2.2.10. The category of algebraic prevarieties over k is a full sub-
category of T opk. In other words, if (X,OX) and (Y,OY ) are prevarieties, then
a morphism of prevarieties (X,OX) → (Y,OY ) is a continuous map f : X → Y
such that for every open subset U of Y and every φ ∈ OY (U), we have φ ◦ f ∈
OX
(
f−1(U)

)
.

Remark 2.2.11. While strictly speaking we have enlarged our notion of quasi-
affine varieties, in fact our old category of quasi-affine varieties and the new one
are equivalent.

Proposition 2.2.12. Every prevariety X is a Noetherian topological space. In
particular, it is quasi-compact.

Proof. By assumption, we have a finite open cover X = U1 ∪ . . . ∪ Ur, such
that each Ui is Noetherian. Given a sequence

F1 ⊇ F2 ⊇ . . .
of closed subsets of X, for every i, we can find ni such that Fn ∩ Ui = Fn+1 ∩ Ui
for all n ≥ ni. Therefore we have Fn = Fn+1 for every n ≥ maxi ni, and we thus
see that X is Noetherian. �

Remark 2.2.13. For every prevariety (X,OX), the sheaf OX is a subsheaf of
CX , where CX(U) is the k-algebra of continuous functions U → k. Indeed, this
assertion can be checked locally, and thus follows from the fact that it holds on
affine varieties.

Remark 2.2.14. For every prevariety X, the affine open subsets of X give a
basis for the topology of X. Indeed, this follows from the definition of a prevariety
and the fact that the assertions holds if X is affine.

Remark 2.2.15. If (X,OX) is a prevariety and φ ∈ OX(U), for some open
subset U of X, then the set

V := {x ∈ U | φ(x) 6= 0}
is an open subset of X and the function 1

φ lies in OX(V ). Indeed, this follows from

the fact that the assertion holds on affine varieties.

Remark 2.2.16. If X is a prevariety and W is an irreducible closed subset of
X, then we can define OX,W as in Chapter 1. This is, in fact, equal to the stalk
of OX at W . If U is an affine open subset with U ∩W 6= ∅ and p ⊆ OX(U) is the
corresponding ideal, then we have canonical isomorphisms

OX,W ' OU,U∩W ' OX(U)p.
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We know that the functor mapping X to O(X) gives an equivalence of cate-
gories between the category of affine varieties over k and the category of reduced,
finite type k-algebras. The following exercise gives an explicit construction of the
inverse functor. This point of view is useful in several instances, for example when
discussing the Proj construction.

Exercise 2.2.17. Recall that if R is any commutative ring, then we have
the maximal spectrum MaxSpec(R), a topological space with the underlying space
consisting of all maximal ideals in R (see Exercise 1.1.16). Suppose now that R
is an algebra of finite type over an algebraically closed field k. Recall that in this
case, for every m ∈ MaxSpec(R), the canonical homomorphism k → R/m is an
isomorphism. For every open subset U of MaxSpec(R), let O(U) be the set of
functions s : U → k such that for every x ∈ U , there is an open neighborhood
Ux ⊆ U of x and a, b ∈ R such that for every m ∈ Ux, we have

b 6∈ m and s(m) = a · b−1
,

where we denote by u ∈ k ' R/m the class of u ∈ R.

1) Show that O is a sheaf such that the pair
(
MaxSpec(R),O

)
defines an

element in T opk that, by an abuse of notation, we denote by MaxSpec(R),
too.

2) Show that given a homomorphism of reduced, finite type k-algebras R→
S, we have an induced morphism MaxSpec(S)→ MaxSpec(R) in T opk, so
that we get a functor from the category of reduced, finite type k-algebras
to T opk.

3) Show that for every R as above, MaxSpec(R) is an affine variety. More-
over, the functor MaxSpec is an inverse of the functor from the category
of affine varieties to the category of reduced, finite type k-algebras, that
maps X to O(X).

2.3. Open and closed immersions

Definition 2.3.1. Let (X,OX) be an object in T opk. If Z is a locally closed
subset of X, then we define a subsheaf OZ of CZ , as follows. Given an open
subset U of Z, a function φ : U → k lies in OZ(U) if for every x ∈ U , there is
an open neighborhood V of x in X and ψ ∈ OX(V ) such that φ(u) = ψ(u) for
u ∈ V ∩ X ⊆ U . It is clear that restriction of functions makes OZ a presheaf of
k-algebras. Moreover, since the condition in the definition is local, OZ is a sheaf,
hence (Z,OZ) is an object in T opk.

Remark 2.3.2. If X and Z are as in the above definition and Y is a locally
closed subset of Z, then it follows from the definition that the sheaves on Y defined
from (X,OX) and from (Z,OZ) are equal.

Example 2.3.3. If Z is open in X, then the sheaf OZ defined above is just
OX |Z .

Example 2.3.4. If X is a locally closed subset in An, then the sheaf OX on X
defined from (An,OAn) is the sheaf of regular functions on X. This is an immediate
consequence of the definition of regular functions on locally closed subsets of An.

Proposition 2.3.5. For every prevariety (X,OX) and every locally closed sub-
set Z of X, the pair (Z,OZ) is a prevariety.



46 2. GENERAL ALGEBRAIC VARIETIES

Proof. Note that by assumption, we have an open cover X = V1 ∪ . . . ∪ Vr
such that each (Vi,OVi) is an affine variety. Since it is enough to show that each
(Vi ∩ Z,OZ |Vi∩Z) is a prevariety and OZ |Vi∩Z is the sheaf defined on Z ∩ Vi as
a locally closed subset of Vi (see Remark 2.3.2), it follows that we may and will
assume that X is a closed subset of An and OX is the sheaf of regular functions
on X. In this case, it follows from Example 2.3.4 that Z is a quasi-affine variety,
hence a prevariety by Example 2.2.8. �

Definition 2.3.6. A locally closed subvariety of a prevariety (X,OX) is a
prevariety (Z,OZ), where Z is a locally closed subset of X and OZ is the sheaf
defined in Definition 2.3.1. By the above proposition, this is indeed a prevariety. If
Z is in fact open or closed inX, we say that we have an open subvariety, respectively,
closed subvariety of X.

Definition 2.3.7. Note that if Z is a locally closed subvariety of X, then the
inclusion map i : Z → X is a morphism of prevarieties. A morphism of prevarieties
f : X → Y is a locally closed (open, closed) immersion (or embedding) if it factors
as

X
g−→ Z

i−→ Y,

where g is an isomorphism and i is the inclusion of a locally closed (respectively,
open, closed) subvariety.

Proposition 2.3.8. If f : X → Y is a locally closed immersion, then for every
map g : W → Y , there is a morphism h : W → X such that g = f ◦ h if and only if
g(W ) ⊆ f(X). Moreover, in this case h is unique.

Proof. It is clear that if we have such h, then g(W ) = f
(
h(W )

)
⊆ f(X),

hence it is enough to prove the converse. Moreover, since we may replace X by
an isomorphic variety, we may assume that f is the inclusion of a locally closed
subvariety. Since f is injective, it is clear that if g(W ) ⊆ f(X), then there is
a unique map h : W → X such that f ◦ h = g. We need to prove that h is a
morphism. Note first that since X is a subspace of Y , the map h is continuous.
Furthermore, if Y = V1 ∪ . . . ∪ Vr is an open cover such that each Vi is affine, in
order to show that h is a morphism it is enough to show that each induced map
h−1

(
f−1(Vi)

)
→ f−1(V ) is a morphism (see Remark 2.2.2). Therefore we may

assume that Y is an affine variety, in which case the assertion is clear. �

Proposition 2.3.9. If f : X → Y is a morphism of prevarieties, then the
following are equivalent:

i) The morphism f is a closed immersion.
ii) For every affine open subset U of Y , its inverse image f−1(U) is affine,

and the induced k-algebra homomorphism OY (U)→ OX
(
f−1(U)

)
is sur-

jective.
iii) There is a finite cover Y = U1 ∪ . . . ∪ Ur by affine open subsets such that

for every i, the inverse image f−1(Ui) is affine, and the induced k-algebra
homomorphism OY (Ui)→ OX

(
f−1(Ui)

)
is surjective.

Proof. We first prove the implication i)⇒ii). Suppose that f factors as

X
g−→ Z

i−→ Y,

with g an isomorphism and i the inclusion map of a closed subvariety. If U ⊆ Y is
an affine open subset, then U ∩ Z is a closed subvariety of an affine variety, hence
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it is affine, and the restriction map induces a surjection O(U)→ O(U ∩ Z). Since
the induced morphism f−1(U)→ U ∩Z is an isomorphism, we obtain the assertion
in i).

Since the implication ii)⇒iii) is trivial, in order to complete the proof it is
enough to show iii)⇒i). With the notation in iii), we see that each induced mor-
phism f−1(Ui) → Ui is a closed immersion. In particular, it is a homeomorphism
onto its image, which is a closed subset of Y . This easily implies that f is a home-
omorphism onto its image, which is a closed subset of Y . Let Z be the closed
subvariety of Y with underlying set f(X). We need to show that the inverse map
φ : Z → X is a morphism. Since X =

⋃
i f
−1(Ui), it follows from Remark 2.2.2

that it is enough to check that each φ−1
(
f−1(Ui)

)
→ f−1(Ui) is a morphism. This

is clear, since f−1(Ui)→ Ui is a closed immersion. �

Remark 2.3.10. A morphism f : X → Y is a locally closed immersion if and

only if there is an open subset U of Y such that f factors as X
g−→ U

j−→ Y , with
g a closed immersion and j the inclusion morphism.

One way to construct algebraic prevarieties is by glueing. This is the content
of the next exercise.

Exercise 2.3.11. Let X1, . . . , Xr be prevarieties and for every i and j, suppose
that we have open subvarieties Ui,j ⊆ Xi and isomorphisms φi,j : Ui,j → Uj,i such
that

i) We have Ui,i = Xi and φi,i = IdXi
for every i, and

ii) φj,k ◦ φi,j = φi,k on Ui,j ∩ φ−1
i,j (Uj,k) ⊆ Ui,k.

In this case, there is a prevariety X and an open cover X = U1 ∪ . . . ∪ Ur and
isomorphisms fi : Ui → Xi such that for every i and j, we have

Ui ∩ Uj = f−1
i (Ui,j) and φi,j ◦ fi = fj on Ui ∩ Uj .

Moreover, if Y is another such prevariety with an open cover Y = V1 ∪ . . . ∪ Vr
and isomorphisms gi : Vi → Xi that satisfy the same compatibility condition, then
there is a unique isomorphism h : X → Y such that h(Ui) = Vi and gi ◦ h = fi for
1 ≤ i ≤ r.

Example 2.3.12. Let X and Y be two copies of A1 and let U ⊆ X and V ⊆ Y
be the complement of the origin. We can apply the previous exercise to construct
a prevariety W1 by glueing X and Y along the isomorphism U → V given by the
identity. This prevariety is the affine line with the origin doubled. On the other
hand, we can glue X and Y along the isomorphism U → V corresponding to the
k-algebra isomorphism

k[x, x−1]→ k[x, x−1], x→ x−1.

As we will see in Chapter 4, the resulting prevariety is the projective line P1.

Exercise 2.3.13. Show that if f : X → Y and g : Y → Z are locally closed
(respectively open, closed) immersions, then g ◦ f is a locally closed (respectively
open, closed) immersion.

We end this section by extending to arbitrary prevarieties some properties that
we proved for affine varieties. We then apply these properties to prove a sufficient
criterion for a variety to be affine.
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Proposition 2.3.14. For every prevarieties X and Y , with X affine, the map

Hom(Y,X)→ Homk−alg

(
OX(X),OY (Y )

)
that maps f to the homomorphism taking φ to φ ◦ f is a bijection.

Proof. Recall that we know this result if Y is affine, too (see Theorem 1.4.16).
We denote the map in the proposition by αY . We first show that αY is injective
for all Y . Suppose that f, g : Y → X are morphisms such that αY (f) = αY (g).
Consider an affine open cover Y =

⋃r
i=1 Ui. For every i, the composition

OX(X)
αY (f)−→ OY (Y )

βi−→ OY (Ui),

where βi is given by restriction of functions, is equal to αUi
(f |Ui

). A similar asser-
tion holds for g. Our assumption of f and g thus gives

αUi
(f |Ui

) = αUi
(g|Ui

)

for all i, and since the Ui are affine, we conclude that f |Ui
= g|Ui

. This implies
that f = g, completing the proof of injectivity.

We now prove the surjectivity of αY for every Y . Let φ : OX(X)→ OY (Y ) be
a k-algebra homomorphism. We consider again the affine open cover Y =

⋃r
i=1 Ui

and consider φi = βi ◦ φ. Since each Ui is affine, there are morphisms fi : Ui → X
such that αUi

(fi) = φi for all i.
Claim. For every i and j, we have fi|Ui,j

= fj |Ui,j
, where Ui,j = Ui ∩ Uj . Indeed,

αUi,j
(fi|Ui,j

) is equal to the composition

OX(X)
φ−→ OY (Y ) −→ OY (Ui,j),

where the second map is given by restriction of functions, and the same holds for
αUi,j

(fj |Ui,j
). Since we already know that αUi,j

is injective, we obtain the assertion
in the claim.

We deduce from the claim that we have a morphism f : Y → X such that
f |Ui = fi for all i. This implies that αY (f) = φ: indeed, since the morphism

OY (Y )→
r∏
i=1

OY (Ui)

is injective, it is enough to note that

βi ◦ φ = φi = αY (fi) = βi ◦ αY (f)

for all i. This completes the proof of the proposition. �

Proposition 2.3.15. Let X be a prevariety and f ∈ Γ(X,OX). If

DX(f) = {x ∈ X | f(x) 6= 0},

then the restriction map

Γ(X,OX)→ Γ
(
DX(f),OX

)
induces a k-algebra isomorphism

Γ(X,OX)f ' Γ(DX(f),OX).
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Proof. Since f(x) 6= 0 for every x ∈ DX(f), it follows that f |DX(f) is invert-
ible (see Remark 2.2.15). By the universal property of localization, we see that the
restriction map induces a k-algebra homomorphism

τX,f : Γ(X,OX)f −→ Γ
(
DX(f),OX

)
.

We will show that this is an isomorphism. Recall that we know this when X is
affine (see Proposition 1.4.7).

Consider an affine open cover X = U1 ∪ . . .∪Ur. Since OX is a sheaf, we have
exact sequences of Γ(X,OX)-modules

0→ Γ(X,OX)→
⊕
i

Γ(Ui,OX)→
⊕
i,j

Γ(Ui ∩ Uj ,OX)

and

0→ Γ
(
DX(f),OX

)
→
⊕
i

Γ
(
Ui ∩DX(f),OX

)
→
⊕
i,j

Γ(Ui ∩ Uj ∩DX(f),OX
)
.

By localizing the first sequence at f , we obtain again an exact sequence, and we
thus get a commutative diagram

0 // Γ(X,OX)f

τX,f

��

// ∏
i Γ(Ui,OX)f

γ

��

// ∏
i,j Γ(Ui ∩ Uj ,OX)f

δ

��
0 // Γ

(
DX(f),OX

)
// ∏

i Γ
(
DX(f) ∩ Ui,OX

)
// ∏

i,j Γ
(
DX(f) ∩ Ui ∩ Uj ,OX

)
with exact rows, where

γ = (τUi,f |Ui
)i and δ = (τUi∩Uj

, f |Ui∩Uj
)i,j .

Note that since each Ui is affine, we know that γ is an isomorphism. This implies
that τX,f is injective. Since this holds for all (X, f), applying the assertion for
(Ui ∩ Uj , f |Ui∩Uj

), we conclude that δ is injective. An easy diagram chase then
implies that τX,f is surjective. This completes the proof of the proposition. �

Proposition 2.3.16. Let X be a prevariety and let f1, . . . , fr ∈ Γ(X,OX) such
that the ideal they generate is Γ(X,OX). If DX(fi) is an affine variety for every i,
then X is an affine variety.

Proof. We put R = Γ(X,OX). This is clearly a reduced k-algebra. By
assumption, we can write

r∑
i=1

figi = 1 for some g1, . . . , gr ∈ R.

We begin by showing that R is a finitely generated k-algebra. Since each
DX(fi) is affine, we know that Γ

(
DX(fi),OX

)
is a finitely generated k-algebra. By

Proposition 2.3.15, we have a canonical isomorphism

Rfi ' Γ
(
DX(fi),OX

)
,

hence each Rfi is a finitely generated k-algebra. For each Rfi , we choose finitely
many generators of the form

ai,j

f
mi,j
i

, for suitable ai,j ∈ R and mi,j ∈ Z≥0. Let S ⊆ R
be the k-algebra generated by the ai,j , by the fi, and by the gi. It follows that
S is a finitely generated k-algebra, with f1, . . . , fr ∈ S, such that they generate
the unit ideal in S. Moreover, we have Sfi = Rfi for all i. This implies that if
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M is the S-module R/S, we have Mfi = 0 for all i, and therefore M = 0 (see
Proposition C.3.1). Therefore R = S, hence R is a finitely generated k-algebra.

Recall that we have the functor MaxSpec on the category of reduced, finitely
generated k-algebras, with values in the category of affine varieties that is the inverse
of the functor that maps Y to Γ(Y,OY ) (for what follows, the choice of an inverse
functor does not actually play a role). Since R is finitely generated, it follows from
Proposition 2.3.14 that we have a canonical morphism pX : X → MaxSpec(R) such
that the induced k-algebra homomorphism

R ' Γ
(
MaxSpec(R),OMaxSpec(R)

)
→ Γ(X,OX)

is the identity. We show that pX is an isomorphism.
In fact, it is easy to see explicitly what the map pX : for every x ∈ X, we have

pX(x) = {φ ∈ R | φ(x) = 0}.
This follows from the fact that the bijection in Proposition 2.3.14 is functorial,
applied to the inclusion {x} ↪→ X. The elements fi ∈ R define open subsets

Ui = {m ∈ MaxSpec(R) | fi 6∈ m}
and since f1, . . . , fr generate the unit ideal in R, it follows that MaxSpec(R) =⋃
i Ui. On the other hand, it follows from the description of pX that p−1

X (Ui) =

DX(fi) and via the isomorphism Rfi ' Γ
(
DX(fi),OX

)
provided by Proposi-

tion 2.3.15, the induced map p−1
X (Ui)→ Ui gets identified to

pDX(fi) : DX(fi)→ MaxSpec
(
Γ(DX(fi),ODX(fi))

)
,

which is an isomorphism since DX(fi) is affine. Since each induced morphism
p−1
X (Ui)→ Ui is an isomorphism, it follows that pX is an isomorphism, hence X is

affine. �

2.4. Products of prevarieties

We now show that the category of prevarieties has fibered products. We begin
with the case of direct products.

Proposition 2.4.1. The category of prevarieties over k has direct products.

Proof. We show that given two prevarieties X and Y , there is a topology on
the set X × Y and a subsheaf of k-algebras OX×Y ⊆ FunX×Y that make X × Y ,
together with the two projections, the direct product in the category of prevarieties.
Let us consider open covers X = U1 ∪ . . . ∪ Ur and Y = V1 ∪ . . . ∪ Vs, with all Ui
and Vj affine varieties. We can thus write

X × Y =
⋃
i,j

Ui × Vj .

Note that each Ui × Vj has the structure of an affine variety; in particular, it is
a topological space, with a topology that is finer than the product topology (see
Corollary 1.6.2). Note that for every two pairs (i1, j1) and (i2, j2), we have a priori
two structures of algebraic prevariety on

(2.4.1) (Ui1 × Vj1) ∩ (Ui2 × Vj2),

one coming from Ui1 × Vj1 and the other one from Ui2 × Vj2 . However, they are
the same, both being equal to the structure of prevariety on the quasi-affine variety
(Ui1 ∩ Ui2)× (Vj1 ∩ Vj2). This follows from the fact that if A and B are affine (or,
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more generally, quasi-affine) varieties and if UA ⊆ A and UB ⊆ B are open subsets,
then the open subvariety UA × UB of A × B is the product of UA and UB in the
category of quasi-affine varieties, which characterizes it uniquely, up to a canonical
isomorphism.

It is then easy to see that if we declare that a subset W of X×Y is open if and
only if W ∩ (Ui × Vj) is open for all i and j, then this gives a topology on X × Y
such that the topology on each Ui × Vj is the subspace topology. Note that the
topology on X × Y is finer than the product topology. Moreover, if given an open
subset W ⊆ X × Y and a function φ : W → k, we put φ ∈ OX×Y (W ) when

φ|W∩(Ui×Vj) ∈ OUi×Vj

(
W ∩ (Ui × Vj)

)
for all i, j,

then OX×Y is a subsheaf of FunX×Y such that OX×Y |Ui×Vj
= OUi×Vj

for all i
and j.

We now show that with this structure, the two projections p : X × Y → X
and q : X × Y → Y make X × Y the direct product of X and Y in the category
of prevarieties. Note first that since X × Y is covered by the affine open subsets
Ui×Vj , it follows that X ×Y is a prevariety. Second, both projections p and q are
morphisms: for example, for p this follows from the fact that each projection Ui ×
Vj → Ui is a morphism (see Remark 2.2.2). Given a prevariety Z and morphisms
f : Z → X and g : Z → Y , there is a unique map h : Z → X×Y such that p◦h = f
and q ◦ h = g, namely h(z) =

(
f(z), g(z)

)
for every z ∈ Z. In order to check that

this is a morphism, note first that for every i and j, the subset

h−1(Ui × Vj) = f−1(Ui) ∩ g−1(Vj)

is open in Z. Moreover, the restriction of h to this subset is a morphism: by
Remark 2.2.2, in order to check this, it is enough to show that the restriction of h
to the subsets in an affine open cover of h−1(Ui × Vj) is a morphism; this follows
from the fact that Ui × Vj is the direct product of Ui and Vj in the category of
affine varieties. This completes the proof of the proposition. �

Remark 2.4.2. It follows from the proof of the proposition that the product
of two prevarieties X and Y has as underlying set the Cartesian product X × Y
and the topology is finer than the product topology.

Exercise 2.4.3. Show that if f : Z → X and g : W → Y are locally closed
(open, closed) immersions, then we have an induced locally closed (respectively,
open, closed) immersion

Z ×W → X × Y, (z, w)→
(
f(z), g(w)

)
.

Remark 2.4.4. If X and Y are irreducible prevarieties, then X × Y is irre-
ducible.

Proof. Consider affine open covers

X = U1 ∪ . . . ∪ Ur and Y = V1 ∪ . . . ∪ Vs.

Since each Ui × Vj is irreducible by Corollary 1.6.7, it is enough to note that each
intersection

(Ui × Vj) ∩ (Ui′ ∩ Vj′) = (Ui ∩ Ui′)× (Vj ∩ Vj′)
is nonempty (see Exercise 1.3.17). �
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Definition 2.4.5. Given a morphism of prevarieties f : X → Y , the graph
morphism of f is the morphism jf : X → X × Y given by jf (x) =

(
x, f(x)

)
. Note

that this is indeed a morphism by the universal property of the product. The graph
of f is the image Γf of jf . When f = idX , the graph of f is the diagonal ∆X of
X ×X.

Proposition 2.4.6. For every morphism f : X → Y , the graph morphism
jf : X → X × Y is a locally closed embedding.

Proof. For every x ∈ X, let Vx ⊆ Y be an affine open neighborhood of f(x)
and Ux ⊆ f−1(Vx) an affine open neighborhood of x. If U =

⋃
x∈X Ux × Vx, then

it is clear that the image of jf is contained in U . Therefore it is enough to show
that the induced morphism j′f : X → U is a closed immersion. We also note that
since U is quasi-compact, the union in the definition of U can be taken over a finite
subset of X. Since (j′f )−1(Ux×Vx) = Ux is affine, in order to complete the proof of
the proposition, it is enough to show that when X and Y are affine, the morphism

j#
f : O(X × Y )→ O(X) is surjective. We may assume that X is a closed subset of

Am and Y is a closed subset of An. We denote by x1, . . . , xm the coordinates on
Am and by y1, . . . , yn the coordinates on An. Let us write f = (f1, . . . , fn), with

fi ∈ O(X) for 1 ≤ i ≤ n. In this case, j#
f is given by

j#
f (xi) = xi and j#

f (yj) = fj for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

and it is clear that this is surjective. �

We now prove the existence of fibered products in the category of prevarieties.

Proposition 2.4.7. Let f : X → Z and g : Y → Z be morphisms of prevari-
eties. If

W = {(x, y) ∈ X × Y | f(x) = g(y)},

then W is a locally closed subset of X × Y and (W,OW ), with the restrictions of
the two projections is the fiber product X ×Z Y in the category of prevarieties.

Proof. Consider the morphism h : X × Y → Z × Z given by h(x, y) =(
f(x), g(y)

)
. It follows from Proposition 2.4.6 that the diagonal ∆Z ⊆ Z × Z

is locally closed in Z ×Z, hence W = h−1(∆Z) is locally closed in X × Y . We now
consider on W the structure of locally closed subvariety of X × Y . Let p : W → X
and q : W → Y be the restrictions of the two projections to W . We need to
show that given a prevariety T and morphisms α : T → X and β : T → Y such that
f◦α = g◦β, there is a unique morphism γ : T →W such that p◦γ = α and q◦γ = β.
Uniqueness of γ as a map is clear: in fact, we need to have γ(t) =

(
α(t), β(t)

)
for

all t ∈ T . In order to check that this is a morphism, note that the composition
T → W ↪→ X × Y is a morphism since X × Y is the direct product of X and Y ,
and thus γ is a morphism by Proposition 2.3.8. �
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Example 2.4.8. If f : X → Y is a morphism of prevarieties and Z is a locally
closed subset of Y , then we have a Cartesian diagram1

f−1(W )

��

j // X

f

��
W

i // Y,

in which i and j are the inclusion morphisms. Indeed, the assertion is an immediate
application of Proposition 2.3.8.

Remark 2.4.9. Given a Cartesian diagram

X ×Z Y

��

// X

f

��
Z

i // Y,

with X, Y , and Z are affine varieties, it follows that X ×Y Z is affine too: this
follows from the fact that it is a closed subvariety of X×Y . Moreover, the canonical
homomorphism

O(X)⊗O(Y ) O(Z)→ O(X ×Y Z)

is surjective, with the kernel being the nil-radical of O(X)⊗O(Y )O(Z). This follows
from the anti-equivalence of categories between affine varieties over k and reduced,
finitely generated k-algebras, by noting that the tensor product gives the push-out
in the category of k-algebras, hence the reduced tensor product gives the push-out
in the category of reduced k-algebras.

2.5. Algebraic varieties

Algebraic varieties are prevarieties that satisfy an analogue of the Hausdorff
condition. Note that the Zariski topology is almost never Hausdorff: if X is an
irreducible prevariety, then any two nonempty open subsets intersect nontrivially.
The right condition is suggested by the following observation: if X is an arbitrary
topological space and if we consider on X × X the product topology, then X is
Hausdorff if and only if the diagonal ∆X is closed in X ×X.

Definition 2.5.1. An algebraic prevariety X is separated if the diagonal ∆X

is a closed subset of the prevariety X ×X. An algebraic variety over k (or simply,
a variety) is a separated algebraic prevariety.

Remark 2.5.2. It follows from Proposition 2.3.8 that the diagonal map X →
X×X, given by x→ (x, x) is always a locally closed immersion for every prevariety
X. Hence X is separated if and only if this map is a closed immersion.

Remark 2.5.3. If f, g : X → Y are morphisms of prevarieties and Y is sepa-
rated, then the set

{x ∈ X | f(x) = g(x)}
is closed in X. Indeed, this is just the inverse image of the diagonal ∆Y ⊆ Y × Y
by the morphism X → Y × Y , that maps x to

(
f(x), g(x)

)
. Because of this, the

1Recall that this means that it is a commutative diagram such that the induced morphism
f−1(W )→ X ×Y W given by the universal property of the fiber product is an isomorphism.
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considerations in Section 1.5 about the domain of rational maps extend to the case
of arbitrary algebraic varieties.

Proposition 2.5.4. The following hold:

i) If Z is a subvariety of the prevariety X and X is separated, then Z is
separated. In particular, quasi-affine varieties are separated.

ii) If f : X → Y is a morphism of prevarieties and Y is separated, then the
graph morphism jf : X → X × Y , given by jf (x) =

(
x, f(x)

)
is a closed

immersion.
iii) If X and Y are algebraic varieties, so is X×Y . More generally, if f : X →

Z and g : Y → Z are morphisms of varieties, then X ×Z Y is a closed
subvariety of X × Y , and therefore it is a variety.

Proof. If Z is a locally closed subvariety of X, then Z ×Z is a locally closed
subvariety of X × X and ∆Z = (Z × Z) ∩∆X . It follows that if ∆X is closed in
X ×X, then ∆Z is closed in Z × Z. Note now that if X = An, with coordinates
x1, . . . , xn, then ∆X is the closed subset of An×An defined by x1−y1, . . . , xn−yn.
We thus conclude that every quasi-affine variety is separated.

Under the assumptions in ii), we know that jf is a locally closed embedding by
Proposition 2.4.6. Its image is the inverse image of ∆Y by the morphism h : X×Y →
Y × Y given by h(x, y) =

(
f(x), y

)
, hence it is closed in X × Y . Therefore if is a

closed immersion.
Suppose now that X and Y are varieties. If

p1,3 : (X × Y )× (X × Y )→ X ×X and p2,4 : (X × Y )× (X × Y )→ Y × Y

are the projections given by

p1,3(x1, y1, x2, y2) = (x1, x2) and p2,4(x1, y1, x2, y2) = (y1, y2),

then ∆X×Y = p−1
1,3(∆X)∩p−1

2,4(∆Y ) and it is thus a closed subset of (X×Y )×(X×Y ).
This shows that X × Y is a variety. Moreover, it follows from Proposition 2.4.7
that the fiber product X ×Z Y is a locally closed subvariety of X × Y , hence it is
a variety by i). In fact it is a closed subvariety, since its underlying subset is the
inverse image of ∆Z via the morphism

X × Y → Z × Z, (x, y)→
(
f(x), g(y)

)
.

�

The following property is sometimes useful:

Proposition 2.5.5. If X is an algebraic variety and U , V are affine open
subvarieties of X, then U ∩ V is affine, too.

Proof. Consider the closed immersion i : X → X ×X given by the diagonal
map. If U and V are affine variety, then U ×V is affine. Since U ∩V = i−1(U ×V ),
we see that U ∩ V is affine by Proposition 2.3.9. �

Proposition 2.5.6. Let X be a prevariety and suppose that we have an open
cover X = U1 ∪ . . . ∪ Ur by affine open subsets. Then X is separated if and only if
for every i and j, the intersection Ui ∩ Uj is an affine variety and the homomor-
phism O(Ui)⊗k O(Uj)→ O(Ui ∩Uj) induced by the restriction homomorphisms is
surjective.
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Proof. We know that X is separated if and only if the diagonal morphism
i : X → X ×X is a closed immersion. The assertion in the proposition is now an
immediate consequence of the description of closed immersions in Proposition 2.3.9,
using the fact that the canonical homomorphism

O(Ui)⊗k O(Uj)→ O(Ui ×k Uj)
is an isomorphism (see Section 1.6). �

Example 2.5.7. Let us consider the two examples in Example 2.3.12. If X is
obtained by glueing two copies of A1 along the identity automorphism of A1r{0},
then X is covered by two affine open subsets U and V such that U ' A1 ' V ,
U ∩ V ' A1 r {0}, and the morphism

k[x, y] = O(U × V )→ O(U ∩ V ) = k[t, t−1]

maps both x and y to t. This is clearly not surjective, hence X is not separated. On
the other hand, if Y is obtained by glueing two copies of A1 along the automorphism
of A1 r {0} given by t→ t−1, then Y is also covered by two affine open subsets U
and V such that U ' A1 ' V , U ∩ V ' A1 r {0}, but now the morphism

k[x, y] = O(U × V )→ O(U ∩ V ) = k[t, t−1]

maps x to t and y to t−1. This is surjective, hence Y is separated.

Exercise 2.5.8. i) Show that if X1, . . . , Xn are algebraic varieties, then
on the disjoint union X =

⊔n
i=1Xi there is a unique structure of algebraic

variety such that each inclusion map Xi ↪→ X is an open immersion .
ii) Show that every variety X is a disjoint union of connected open subvari-

eties; each of these is a union of irreducible components of X.
iii) Show that if X is an affine variety and R = O(X), then X is disconnected

if and only if there is an isomorphism R ' R1 × R2 for suitable nonzero
k-algebras R1 and R2.

Exercise 2.5.9. Let f : X 99K Y be a rational map between the irreducible
varieties X and Y . The graph Γf of f is defined as follows. If U is an open subset
of X such that f is defined on U , then the graph of f |U is well-defined, and it is
a closed subset of U × Y . By definition, Γf is the closure of the graph of f |U in
X × Y .

i) Show that the definition is independent of the choice of U .
ii) Let p : Γf → X and q : Γf → Y be the morphisms induced by the two

projections. Show that p is a birational morphism, and that q is birational
if and only if f is.

iii) Show that if the fiber p−1(x) does not consist of only one point, then f is
not defined at x ∈ X.





CHAPTER 3

Dimension theory

In this chapter we prove the main results concerning the dimension of algebraic
varieties. We begin with some general considerations about Krull dimension in
topological spaces. We then discuss finite morphisms between affine varieties and
show that they are closed maps and preserve the dimension of closed subsets. We
then give a proof of the Principal Ideal theorem that relies on Noether normalization
and use this to deduce the main properties of dimension for algebraic varieties.
The last two sections are devoted to the behavior of the dimension of the fibers of
morphisms and to the Chevalley constructibility theorem.

3.1. The dimension of a topological space

Definition 3.1.1. Let X be a nonempty topological space. The dimension
(also called Krull dimension) of X, denoted dim(X), is the supremum over the
non-negative integers r such that there is a sequence

Z0 ) Z1 . . . ) Zr,

with all Zi closed, irreducible subsets of X. We make the convention that if X is
empty, then dim(X) = −1.

In particular, we may consider the dimension of quasi-affine varieties, endowed
with the Zariski topology. Note that in general we could have dim(X) = ∞, even
when X is Noetherian, but this will not happen in our setting.

Definition 3.1.2. Let R 6= 0 be a commutative ring. The dimension (also
called Krull dimension) of R, denoted dim(R), is the supremum over the non-
negative integers r such that there is a sequence

p0 ( p1 ( . . . ( pr,

with all pi prime ideals in R. We make the convention that dim(R) = −1 when
R = 0.

Remark 3.1.3. It follows from Corollary 1.1.10 and Proposition 1.3.8 that if
X is an affine variety, we have dim(X) = dim

(
O(X)

)
. More generally, for every

commutative ring R one can interpret the dimension of R as the dimension of a
topological space, as shown in the following exercise.

Exercise 3.1.4. Let R be a commutative ring and consider the spectrum of R:

Spec(R) := {p | p prime ideal in R}.
For every ideal J in R, consider

V (J) = {p ∈ Spec(R) | J ⊆ p}.
Show that the following hold:

57
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i) For every ideals J1, J2 in R, we have

V (J1) ∪ V (J2) = V (J1 ∩ J2) = V (J1 · J2).

ii) For every family (Jα)α of ideals in R, we have⋂
α

V (Jα) = V

(∑
α

Jα

)
.

iii) We have

V (0) = Spec(R) and V (R) = ∅.
iv) Deduce that Spec(R) has a topology (the Zariski topology) whose closed

subsets are the V (J), with J an ideal in R.
v) Show that V (J) ⊆ V (J ′) if and only if rad(J ′) ⊆ rad(J). In particular,

V (J ′) = V (J) if and only if rad(J ′) = rad(J).
vi) Show that the closed irreducible subsets in Spec(R) are those of the form

V (P ), where P is a prime ideal in R. Deduce that

dim(R) = dim
(
Spec(R)

)
.

The following easy two lemmas show that the notion of dimension behaves as
expected when it comes to some basic operations.

Lemma 3.1.5. If Y is a subspace of X, then

dim(Y ) ≤ dim(X).

Proof. Given a sequence of irreducible closed subsets in Y

Z0 ) Z2 ) . . . ) Zr,

by taking closures we obtain a sequence of closed subsets in X

Z0 ) Z2 ) . . . ) Zr

(the fact that the inclusions are strict follows from Zi = Zi∩Y for all i). This gives
the inequality in the lemma. �

Lemma 3.1.6. If X is a topological space, Y1, . . . , Yr are closed subsets of X,
and Y = Y1 ∪ . . . ∪ Yr, then

dim(Y ) =
r

max
i=1

dim(Yi).

This applies, in particular, if X is Noetherian, and Y1, . . . , Yr are the irreducible
components of Y .

Proof. After replacing X by Y , we may assume that X = Y . The inequality
“≥” follows from Lemma 3.1.5. The opposite inequality follows from the fact that
given any sequence

Z0 ) Z1 . . . ) Zr

of irreducible, closed subsets of X, there is i such that Z0 ⊆ Yi, in which case
dim(Yi) ≥ r. �

The next lemma will allow us to reduce understanding the dimension of quasi-
affine varieties to the case of affine varieties.
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Lemma 3.1.7. If X is a topological space and X = U1 ∪ . . . ∪ Ur, with Ui open
subsets of X, then

dim(X) =
r

max
i=1

dim(Ui).

Proof. Again, the inequality “≥” follows from Lemma 3.1.5. In order to prove
the opposite inequality, consider a sequence

Z0 ) Z1 . . . ) Zr

of irreducible, closed subsets of X. Let i be such that Zr ∩ Ui 6= ∅. Since each
Zj ∩Ui is irreducible and dense in Zj (see Remarks 1.3.7), we obtain the following
sequence of irreducible closed subsets of Ui:

Z0 ∩ Ui ) Z1 ∩ Ui . . . ) Zr ∩ Ui,
hence dim(Ui) ≥ r. This completes the proof of the lemma. �

Definition 3.1.8. If X is a topological space and Y is a closed, irreducible
subset of X, then the codimension of Y in X, denoted codimX(Y ), is the supremum
over the non-negative integers r for which there is a sequence

Z0 ) Z1 ) . . . ) Zr = Y,

with all Zi closed and irreducible in X.

Definition 3.1.9. Given a prime p in a commutative ring R, the codimension
(also called height) of p, denoted codim(p), is the supremum over the non-negative
integers r such that there is a sequence

p0 ( p1 ( . . . ( pr = p,

with all pi prime ideals in R.

Remark 3.1.10. It follows from Exercise 1.4.22 that if X is an affine variety
and Y is an irreducible closed subset, defined by the prime ideal p ⊂ O(X), we
have

codim(p) = codimX(Y ).

Note also that if q is a prime ideal in the commutative ring R and Z = V (q) ⊆
W = Spec(R) is the corresponding irreducible closed subset, then

codim(q) = codimW (Z).

Remark 3.1.11. Using arguments similar to the ones in the proofs of Lemma 3.1.5
and Proposition 3.1.7, we see that if Y is an irreducible closed subset of a topological
space X and U is an open subset of X such that U ∩ Y 6= ∅, then

codimU (U ∩ Y ) = codimX(Y ).

Remark 3.1.12. If X is a Noetherian topological space, with irreducible com-
ponents X1, . . . , Xr, and Y is an irreducible, closed subset of X, then

codimX(Y ) = max{codimXi(Y ) | Y ⊆ Xi}.
Indeed, given any chain

Y = Y0 ( Y1 ( . . . ( Yr ⊆ X
of irreducible, closed subsets of X, by irreducibility of Yr, there is i such that
Yr ⊆ Xi. This gives the inequality “≤” and the opposite inequality is obvious.
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3.2. Properties of finite morphisms

In order to prove the basic results concerning the dimension of affine algebraic
varieties, we will make use of Noether’s Normalization lemma. In order to exploit
this, we will need some basic properties of finite morphisms. In this chapter we
only discuss such morphisms between affine varieties; we will consider the general
notion in Chapter 5.

Definition 3.2.1. A morphism of affine varieties f : X → Y is finite if the
corresponding ring homomorphism f# : O(Y )→ O(X) is finite.

Example 3.2.2. Let Y be an affine variety and a1, . . . , an ∈ O(Y ). If

X = {(u, t) ∈ Y ×A1 | tn + a1(u)tn−1 + . . .+ an(u) = 0},

then X is a closed subset of Y ×A1, and the composition

X
i
↪→ Y ×A1 p−→ Y,

where i is the inclusion and p is the projection onto the first component, is finite.
In fact, O(X) is free over O(Y ), with a basis given by the classes of 1, t, . . . , tn−1.

Example 3.2.3. Given an irreducible closed subsetX ⊆ AN , with trdeg
(
k(X)/k

)
=

n, it follows from Theorem 1.2.2 (and its proof) that after a linear change of
coordinates yi =

∑n
j=1 ai,jxj , with det(ai,j) 6= 0, the inclusion homomorphism

k[y1, . . . , yn] ↪→ O(X) is finite. In other words, there is a linear automorphism
φ : AN → AN , such that if i : X ↪→ AN is the inclusion, and p : AN → An is the
projection p(u1, . . . , uN ) = (u1, . . . , un), the composition

X
i
↪→ AN φ−→ AN p−→ An

is a finite morphism.

Example 3.2.4. If X is an affine variety and Y is a closed subset of X, then Y
is an affine variety and the inclusion map Y ↪→ X is finite. Indeed, the morphism
O(X)→ O(Y ) is surjective, hence finite.

Remark 3.2.5. It is straightforward to see that if f : X → Y and g : Y → Z
are finite morphisms between affine varieties, then the composition g ◦ f is finite.

Example 3.2.6. If X is an affine variety and Y consists of one point, then
the unique morphism f : X → Y is finite if and only if X is a finite set. Indeed,
note first that if X consists of r points, then O(X) = k×r, hence O(X) is clearly a
finitely generated k-vector space. For the converse, if X1, . . . , Xn are the irreducible
components of X, then for every i, the composition Xi ↪→ X → Y is finite by
Remark 3.2.5 and Example 3.2.4. Since it is enough to show that each Xi consists
of one point, we may assume that X is irreducible. In this case, the canonical
injective homomorphism k → O(X) is finite, and since k is a field and O(X) is
an integral domain, we conclude that O(X) is a field. The finite field extension
k → O(X) must be an isomorphism, since k is algebraically closed.

Remark 3.2.7. If f : X → Y is a finite morphism of affine varieties and Z ⊆ X
and W ⊆ Y are closed subsets such that f(Z) ⊆ W , then the induced morphism
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g : Z →W is finite. Indeed, we have a commutative diagram

O(Y )

��

f#

// O(X)

��
O(W )

g# // O(Z).

Since f# is a finite homomorphism and the vertical homomorphisms in the diagram
are surjective, it follows that g# is finite as well.

In particular, using also Example 3.2.6, we see that if f : X → Y is finite, then
for every y ∈ Y , the fiber f−1(y) is finite.

We collect in the next proposition some basic properties of finite ring homo-
morphisms (in fact, the same properties hold for integral homomorphisms).

Proposition 3.2.8. Let φ : A→ B be a finite ring homomorphism.

i) If q is a prime ideal in B and p = φ−1(q), then q is a maximal ideal if
and only if p is a maximal ideal.

ii) If q1 ( q2 are prime ideals in B, then φ−1(q1) 6= φ−1(q2).
iii) If φ is injective, then for every prime ideal p in A, there is a prime ideal

q in B such that φ−1(q) = p.
iv) Given prime ideals p1 ⊆ p2 in A and a prime ideal q1 in B such that

φ−1(q1) = p1, there is a prime ideal q2 in B such that q1 ⊆ q2 and
φ−1(q2) = p2.

Proof. Under the assumption in i), note that we have a finite, injective ho-
momorphism of integral domains

A/p ↪→ B/q.

In this case, A/p is a field if and only if B/q is a field (see Proposition A.2.1). This
gives i).

In order to prove ii), we first recall that the map q→ qBp/pBp gives a bijection
between the primes q in B with φ−1(q) = p and the primes in the ring Bp/pBp.
Since φ is finite, the induced homomorphism

Ap/pAp → B ⊗A Ap/pAp = Bp/pBp

is again finite. Given q1 and q2 as in ii), suppose that φ−1(q1) = p = φ−1(q2). In
this case, it follows from i) that both q1Bp/pBp and q2Bp/pBp are maximal ideals.
Since the first one is strictly contained in the second one, we obtain a contradiction.

We now prove iii). Since B is a finitely generated A-module, we see that Bp

is a finitely generated Ap-module, and it is nonzero since it contains Ap. It thus
follows from Nakayama’s lemma (see Proposition C.1.1) that Bp 6= pBp. Since the
ring Bp/pBp is nonzero, it contains a prime ideal and every such prime ideal is of
the form qBp/pBp, for some prime ideal q in B, with φ−1(q) = p.

Finally, suppose that p1, p2, and q1 are as in iv). The induced homomorphism

φ : A/p1 −→ B/q1

is finite and injective. We may thus apply iii) to find a prime ideal in B/q1 whose
inverse image via φ is p2/p1. This ideal is of the form q2/q1, for some prime ideal
q2 containing q1 and it is clear that φ−1(q2) = p2. �
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We now reformulate geometrically the properties of finite homomorphisms in
the above proposition.

Corollary 3.2.9. Let f : X → Y be a finite morphism of affine varieties and
φ = f# the corresponding homomorphism O(Y )→ O(X).

1) The map f is closed, that is, f(Z) is closed in Y for every closed subset
Z of X. In particular, the map f is surjective if and only if φ is injective.

2) If Z1 ( Z2 are irreducible closed subsets of X, then f(Z1) ( f(Z2) are
irreducible closed subsets of Y .

3) If f is surjective, then given any irreducible, closed subset W of Y , there
is an irreducible, closed subset Z in X such that f(Z) = W .

4) If Z1 is an irreducible, closed subset of X and W1 ⊇ W2 are irreducible,
closed subsets of Y , with W1 = f(Z1), then there is Z2 ⊆ Z1 irreducible
and closed such that f(Z2) = W2.

Proof. Let Z be a closed subset in X. In order to show that f(Z) is closed,
after writing Z as the union of its irreducible components, we see that it is enough
to prove the assertion when Z is irreducible. Let q ⊆ O(X) be the prime ideal
corresponding to Z. Recall that by Proposition 1.4.23, we have

f(Z) = V
(
φ−1(q)

)
.

If m is a maximal ideal in O(Y ) containing φ−1(q), we deduce from assertions iv)
and i) in the proposition that there is a maximal ideal n in O(X) such that q ⊆ n
and φ−1(n) = m. Therefore

V
(
φ−1(q)

)
= f(Z)

and therefore f(Z) is closed. In order to prove the second assertion in 1), recall

that by Proposition 1.4.23, we know that φ is injective if and only if f(X) = Y .
Since f(X) is closed, we obtain the assertion.

The assertions in 2), 3), and 4) now follow from assertions ii), iii), and respec-
tively iv) in the proposition using the above description of the images of closed
subsets of X. �

Corollary 3.2.10. If f : X → Y is a finite, surjective morphism of affine
varieties, then

dim(X) = dim(Y ).

Moreover, if Z is a closed, irreducible subset of X, then

codimX(Z) = codimY

(
f(Z)

)
.

Proof. If
Z0 ) Z1 . . . ) Zr

is a sequence of irreducible closed subsets in X, then it follows from assertions 1)
and 2) in Corollary 3.2.9 that we have the following sequence of irreducible closed
subsets in Y :

f(Z0) ) f(Z1) ⊇ . . . ) f(Zr).

This gives dim(Y ) ≥ dim(X).
Suppose now that

W0 )W1 ) . . . )Ws

is a sequence of irreducible closed subsets in Y . Assertion 3) in Corollary 3.2.9
gives an irreducible closed subset T0 ⊆ X such that f(T0) = W0. Using repeatedly
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assertion 4) in Corollary 3.2.9, we obtain a sequence of irreducible closed subsets
in X

T0 ) T1 ) . . . ) Ts

such that f(Ti) = Wi for all i. We thus have dim(X) ≥ dim(Y ) and by combining
the two inequalities we get dim(X) = dim(Y ). The proof of the second assertion is
entirely analogous, so we leave it as an exercise. �

3.3. Main results of dimension theory

The following result, the Principal Ideal theorem, is the starting point of dimen-
sion theory. A similar statement holds for prime ideals in an arbitrary Noetherian
ring, but we will only be concerned with our geometric setting. The proof we give
follows closely [Mum88].

Theorem 3.3.1. (Krull) If X is an algebraic variety, f ∈ O(X), and Y is an
irreducible component of

V (f) = {u ∈ X | f(u) = 0},
then codimX(Y ) ≤ 1.

We begin with some comments about the statement.

Remark 3.3.2. If X1, . . . , Xr are the irreducible components of X and f |Xi
6= 0

for all i, then codimX(Y ) ≥ 1. Indeed, since Y is irreducible, there is i such that
Y ⊆ Xi, and our assumption on f implies that this inclusion is strict.

Remark 3.3.3. With notation as in the theorem, if U is an open subset of X
with U ∩ Y 6= ∅, it is enough to prove the assertion in the theorem for U , f |U , and
Y ∩ U . Indeed, it follows from Remark 3.1.11 that

codimX(Y ) = codimU (U ∩ Y ),

while Exercise 1.3.19 implies that U ∩ Y is an irreducible component of V (f |U ) =
V (f) ∩ U ⊆ U .

Remark 3.3.4. It is enough to prove the theorem when X is affine and irre-
ducible and Y = V (f). First, note that if we have a sequence

Z0 ) Z1 ) Z2 = Y,

with all Zi irreducible closed subsets of X, then codimZ0(Y ) ≥ 2 and Y is an
irreducible component also for V (f |Z0) = V (f)∩Z0 ⊆ Z0. This shows that we may
assume that X is irreducible. Second, let us choose an affine open subset U ⊆ X
that meets Y , but does not meet the other irreducible components of V (f). By the
previous remark, it is enough to prove the theorem for U , f |U , and Y ∩ U , and by
our choice of U , we have U ∩ Y = V (f |U ).

Remark 3.3.5. The theorem is easy to prove when X is affine and O(X) is
a UFD. Indeed, the assertion is clearly true when f = 0 (in which case Y = X
and codimX(Y ) = 0). Suppose now that f 6= 0. In this case, it follows from
Example 1.3.14 that if the prime decomposition of f is f = ufm1

1 · · · fmr
r , with u

invertible, then there is i such that Y = V (fi). If there is an irreducible closed
subset Z with Y ( Z ( X and IX(Z) = p, then p ( (fi). Let h ∈ p be any
nonzero element and let m be the exponent of fi in the prime decomposition of h
is minimal. If we write h = fmi h

′, since p is prime and fi 6∈ p, we have h′ ∈ (fi),
contradicting the definition of m.



64 3. DIMENSION THEORY

The proof of the theorem makes use of Noether’s Normalization lemma to re-
duce the general case to that treated in Remark 3.3.5. We will also need some basic
facts about norm maps for finite field extensions, for which we refer to Appendix D.

Proof of Theorem 3.3.1. As we have seen in Remark 3.3.4, we may assume
that X is affine and irreducible and Y = V (f). Let A = O(X) and put K = k(X).
By Noether’s Normalization lemma, if n = trdegk(K), we can find a k-subalgebra
B ' k[x1, . . . , xn] of A such that the inclusion map B ↪→ A is finite (hence integral,
see Proposition A.1.3). We denote by L the fraction field of B, so that the field
extension K/L is finite (see Remark 1.2.1). We denote by p ⊆ A the prime ideal
corresponding to Y and let q = p ∩B.

Let h = NK/L(f). Note that h 6= 0. Moreover, since A is an integral extension
of B, f ∈ A, and B is integrally closed (see Example 1.7.28), we have h ∈ q by
Proposition D.2.1.

In fact, we have q = rad(h). Indeed, suppose that u ∈ q. Since p = rad(f), it
follows that we can find a positive integer m and w ∈ A such that um = fw. By
the multiplicative property of the norm and the behavior of NK/L on elements in
L (for both properties, see Proposition D.1.1), we deduce

um·[K:L] = NK/L(u)m = h ·NK/L(w) ∈ (h).

Since B is a UFD, we deduce from Remark 3.3.5 that codim(q) ≤ 1. On the
other hand, since the morphism B ↪→ A is finite and injective, it follows from
Proposition 3.2.10 that codim(p) = codim(q). This completes the proof of the
theorem. �

Remark 3.3.6. IfX is an affine variety with irreducible componentsX1, . . . , Xr

and f ∈ O(X) is a non-zero-divisor, then f |Xi
6= 0 for every i. Indeed, let pi =

IX(Xi) and suppose that we have f ∈ p1. Let us choose gj ∈ pj r p1 for j ≥ 2.
Since p1 is prime, if g =

∏
j≥2 gj , then g 6∈ p1. In particular, g 6= 0. However,

fg ∈
⋂
j≥1 pj , hence fg = 0, contradicting the fact that f is a non-zero-divisor. For

a more general assertion, valid in arbitrary Noetherian rings, see Proposition E.2.1.
We thus see, by combining Theorem 3.3.1 and Remark 3.3.2, that if f is a non-

zero-divisor in O(X), for an affine variety X, then every irreducible component of
V (f) has codimension 1 in X.

We now deduce from Theorem 3.3.1 the basic properties of dimension of alge-
braic varieties. We begin with a generalization of the theorem to the case of several
functions.

Corollary 3.3.7. If X is an algebraic variety and f1, . . . , fr are regular func-
tions on X, then for every irreducible component Y of

V (f1, . . . , fr) = {u ∈ X | f1(u) = . . . = fr(u) = 0},
we have codimX(Y ) ≤ r.

Proof. We do induction on r, the case r = 1 being a consequence of the
theorem. Arguing as in Remarks 3.3.3 and 3.3.4, we see that we may assume that
X is affine and Y = V (f1, . . . , fr). We need to show that for every sequence

Y = Y0 ( Y1 ( . . . ( Ym

of irreducible closed subsets of X, we have m ≤ r. By Noetherianity, we may
assume that there is no irreducible closed subset Z, with Y ( Z ( Y1.
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By assumption, there is i (say, i = 1) such that Y1 6⊆ V (fi). Since there are
no irreducible closed subsets strictly between Y and Y1, it follows that Y is an
irreducible component of Y1 ∩ V (f1). After replacing X by an affine open subset
meeting Y , but disjoint from the other components of Y1 ∩ V (f1), we may assume
that in fact Y = Y1 ∩ V (f1), hence IX(Y ) = rad

(
IX(Y1) + (f1)

)
. It follows that for

2 ≤ i ≤ r, we can find positive integers qi and gi ∈ IX(Y1) such that

(3.3.1) fqii − gi ∈ (f1).

We will show that Y1 is an irreducible component of V (g2, . . . , gr). If this is
the case, then we conclude by induction that m − 1 ≤ r − 1, hence we are done.
Note first that (3.3.1) gives

Y = V (f1, . . . , fr) = V (f1, g2, . . . , gr).

If there is an irreducible closed subset Z such that

Y1 ( Z ⊆ V (g2, . . . , gr),

then Y = Z ∩ V (f1), and the theorem implies codimZ(Y ) ≤ 1, contradicting the
fact that we have Y ( Y1 ( Z. Therefore Y1 is an irreducible component of
V (g2, . . . , gr), completing the proof of the corollary. �

Corollary 3.3.8. For every positive integer n, we have dim(An) = n.

Proof. It is clear that dim(An) ≥ n, since we have the following sequence of
irreducible closed subsets in An:

V (x1, . . . , xn) ( V (x1, . . . , xn−1) ( . . . ( V (x1) ( An.

In order to prove the reverse inequality, it is enough to show that for every point p =
(a1, . . . , an) ∈ An, we have codimX({p}) ≤ n. This follows from Corollary 3.3.7,
since Y = V (x1 − a1, . . . , xn − an). �

Corollary 3.3.9. If X is an irreducible variety, then

dim(X) = trdegkk(X).

In particular, we have dim(X) <∞.

Proof. By taking a finite cover by affine open subsets and using Lemma 3.1.7,
we see that it is enough to prove the assertion when X is affine. It follows from
Noether’s Normalization lemma that if n = trdegkk(X), then there is a finite,
surjective morphism f : X → An. The assertion then follows from the previous
corollary via Corollary 3.2.10. �

Remark 3.3.10. It follows from the previous corollary and Lemma 3.1.6 that
for every algebraic variety X, we have dim(X) <∞.

Remark 3.3.11. Another consequence of Corollary 3.3.9 is that if X is an
irreducible quasi-affine variety, then for every nonempty open subset U of X, we
have dim(U) = dim(X).

Definition 3.3.12. If X is a Noetherian topological space, we say that X has
pure dimension if all its irreducible components have the same dimension.

Corollary 3.3.13. If X is an algebraic variety, then the following hold:
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i) If Y ⊆ Z are closed irreducible subsets, then every saturated1 chain

Y = Y0 ( Y1 ( . . . ( Yr = Z

of irreducible closed subsets has length r = codimZ(Y ).
ii) If X has pure dimension, then for every irreducible closed subset Y ⊆ X,

we have

dim(Y ) + codimX(Y ) = dim(X).

Proof. We begin by showing the following statement: given irreducible, closed
subsets Y ( Z, with codimZ(Y ) = 1, we have dim(Y ) = dim(Z)− 1. For this, we
may of course assume that X = Z. Note also that in light of Remark 3.3.11, we
may replace Z by any open subset U with U ∩ Y 6= ∅, since dim(U) = dim(Z) and
dim(U ∩ Y ) = dim(Y ). In particular, after replacing Z by an affine open subset U
with U ∩ Y 6= ∅, we may assume that Z is affine.

Let f ∈ IZ(Y ) r {0}. Since codimZ(Y ) = 1, we see that Y is an irreducible
component of V (f). After replacing Z by an affine open subset that intersects
Y , but does not intersect the other components of V (f), we may assume that
Y = V (f). We now make use of the argument in the proof of Theorem 3.3.1.
Noether’s Normalization lemma gives a finite, surjective morphism p : Z → An and
we have seen that p

(
V (f)

)
= V (h), for some nonzero h ∈ O(An), hence the ideal

I
(
p(Y )

)
⊆ k[x1, . . . , xn] is principal, say generated by a polynomial g. This implies

that dim
(
p(Y )

)
= n−1: indeed, arguing as in the proof of Noether’s Normalization

lemma, we see that after a suitable linear change of coordinates, we may assume
that g is a monic polynomial in xn, with coefficients in k[x1, . . . , xn−1], in which
case the morphism

k[x1, . . . , xn−1] ↪→ k[x1, . . . , xn]/(g)

is finite and injective, hence we get the assertion via Corollaries 3.2.10 and 3.3.8.
Since Corollary 3.2.10 gives dim(Z) = n and dim(Y ) = dim

(
p(Y )

)
= n − 1, this

completes the proof of our initial statement.
This assertion implies that given any saturated chain

Y = Y0 ( Y1 ( . . . ( Yr = Z

of irreducible, closed subsets, we have dim(Yi) = dim(Yi−1)+1 for 1 ≤ i ≤ r, hence
dim(Z) = dim(Y ) + r. In particular, all such chains have the same length. Since
there is such a chain of length codimZ(Y ), we obtain the assertion in i), as well as
the assertion in ii) when X is irreducible.

Suppose now that we are in the setting of ii). Using Remark 3.1.12, the assertion
when X is irreducible, and the fact that X is pure dimensional, we obtain

codimX(Y ) = max{codimXi(Y ) | Y ⊆ Xi}

= max{dim(Xi)− dim(Y ) | Y ⊆ Xi} = dim(X)− dim(Y ),

completing the proof of the proposition. �

Remark 3.3.14. if X is an algebraic variety, and p is a point on X, then
dimp(X) := dim(OX,p) is equal to the largest dimension of an irreducible com-
ponent of X that contains p. Indeed, it follows from definition that dimp(X) =

1This means that for every i, with 1 ≤ i ≤ r, there is no closed, irreducible subset Z, with
Yi−1 ( Z ( Yi; equivalently, we have codimYi

(Yi−1) = 1.



3.3. MAIN RESULTS OF DIMENSION THEORY 67

codimX({p}) and we deduce from Corollary 3.3.13 that if X1, . . . , Xr are the irre-
ducible components of X that contain p, then

dimp(X) =
r

max
i=1

codimXi
({p}) =

r
max
i=1

dim(Xi).

Remark 3.3.15. Suppose that X is an algebraic variety, f ∈ O(X) is a non-
zero-divisor, and

Y = {x ∈ X | f(x) = 0}.
In this case, for every x ∈ Y , we have

(3.3.2) dim(OY,x) = dim(OX,x)− 1.

In order to see this, we use the interpretation of the two dimensions given by the
previous remark. Note first that it follows from Remark 3.3.6 that f does not
vanish on any irreducible component of X. If Y ′ is an irreducible component of
Y that contains x and if X ′ is an irreducible component of X that contains Y ′,
then it follows from Theorem 3.3.1 that codimX′(Y

′) = 1 and Corollary 3.3.13
implies dim(Y ′) = dim(X ′) − 1. This gives the inequality “≤” in (3.3.2). On the
other hand, given any irreducible component Z of X that contains x, then every
irreducible component W of Y ∩ Z that contains x satisfies codimW (Z) = 1 by
Theorem 3.3.1. Using again Corollary 3.3.13, we obtain

dim(OY,x) ≥ dimW = dim(Z)− 1,

hence we get the inequality “≥” in (3.3.2).

We end this section with the following partial converse to Corollary 3.3.7.

Proposition 3.3.16. Let X be an algebraic variety. If Y is an irreducible
closed subset with codimX(Y ) = r ≥ 1, then there are f1, . . . , fr ∈ O(X) such that
Y is an irreducible component of V (f1, . . . , fr).

Proof. Let X1, . . . , XN be the irreducible components of X. Note that there
is f1 ∈ IX(Y ) such that Xi 6⊆ V (f1) for all i. Indeed, otherwise

IX(Y ) ⊆
N⋃
i=1

IX(Xi).

Since all IX(Xi) are prime ideals and IX(Y ) 6⊆ IX(Xi) (recall that r ≥ 1), this
contradicts the Prime Avoidance lemma (see Lemma E.1.1).

For such f1, we have codimV (f1) Y ≤ r − 1. Iterating, we find f1, . . . , fr ∈
IX(Y ) such that codimV (f1,...,fr)(Y ) = 0, that is, Y is an irreducible component of
V (f1, . . . , fr). �

Remark 3.3.17. In general, if X and Y are as in the proposition, it might not
be possible to find f1, . . . , fr such that Y = V (f1, . . . , fr) (not even if we are willing
to restrict to affine open neighborhoods of a given point). Consider, for example

X = V (x1x2 − x3x4) ⊆ A4 and Y = V (x1, x3).

In this case we have dim(X) = 3 and dim(Y ) = 2, hence codimX(Y ) = 1 by
Corollary 3.3.13. However, for every affine open neighborhood U of the origin,
there is no f ∈ O(U) such that V (f) = Y . Can you prove this?

Exercise 3.3.18. Show that if X and Y are algebraic varieties, then

dim(X × Y ) = dim(X) + dim(Y ).
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Exercise 3.3.19. Show that if X is an algebraic variety and Z is a locally
closed subset of X, then

dim(Z) = dim(Z) > dim(Z r Z).

Exercise 3.3.20. Show that if X is an affine variety such that O(X) is a UFD,
then for every closed subset Y ⊆ X, having all components of codimension 1, the
ideal IX(Y ) defining Y is principal.

Exercise 3.3.21. Show that if X and Y are irreducible closed subsets of An,
then every irreducible component of X ∩Y has dimension ≥ dim(X) + dim(Y )−n
(Hint: describe X ∩ Y as the intersection of X × Y ⊆ An ×An with the diagonal
∆ = {(x, x) | x ∈ An}).

3.4. Dimension of fibers of morphisms

We now discuss the main results concerning the dimensions of fibers of a mor-
phism between algebraic varieties. More generally, we will be interested in the
dimension of f−1(Z), where Z is a closed subset of Y .

We fix a dominant morphism f : X → Y between irreducible algebraic varieties
and let k(Y ) ↪→ k(X) be the induced extension of function fields. We put

r = trdegk(Y )k(X) = dim(X)− dim(Y ).

Theorem 3.4.1. With the above notation, if W is an irreducible component of
f−1(Z) that dominates Z, then

codimX(W ) ≤ codimY (Z), or equivalently, dim(W ) ≥ dim(Z) + r.

In particular, for every point y in the image of f , all irreducible components of
f−1(y) have dimension ≥ r.

Proof. Note that if U is an open subset such that Z ∩ U 6= ∅, since f(W ) =
Z, we have W ∩ f−1(U) 6= ∅. By Corollary 3.3.11, we may thus replace f by
f−1(U)→ U . In particular, we may and will assume that Y is affine. In this case, if
s = codimY (Z), it follows from Proposition 3.3.16 that there are g1, . . . , gs ∈ O(Y )
such that Z is an irreducible component of V (g1, . . . , gs). Since W ⊆ f−1(Z), we
have W ⊆W ′ = V

(
f#(g1), . . . , f#(gs)

)
.

In fact, W is an irreducible component of W ′: if W ⊆ W ′′ ⊆ W ′, with W ′′

closed and irreducible, we have

Z = f(W ) ⊆ f(W ′′) ⊆ V (g1, . . . , gs).

Since Z is an irreducible component of V (g1, . . . , gs), we deduce that Z = f(W ′′).
In particular, we have W ′′ ⊆ f−1(Z), and since W is an irreducible component of
f−1(Z), we conclude that W = W ′′. Therefore W is an irreducible component of
W ′. Corollary 3.3.7 then implies that codimX(W ) ≤ s. �

Theorem 3.4.2. With the above notation, there is a nonempty open subset
V of Y such that V ⊆ f(X) and for every irreducible, closed subset Z ⊆ Y with
Z ∩ V 6= ∅, and every irreducible component W of f−1(Z) that dominates Z, we
have

codimX(W ) = codimY (Z), or equivalently, dim(W ) = dim(Z) + r.

In particular, for every y ∈ V , every irreducible component of f−1(y) has dimension
r.
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Proof. It is clear that we may replace f by f−1(U) → U for any nonempty
open subset, hence we may and will assume that Y is affine. We show that we may
further assume that X is affine, too. Indeed, if we know the theorem in this case,
we consider an open cover by affine open subsets

X = U1 ∪ . . . ∪ Um
and let Vi ⊆ Y be the nonempty open subset constructed for the morphism Ui → Y .
In this case it is straightforward to check that V =

⋂
i Vi satisfies the conditions in

the theorem.
Suppose now that X and Y are irreducible affine varieties and let f# : O(Y )→

O(X) be the induced homomorphism. This is injective, since f is dominant. We
consider the k(Y )-algebra S = O(X) ⊗O(Y ) k(Y ). This is a domain with fraction
field k(X). By Noether’s Normalization lemma, we can find y1, . . . , yr ∈ S that are
algebraically independent over k(Y ) and such that the inclusion

α : k(Y )[y1, . . . , yr] ↪→ S

is finite. After replacing each yi by some aiyi, for a suitable nonzero ai ∈ O(Y ),
we may assume that yi ∈ O(X) for all i.
Claim. There is a nonzero s ∈ O(Y ) such that the inclusion

O(Y )s[y1, . . . , yr] ↪→ O(X)s

is finite. In order to see this, let us choose generators x1, . . . , xN of O(X) as a
k-algebra. Since α is finite, it follows that each xi satisfies a monic equation of the
form:

xmi
i + ai,1x

mi−1
i + . . .+ ai,mi

= 0 for some ai,j ∈ k(Y )[y1, . . . , yr].

If s ∈ O(Y ) r {0} is such that sai,j ∈ O(Y )[y1, . . . , yr] for all i and j, then it
follows that each xi is integral over O(Y )s[y1, . . . , yr], hence O(X)s is finite over
O(Y )s[y1, . . . , yr], proving the claim.

After replacing f by DX

(
f#(s)

)
= f−1

(
DY (s)

)
→ DY (s), we may thus assume

that f factors as

X
g−→ Y ×Ar p−→ Y,

where p is the first projection and g is finite and surjective. It is clear that in this
case f is surjective. Moreover, if Z and W are as in the statement of the theorem,
then g(W ) ⊆ Z×Ar, and using Corollary 3.2.9, as well as Exercise 3.3.18, we have

dim(W ) = dim
(
g(W )

)
≤ dim(Z ×Ar) = dim(Z) + r.

Since the opposite inequality follows by Theorem 3.4.1, we have in fact equality. �

Corollary 3.4.3. If f : X → Y is a morphism of algebraic varieties such that
all fibers of f have dimension r (in particular, f is surjective), then dim(X) =
dim(Y ) + r.

Proof. If Y1, . . . , Ym are the irreducible components of Y , each morphism
f−1(Yi)→ Yi has all fibers of dimension r. Since

dim(X) =
m

max
i=1

dim
(
f−1(Yi)

)
and dim(Y ) =

m
max
i=1

dim(Yi),

we see that it is enough to prove the assertion in the corollary when Y is irreducible.
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Suppose now that X1, . . . , Xs are the irreducible components of X. It follows
from Theorem 3.4.2 that for every i, if we put

di := dim(Xi)− dim
(
f(Xi)

)
,

then there is an open subset Ui of f(Xi) such that every fiber of Xi → f(Xi) over
a point in Ui has dimension di. The hypothesis implies that di ≤ r for every i;
moreover, there is i0 such that di0 = r and f(Xi) = Y . The former fact implies
that for every i, we have

dim(Xi) ≤ dim
(
f(Xi)

)
+ r ≤ dim(Y ) + r,

hence dim(X) ≤ dim(Y ) + r. On the other hand, the latter fact implies that
dim(Xi0) = dim(Y ) + r, hence dim(X) ≥ dim(Y ) + r, completing the proof of the
corollary. �

Example 3.4.4. Let a, b, and c be positive integers and let

f : A3 → A3, given by f(u, v, w) = (uavbw, ucv, u).

This is birational, with inverse

g : V = {(x, y, z) ∈ A3 | yz 6= 0} → A3

given by

g(x, y, z) = (z, yz−c, xy−bz−a+bc).

Therefore f induces an isomorphism f−1(V ) → V . In particular, for P ∈ V , the
fiber f−1(P ) is a point.

On the other hand, if P = (x0, y0, 0), then

f−1(P ) =

{
V (u) ' A2, if x0 = y0 = 0;

∅, otherwise

If P = (x0, 0, z0), with z0 6= 0, then

f−1(P ) =

{
V (v, u− z0) ' A1, if x0 = 0;

∅, otherwise

3.5. Constructible subsets and Chevalley’s theorem

Definition 3.5.1. A subset of a topological space X is constructible if it is a
finite union of locally closed subsets.

Proposition 3.5.2. If X is a topological space, the set of constructible subsets
of X is the smallest set that contains the open subsets of X and is closed under
finite unions, finite intersections, and complements.

Proof. The fact that a finite union of constructible sets is constructible is
clear. Suppose now that A and B are constructible and let us show that A ∩ B is
constructible. We can write

A = A1 ∪ . . . ∪Ar and B = B1 ∪ . . . ∪Bs,

with the Ai and Bj locally closed. In this case we have

A ∩B =
⋃
i,j

(Ai ∩Bj).
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Since the intersection of two locally closed sets is locally closed, we see that A ∩B
is constructible.

If A is constructible and we write A = A1∪ . . .∪Ar, with the Ai locally closed,
we have

X rA =

r⋂
i=1

(X rAi).

Since each Ai is locally closed, we can write it as Ui ∩ Fi, with Fi closed and Ui
open. In this case

X rAi = (X r Ui) ∪ (X r Fi)

is the union of a closed set with an open set, hence it is constructible. Since we
have already seen that a finite intersection of constructible sets is constructible, we
conclude that X rA is constructible.

The minimality statement in the proposition is straightforward: given a set C
of subsets of X as in the statement, this contains the open subsets by assumption,
hence it also contains the closed sets, since we assume that C is closed under com-
plements. Therefore C also contains the locally closed subsets (since it is closed
under finite intersections) and therefore contains all constructible subsets (since it
is closed under finite unions). �

This notion is important because of the following result, due to Chevalley.

Theorem 3.5.3. If f : X → Y is a morphism between algebraic varieties, the
image f(X) is constructible. More generally, for every constructible subset A of X,
its image f(A) is constructible.

Proof. If A is constructible in X, we write A = A1 ∪ . . . ∪ Ar, with all Ai
locally closed in X. Since f(A) = f(A1)∪ . . .∪f(Ar), it is enough to show that the
image of each composition Ai ↪→ X → Y is constructible. Therefore it is enough
to consider the case A = X.

We prove that f(X) is constructible by induction on dim(X). If X = X1 ∪
. . . ∪Xr is the decomposition of X in irreducible components, we have

f(X) = f(X1) ∪ . . . ∪ f(Xr),

hence it is enough to show that each f(Xi) is irreducible. We may thus assume

that X is irreducible and after replacing Y by f(X), we may assume that Y is

irreducible, too, and f is dominant (note that a constructible subset of f(X) is
constructible also as a subset of Y ). By Theorem 3.4.2, there is an open subset V
of Y such that V ⊆ f(X). We can thus write

(3.5.1) f(X) = V ∪ g(X ′),

where X ′ = X r g−1(V ) is a closed subset of X, with dim(X ′) < dim(X). By
induction, we know that g(X ′) is constructible, and we deduce from (3.5.1) that
f(X) is constructible. �

Exercise 3.5.4. i) Show that if Y is a topological space and A is a
constructible subset of Y , then there is a subset V of A that is open and
dense in A (in particular, V is locally closed in Y ).
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ii) Use part i) and Chevalley’s theorem to show that if G is an algebraic
group2 having an algebraic action on the algebraic variety X, then every
orbit is a locally closed subset of X. Deduce that X contains closed orbits.

2An algebraic group is defined like a linear algebraic group, but the variety is not necessarily
affine.



CHAPTER 4

Projective varieties

In this chapter we introduce a very important class of algebraic varieties, the
projective varieties.

4.1. The Zariski topology on the projective space

In this section we discuss the Zariski topology on the projective space, by build-
ing an analogue of the correspondence between closed subsets in affine space and
radical ideals in the polynomial ring. As usual, we work over a fixed algebraically
closed field k.

Definition 4.1.1. For a non-negative integer n, the projective space Pn = Pn
k

is the set of all 1-dimensional linear subspaces in kn+1.

For now, this is just a set. We proceed to endow it with a topology and
in the next section we will put on it a structure of algebraic variety. Note that
a 1-dimensional linear subspace in kn+1 is described by a point (a0, . . . , an) ∈
An+1 r {0}, with two points (a0, . . . , an) and (b0, . . . , bn) giving the same subspace
if and only if there is λ ∈ k∗ such that λai = bi for all i. In this way, we identify
Pn with the quotient of the set An+1 r {0} by the action of k∗ given by

λ · (a0, . . . , an) = (λa0, . . . , λan).

Let π : An+1 r {0} → Pn be the quotient map. We denote the image in Pn of a
point (a0, . . . , an) ∈ An+1 r {0} by [a0, . . . , an].

Let S = k[x0, . . . , xn]. The relevant structure on S, for the study of Pn, is that
of a graded k-algebra. Recall that a graded (commutative) ring R is a commutative
ring that has a decomposition as an Abelian group

R =
⊕
m∈Z

Rm

such that Ri ·Rj ⊆ Ri+j for all i and j. We say that R is N-graded if Rm = 0 for
m < 0.

Note that the definition implies that if R is a graded ring, then R0 is a subring
of R and each Rm is an R0-module, making R an R0-algebra. We say that R
is a graded A-algebra, for a commutative ring A, if R is a graded ring such that
R0 is an A-algebra (in which case R becomes an A-algebra, too). If R and S are
graded rings, a graded homomorphism φ : R→ S is a ring homomorphism such that
φ(Rm) ⊆ Sm for all m ∈ Z.

The polynomial ring S is an N-graded k-algebra, with Sm being the set of
homogeneous polynomials of degree m. In general, if R is a graded ring, a nonzero
element of Rm is homogeneous of degree m. By convention, 0 is homogeneous of

73
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degree m for every m. Given an arbitrary element f ∈ R, if we write

f =
∑
i

fi, with fi ∈ Ri,

then the fi are the homogeneous componenets of f .

Remark 4.1.2. Note that the action of k∗ on An+1r{0} is an algebraic action:
in fact, it is induced by the algebraic action of k∗ on An+1 corresponding to the
homomorphism

S → k[t, t−1]⊗k S, f → f(tx1, . . . , txn).

Exercise 4.1.3. For an ideal I in a graded ring R, the following are equivalent:
i) The ideal I can be generated by homogeneous elements of R.
ii) For every f ∈ I, all homogeneous components of f lie in I.
iii) The decomposition of R induces a decomposition I =

⊕
m∈Z(I ∩Rm).

An ideal that satisfies the equivalent conditions in the above exercise is a ho-
mogeneous (or graded) ideal. Note that if I is a homogeneous ideal in a graded ring
R, then the quotient ring R/I becomes a graded ring in a natural way:

R/I =
⊕
m∈Z

Rm/(I ∩Rm).

We now return to the study of Pn. The starting observation is that while it
does not make sense to evaluate a polynomial in S at a point p ∈ Pn, it makes sense
to say that a homogeneous polynomial vanishes at p: indeed, if f is homogeneous
of degree d and λ ∈ k∗, then

f(λa0, . . . , λan) = λd · f(a0, . . . , an),

hence f(λa0, . . . , λan) = 0 if and only if f(a0, . . . , an) = 0. More generally, given
any f ∈ S, we say that f vanishes at p if every homogeneous component of f
vanishes at p.

Given any homogeneous ideal I of S, we define the zero-locus V (I) of I to be
the subset of Pn consisting of all points p ∈ Pn such that every polynomial f in I
vanishes at p. Like the corresponding notion in the affine space, this notion satisfies
the following basic properties. The proof is straightforward, hence we leave it as
an exercise.

Proposition 4.1.4. The following hold:

1) V (S) = ∅.
2) V (0) = Pn.
3) If I and J are ideals in S with I ⊆ J , then V (J) ⊆ V (I).
4) If (Iα)α is a family of ideals in S, we have⋂

α

V (Iα) = V

(∑
α

Iα

)
.

5) If I and J are ideals in S, then

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

It follows from the proposition that we can put a topology on Pn (the Zariski
topology) in which the closed subsets of Pn are the subsets of the form V (I), where
I is a homogeneous ideal in S.
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Remark 4.1.5. A closed subset Y ⊆ An+1 is invariant by the k∗-action (that
is, λ · Y = Y for every λ ∈ k∗) if and only if the ideal IAn(Y ) ⊆ S is homogeneous
(cf. Lemma 1.7.22). Indeed, if f is homogeneous, then for every λ ∈ k∗ and every
u ∈ An+1, we have f(λu) = 0 if and only if f(u) = 0. We thus see that if I is
a homogeneous ideal, then its zero-locus in An+1 is k∗-invariant. In particular, if
IAn(Y ) is homogeneous, then Y is k∗-invariant. Conversely, if Y is k∗-invariant
and f ∈ IAn(Y ), let us write f =

∑
i fi, with fi ∈ Si. For every u ∈ Y and every

λ ∈ k∗, we have λu ∈ Y , hence

0 = f(λu) =
∑
i≥0

λi · fi(u).

It is easy to see that since this property holds for infinitely many λ, we have
fi(u) = 0 for all i, hence IAn(Y ) is homogeneous.

Remark 4.1.6. The topology on Pn is the quotient topology with respect to
the k∗-action on An+1r{0}. In other words, if π : An+1r{0} → Pn is the quotient
map, then a subset Z of Pn is closed if and only if its inverse image π−1(Z) is closed.
For this, we may assume that Z is nonempty. If π−1(Z) is closed, then it is clear
that π−1(Z)∪ {0} is closed, hence by the previous remark, there is a homogeneous
ideal I ⊆ S such that π−1(Z) ∪ {0} is the zero-locus of I. In this case, it is clear
that Z is the zero-locus of I in Pn. The converse is clear.

We now construct a map in the opposite direction. Given any subset S ⊆ Pn,
let I(S) be the set of polynomials in S that vanish at all points in S. Note that
I(S) is a homogeneous radical ideal of S (the fact that it is homogeneous follows
from the fact that if f ∈ I(S), then all homogeneous components of f lie in I(S)).
This definition satisfies the following properties, that are straightforward to check.

Proposition 4.1.7. The following hold:

1) I(∅) = S.
2) If (Wα)α is a family of subsets of An, then I (

⋃
αWα) =

⋂
α I(Wα).

3) If W1 ⊆W2, then I(W2) ⊆ I(W1).

We now turn to the compositions of the two maps. The first property is tau-
tological.

Proposition 4.1.8. For every subset S of Pn, we have V
(
I(S)

)
= S.

Proof. The proof follows verbatim the proof in the case of affine space (see
Proposition 1.1.8). �

The more interesting statement concerns the other composition. This is the
content of the next proposition, a graded version of the Nullstellensatz.

Proposition 4.1.9. If J ⊆ S is a radical ideal different from S+ = (x0, . . . , xn),
then I

(
V (J)

)
= J .

Note that V (S+) = ∅, hence I
(
V (S+)

)
= S. The ideal S+, which behaves

differently in this correspondence, is the irrelevant ideal.

Proof of Proposition 4.1.9. The inclusion “⊇” is trivial, hence we only
need to prove the reverse inclusion. It is enough to show that every homogeneous
polynomial f ∈ I

(
V (J)

)
lies in J .
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We make use of the map π : An+1 r {0} → Pn. Let Z be the closed subset
of An+1 defined by J , so that Z r {0} = π−1

(
V (J)

)
. Our assumption on f says

that f vanishes on Z r {0}. If deg(f) > 0, then f(0) = 0, and we conclude by
Hilbert’s Nullstellensatz that f ∈ J . On the other hand, if deg(f) = 0 and f 6= 0,
then it follows that V (J) = ∅. This implies that Z ⊆ {0} and another application
of Hilbert’s Nullstellensatz gives S+ ⊆ J . Since J 6= S+ by assumption, we have
J = S, in which case f ∈ J . �

Corollary 4.1.10. The two maps V (−) and I(−) give inclusion reversing
inverse bijections between the set of homogeneous radical ideals in S different from
S+ and the closed subsets of Pn.

Proof. Note that for every closed subset Z of Pn, we have I(Z) 6= S+. Indeed,
if I(Z) = S+, then it follows from Proposition 4.1.8 that

Z = V
(
I(Z)

)
= V (S+) = ∅.

However, in this case I(Z) = I(∅) = S. The assertion in the corollary follows
directly from Propositions 4.1.8 and 4.1.9. �

Exercise 4.1.11. Show that if I is a homogeneous ideal in a graded ring S,
then the following hold:

i) The ideal I is radical if and only if for every homogeneous element f ∈ S,
with fm ∈ I for some m ≥ 1, we have f ∈ I.

ii) The radical rad(I) of I is a homogeneous ideal.

Exercise 4.1.12. Show that if I is a homogeneous ideal in a graded ring S,
then I is a prime ideal if and only if for every homogeneous elements f, g ∈ S with
fg ∈ I, we have f ∈ I or g ∈ I. Deduce that a closed subset Z of Pn is irreducible
if and only if I(Z) is a prime ideal. In particular, Pn is irreducible.

Definition 4.1.13. If X is a closed subset of Pn and IX is the corresponding
homogeneous radical ideal, then SX := S/IX is the homogeneous coordinate ring
of X. Note that this is an N-graded k-algebra. In particular, S is the homogeneous
coordinate ring of Pn.

Suppose that X is a closed subset of Pn, with homogeneous coordinate ring
SX . For every homogeneous g ∈ SX of positive degree, we consider the following
open subset of X:

D+
X(g) = X r V (g̃),

where g̃ ∈ S is any homogeneous polynomial which maps to g ∈ SX . Note that if
h is another homogeneous polynomial of positive degree, we have

D+
X(gh) = D+

X(g) ∩D+
X(h).

Remark 4.1.14. Every open subset of X is of the form X r V (J), where J
is a homogeneous ideal in S. By choosing a system of homogeneous generators for
J , we see that this is the union of finitely many open subsets of the form D+

X(g).

Therefore the open subsets D+
X(g) give a basis of open subsets for the topology of

X.

Definition 4.1.15. For every closed subset X of Pn, we define the affine cone
C(X) over X to be the union in An+1 of the corresponding lines in X. Note that
if X is nonempty, then

C(X) = π−1(Z) ∪ {0}.
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If X = V (I) is nonempty, for a homogeneous ideal I ⊆ S, it is clear that C(X) is
the zero-locus of I in An+1. Therefore C(X) is a closed subset of An for every X.
Moreover, we see that O

(
C(X)

)
= SX .

Exercise 4.1.16. Show that if G is an irreducible algebraic group acting on a
variety X, then every irreducible component of X is invariant under the G-action.

Remark 4.1.17. Let X be a closed subset of Pn, with corresponding homoge-
neous radical ideal IX ⊆ S, and let C(X) be the affine cone over X. Since C(X)
is k∗-invariant, it follows from the previous exercise that the irreducible compo-
nents of C(X) are k∗-invariant, as well. By Remark 4.1.5, this means that the
minimal prime ideals containing IX are homogeneous. They correspond to the irre-
ducible components X1, . . . , Xr of X, so that the irreducible components of C(X)
are C(X1), . . . , C(Xr).

4.2. Regular functions on quasi-projective varieties

Our goal in this section is to define a structure sheaf on Pn. The main obser-
vation is that if F and G are homogeneous polynomials of the same degree, then
we may define a function F

G on the open subset Pn r V (G) by

[a0, . . . , an]→ F (a0, . . . , an)

G(a0, . . . , an)
.

Indeed, if deg(F ) = d = deg(G), then

F (λa0, . . . , λan)

G(λa0, . . . , λan)
=
λd · F (a0, . . . , an)

λd ·G(a0, . . . , an)
=
F (a0, . . . , an)

G(a0, . . . , an)
.

Let W be a locally closed subset in Pn. A regular function on W is a function
f : W → k such that for every p ∈ W , there is an open neighborhood U ⊆ W of p
and homogeneous polynomials of the same degree F and G such that G(q) 6= 0 for
every q ∈ U and

f(q) =
F (q)

G(q)
for all q ∈ U.

The set of regular functions on W is denoted by O(W ). Note that O(W ) is
a k-algebra with respect to the usual operations on functions. For example, if

f1(q) = F1(q)
G1(q) for q ∈ U1 and f2(q) = F2(q)

G2(q) for q ∈ U2, where U1 and U2 are open

neighborhoods of p, then F1G2 +F2G1 and G1G2 are homogeneous polynomials of
the same degree and

f1(q) + f2(q) =
(F1G2 + F2G1)(q)

(G1G2)(q)
for q ∈ U1 ∩ U2.

Moreover, it is clear that if V is an open subset ofW , the restriction to V of a regular
function on W is a regular function of V . We thus obtain in this way a subpresheaf
OW of k-algebras of FunW . In fact, this is a sheaf, as follows immediately from
the fact that regular functions are defined in terms of a local property.

Remark 4.2.1. Note that if W is a locally closed subset of Pn, then the sheaf
OW we defined is the one induced from OPn as in Section 2.3.
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Our first goal is to show that all spaces defined in this way are algebraic vari-
eties. Let Ui be the open subset defined by xi 6= 0. Note that we have

Pn =

n⋃
i=0

Ui.

The key fact is the following assertion:

Proposition 4.2.2. For every i, with 0 ≤ i ≤ n, the map

ψi : An → Ui, ψ(v1, . . . , vn) = [v1, . . . , vi, 1, vi+1, . . . , vn]

is an isomorphism in T opk.

Proof. It is clear that ψi is a bijection, with inverse

φi : Ui → An, [u0, . . . , un]→ (u0/ui, . . . , ui−1/ui, ui+1/ui, . . . , un/ui).

In order to simplify the notation, we give the argument for i = 0, the other cases
being analogous. Consider first a principal affine open subset of An, of the form
D(f), for some f ∈ k[x1, . . . , xn]. Note that if deg(f) = d, then we can write

f(x1/x0, . . . , xn/x0) =
g(x0, . . . , xn)

xd0

for a homogeneous polynomial g ∈ S of degree d. It is then clear that φ−1
0

(
D(f)

)
=

D+
Pn(x0g), hence this is open in U0. Since the principal affine open subsets in An

give a basis for the topology of An, we see that φ0 is continuous.
Consider now an open subset of U0 of the form D+

Pn(h), for some homogeneous

h ∈ S, of positive degree. If we put h0 = h(1, x1, . . . , xn), we see that φ0

(
D+

Pn(h)
)

=

D(h0) is open in An. Since the open subsets of the form D+
Pn(h) give a basis for

the topology of Pn, we conclude that φ0 is a homeomorphism.
We now need to show that if U is open in An and α : U → k, then α ∈ OAn(U)

if and only if α ◦ φ0 ∈ OPn

(
φ−1

0 (U)
)
. If α ∈ OAn(U), then for every point p ∈ U ,

we have an open neighborhood Up ⊆ U of p and f1, f2 ∈ k[x1, . . . , xn] such that

f2(u) 6= 0 and α(u) =
f1(u)

f2(u)
for all u ∈ Up.

As above, we can write

f1(x1/x0, . . . , xn/x0) =
g1(x0, . . . , xn)

xd0
and f2(x1/x0, . . . , xn/x0) =

g2(x0, . . . , xn)

xd0

for some homogeneous polynomials g1, g2 ∈ S of the same degree, in which case we
see that

g2(v) 6= 0 and α
(
φ0(v)

)
=
g1(v)

g2(v)
for all v ∈ φ−1

0 (Up).

Since this holds for every p ∈ U , we see that α◦φ0 is a regular function on φ−1
0 (U).

Conversely, suppose that α ◦ φ0 is a regular function on φ−1
0 (U). This means

that for every q ∈ φ−1
0 (U), there is an open neighborhood Vq ⊆ φ−1

0 (U) of q and
homogeneous polynomials h1, h2 ∈ S of the same degree such that

h2(v) 6= 0 and α
(
φ0(v)

)
=
h1(v)

h2(v)
for all v ∈ Vq.



4.2. REGULAR FUNCTIONS ON QUASI-PROJECTIVE VARIETIES 79

In this case, we have

h2(1, u1, . . . , un) 6= 0 and α(u1, . . . , un) =
h1(1, u1, . . . , un)

h2(1, u1, . . . , un)

for all u = (u1, . . . , un) ∈ φ0(Vq). Since this holds for every q ∈ φ−1
0 (U), it follows

that α is a regular function on U . This completes the proof of the fact that φ0 is
an isomorphism. �

Corollary 4.2.3. For every locally closed subset W of Pn, the space (W,OW )
is an algebraic variety.

Proof. It is enough to show the assertion for W = Pn: the general case is
then a consequence of Propositions 2.3.5 and 2.5.4. We have already seen that Pn

is a prevariety. In order to show that it is separated, using Proposition 2.5.6, it is
enough to show that each Ui ∩ Uj is affine and that the canonical morphism

(4.2.1) τi,j : O(Ui)⊗k O(Uj)→ O(Ui ∩ Uj)

is surjective. Suppose that i < j and let us denote by x1, . . . , xn the coordinates
on the image of φi and by y1, . . . , yn the coordinates on the image of φj . Note that
via the isomorphism φi, the open subvariety Ui ∩ Uj is mapped to the open subset

{(u1, . . . , un) ∈ An | uj 6= 0},

which is affine, being a principal affine open subset of An. Similarly, φj maps
Ui ∩ Uj to the open subset

{(u1, . . . , un) ∈ An | ui+1 6= 0}.

Furthermore, since we have

φj ◦ φ−1
i (u1, . . . , un) =

(
u1

uj
, . . . ,

ui
uj
,

1

uj
,
ui+1

uj
, . . . ,

uj−1

uj
,
uj+1

uj
, . . . ,

un
uj

)
for all (u1, . . . , un) ∈ φi(Ui ∩ Uj), we see that the morphism

τi,j : k[x1, . . . , xn]⊗k k[y1, . . . , yn]→ k[x1, . . . , xn, x
−1
j ]

satisfies τ(x`) = x` for all ` and τ(yi+1) = x−1
j . Therefore τi,j is surjective for all i

and j, proving that Pn is separated. �

Example 4.2.4. The map

π : An+1 r {0} → Pn, π(x0, . . . , xn) = [x0, . . . , xn]

is a morphism. Indeed, with the notation in the proof of Proposition 4.2.2, it is
enough to show that for every i, the induced map π−1(Ui) → Ui is a morphism.
However, via the isomorphism Ui ' An, this map becomes

An+1 r V (xi)→ An, (x0, . . . , xn)→ (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi),

which is clearly a morphism.

Definition 4.2.5. A projective variety is an algebraic variety that is isomorphic
to a closed subvariety of some Pn. A quasi-projective variety is an algebraic variety
that is isomorphic to a locally closed subvariety ofsome Pn.
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Remark 4.2.6. It follows from definition that if X is a projective variety and
Y is a closed subvariety of X, then Y is a projective variety as well. Similarly, if
X is a quasi-projective variety and Z is a locally closed subvariety of X, then Z is
a quasi-projective variety.

Remark 4.2.7. Every quasi-affine variety is quasi-projective: this follows from
the fact that An is isomorphic to an open subvariety of Pn.

Remark 4.2.8. Note that unlike the coordinate ring of an affine variety, the
homogeneous coordinate ring of a projective variety X ⊆ Pn is not an intrinsic
invariant: it depends on the embedding in the projective space.

We next show that the distinguished open subsetsD+
X(g) are all affine varieties1.

Proposition 4.2.9. For every closed subvariety X of Pn and every homoge-
neous element g ∈ SX of positive degree, the variety D+

X(g) is affine.

Proof. Since X is a closed subvariety of Pn and D+
X(g) = D+

Pn(g̃)∩X, where
g̃ ∈ S is any lift of g, it is enough to prove the assertion when X = Pn. Let
U = D+

Pn(g) and put d = deg(g).

Consider the regular functions f0, . . . , fn on U given by fi(u0, . . . , un) =
ud
i

g(u) .

Note that they generate the unit ideal in Γ(U,OPn). Indeed, since g ∈ S+ =
rad(xd0, . . . , x

d
n), it follows that there is m such that gm ∈ (xd0, . . . , x

d
n). If we write

gm =
∑n
i=1 hix

d
i and if we consider the regular functions αi : U → k given by

αi(u1, . . . , un) =
hi(u)

g(u)m−1
,

then
∑n
i=0 fi · αi = 1, hence f0, . . . , fn generate the unit ideal in Γ(U,OPn). By

Proposition 2.3.16, we see that it is enough to show that each subset U∩Ui is affine,
where Ui is the open subset of Pn defined by xi 6= 0. However, by the isomorphism
Ui ' An given in Proposition 4.2.2, the open subset U ∩Ui becomes isomorphic to
the subset

{u = (u1, . . . , un) ∈ An | g(u1, . . . , ui, 1, ui+1, . . . , un) 6= 0},
which is affine by Proposition 1.4.18. This completes the proof. �

Since the open subsets D+
X(g) are affine, they are determined by their rings of

regular functions. Our next goal is to describe these rings.
We begin with some general considerations regarding localization in graded

rings. If S is a graded ring and T ⊆ S is a multiplicative system consisting of
homogeneous elements of S, then the ring of fractions T−1S has an induced grading,
in which

(T−1S)m =

{
f

t
| t ∈ T, f ∈ Sdeg(t)+m

}
.

Note that even if S is N-graded, T−1S is not, in general, N-graded. We will use
two special cases. If g ∈ S is a homogeneous element, then Sg is a graded ring, and
we denote by S(g) its degree 0 part. Similarly, if p is a homogeneous prime ideal in

S and if we take T to be the set of homogeneous elements in Sr p, then T−1S is a
graded ring and we denote its degree 0 part by S(p). Therefore S(g) is the subring

1For another proof of this proposition, making use of the Veronese embedding, see Exer-
cise 4.2.23 below.
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of Sg consisting of fractions h
gm , where h is a homogeneous element of S, of degree

m · deg(g). Similarly, S(p) is the subring of S(p) consisting of all fractions of the

form f
h , where f, g ∈ S are homogeneous, of the same degree, with g 6∈ p. Note

that S(p) is a local ring, with maximal ideal

{f/h ∈ S(p) | f ∈ p}.

Let X be a closed subset of Pn, with corresponding radical ideal IX and ho-
mogeneous coordinate ring SX . Note that if h ∈ SX is homogeneous, of positive
degree, we have a morphism of k-algebras

Φ: (SX)(h) → O
(
D+
X(h)

)
,

such that Φ(f/hm) is given by the function p→ f̃(p)

h̃m(p)
, where f̃ , h̃ ∈ S are elements

mapping to f, h ∈ SX , respectively (it is clear that Φ(f/hm) is independent of the

choice of f̃ and h̃).

Proposition 4.2.10. For every X and h as above, the morphism Φ is an
isomorphism.

Proof. We will prove a more general version in Proposition 4.3.17 below. �

We end this section with the description of the dimension of a closed subset of
Pn in terms of the homogeneous coordinate ring.

Proposition 4.2.11. If X ⊆ Pn is a nonempty closed subset, with homoge-
neous coordinate ring SX , then dim(X) = dim(SX)− 1.

Proof. Note that the morphism π : An+1 r {0} → Pn induces a surjective
morphism f : C(X)r {0} → X whose fibers are 1-dimensional (in fact, they are all
isomorphic to A1 r {0}). It follows from Corollary 3.4.3 that

dim
(
C(X)

)
= 1 + dim(X).

Since SX is the coordinate ring of the affine variety C(X), we obtain the assertion
in the proposition. �

Corollary 4.2.12. If X and Y are nonempty closed subsets of Pn, with
dim(X) + dim(Y ) ≥ n, then X ∩ Y is nonempty and every irreducible component
of X ∩ Y has dimension ≥ dim(X) + dim(Y )− n.

Proof. Note that
(
C(X)∩C(Y )

)
r{0} = C(X ∩Y )r{0}. It is clear C(X)∩

C(Y ) is nonempty, since it contains 0. In this case, it follows from Exercise 3.3.21
that every irreducible component of C(X) ∩ C(Y ) has dimension

≥ dim
(
C(X)

)
+ dim

(
C(Y )

)
− (n+ 1) = dim(X) + dim(Y )− n+ 1.

This implies that C(X)∩C(Y ) is not contained in {0}, hence X ∩Y is non-empty.
Moreover, the irreducible components of C(X)∩C(Y ) are of the form C(Z), where
Z is an irreducible component of X ∩ Y , hence

dim(Z) = dim
(
C(Z)

)
− 1 ≥ dim(X) + dim(Y )− n.

�
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Exercise 4.2.13. A hypersurface in Pn is a closed subset defined by

{[x0, . . . , xn] ∈ Pn | F (x0, . . . , xn) = 0},
for some homogeneous polynomial F , of positive degree. Given a closed subset
X ⊆ Pn, show that the following are equivalent:

i) X is a hypersurface.
ii) The ideal I(X) is a principal ideal.
iii) All irreducible component of X have codimension 1 in Pn.

Note that if X is any irreducible variety and U is a nonempty open subset
of X, then the map taking Z ⊆ U to Z and the map taking W ⊆ X to W ∩
U give inverse bijections (preserving the irreducible decompositions) between the
nonempty closed subsets of U and the nonempty closed subsets of X that have no
irreducible component contained in the X r U . This applies, in particular, to the
open immersion

An ↪→ Pn, (x1, . . . , xn)→ [1, x1, . . . , xn].

The next exercise describes this correspondence at the level of ideals.

Exercise 4.2.14. Let S = k[x0, . . . , xn] and R = k[x1, . . . , xn]. For an ideal J
in R, we put

Jhom :=
(
fhom | 0 6= f ∈ J

)
,

where fhom = x
deg(f)
0 · f(x1/x0, . . . , xn/x0) ∈ S. On the other hand, if a is a

homogeneous ideal in S, then we put a := {h(1, x1, . . . , xn) | h ∈ a} ⊆ R.
An ideal a in S is called x0-saturated if (a : x0) = a (recall that (a : x0) := {u ∈

S | x0u ∈ a}).
i) Show that the above maps give inverse bijections between the ideals in R

and the x0-saturated homogeneous ideals in S.
ii) Show that we get induced bijections between the radical ideals in R and

the homogeneous x0-saturated radical ideals in S. Moreover, a homoge-
neous radical ideal a is x0-saturated if and only if either no irreducible
component of V (a) is contained in the hyperplane (x0 = 0), or if a = S.

iii) The above correspondence induces a bijection between the prime ideals in
R and the prime ideals in S that do not contain x0.

iv) Consider the open immersion

An ↪→ Pn, (u1, . . . , un)→ (1 : u1 : . . . : un),

which allows us to identify An with the complement of the hyperplane
(x0 = 0) in Pn. Show that for every ideal J in R we have VAn(J) =
VPn(Jhom).

v) Show that for every homogeneous ideal a in S, we have VPn(a) ∩An =
VAn(a).

Exercise 4.2.15. Recall that GLn+1(k) denotes the set of invertible (n +
1) × (n + 1) matrices with entries in k. Let PGLn+1(k) denote the quotient
GLn+1(k)/k∗, where k∗ acts on GLn+1(k) by

λ · (ai,j)i,j = (λai,j)i,j .

i) Show that PGLn+1(k) has a natural structure of linear algebraic group,
and that it is irreducible.
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ii) Prove that PGLn+1(k) acts algebraically on Pn.

Definition 4.2.16. Two subsets of Pn are projectively equivalent if they differ
by an automorphism in PGLn+1(k) (we will see later that these are, indeed, all
automorphisms of Pn).

Definition 4.2.17. A linear subspace of Pn is a closed subvariety of Pn defined
by an ideal generated by homogeneous polynomials of degree one. A hyperplane is
a linear subspace of codimension one.

Exercise 4.2.18. Consider the projective space Pn.

i) Show that a closed subset Y of Pn is a linear subspace if and only if the
affine cone C(Y ) ⊆ An+1 is a linear subspace.

ii) Show that if L is a linear subspace in Pn of dimension r, then there is an
isomorphism L ' Pr.

iii) Show that the hyperplanes in Pn are in bijection with the points of “an-
other” projective space Pn, called the dual of Pn, and usually denoted by
(Pn)∗. We denote the point of (Pn)∗ corresponding to the hyperplane H
by [H].

iv) Show that the subset{(
p, [H]

)
∈ Pn × (Pn)∗ | p ∈ H

}
is closed in Pn × (Pn)∗.

v) Show that given two sets of points in Pn

Γ = {P0, . . . , Pn+1} and Γ′ = {Q0, . . . , Qn+1},
such that no (n+ 1) points in the same set lie in a hyperplane, there is a
unique A ∈ PGLn+1(k) such that A · Pi = Qi for every i.

Exercise 4.2.19. Let X ⊆ Pn be an irreducible closed subset of codimension
r. Show that if H ⊆ Pn is a hypersurface such that X is not contained in H, then
every irreducible component of X ∩H has codimension r + 1 in Pn.

Exercise 4.2.20. Let X ⊆ Pn be a closed subset of dimension r. Show that
there is a linear space L ⊆ Pn of dimension (n− r − 1) such that L ∩X = ∅.

Exercise 4.2.21. (The Segre embedding). Consider two projective spaces Pm

and Pn. Let N = (m+ 1)(n+ 1)− 1, and let us denote the coordinates on AN+1

by zi,j , with 0 ≤ i ≤ m and 0 ≤ j ≤ n.

1) Show that the map Am+1 ×An+1 → AN+1 given by

((xi)i, (yj)j)→ (xiyj)i,j

induces a morphism

φm,n : Pm ×Pn → PN .

2) Consider the ring homomorphism

fm,n : k[zi,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n]→ k[x1, . . . , xm, y1, . . . , yn], fm,n(zi,j) = xiyj .

Show that ker(fm,n) is a homogeneous prime ideal that defines in PN the
image of φm,n (in particular, this image is closed).

3) Show that φm,n is a closed immersion.
4) Deduce that if X and Y are (quasi)projective varieties, then X × Y is a

(quasi)projective variety.
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Exercise 4.2.22. (The Veronese embedding). Let n and d be positive integers,
and let M0, . . . ,MN be all monomials in k[x0, . . . , xn] of degree d (hence N =(
n+d
d

)
− 1).

1) Show that there is a morphism νn,d : Pn → PN that takes the point
[a0, . . . , an] to the point

[
M0(a), . . . ,MN (a)

]
.

2) Consider the ring homomorphism fd : k[z0, . . . , zN ] → k[x0, . . . , xn] de-
fined by fd(zi) = Mi. Show that ker(fd) is a homogeneous prime ideal
that defines in PN the image of νn,d (in particular, this image is closed).

3) Show that νn,d is a closed immersion.
4) Show that if Z is a hypersurface of degree d in Pn (this means that

I(Z) = (F ), where F is a homogeneous polyomial of degree d), then there
is a hyperplane H in PN such that for every projective variety X ⊆ Pn,
the morphism νn,d induces an isomorphism betweenX∩Z and νn,d(X)∩H.
This shows that the Veronese embedding allows to reduce the intersection
with a hypersurface to the intersection with a hyperplane.

5) The rational normal curve in Pn is the image of the Veronese embed-
ding ν1,d : P1 → Pd, mapping [a, b] to [ad, ad−1b, . . . , bd]. Show that the
rational normal curve is the zero-locus of the 2× 2-minors of the matrix(

z0 z1 . . . zd−1

z1 z2 . . . zd

)
.

Exercise 4.2.23. Use the Veronese embedding to deduce the assertion in
Proposition 4.2.9 from the case when h is a linear form (which follows from Propo-
sition 4.2.2).

Exercise 4.2.24. A plane Cremona transformation is a birational map of P2

into itself. Consider the following example of quadratic Cremona transformation:
φ : P2 → P2, given by φ(x : y : z) = (yz : xz : xy), when no two of x, y, or z are
zero.

1) Show that φ is birational, and its own inverse.
2) Find open subsets U, V ⊂ P2 such that φ induces an isomorphism U ' V .
3) Describe the open sets on which φ and φ−1 are defined.

4.3. A generalization: the MaxProj construction

We now describe a generalization of the constructions in the previous two sec-
tions. A key idea introduced by Grothendieck in algebraic geometry is that it is
often better to study morphisms f : X → Y , instead of varieties X (the case of a
variety being recovered as the special case when Y is a point). More precisely, in-
stead of studying varieties with a certain property, one should extend this property
to morphisms and study it in this context. We begin with one piece of terminology.

Definition 4.3.1. Given a variety Y , a variety over Y is a morphism f : X →
Y , where X is another variety. A morphism between varieties f1 : X1 → Y and
f2 : X2 → Y is a morphism of varieties g : X1 → X2 such that f2 ◦ g = f1. It is
clear that we can compose morphisms of varieties over Y and we get, in this way,
a category.

Following the above philosophy, we introduce in this section the Proj construc-
tion, that allows us to study projective varieties over Y , when Y is affine (as we will
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see, these are simply closed subvarieties of a product Y ×Pn). We will return later
to the case when Y is an arbitrary variety, after discussing quasi-coherent sheaves.

The setting is the following: we fix an N-graded, reduced, finitely generated
k-algebra S =

⊕
m∈N Sm. This implies that S0 is a finitely generated k-algebra

and it is also easy to see that each Sm is a finitely generated S0-module. We put
S+ =

⊕
m>0 Sm.

Exercise 4.3.2. Given homogeneous elements t0, . . . , tn ∈ S+, show that they
generate S as an S0-algebra if and only if they generate S+ as an ideal.

For the sake of simplicity, we always assume that S is generated as an S0-
algebra by S1. This condition is equivalent with the fact that S is isomorphic,
as a graded ring, to the quotient of S0[x0, . . . , xn] by a homogeneous ideal, where
the grading on this polynomial ring is given by the total degree of the monomials.
Note that by the above exercise, our assumption implies that S1 generates S+ as
an ideal.

Consider the affine varieties W = MaxSpec(S) and W0 = MaxSpec(S0) (see
Exercise 2.2.17 for the notation). The inclusion S0 ↪→ S corresponds to a morphism
f : W → W0. The grading on S translates into an algebraic action of the torus k∗

on W , as follows. We have a morphism

α : k∗ ×W →W

corresponding to the k-algebra homomorphism S → k[t, t−1] ⊗k S mapping
∑
i fi

to
∑
i t
ifi, where fi ∈ Si for all i. One can check directly that this gives an action

of k∗ on W , but we prefer to argue as follows: let us choose a surjective graded
homomorphism of S0-algebras φ : S0[x0, . . . , xn] → S, corresponding to a closed
immersion j : W ↪→ W0 × An+1 such that if p : W0 × An+1 → W0 is the first
projection, we have p ◦ j = f . As before, we have a morphism

β : k∗ ×W0 ×An+1 →W0 ×An+1.

Since φ is a graded homomorphism, we see that the two morphisms are compatible
via j, in the sense that

j
(
α(λ,w)

)
= β

(
λ, j(w)

)
for all λ ∈ k∗, w ∈W.

It is straightforward to check that

β(λ,w0, x0, . . . , xn) = (w0, λx0, . . . , λxn) for all λ ∈ k∗, w0 ∈W0, (x0, . . . , xn) ∈ An+1.

Therefore β gives an algebraic action of k∗ on W0 × An+1, and thus α gives an
algebraic action of k∗ on W . We will keep using this embedding for describing the
action of k∗ on W . To simplify the notation, we will write λ · w for α(λ,w).

Lemma 4.3.3. Given the above action of k∗ on W , the following hold:

i) An orbit consists either of one point or it is 1-dimensional.
ii) A point is fixed by the k∗-action if and only if it lies in V (S+).

iii) If O is a 1-dimensional orbit, then O is a closed subset of W r V (S+),
O ' A1, and O ∩ V (S+) consists of one point.

Proof. By embedding W in W0 × An+1 as above, we reduce the assertions
in the lemma to the case when W = W0 ×An+1, in which case they are all clear.
Note that via this embedding, we have V (S+) = W0 × {0}. �
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Remark 4.3.4. By arguing as in Remark 4.1.5, we see that a closed subset
Z ⊆ W is invariant by the k∗-action (that is, λ · Z = Z for every λ ∈ k∗) if and
only if the corresponding ideal IW (Z) is homogeneous.

Definition 4.3.5. Given S as above, we define MaxProj(S) to be the set of
one-dimensional orbit closures for the action of k∗ on W . Since every such orbit
is clearly irreducible, being the image of a morphism k∗ → W , it follows from
Lemma 4.3.3 and Remark 4.3.4 that these orbit closures are in bijection with the
homogeneous prime ideals q ⊆ S such that S+ 6⊆ q and dim(S/q) = 1.

We put a topology on X = MaxProj(S) by declaring that a subset is closed
if it consists of all 1-dimensional orbit closures contained in some torus-invariant
closed subset of W . Equivalently, the closed subsets are those of the form

V (I) = {q ∈ MaxProj(S) | I ⊆ q},

for some homogeneous ideal I ⊆ S. The assertions in the next lemma, which are
straightforward to prove, imply that this gives indeed a topology on MaxProj(S).

Lemma 4.3.6. With the above notation, the following hold:

i) We have V (0) = MaxProj(S) and V (S) = ∅.
ii) For every two homogeneous ideals I and J in S, we have

V (I) ∪ V (J) = V (I ∩ J) = V (I · J).

iii) For every family (Iα)α of homogeneous ideals in S, we have⋂
α

V (Iα) = V

(∑
α

Iα

)
.

Since every homogeneous ideal is generated by finitely many homogeneous el-
ements, we see that every open set can be written as a finite union of sets of the
form

D+
X(f) = {q ∈ MaxProj(S) | f 6∈ q},

where f ∈ S is a homogeneous element. In fact, we may take f of positive degree,
since if t0, . . . , tn ∈ S1 generate S+, we have

D+
X(f) =

n⋃
i=0

D+
X(tif).

As a special case of this equality for f = 1, we have

MaxProj(S) = D+
X(t0) ∪ . . . ∪D+

X(tn).

Remark 4.3.7. It is clear that if I is a homogeneous ideal in S, then V (I) =
V
(
rad(I)

)
. Moreover, if

I ′ = {f ∈ S | f · S+ ⊆ rad(I)},

then V (I) = V (I ′).

For future reference, we give the following variant of graded Nullstellensatz.

Proposition 4.3.8. Let S be a graded ring as in the proposition. If I is a
homogeneous, radical ideal in S, and f ∈ S is homogeneous, such that f ∈ q for all
q ∈ MaxProj(S) with q ⊇ I, then f · S+ ⊆ I. If deg(f) > 0, then f ∈ I.
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Proof. We first prove the last assertion, assuming deg(f) > 0. After writing
S as a quotient of a polynomial ring over S0, we see that we may assume that S =
A[x0, . . . , xn], with the standard grading. Recall that we take W0 = MaxSpec(S0)
and W = MaxSpec(S) = W0 ×An+1. Let Y ⊆ W be the closed subset defined by
I. Note that W is k∗-invariant. Our assumption says that f vanishes on {w0}×L,
whenever L is a line in An+1 with {w0} ×An+1 ⊆ Y . On the other hand, since
deg(f) > 0, we see that f automatically vanishes along W0×{0}, hence f vanishes
along Y (we use the fact that Y is a union of k∗-orbits). We thus conclude that
f ∈ I. The first assertion in the proposition now follows by applying what we know
to each product fg, with g ∈ S1. �

Given an ideal q ∈ MaxProj(S), let T denote the set of homogeneous elements
in S r q. Recall that the ring of fractions T−1S carries a natural grading, whose
degree 0 part is denoted by S(q). This is a local ring, with maximal ideal mq :=

q · T−1S ∩ S(q). Similarly, given a homogeneous element f ∈ S, the localization Sf
carries a natural grading, whose degree 0 part is denoted S(f).

Lemma 4.3.9. For every t ∈ S1, the following hold:

i) We have an isomorphism of graded rings St ' S(t)[x, x
−1].

ii) Every homogeneous ideal in St is of the form
⊕

m∈Z(I ∩ S(t))t
m.

iii) We have a homeomorphism between D+(t) and MaxSpec(S(t)).
iv) For every q ∈ MaxProj(S), the residue field of S(q) is equal to k.

Proof. Since the element t
1 ∈ St has degree 1 and is invertible, it follows

easily that the homomorphism of graded S(t)-algebras

S(t)[x, x
−1]→ St

that maps x to t
1 is an isomorphism. This gives i) and the assertion in ii) is

straightforward to check.
It is clear that localization induces a bijection between the homogeneous prime

ideals in S that do not contain t and the homogeneous prime ideals in St. Moreover,
it follows from ii) that every such prime ideal in St is of the form

⊕
m∈Z ptm, for a

unique prime ideal p in S(t). If q ⊆ S corresponds to p ⊆ S(t), then

(4.3.1) (S/q)t ' (S(t)/p)[x, x−1],

hence

dim(S/q) = dim
(
(S/q)t

)
= dim(S(t)/p) + 1.

Therefore q lies in MaxProj(S) if and only if p is a maximal ideal in S(t). This gives

the bijection between D+(t) and MaxSpec(S(t)) and it is straightforward to check,
using the definitions of the two topologies, that this is a homeomorphism.

Finally, given any q ∈ MaxProj(S), we can find t ∈ S1 such that q ∈ D+(t). If
p is the corresponding ideal in S(t), then the isomorphism (4.3.1) implies that the
residue field of S(q) is isomorphic as a k-algebra to the residue field of (S(t))p, hence
it is equal to k. �

We now define a sheaf of functions on X = MaxProj(S), with values in k, as
follows. For every open subset U in X, let OX(U) be the set of functions φ : U → k
with the following property: for every x ∈ U , there is an open neighborhood Ux ⊆ U
of x and homogeneous elements f, g ∈ S of the same degree such that for every
q ∈ Ux, we have g 6∈ q and φ(q) is equal to the image of fg in the residue field of S(q),
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which is equal to k by Lemma 4.3.9. It is straightforward to check that OX(U) is
a k-subalgebra of FunX(U) and that, with respect to restriction of functions, OX
is a sheaf. This is the sheaf of regular functions on X. From now on, we denote by
MaxProj(S) the object (X,OX) in T opk.

Remark 4.3.10. It is clear from the definition that we have a morphism in
T opk

MaxProj(S)→ MaxSpec(S0)

that maps q to q ∩ S0.

Proposition 4.3.11. If we have a surjective, graded homomorphism φ : S → T ,
then we have a commutative diagram

MaxProj(T )

��

j // MaxProj(S)

f

��
MaxSpec(T0)

i // MaxProj(S0),

in which i is a closed immersion and j given an isomorphism onto V (I) (with the
induced sheaf from the ambient space)2, where I = ker(φ).

Proof. Note first that since φ is surjective, the induced homomorphism S0 →
T0 is surjective as well, hence the induced morphism i : MaxSpec(T0)→ MaxSpec(S0)
is a closed immersion. Since φ is graded and surjective, we have T+ = φ(S+) and
S+ = φ−1(T+), hence S+ ⊆ φ−1(p) if and only if T+ ⊆ p. We can thus define
j : MaxProj(T ) → MaxProj(S) by j(p) = φ−1(p). It is straightforward to see that
the diagram in the proposition is commutative and that j gives a homeomorphism
of MaxProj(T ) onto the closed subset V (I) of MaxProj(S). Furthermore, it is easy
to see, using the definition, that if U is an open subset of V (I), then a function
φ : U → k has the property that φ ◦ j is regular on j−1(U) if and only if it can be
locally extended to a regular function on open subsets in MaxProj(S). This gives
the assertion in the proposition. �

We now consider in detail the case when S = A[x0, . . . , xn], with the standard
grading. As before, let W0 = MaxSpec(A). We have seen that a point p in X =
MaxProj(S) corresponds to a subset in W0 ×An+1, of the form {w0} × L, where
L is a 1-dimensional linear subspace in kn+1, corresponding to a point in Pn. We
thus have a bijection between MaxProj(S) and W0×Pn. Moreover, since x0, . . . , xn
span S1, we see that

X =

n⋃
i=0

D+
X(xi).

The above bijection induces for every i a bijection between D+
X(xi) and W0 ×

D+
Pn(xi). In fact, this is the same as the homeomorphism between D+

X(xi) and

MaxSpec
(
A[x0, . . . , xn](xi)

)
= MaxSpec

(
A[x0/xi, . . . , xn/xi]

)
given by assertion iii) in Lemma 4.3.9. Furthermore, arguing as in the proof of
Proposition 4.2.2, we see that each of these homeomorphisms gives an isomorphism
of objects in T opk. We thus obtain the following

2Once we will show that MaxProj(S) and MaxProj(T ) are algebraic varieties, this simply
says that j is a closed immersion.
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Proposition 4.3.12. If S = A[x0, . . . , xn], with the standard grading, and
W0 = MaxSpec(A), then we have an isomorphism

MaxProj(S) 'W0 ×Pn

of varieties over W0.

Corollary 4.3.13. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then MaxProj(S) is a quasi-projective variety.

Proof. By the assumption on S, we have a graded, surjective morphism of
S0-algebras

S0[x0, . . . , xn]→ S.

If W0 = MaxSpec(S0), then it follows from Propositions 4.3.11 and 4.3.12 that we
have a closed immersion

MaxProj(S) ↪→ MaxProj
(
S0[x0, . . . , xn]

)
'W0 ×Pn,

which gives the assertion in the corollary, since a product of quasi-projective vari-
eties is quasi-projective by Exercise 4.2.21. �

Remark 4.3.14. If X is a closed subset of Pn, with homogeneous coordinate
ring SX , then MaxProj(SX) ' X. More generally, suppose that A is a reduced,
finitely generated k-algebra, W0 = MaxSpec(A), and X is a closed subvariety of
W0×Pn. If I is a radical, homogeneous ideal in A[x0, . . . , xn] such that X = V (I),
then

X ' MaxProj
(
A[x0, . . . , xn]/I

)
.

Indeed, the surjection

A[x0, . . . , xn]→ A[x0, . . . , xn]/I

induces by Proposition 4.3.11 a closed immersion

ι : MaxProj
(
A[x0, . . . , xn]/I

)
↪→ MaxProj

(
A[x0, . . . , xn]

)
.

It is then clear that, via the isomorphism MaxProj
(
A[x0, . . . , xn]

)
' W0 × Pn

provided by Proposition 4.3.12, the image of ι is equal to X.

Definition 4.3.15. Given an affine variety Y , a variety f : X → Y over Y is
projective if there is a reduced, N-graded, finitely generated k-algebra S, generated
as an S0-algebra by S1, such that Y ' MaxSpec(S0), and X is isomorphic (over Y )
to MaxProj(S). It follows from the above remark, together with Propositions 4.3.11
and 4.3.12, that X is projective over Y if and only if it admits a closed immersion
(over Y ) in Y ×Pn.

Proposition 4.3.16. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then for every homogeneous f ∈ S, of positive
degree, the open subset D+

X(f) ⊆ X = MaxProj(S) is affine.

Proof. By Proposition 4.3.11, it is enough to prove this when S = S0[x0, . . . , xn].
The argument in this case follows the one in the proof of Proposition 4.2.9. �

We now give a generalization of Proposition 4.2.10 describing the regular func-
tions on the affine open subsets D+

X(f) in MaxProj(S).
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Proposition 4.3.17. Let S be a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, and let X = MaxProj(S). For every homogeneous
f ∈ S, of positive degree, consider the homomorphism

Φ: S(f) → O
(
D+
X(f)

)
that maps g

fm to the function taking q ∈ D+
X(f) to the image of g

fm in the residue

field of S(q), which is isomorphic to k. Then Φ is an isomorphism.

Proof. The proof is similar to that of Proposition 1.4.7. We first show that
Φ is injective. Suppose that g

fm lies in the kernel of Φ. In this case, for every

q ∈ X r V (f), we have g ∈ q. This implies that fg ∈ q for every q ∈ X, hence
fg = 0 by Proposition 4.3.8, hence g

fm = 0 in (SX)(f). This proves the injectivity

of Φ.
In order to prove the surjectivity of Φ, consider φ ∈ O

(
D+
X(f)

)
. By hypothesis,

and using the quasi-compactness of D+
X(f), we may write

D+
X(f) = V1 ∪ . . . ∪ Vr,

for some open subsets Vi such that for every i, there are gi, hi ∈ S homogeneous of
the same degree such that for every q ∈ Vi, we have hi 6∈ q and φ(q) is the image of
gi
hi

in the residue field of S(q). We may assume that Vi = XrV (fi) for 1 ≤ i ≤ r, for

some homogeneous fi ∈ S, of positive degree. Since hi 6∈ q for every q ∈ XrV (fi),
it follows from Proposition 4.3.8 that fi ∈ rad(hi). After possibly replacing fi by
a suitable power, we may assume that fi ∈ (hi) for all i. Finally, after multiplying
both gi and hi by the same homogeneous element, we may assume that fi = hi for
all i.

We know that for u ∈ X r V (gigj) the two fractions gi(u)
hi(u) and

gj(u)
hj(u) have the

same image in the residue field of every S(q). By the injectivity statement we have
already proved, this implies that

gi
hi

=
gj
hj

in Shihj
.

Therefore there is a positive integer N such that

(hihj)
N (gihj − gjhi) = 0 for all i, j.

After replacing each gi and hi by gih
N
i and hN+1

i , respectively, we see that we may
assume that

gihj − gjhi = 0 for all i, j.

On the other hand, since

D+
X(f) =

r⋃
i=1

D+
X(hi),

we have

V (f) = V (h1, . . . , hr),

and therefore Proposition 4.3.8 implies that f ∈ rad(h1, . . . , hr). We can thus write

fm =

r∑
i=1

aihi for some m ≥ 1 and a1, . . . , ar ∈ S.

Moreover, by only considering the terms in Sm·deg(f), we see that we may assume
that each ai is homogeneous, with deg(ai) + deg(hi) = m · deg(f).
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In order to complete the proof, it is enough to show that

φ = Φ

(
a1g1 + . . .+ argr

fm

)
.

Note that for q ∈ D+
X(hj), we have

gj
hj

=
a1g1 + . . .+ argr

fm
in S(q)

since

hj ·
r∑
i=1

aigi =

r∑
i=1

aihigj = fmgj .

This completes the proof. �

Remark 4.3.18. Suppose that S is an N-graded k-algebra as above and

f : X = MaxProj(S)→ MaxSpec(S0) = Y

is the corresponding morphism. If a ∈ S0 and we consider the N-graded k-algebra
Sa, then we have a map

j : MaxProj(Sa)→ MaxProj(S)

that maps q to its inverse image in S. This gives an open immersion, whose image
is f−1

(
DY (a)

)
: this follows by choosing generators t1, . . . , tr ∈ S1 of S as an S0-

algebra, and by showing that for every i, the induced map

MaxSpec
(
(Sa)(ti)

)
→ MaxSpec

(
S(ti)

)
is an open immersion, with image equal to the principal affine open subset corre-
sponding to a

1 ∈ S(ti).

Remark 4.3.19. Suppose again that S is an N-graded k-algebra as above and
f : X = MaxProj(S) → MaxSpec(S0) = Y is the corresponding morphism. If J
is an ideal in S0, then the inverse image f−1

(
V (J)

)
is the closed subset V (J · S).

This is the image of the closed immersion

MaxProj
(
S/rad(J · S)

)
↪→ MaxProj(S)

(see Proposition 4.3.11).

Remark 4.3.20. For every S as above, we have a surjective morphism

π : MaxSpec(S) r V (S+)→ MaxProj(S).

Since all fibers are of dimension 1 (in fact, they are all isomorphic to A1 r {0}), we
conclude that

dim
(
MaxProj(S)

)
= dim

(
MaxSpec(S) r V (S+)

)
− 1 ≤ dim(S)− 1.

Moreover, this is an equality, unless every irreducible component of maximal dimen-
sion of MaxSpec(S) is contained in V (S+), in which case we have dim(S) = dim(S0).

Exercise 4.3.21. Show that if S is an N-graded k-algebra as above and X =
MaxProj(S), then for every q ∈ X, there is a canonical isomorphism

OX,q ' S(q).





CHAPTER 5

Proper, finite, and flat morphisms

In this chapter we discuss an algebraic analogue of compactness for algebraic
varieties, completeness, and a corresponding relative notion, properness. In particu-
lar, we prove Chow’s lemma, which relates arbitrary complete varieties to projective
varieties. As a special case of proper morphisms, we have finite morphisms, which
we have already encountered in the case of morphisms of affine varieties. We prove
an irreducibility criterion for varieties that admit a proper morphism onto an irre-
ducible variety, such that all fibers are irreducible, of the same dimension; we also
prove the semicontinuity of fiber dimension for proper morphisms. Finally we dis-
cuss an algebraic property, flatness, that is very important in the study of families
of algebraic varieties.

5.1. Proper morphisms

We will define a notion that is analogous to that of compactness for usual
topological spaces. Recall that the Zariski topology on algebraic varieties is quasi-
compact, but not Hausdorff. As we have seen, separatedness is the algebraic coun-
terpart to the Hausdorff property. A similar point of view allows us to define the
algebraic counterpart of compactness. The key observation is the following.

Remark 5.1.1. Let us work in the category of Hausdorff topological spaces.
A topological space X is compact if and only if for every other topological space
Z, the projection map p : X × Z → Z is closed. More generally, a continuous
map f : X → Y is proper (recall that this means that for every compact subspace
K ⊆ Y , its inverse image f−1(K) is compact) if and only if for every continuous
map g : Z → Y , the induced map X ×Y Z → Z is closed.

Definition 5.1.2. A morphism of varieties f : X → Y is proper if for every
morphism g : Z → Y , the induced morphism X ×Y Z → Z is closed. A variety X
is complete if the morphism from X to a point is proper, that is, for every variety
Z, the projection X × Z → Z is closed.

Remark 5.1.3. Note that if f : X → Y is a proper morphism, then it is closed
(simply apply the definition to the identity map Z = Y → Y .

We collect in the next proposition some basic properties of this notion.

Proposition 5.1.4. In what follows all objects are algebraic varieties.

i) If f : X → Y and g : Y → Z are proper morphisms, then g ◦ f is a proper
morphism.

ii) If f : X → Y is a proper morphism, then for every morphism g : Z → Y ,
the induced morphism X ×Y Z → Z is proper.

iii) Every closed immersion i : X ↪→ Y is proper.

93
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iv) If X is a complete variety, then any morphism f : X → Y is proper.
v) If f : X → Y is a morphism and Y has an open cover Y = U1∪. . .∪Ur such

that each induced morphism f−1(Ui)→ Ui is proper, then f is proper.

Proof. Under the assumption in i), given any morphism h : W → Z, consider
the commutative diagram with Cartesian squares:

X ×Y Y ×Z W

��

p // Y ×Z W

��

q // W

��
X

f // Y
g // Z.

In this case, the big rectangle is Cartesian. The assumption implies that the mor-
phisms p and q are closed, hence the composition q ◦ p is closed. This gives i).

For ii), we argue similarly: given a morphism h : W → Z, consider the commu-
tative diagram with Cartesian squares:

X ×Y Z ×Z W

p

��

// X ×Y Z

q

��

// X

f

��
W // Z

g // Y.

Since the big rectangle is Cartesian, it follows from the hypothesis that p is closed.
This proves that q is proper.

If i : X ↪→ Y is a closed immersion, then for every morphism g : Z → Y , the
induced morphism X ×Y Z → Z is a closed immersion, whose image is g−1

(
i(X)

)
(see Example 2.4.8). Since every closed immersion is clearly closed, it follows that
i is proper.

Suppose now that X is a complete variety and f : X → Y is an arbitrary
morphism. We can factor f as

X
if
↪→ X × Y p−→ Y,

where if is the graph morphism associated to f and p is the projection. The map p
is proper, by property ii), since X is complete, and if is proper by iii), being a closed
immersion, since X and Y are separated. Therefore the composition f = p ◦ if is
proper, proving iv).

Under the assumptions in v), consider a morphism g : Z → Y and let p : X ×Y
Z → Z be the induced morphism. We have an induced open cover Z =

⋃r
i=1 g

−1(Ui)
and for every i, we have an induced morphism

pi : p
−1
(
g−1(Ui)

)
= f−1(Ui)×Ui g

−1(Ui)→ g−1(Ui).

Since f−1(Ui)→ Ui is proper, it follows that pi is closed, which easily implies that
p is closed. �

Remark 5.1.5. It follows from property ii) in the proposition that if f : X → Y
is a proper morphism, then for every y ∈ Y , the fiber f−1(y) is a complete variety
(possibly empty).

Exercise 5.1.6. Show that ifX is a connected, complete variety, then Γ(X,OX) =
k. Deduce that a complete variety is also affine if and only if it is a finite set of
points.
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Exercise 5.1.7. Show that if f : X → Y and g : Y → Z are morphisms of
algebraic varieties, with g ◦ f proper, then f is proper. Show that the same holds
if we replace “proper” by “closed immersion” or “locally closed immersion.

The following is the main result of this section.

Theorem 5.1.8. The projective space Pn is a complete variety.

Proof. We need to show that given any variety Y , the projection morphism
p : Pn × Y → Y is closed. If we consider an affine open cover Y =

⋃r
i=1 Ui, it is

enough to show that each projection Pn × Ui → Ui is closed. Therefore we may
and will assume that Y is affine, say Y = MaxSpec(A) and we need to show that
the canonical morphism

f : X = MaxProj
(
A[x0, . . . , xn]

)
→ Y

is closed.
Let W = V (I) be a closed subset of X. Recall that if

I ′ = {f ∈ A[x0, . . . , xn] | f · (x0, . . . , xn) ⊆ rad(I)},

then V (I ′) = V (I). We need to show that if m 6∈ f(W ), then there is h ∈ A such
that m ∈ DY (h) and DY (h) ∩ f(W ) = ∅. For this, it is enough to find h ∈ A such
that h ∈ I ′ and h 6∈ m. Indeed, in this case, for every q ∈ W = V (I ′), we have
h ∈ q ∩A, hence q ∩A 6∈ DY (h).

For every i, with 0 ≤ i ≤ n, consider the affine open subset Ui = DX(xi) of
X. Since Ui is affine, with O(Ui) = A[x0, . . . , xn](xi) = A[x0/xi, . . . , xn/xi], and
W ∩ Ui is the open subset defined by

I(xi) = {g/xmi | m ≥ 0, g ∈ I ∩A[x0, . . . , xn]m},

the condition that m 6∈ f(Ui) is equivalent to the fact that

m ·A[x0/xi, . . . , xn/xi] + I(xi) = A[x0/xi, . . . , xn/xi].

By putting the condition that 1 lies on the left-hand side and by clearing the
denominators, we conclude that

xmi ∈ m ·A[x0, . . . , xn] + I for some m ∈ N.

Since such a condition holds for all i, we conclude that if N � 0 then

(x0, . . . , xn)N ⊆ m ·A[x0, . . . , xn] + I.

This implies

Am[x0, . . . , xn]N ⊆ m ·Am[x0, . . . , xn]N + (I ·Am[x0, . . . , xn])N

and we deduce from Nakayama’s lemma that

Am[x0, . . . , xn]N ⊆ (I ·Am[x0, . . . , xn])N .

This implies that there is h ∈ Arm such that h · (x0, . . . , xn)N ⊆ I, hence h ∈ I ′.
This completes the proof of the theorem. �

Corollary 5.1.9. Every projective variety is complete. Moreover, every mor-
phism of varieties f : X → Y , with X projective, is proper; in particular, it is
closed.
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Proof. This follows from the theorem, using various assertions in Proposi-
tion 5.1.4. Since X is a projective variety, there is a closed immersion i : X ↪→ Pn

for some n. Note that i is proper by assertion iii) in the proposition and Pn is
complete by the theorem, hence we conclude that X is complete, using assertion
i) in the proposition. The fact that every morphism X → Y is proper now follows
from assertion iv) in the proposition. �

Corollary 5.1.10. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an S0-algebra by S1, then the canonical morphism f : MaxProj(S) →
MaxSpec(S0) is proper.

Proof. The morphism f factors as

MaxProj(S)
i
↪→ MaxSpec(S0)×Pn p−→ MaxSpec(S0),

where i is a closed immersion and p is the projection. Since Pn is complete, we
deduce that p is proper by assertion ii) in Proposition 5.1.4 and i is a closed im-
mersion by assertion iii) in the proposition. We thus conclude that f is proper by
assertion i) in the proposition. �

For the sake of completeness, we mention the following embedding theorem.
Its proof is more involved (see, for example, [Con07]).

Theorem 5.1.11. (Nagata, Deligne) For every algebraic variety X, there is an
open immersion i : X ↪→ Y , where Y is complete. More generally, every morphism
of algebraic varieties f : X → Z factors as a composition

X
i
↪→ Y

p−→ Z,

with i an open immersion and p a proper morphism.

The next exercise deals with an important example of a proper, birational
morphism: the blow-up of the affine space at the origin.

Exercise 5.1.12. Thinking of Pn−1 as the set of lines in An, define the blow-up
of An at 0 as the set

Bl0(An) := {(P, `) ∈ An ×Pn−1 | P ∈ `}.
1) Show that Bl0(An) is a closed subset of An ×Pn−1.
2) Show that the restriction of the projection onto the first component gives

a morphism π : Bl0(An)→ An that is an isomorphism over An r {0}.
3) Show that π−1(0) ' Pn−1.
4) Show that π is a proper morphism.

5.2. Chow’s lemma

In this section we discuss a result that is very useful in reducing statements
about complete varieties to the case of projective varieties. More generally, it allows
reducing statements about proper morphisms to a special case of what we will later
define as projective morphisms. In order to make things more transparent, we begin
with the statement in the absolute case.

Theorem 5.2.1. (Chow’s lemma) If X is a complete variety, then there is
a projective variety Y and a morphism g : Y → X that induces an isomorphism
between dense open subsets of Y and X.
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Here is the relative version of the above result:

Theorem 5.2.2. (Chow’s lemma, relative version) If f : X → Z is a proper
morphism of algebraic varieties, then there is a morphism g : Y → X that satisfies
the following conditions:

i) The morphism g induces an isomorphism between dense open subsets of
Y and X.

ii) The composition f ◦ g factors as

Y
i
↪→ Z ×PN p−→ Z,

where i is a closed immersion, N is a positive integer, and p is the pro-
jection onto the first factor.

Of course, it is enough to only prove the relative statement. We give the proof
following [Mum88].

Proof of Theorem 5.2.2. Note first that we may assume that X is irre-
ducible. Indeed, if X1, . . . , Xr are the irreducible components of X and if we can
construct morphisms Yi → Xi as in the theorem, then we have an induced mor-
phism Y =

⊔
i Yi → X which satisfies the required conditions (note that if we

have closed immersions Yi ↪→ Z × Pni , then we can construct a closed immersion
Y ↪→ Z ×Pd, where d+ 1 =

∑r
i=1(ni + 1), by embedding the Pni in Pd as disjoint

linear subspaces).
Suppose now that X is irreducible and consider an affine open cover X =

U1∪ . . .∪Un. Since each Ui is an affine variety, it admits a locally closed immersion
in a projective space Pmi . We thus obtain a morphism Ui ↪→ Z × Pmi which is
again a locally closed immersion (see Exercise 5.1.7) and we denote its image by
Ui. Using the Segre embedding we see that we have a closed immersion

U1 ×Z . . .×Z Un ↪→ Z ×Pm1 × . . .×Pmn ↪→ Z ×PN ,

where N + 1 =
∏
i(mi + 1).

Let U∗ = U1 ∩ . . . ∩ Un. Since X is irreducible, U∗ is a nonempty open subset
of X. We consider two locally closed immersions. First, we have

α : U∗ → U1 ×Z . . .×Z Un
that on each component is given by the corresponding inclusion map. This is a
locally closed immersion since it factors as the composition

U∗ → U∗ ×Z × . . .×Z U∗ → U1 ×Z . . .×Z Un,

with the first map being a diagonal map (hence a closed immersion) and the second
being a product of open immersions (hence an open immersion). We denote by W
the closure of α(U∗). Since W is a closed subvariety of U1 ×Z . . . ×Z Un, we see
that the canonical morphism W → Z factors as

W ↪→ Z ×PN → Z,

where the first morphism is a closed immersion and the second morphism is the
projection onto the first component.

We also consider the map

β : U∗ → X ×Z U1 ×Z . . .×Z Un
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that on each component is given by the corresponding inclusion. Again, this is a
locally closed immersion, and we denote the closure of its image by Y . It is clear
that the projection onto the last n components

X ×Z U1 ×Z . . .×Z Un → U1 ×Z . . .×Z Un
induces a morphism q : Y →W , while the projection onto the first component

X ×Z U1 ×Z . . .×Z Un → X

induces a morphism g : Y → X. The restriction of g to U∗ is the identity, hence g
is birational. Note that q is a closed map, since f is proper. In particular, since its
image contains the dense open subset U∗, it follows that q is surjective.

The key assertion is that q is an isomorphism. Once we know this, we see that
f ◦ g factors as

Y ↪→ Z ×PN → Z,

with the first map being a closed immersion, and therefore g has the required
properties.

In order to show that q is an isomorphism, we consider for every i the map

αi : Ui ↪→ X ×Z Ui,
given by the inclusion on each component. This is again a locally closed immersion.
Moreover, since the maps

Ui ↪→ X ×Z Ui and Ui ↪→ Ui ×Z Ui
are closed immersions (as the graphs of the inclusion maps Ui ↪→ X and Ui ↪→ Ui,
respectively), it follows that

αi(Ui) ∩ (X ×Z Ui) = {(u, u) | u ∈ Ui} = αi(Ui) ∩ (Ui ×Z Ui).
Consider the projection map

π1,i : X ×Z U1 ×Z . . .×Z Un → X ×Z Ui.

Since π1,i(Y ) ⊆ αi(U∗) = αi(Ui), we deduce that

Vi := Y ∩ (X ×Z U1 ×Z . . .×Z Ui ×Z . . .×Z Un)

= Y ∩ (Ui ×Z U1 ×Z . . .×Z Un) = Y ∩ {(u0, u1, . . . , un) | u0 = ui ∈ Ui}.
The first formula for Vi shows that Vi = q−1(V ′i ), where

V ′i = W ∩ U1 ×Z . . .×Z Ui ×Z . . .×Z Un
is an open subset of W . From the second formula for V ′i we deduce that Y =
V1 ∪ . . . ∪ Vn and since q is surjective, it follows that W = V ′1 ∪ . . . ∪ V ′n.

In order to conclude the proof, it is thus enough to show that each induced
morphism Vi → V ′i is an isomorphism. We define the morphism

γi : V
′
i → X ×Z U1 ×Z . . .×Z Un

by
γi(u1, . . . , un) = (ui, u1, . . . , un).

This is well-defined, and since it maps U∗ to U∗, it follows that its image lies inside
Y . Moreover, we clearly have q ◦ γi(u1, . . . , un) = (u1, . . . , un); in particular, the
image of γi lies inside Vi. Finally, if u = (u0, u1, . . . , un) ∈ Vi, then u0 = ui lies in
Ui, hence u = γi

(
q(u)

)
. This shows that γi gives an inverse of q|Vi : Vi → V ′i and

thus completes the proof of the theorem. �
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5.3. Finite morphisms

We discussed in Chapter 3 finite morphisms between affine varieties. We now
consider the general notion.

Definition 5.3.1. The morphism f : X → Y between algebraic varieties is
finite if for every affine open subset V ⊆ Y , its inverse image f−1(V ) is an affine
variety, and the induced k-algebra homomorphism

OY (V )→ OX
(
f−1(V )

)
is finite.

It is not clear that in the case when X and Y are affine varieties, the above
definition coincides with our old one. However, this follows from the following
theorem.

Proposition 5.3.2. Let f : X → Y be a morphism of algebraic varieties. If
there is an affine open cover Y =

⋃r
i=1 Vi such that each Ui = f−1(Vi) is an affine

variety and the induced morphism

OY (Vi)→ OX(Ui)

is finite, then f is a finite morphism.

We begin with a lemma which is useful in several other situations.

Lemma 5.3.3. If X is an algebraic prevariety and U , V ⊆ X are affine open
subsets, then for every p ∈ U ∩ V , there is open neighborhood W ⊆ U ∩ V of p that
is a principal affine open subset in both U and V .

Proof. We first choose an open neighborhood W1 ⊆ U ∩ V of p of the form
W1 = DU (f) for some f ∈ O(U). We next choose another open neighborhood
W ⊆ W1 of the form W = DV (g), for some g ∈ O(V ). It is enough to show that
W is a principal affine open subset also in U .

Since O(W1) ' O(U)f , it follows that there is h ∈ O(U) such that g|W1 = h
fm

for some non-negative integer m. In this case we have W = DU (fh), completing
the proof. �

Proof of Proposition 5.3.2. Note that if W is a principal affine open sub-
set of some of the Vi, then f−1(W ) is affine and the induced morphism

(5.3.1) OY (W )→ OX
(
f−1(W )

)
is finite. Indeed, if W = DVi(φ), then f−1(W ) = DUi(φ ◦ f) is affine and the
morphism (5.3.1) is identified to

OY (Vi)φ → O(Ui)φ◦f ,

which is finite.
Let V ⊆ Y be an arbitrary affine open subset. Since V is covered by the open

subsets V ∩Vi, applying for each pair (V, Vi) Lemma 5.3.3, and using what we have
already seen, we see that we can cover V by finitely many principal affine open
subsets W1, . . . ,Ws, such that each f−1(Wi) is affine and the induced morphism

(5.3.2) OY (Wi)→ OX
(
f−1(Wi)

)
is finite. Let us write Wi = DV (φi), for some φi ∈ OY (V ). The condition that V =⋃s
i=1Wi is equivalent to the fact that φ1, . . . , φs generate the unit ideal in OY (V ).
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This implies that the f#(φi) = φi ◦ f generate the unit ideal in OX
(
f−1(V )

)
.

Since each Df−1(V )(φi ◦ f) is affine, it follows from Proposition 2.3.16 that f−1(V )
is affine.

Moreover, theOY (V )-moduleOX
(
f−1(V )

)
has the property thatOX

(
f−1(V )

)
φi

is a finitely generated module over OY (V )φi
for all i. Since the φi generate the unit

ideal in OY (V ), we conclude using Corollary C.3.5 that OX
(
f−1(V )

)
is a finitely

generated OY (V )-module. �

Remark 5.3.4. If f : X → Y is a finite morphism, then for every y ∈ Y ,
the fiber f−1(y) is finite. Indeed, if V is an affine open neighborhood of y, then
U = f−1(V ) is affine and the induced morphism f−1(V ) → V is finite. Applying
to this morphism Remark 3.2.7, we deduce that f−1(y) is finite.

In the next proposition we collect some general properties of finite morphisms.

Proposition 5.3.5. In what follows, all objects are algebraic varieties.

i) If f : X → Y and g : Y → Z are finite morphisms, then g ◦ f : X → Z is
a finite morphism.

ii) If f : X → Y is a finite morphism, then for every morphism g : Z → Y ,
the induced morphism h : X ×Y Z → Z is a finite morphism.

iii) Every closed immersion i : X ↪→ Y is a finite morphism.
iv) If f : X → Y is a morphism and Y = V1 ∪ . . . ∪ Vr is an open cover such

that each induced morphism f−1(Vi)→ Vi is finite, then f is finite.

Proof. The assertions in i) and iii) are straightforward to see and the one in iv)
follows by covering each Vi by affine open subsets and then using Proposition 5.3.2.
We now prove the assertion in ii). Let V = V1 ∪ . . . ∪ Vr be an affine open cover of
Y . For every i, consider an affine open cover g−1(Vi) =

⋃
j Ui,j . Note that we have

h−1(Ui,j) = f−1(Vi)×Vi
Ui,j .

Using Proposition 5.3.2, we thus see that it is enough to prove the assertion when
X, Y , and Z are affine varieties. In this case, X ×Y Z is affine, since it is a closed
subvariety of X × Z (see Proposition 2.4.7). Moreover, the morphism

h# : O(Z)→ O(X ×Y Z)

factors as

O(Z) = O(Y )⊗O(Y ) O(Z)
f#⊗1−→ O(X)⊗O(Y ) O(Z)

p−→ O(X ×Y Z).

The homomorphism f#⊗1 is finite since f# is finite and p is surjective (this follows,
for example, from the fact that X×Y Z is a closed subvariety of X×Z, but see also
Remark 2.4.9 for a more precise statement). This completes the proof of ii). �

The next proposition extends to arbitrary morphisms some properties that we
have already proved for finite morphisms between affine varieties.

Proposition 5.3.6. Let f : X → Y be a finite morphism.

1) The map f is closed.
2) If Z1 ( Z2 are irreducible closed subsets of X, then f(Z1) ( f(Z2) are

irreducible, closed subsets of Y .
3) If f is surjective, then given any irreducible, closed subset W of Y , there

is an irreducible, closed subset Z in X such that f(Z) = W .
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4) If Z1 is an irreducible, closed subset of X and W1 ⊇ W2 are irreducible,
closed subsets of Y , with W1 = f(Z1), then there is Z2 ⊆ Z1 irreducible
and closed such that f(Z2) = W2.

Proof. We have already seen these properties when X and Y are affine vari-
eties in Corollary 3.2.9. Let Y = V1 ∪ . . . ∪ Vr be an affine open cover of Y . By
definition, each f−1(Vi) is affine and the induced morphism f−1(Vi)→ Vi is finite,
hence it satisfies the properties in the proposition. Since each map f−1(Vi)→ Vi is
closed, it follows that f is closed, hence we have 1). The assertions in 2), 3), and 4)
similarly follow from the corresponding ones for the morphisms f−1(Vi)→ Vi. �

Corollary 5.3.7. Every finite morphism f : X → Y is proper.

Proof. Given any morphism of varieties g : Z → Y , assertion ii) in Proposi-
tion 5.3.5 implies that the induced morphism X ×Y Z → Z is finite. This is thus
closed by assertion 1) in Proposition 5.3.6, which shows that f is proper. �

We mention the following converse to Corollary 5.3.7. This is a deeper result
that we will only prove later.

Theorem 5.3.8. If f : X → Y is a proper morphism with finite fibers, then f
is finite.

The following proposition gives another property of finite morphisms that we
have seen for affine varieties.

Proposition 5.3.9. If f : X → Y is a finite, surjective morphism of algebraic
varieties, then for every closed subset Z of X, we have

dim
(
f(Z)

)
= dim(Z).

Moreover, if Z is irreducible, then

codimY

(
f(Z)

)
= codimX(Z).

Proof. This can be deduced from the properties in Proposition 5.3.6 as in the
proof of Corollary 3.2.10. �

Example 5.3.10. If L1 and L2 are disjoint linear subspaces of Pn, with dim(L1)+
dim(L2) = n−1, then the projection of Pn onto L2, with center L1 is the morphism
π : Pn r L1 −→ L2 such that π(p) is the intersection of L2 with the linear span
〈L1, p〉 of L1 and p. In order to see that this is indeed a morphism, let’s apply an
element of PGLn+1(k) to Pn in order to have

L1 = (x0 = . . . = xr = 0) and L2 = (xr+1 = . . . = xn = 0).

We consider the isomorphism Pr ' L2 given by

[u0, . . . , ur]→ [u0, . . . , ur, 0, . . . , 0].

Note that if p = [a0, . . . , an] ∈ Pn r L1, then the linear span of L1 and p is the set

{[λa0, . . . , λar, br+1, . . . , bn] | λ ∈ k∗, br+1, . . . , bn ∈ k}.

We thus see that the map π : Pn r L1 → Pr is given by

π
(
[a0, . . . , an]

)
= [a0, . . . , ar]

and it is now straightforward to check that π is a morphism.
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Let us show that if X is a closed subvariety of Pn such that X ∩ L1 = ∅,
then the induced morphism πX : X → L2 is finite. This is an easy consequence
of Theorem 5.3.8, since the hypothesis implies that πX has finite fibers: the fiber
over a point q ∈ L2 lies in the linear span 〈L1, q〉 of L1 and q, which has dimension
equal to dim(L1) + 1; if this is not finite, then its intersection with the hyperplane
L1 ⊆ 〈L1, q〉 would be non-empty by Corollary 4.2.12. However, we will give a
direct argument for the finiteness of πX , since we haven’t proved Theorem 5.3.8
yet.

After a linear change of coordinates as above, we may assume that

π : Pn r L1 → Pr, πX
(
[a0, . . . , an]

)
= [a0, . . . , ar].

Note that π is the composition of (n−r) maps, each of which is the projection from
a point onto a hyperplane. Indeed, if

πi : Pr+i r {[0, . . . , 0, 1]} → Pr+i−1, πi
(
[u0, . . . , ur+i]

)
= [u0, . . . , ur+i−1]

for 1 ≤ i ≤ n − r, then it is clear that π = π1 ◦ . . . ◦ πn−r. Since a composition
of finite morphisms is finite, we see that we only need to prove our assertion when
r = n− 1.

It is enough to show that if Ui = (xi 6= 0) ⊆ Pn−1, then for each i, with
0 ≤ i ≤ n− 1, the inverse image π−1

X (Ui) is affine and the induced homomorphism

(5.3.3) O(Ui)→ O
(
π−1
X (Ui)

)
is a finite homomorphism. The fact that π−1

X (Ui) is affine is clear, since this is equal

to D+
X(xi), hence it is affine by Proposition 4.2.9. Moreover, by Proposition 4.2.10,

we can identify the homomorphism (5.3.3) with

(5.3.4) k[x0, . . . , xn−1](xi) = k

[
x0

xi
, . . . ,

xn−1

xi

]
→ (SX)(xi),

where SX is the homogeneous coordinate ring of X. Since (SX)(xi) is generated

by
xj

xi
, with 0 ≤ j ≤ n, in order to show that (5.3.4) is a finite homomorphism, it

is enough to show that each
xj

xi
∈ (SX)(xi) is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This

is clear if j ≤ n − 1, hence we only need to consider xn

xi
. By hypothesis, we have

[0, . . . , 0, 1] 6∈ X. Therefore there is a homogeneous polynomial f , say of degree
d, in the ideal IX corresponding to X such that xdn appears in f with nonzero
coefficient. If d = 0, then X is empty, in which case the assertion to prove is trivial.

If d > 0, we may assume that f = xdn+
∑d
i=1 gi(x0, . . . , xn−1)xd−in . Dividing by xdi ,

we thus conclude that(
xn
xi

)d
+

d∑
i=1

gi

(
x0

xi
, . . . ,

xn−1

xi

)
= 0 in (SX)(xi),

hence xn

xi
is integral over k

[
x0

xi
, . . . , xn−1

xi

]
. This gives our assertion.

In particular, we see that if X is a projective d-dimensional variety, then there
is a finite morphism X → Pd. Indeed, if X is a closed subvariety of Pn different
from Pn, by projecting from a point not in X we obtain a finite morphism X → Y ,
where Y is a d-dimensional subvariety of Pn−1. By iterating this construction we
obtain a finite morphism X → Pd.
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Proposition 5.3.11. Let f : X → Y be a dominant morphism of irreducible
varieties. If dim(X) = dim(Y ), then there is a non-empty open subset V of Y such
that the induced morphism f−1(V ) → V is finite (in this case, one says that f is
generically finite).

Note that the converse also holds by Proposition 5.3.9.

Proof of Proposition 5.3.11. We may clearly replace Y by an affine open
subset and X by the inverse image of this subset, in order to assume that Y is
an affine variety. In fact, we may assume that X is affine as well. Indeed, let
us choose an affine open subset U of X and suppose that we know the assertion
in the proposition for the induced morphism U → Y . In other words, we know
that there is a non-empty open subset V of Y , such that the induced morphism
g : U ∩ f−1(V )→ V is finite. Note that if Z = f(X r U), then

dim(Z) ≤ dim(X r U) < dim(X) = dim(Y ),

hence Z is a proper closed subset of Y . If we take V ′ = V r Z, then V ′ is non-
empty and the induced morphism g−1(V ′) = U ∩ f−1(V ′)→ V ′ is finite. However,
it follows from the definition of X ′ that f−1(V ′) ⊆ U , which implies that V ′ satisfies
the requirement in the proposition.

Suppose now that both X and Y are affine varieties, and consider the homo-
morphism

f# : A = O(Y )→ O(X) = B

corresponding to f . Note that this is injective since f is dominant. Let k(Y ) =
Frac(A) be the field of rational functions of Y . The assumption that dim(X) =
dim(Y ) implies that Frac(B) is algebraic, hence finite, over Frac(A) by Corol-
lary 3.3.9. Noether’s Normalization lemma thus implies that B ⊗A k(Y ) is a finite
k(Y )-algebra. Let b1, . . . , br ∈ B be generators of B as a k-algebra. Since each bi
is algebraic over k(Y ), we see that there is fi ∈ A such that bi

1 is integral over Afi .

This implies that if f =
∏
i fi, then each bi

1 is integral over Af , hence Af → Bf
is a finite homomorphism. Therefore V = DY (f) satisfies the assertion in the
proposition. �

We end this section by introducing another class of morphisms.

Definition 5.3.12. A morphism of algebraic varieties f : X → Y is affine if
for every affine open subset V ⊆ Y , its inverse image f−1(V ) is affine.

The next proposition shows that, in fact, it is enough to check the property in
the definition for an affine open cover of the target. In particular, this implies that
every morphism of affine varieties is affine.

Proposition 5.3.13. Let f : X → Y be a morphism of algebraic varieties. If
there is an open cover Y = V1 ∪ . . . ∪ Vr, with each Vi affine, such that all f−1(Vi)
are affine, then f is an affine morphism.

Proof. The argument follows as in the proof of Proposition 5.3.2. �

5.4. Semicontinuity of fiber dimension for proper morphisms

Our goal in this section is to prove the following semicontinuity result for the
dimensions of the fibers of a proper morphism.
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Theorem 5.4.1. If f : X → Y is a proper morphism of algebraic varieties, then
for every non-negative integer m, the set

{y ∈ Y | dim
(
f−1(y)

)
≥ m}

is closed in Y .

This is an immediate consequence of the following more technical statement,
but which is valid for an arbitrary morphism.

Proposition 5.4.2. If f : X → Y is a morphism of algebraic varieties, then
for every non-negative integer m, the set Xm consisting of those x ∈ X such that
the fiber f−1

(
f(x)

)
has an irreducible component of dimension ≥ m passing through

x, is closed.

Proof. Arguing by Noetherian induction, we may assume that the assertion
in the proposition holds for every f |Z , where Z is a proper closed subset of X. If
X is not irreducible and X(1), . . . , X(r) are the irreducible components of X, we

know that each X
(j)
m is closed in X(j), hence in X. Since

Xm =

r⋃
j=1

X(j)
m ,

we conclude that Xm is closed.
Therefore we may and will assume that X is irreducible. Of course, we may

replace Y by f(X) and thus assume that Y is irreducible and f is dominant. In
this case, if m ≤ dim(X) − dim(Y ), then Xm = X by Theorem 3.4.1, hence we
are done. On the other hand, it follows from Theorem 3.4.2 that there is an open
subset V of Y such that if y ∈ V , then every irreducible component of f−1(y) has
dimension equal to dim(X) − dim(Y ). We deduce that if m > dim(X) − dim(Y )
and we put Z = X r f−1(V ), then Z is a proper closed subset of X such that
Xm = Zm. Since Zm is closed in Z, hence in X, by the inductive assumption, we
are done. �

Proof of Theorem 5.4.1. With the notation in the proposition, we have

{y ∈ Y | dim
(
f−1(y)

)
≥ m} = f(Xm).

Since Xm is closed and f is proper, it follows that f(Xm) is closed. �

Remark 5.4.3. If f : X → Y is an arbitrary morphism of algebraic varieties,
we can still say that the subset

{y ∈ Y | dim
(
f−1(y)

)
≥ m}

is constructible in Y . Indeed, with the notation in Proposition 5.4.2, we see that
this set is equal to f(Xm). Since Xm is closed in X by the proposition, its image
f(Xm) is constructible by Theorem 3.5.3.

Note that also the set

{y ∈ Y | dim
(
f−1(y)

)
= m}

is constructible in Y , being the difference of two constructible subsets.
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5.5. An irreducibility criterion

The following result is an useful irreducibility criterion.

Proposition 5.5.1. Let f : X → Y be a morphism of algebraic varieties. Sup-
pose that Y is irreducible and that all fibers of f are irreducible, of the same dimen-
sion d (in particular, f is surjective). If either one of the following two conditions
holds:

a) X is pure-dimensional;
b) f is closed,

then X is irreducible, of dimension d+ dim(Y ).

We will be using the proposition for proper morphisms f , so that condition b)
will be automatically satisfied.

Proof of Proposition 5.5.1. We will show that in general–that is, without
assuming a) or b)– the following assertions hold:

i) There is a unique irreducible component of X that dominates Y , and
ii) Every irreducible component Z of X is a union of fibers of f . Its dimension

is equal to dim
(
f(Z)

)
+ d.

Let X = X1∪ . . .∪Xr be the irreducible decomposition of X. For every y ∈ Y ,
we put Xy = f−1(y), and (Xj)y = Xy ∩Xj . Since Xy =

⋃r
j=1(Xj)y, and since Xy

is irreducible, it follows that for every y, there is j such that Xy = (Xj)y.
For every i, let Ui := Xi r

⋃
j 6=iXj . This is a nonempty open subset of X.

Note that if y ∈ f(Ui), then Xy can’t be contained in (Xj)y for any j 6= i. It follows
that

(5.5.1) Xy = (Xi)y for all y ∈ f(Ui).

Note that some X` has to dominate Y : since f is surjective, we have Y =⋃
j f(Xj), and since Y is irreducible, we see that there is ` such that Y = f(X`).

In this case we also have Y = f(U`), and Theorem 3.4.2 implies that there is an
open subset V of Y contained in f(U`). We deduce from (5.5.1) that Xy = (X`)y
for every y ∈ V , hence for all j 6= `, we have Xj r X` ⊆ f−1(Y r V ). Therefore

Xj = Xj rX` is contained in f−1(Y r V ) (which is closed). We conclude that Xj

does not dominate Y for any j 6= `.
On the other hand, it follows from Theorems 3.4.1 and 3.4.2 that for every i,

the following hold

α) dim(Xi)y ≥ dim(Xi)− dim
(
f(Xi)

)
for every y ∈ f(Xi) and

β) There is an open subset Wi in f(Xi) such that for all y ∈ Wi we have

dim(Xi)y = dim(Xi)− dim
(
f(Xi)

)
.

Since Wi∩f(Ui) 6= ∅, it follows from β) and (5.5.1) that d = dim(Xi)−dim
(
f(Xi)

)
for every i. Furthermore, for every y ∈ f(Xi), we know by α) that (Xi)y is a closed
subset of dimension d of the irreducible variety Xy of dimension d. Therefore
Xy = (Xi)y for all y ∈ f(Xi), which says that each Xi is a union of fibers of f .
Therefore assertions i) and ii) hold.

In particular, it follows from i) and ii) that if i 6= `, then f(Xi) is a proper
subset of Y , and

dim(Xi) = d+ dim(f(Xi)) < d+ dim(Y ) = dim(X`).
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If X is pure-dimensional, then we conclude that X is irreducible.
Suppose now that f is a closed map. Since f(X`) is closed, it follows that

f(X`) = Y . We have seen that X` is a union of fibers of f , hence X` = X.
Therefore X is irreducible also in this case. �

Example 5.5.2. Consider the incidence correspondence between points and
hyperplanes in Pn, defined as follows. Recall that (Pn)∗ is the projective space
parametrizing the hyperplanes in Pn. We write [H] for the point of (Pn)∗ corre-
sponding to the hyperplane H. Consider the following subset of Pn × (Pn)∗:

Z =
{(
p, [H]

)
∈ Pn × (Pn)∗ | p ∈ H

}
.

Note that if we take homogeneous coordinates x0, . . . , xn on Pn and y0, . . . , yn on
(Pn)∗, then Z is defined by the condition

∑n
i=0 xiyi = 0. It is the straightforward

to see, by considering the products of the affine charts on Pn and (Pn)∗, that Z
is a closed subset of Pn × (Pn)∗. The projections on the two components induce
morphisms π1 : Z → Pn and π2 : Z → (Pn)∗. For every [H] ∈ (Pn)∗, we have
π−1

2 ([H]) ' H, hence all fibers of π2 are irreducible, of dimension n−1. Since (Pn)∗

is irreducible, it follows from Proposition 5.5.1 that Z is irreducible, of dimension
2n − 1. Note that the picture is symmetric: for every p ∈ Pn, the fiber π−1

1 (p)
consists of all hyperplanes in Pn that contain p, which is a hyperplane in (Pn)∗.

5.6. Flat morphisms

We begin by reviewing the concept of a flat module. Recall that if M is a
module over a commutative ring A, then the functor M ⊗A− from the category of
A-modules to itself, is right exact. The module M is flat if, in fact, this is an exact
functor. Given a ring homomorphism φ : A → B, we say that φ is flat (or that B
is a flat A-algebra) if B is flat as an A-module.

Example 5.6.1. The ring A is flat as an A-module, since A ⊗A M ' M for
every A-module M .

Example 5.6.2. A direct sum of flat A-modules is flat, since tensor product
commutes with direct sums and taking a direct sum is an exact functor. It follows
from the previous example that every free module is flat. In particular, every vector
space over a field is flat.

Example 5.6.3. If (Mi)i∈I is a filtered direct system of flat A-modules, then
M = lim−→

i∈I
Mi is a flat A-module. Indeed, since the tensor product commutes with

direct limits, for every injective morphism of A-modules N1 ↪→ N2, the induced
morphism

N1 ⊗AM → N2 ⊗AM
can be identified with the direct limit of the injective morphisms

N1 ⊗Mi → N2 ⊗AMi.

Since a filtered direct limit of injective morphisms is injective, we obtain our asser-
tion.

Example 5.6.4. If M is a flat A-module, then for every non-zero-divisor a ∈ A,
multiplication by a is injective on A, and after tensoring with M , we see that
multiplication by a is injective also on M . In particular, if A is a domain, then M
is torsion-free.
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The converse holds if A is a PID: every torsion-free A-module is flat. Indeed,
M is the filtered direct limit of its finitely generated submodules, which are free
A-modules, being finitely generated and torsion-free over a PID. Since every filtered
direct limit of flat modules is flat, we conclude that M is flat.

Example 5.6.5. For every ring A and every multiplicative system S ⊆ A,
the A-algebra S−1A is flat. Indeed, for every A-module N , we have a canonical
isomorphism

S−1A⊗A N ' S−1N

and the functor taking N to S−1N is exact.

We do not discuss the more subtle aspects of flatness, which we do not need at
this point, and whose treatment is better handled using the Tor functors. We only
collect in the next proposition some very easy properties that we need in order to
define flatness for morphisms of algebraic varieties.

Proposition 5.6.6. Let M be an A-module.

i) If M is flat, then for every ring homomorphism A → B, the B-module
M ⊗A B is flat.

ii) If B → A is a flat homomorphism and M is flat over A, then M is flat
over B.

iii) If p is a prime ideal in A and M is an Ap-module, then M is flat over A
if and only if it is flat over Ap.

iv) If B → A is a ring homomorphism, then M is flat over B if and only if
for every prime (respectively, maximal) ideal p in A, the B-module Mp is
flat.

Proof. The assertion in i) follows from the fact that for every B-module N ,
we have a canonical isomorphism

(M ⊗A B)⊗B N 'M ⊗A N.
Similarly, the assertion in ii) follows from the fact that for every B-module N , we
have a canonical isomorphism

N ⊗B M ' (N ⊗B A)⊗AM.

With the notation in iii), note that if M is a flat Ap-module, since Ap is a flat
A-algebra, we conclude that M is flat over A by ii). The converse follows from the
fact that if N is an Ap-module, then we have a canonical isomorphism

N ⊗Ap
M ' N ⊗Ap

(Ap ⊗AM) ' N ⊗AM.

We now prove iv). Suppose first that M is flat over B and let p be a prime
ideal in A. We deduce that Mp is flat over B from the fact that for every B-module
N , we have a canonical isomorphism

N ⊗B Mp ' (N ⊗B M)⊗A Ap.

Conversely, suppose that for every maximal ideal p in A, the B-module Mp is flat.
Given an injective map of B-modules N ′ ↪→ N , we see that for every maximal ideal
p, the induced homomorphism

N ′ ⊗B Mp ' (N ′ ⊗B M)p → (N ⊗B M)p ' N ⊗B Mp

is injective. This implies the injectivity of

N ′ ⊗B M → N ⊗B M
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by Corollary C.3.4. �

Remark 5.6.7. If φ : A→ B is a flat homomorphism of Noetherian rings and
p is a prime ideal in A, then for every minimal prime ideal q containing pB, we
have φ−1(q) = p. Indeed, it follows from assertion i) in Proposition 5.6.6 that the
morphism A/p → B/pB is flat. It then follows from Example 5.6.4 that if a is
a nonzero element in A/p, then its image in B/pB is a non-zero-divisor, hence it
can’t lie in a minimal prime ideal (see Proposition E.2.1). This gives our assertion.

We now define flatness in our geometric context. We say that a morphism
of varieties f : X → Y is flat if it satisfies the equivalent conditions in the next
proposition.

Proposition 5.6.8. Given a morphism of varieties f : X → Y , the following
conditions are equivalent:

i) For every affine open subsets U ⊆ X and V ⊆ Y such that U ⊆ f−1(V ),
the induced homomorphism OY (V )→ OX(U) is flat.

ii) There are affine open covers X =
⋃
i Ui and Y =

⋃
i Vi such that for all i,

we have Ui ⊆ f−1(Vi) and the induced homomorphism OY (Vi)→ OX(Ui)
is flat.

iii) For every point x ∈ X, if y = f(x), then the homomorphism OY,y → OX,x
is flat.

Proof. We begin by showing that ii)⇒iii). Given x and y as in iii) and covers
as in ii), we choose i such that x ∈ Ui, in which case y ∈ Vi. Note that x corresponds
to a maximal ideal p in OX(Ui) and y corresponds to the inverse image q of p in
OY (Vi). Since

B = OY (Vi)→ A = OX(Ui)

is flat, we conclude that Aq is B-flat by property iv) in Proposition 5.6.6. It follows
that Ap is flat over Bq by property ii) in the same proposition.

Since the implication i)⇒ii) is trivial, in order to complete the proof it is enough
to show iii)⇒i). Let U and V be affine open subsets as in i). Given the induced
homomorphism

B = OY (V )→ OX(U) = A,

it follows from iii) that for every maximal ideal p in A, if its inverse image in B
is q, then the induced homomorphism Bq → Ap is flat. Assertion iii) in Proposi-
tion 5.6.6 implies that Ap is flat over B for every p, in which case assertion iv) in
the proposition implies that A is flat over B. �

Remark 5.6.9. The argument for the implication ii)⇒iii) in the proof of the
above proposition shows that more generally, if f : X → Y is a flat morphism, then
for every irreducible closed subset V ⊆ X, if W = f(V ), then the induced ring
homomorphism OY,W → OX,V is flat.

Example 5.6.10. Every open immersion i : U ↪→ X is flat: indeed, it is clear
that property iii) in the above proposition is satisfied.

Example 5.6.11. If X and Y are varieties, then the projection maps p : X ×
Y → X and q : X × Y → Y are flat. Indeed, by choosing affine covers of X
and Y , we reduce to the case when both X and Y are affine. In this case, since
O(Y ) is a free k-module, it follows from assertion i) in Proposition 5.6.6 that
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O(X × Y ) ' O(X) ⊗k O(Y ) is flat over O(X). This shows that p is flat and
the assertion about q follows similarly.

Remark 5.6.12. A composition of flat morphisms is a flat morphism. Indeed,
this follows from definition and property ii) in Proposition 5.6.6.

Remark 5.6.13. If f : X → Y is flat and W ⊆ Y is an irreducible, closed
subset such that f−1(W ) 6= ∅, then for every irreducible component V of f−1(W ),

we have f(V ) = W . Indeed, we may replace X and Y by suitable affine open
subsets that intersect V and W , respectively, to reduce to the case when both X
and Y are affine. In this case the assertion follows from Remark 5.6.7.

Example 5.6.14. A morphism f : X → A1 is flat if and only if every irreducible
component ofX dominates A1. The “only if” part follows from the previous remark.
For the converse, note that under the hypothesis, for every affine open subset U
of X, the k[x]-module OX(U) is torsion-free: if a nonzero u ∈ k[x] annihilates
v ∈ OX(U), it follows that every irreducible component of U on which v does not
vanish is mapped by f in the zero-locus of u, a contradiction. We then deduce that
f is flat using Example 5.6.4.

Our goal is to prove two geometric properties of flat morphisms. We begin with
the following generalization of Proposition 1.6.6.

Theorem 5.6.15. If f : X → Y is a flat morphism between algebraic varieties,
then f is open.

The proof will make use of the following openness criterion.

Lemma 5.6.16. Let W be a subset of a Noetherian topological space Y . The set
W is open if and only if whenever Z ⊆ Y is a closed irreducible subset of Y such
that W ∩ Z 6= ∅, then W contains nonempty open subset of Z.

Proof. The “only if” part is clear, so we only need to prove the converse.
Arguing by Noetherian induction, we may assume that the assertion holds for all
proper closed subspaces of Y . Let Y1, . . . , Yr be the irreducible components of Y .
We may assume that W is nonempty, and suppose that W contains a point y in
some Yi. By hypothesis, there is a nonempty open subset U ⊆ Yi such that U ⊆W .
After replacing U by U r

⋃
j 6=i Yj , we may assume that U ∩ Yj = ∅ for every j 6= i,

in which case U is open in Y .
Note that Y r U is a proper closed subset of Y . Moreover, W r U ⊆ Y r U

satisfies the same hypothesis as W : if Z ⊆ Y r U is an irreducible closed subset
such that (W r U) ∩ Z 6= ∅, then W contains a nonempty open subset of Z, hence
the same holds for W rU . By induction, we conclude that W rU is open in Y rU .
This implies that W is open, since

Y rW = (Y r U) r (W r U)

is closed in Y r U , hence in Y . �

Proof of Theorem 5.6.15. If U is an open subset of X, we may replace f
by its restriction to U , which is still flat. Therefore we only need to show that f(X)
is open in Y and it is enough to show that f(X) satisfies the condition in the lemma.
Suppose that W is an irreducible closed subset of Y such that f(X)∩W 6= ∅. If V
is an irreducible component of f−1(W ), then V dominates W by Remark 5.6.13.
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In this case, the image of V in W contains an open subset of W by Theorem 3.4.2.
This completes the proof. �

Our second main property of flat morphisms will follow from the following

Proposition 5.6.17. (Going Down for flat homomorphisms) If φ : A → B is
a flat ring homomorphism, then given prime ideals p1 ⊆ p2 in A and q2 in B such
that φ−1(q2) = p2, there is a prime ideal q1 ⊆ q2 such that φ−1(q1) = p1.

Proof. As we have seen in the proof of Proposition 5.6.8, the fact that φ is
flat implies that the induced homomorphism Ap2 → Bq2 is flat. After replacing φ
by this homomorphism, we may thus assume that (A, p2) and (B, q2) are local rings
and φ is a local homomorphism. In this case every prime ideal in B is contained in
q2. Since the prime ideals in B lying over p1 are in bijection with the prime ideals
in (Ap1/p1Ap1)⊗A B, it is enough to show that this ring is not the zero ring.

In fact, the following more general fact is true: under our assumptions, for
every nonzero A-module M , the B-module M ⊗A B. is nonzero. Indeed, if u ∈M
is nonzero and I = AnnA(u), then I ⊆ p2 and Au ' A/I. We thus have an
inclusion A/I ↪→M and the flatness assumption implies that the induced morphism
B/IB = A/I ⊗ B → M ⊗A B is injective. Since IB ⊆ q2, it follows that B/IB is
nonzero, hence M ⊗A B is nonzero. �

Proposition 5.6.18. If φ : A → B is a ring homomorphism that satisfies the
Going-Down property in the previous proposition, then for every prime ideal q, if
we put p = φ−1(q), then

dim(Bq/pBq) ≤ dim(Bq)− dim(Ap).

Proof. Let r = dim(Bq/pBq) and s = dim(Ap). We can choose prime ideals
ps ( . . . ( p0 = p in A and qr ( . . . ( q0 = q in B, with pB ⊆ qr. Applying the
Going-Down property successively, we obtain a sequence of prime ideals p′s ⊆ . . . ⊆
p′0 ⊆ qr such that φ−1(p′i) = pi for 0 ≤ i ≤ s. In particular, we have p′i 6= p′i+1 for
0 ≤ i ≤ s− 1 (however, we might have p′0 = qs). From the sequence of prime ideals
in B

p′s ( . . . ( p′1 ( qr ( . . . ( q0 = q,

we conclude that dim(Bq) ≥ r + s. �

By combining the above two propositions, we obtain the following consequence
in our geometric setting:

Theorem 5.6.19. If f : X → Y is a flat morphism between two algebraic vari-
eties, W is an irreducible closed subset of Y such that f−1(W ) 6= ∅, then for every
irreducible component V of f−1(W ), we have

codimX(V ) = codimY (W ).

Proof. Note first that V dominates W (see Remark 5.6.13). We apply Propo-
sition 5.6.18 for the flat morphism

OY,W → OX,V ,
which satisfies the Going-Down property by Proposition 5.6.17. Since V is an
irreducible component of f−1(W ), we obtain the inequality

codimX(V ) ≥ codimY (W ).
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In order to prove the opposite inequality, let X ′ be an irreducible component
of X containing V and such that codimX(V ) = codimX′(V ). If Y ′ is an irreducible

component of Y that contains f(X ′), then X ′ dominates Y ′ by Remark 5.6.13. We
can thus apply Theorem 3.4.1 to deduce

codimX(V ) = codimX′(V ) ≤ codimY ′(W ) ≤ codimY (W ).

This completes the proof of the theorem. �

Example 5.6.20. If f : X → Y is a flat morphism between algebraic varieties,
with X of pure dimension m and Y of pure dimension n, then for every irreducible
closed subset W of Y with W ∩ f(X) 6= ∅, the inverse image f−1(W ) has pure
dimension equal to dim(W ) +m− n. In particular, every non-empty fiber of f has
pure dimension m− n.





CHAPTER 6

Smooth varieties

In this chapter we introduce an important local property of points on algebraic
varieties: smoothness. We begin by describing a fundamental construction, the
blow-up of a variety along an ideal (in the case of an affine variety). We then
define the tangent space of a variety at a point and use it to define smooth points.
We make use of the blow-up of the variety at a smooth point to show that the
local ring of a smooth point is a domain. After discussing some general properties
of smooth varieties, we prove Bertini’s theorem on general hyperplane sections of
smooth projective varieties and end the chapter by introducing smooth morphisms
between smooth varieties.

6.1. Blow-ups

In this section we discuss the blow-up of an affine variety along an ideal. We
will later globalize this construction, after having at our disposal coherent sheaves
of ideals and the global MaxProj construction.

Let X be an affine variety, with A = O(X), and let I ⊆ A be an ideal.

Definition 6.1.1. The Rees algebra R(A, I) is the N-graded k-subalgebra

R(A, I) =
⊕
m∈N

Imtm ⊆ A[t].

Since A is reduced, it follows that A[t] is reduced, hence so is R(A, I). Similarly,
if X is irreducible, then A[t] is a domain, hence so is R(A, I).

Note that R(A, I) is finitely generated and, in fact, it is generated by its degree
1 component: if I = (a1, . . . , ar), then a1t, . . . , art generate R(A, I). We can thus
apply to R(A, I) the MaxProj construction discussed in Section 4.3. Note that the
degree 0 component is equal to A.

Definition 6.1.2. The blow-up of X along I is the morphism

f : MaxProj
(
R(A, I)

)
→ X.

We will typically assume that I is nonzero, since otherwise MaxProj
(
R(A, I)

)
is

empty. We collect in the next proposition some basic properties of this construction.

Proposition 6.1.3. Let X be an affine variety, with A = O(X), and let I ⊆ A
be a nonzero ideal. If Z is the closed subset of X defined by I and f : X̃ → X is
the blow-up of X along I, then the following hold:

i) The morphism f is an isomorphism over X r Z.

ii) The inverse image f−1(Z) is locally defined in X̃ by one equation, which is
a non-zero-divisor. In particular, every irreducible component of f−1(Z)

has codimension 1 in X̃.

113



114 6. SMOOTH VARIETIES

iii) If X is irreducible, then X̃ is irreducible and f is a birational morphism.
iv) More generally, if Z does not contain any irreducible component of X,

by mapping X ′ to f(X ′), we get a bijection between the irreducible com-

ponents of X̃ and those of X, such that the corresponding varieties are
birational.

Proof. In order to prove the assertion in i), it is enough to show that if a ∈ A
is such that DX(a) ∩ V (I) = ∅ (which implies a ∈

√
I, hence Ia = Aa), then the

induced morphism f−1
(
DX(a)

)
→ DX(a) is an isomorphism. Since f−1

(
DX(a)

)
=

MaxProj
(
R(A, I)a) (see Remark 4.3.18) and R(A, I)a ' R(Aa, Ia), we see that it

is enough to show that if I = A, then f is an isomorphism. However, in this case

X̃ = MaxProj(A[t]) = MaxSpec(A)×P0

by Proposition 4.3.12, with f being the projection on the first component. This is
clearly an isomorphism.

In order to prove ii), note that f−1(Z) = V
(
I ·R(A, I)

)
. Let us choose gener-

ators a1, . . . , an of I and consider the affine open cover

X̃ =

n⋃
i=1

D+

X̃
(ait).

Note that by Propositions 4.3.16 and 4.3.17, we have

D+
X(ait) ' MaxSpec

(
R(A, I)(ait)

)
.

Since the ideal I · R(A, I)(ait) is generated by a1
1 , . . . ,

an
1 and

aj
1 = ai

1 ·
ajt
ait

for

1 ≤ j ≤ n, we conclude that I · R(A, I)(ait) is generated by ai
1 . Finally, note that

ai
1 ∈ R(A, I)(ait) is a non-zero divisor: if ai

1 ·
h

ami t
m = 0 for some h ∈ R(A, I)m,

then there is q ≥ 1 such that haqi = 0 in A, hence h
ami t

m = 0 in R(A, I)(ait). This

gives the first assertion in ii) and the second one follows from the Principal Ideal
theorem (see also Remark 3.3.6).

The assertion in iii) is clear: we have seen that in this case X̃ is irreducible and
f is an isomorphism over the nonempty closed subset X r Z.

Suppose now that X1, . . . , Xr are the irreducible components of X and that Z

does not contain any of the Xi. It follows from i) that X̃i := f−1(Xi r Z) is an

irreducible component of X̃ such that f induces a birational morphism X̃i → Xi.

Since f is proper (see Corollary 5.1.9), the image f(X̃i) is closed, hence f(X̃i) = Xi.
Moreover, we have

X̃ ⊆ f−1(Z) ∪
r⋃
i=1

X̃i.

On the other hand, no irreducible component of f−1(Z) can be an irreducible

component of X̃, since we can find, on a suitable affine chart, a non-zero-divisor
that vanishes on f−1(Z) (see Remark 3.3.6). We thus conclude that

X̃ =

r⋃
i=1

X̃i,

completing the proof of iv). �
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Example 6.1.4. Suppose that I = m is the maximal ideal defining a non-
isolated point x ∈ X = MaxSpec(A), hence Z = {x}. It follows from Remark 4.3.19
that f−1(Z) is the closed subset associated to the ideal m ·R(A,m). Note that

R(A,m)/m ·R(A,m) =
⊕
i≥0

mi/mi+1 =: grm(A).

Note that if X1, . . . , Xr are the irreducible components of X that contain x, then the

corresponding irreducible components of X̃ are precisely those that meet f−1(Z).
Since f−1(Z) is locally defined by a non-zero-divisor, we conclude that

dim
(
f−1(Z)

)
= max

i
{dim(Xi)} − 1 = dim(OX,x)− 1.

Since

f−1(Z) ' MaxProj
(
grm(A)/J

)
,

where J is the nil-radical of grm(A), we conclude using Proposition 4.2.11 that

dim
(
grm(A)

)
= dim(OX,x).

Example 6.1.5. With the above notation, suppose that X = An, hence A =
k[x1, . . . , xn], and I = (x1, . . . , xn). We thus have a surjective homomorphism

φ : A[y1, . . . , yn]→ R(A, I), φ(yi) = xit for 1 ≤ i ≤ n,

inducing a closed immersion

ι : X̃ ↪→ X ×Pn−1

of varieties over X. Note that if J is the ideal in A[y1, . . . , yn] generated by all dif-

ferences xiyj−xjyi, for i 6= j, then J ⊆ ker(φ), hence ι(X̃) is contained in V (J). On
the other hand, we have seen in Exercise 5.1.12 that V (J) is an irreducible variety,

of dimension n. We thus conclude that ι gives an isomorphism of X̃ with V (J). In
particular, our old definition for the blow-up of the affine space at the origin agrees
with the new one. For a generalization of this example, see Example 6.3.23 below.

Definition 6.1.6. Suppose that X is an irreducible affine variety, Z is a proper

closed subset of X, and f : X̃ → X is the blow-up of X along I. If Y is any closed
subvariety of X such that no irreducible component of Y is contained in Z, then

the strict transform (or proper transform) of Y in X̃ is given by

Ỹ := f−1(Y r Z).

Remark 6.1.7. With the notation in the above definition, we have an induced

morphism Ỹ → Y that can be identified with the blow-up of Y along the ideal
J = I · O(Y ). Indeed, if B = O(Y ), then the surjection A → B induces a graded,
surjective homomorphism of k-algebras:

R(A, I)→ R(B, J).

This induces by Proposition 4.3.11 a commutative diagram

MaxProj
(
R(B, J)

)
g

��

j // MaxProj
(
R(A, I)

)
f

��
Y

i // X,
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where i and j are closed immersions. By Proposition 6.1.3, g maps birationally

each irreducible component of Ỹ onto a corresponding irreducible component of Y ,
which implies that the image of j is, indeed, the strict transform of Y .

Example 6.1.8. In order to give some intuition about the blow-up, we discuss
the strict transform of a curve in A2 under the blow-up at one point. Let us begin,
more generally, with the computation of the strict transform of a hypersurface in
An under the blow-up at one point, where n ≥ 2. Suppose that Y is a hypersurface
in An, with corresponding radical ideal defined by the non-zero polynomial f ∈
k[x1, . . . , xn]. Given a point p ∈ Y , the multiplicity multp(Y ) of Y (or of f) at p is
the largest j ≥ 1 such that f ∈ mjp, where mp is the maximal ideal corresponding

to p. Let π : Ãn → An be the blow-up of An at p. After a suitable translation, we
may assume that p = 0. We can thus write

f = fm + fm+1 + . . .+ fd,

where each fi is homogeneous of degree i, and fm 6= 0, so that mult0(Y ) = m.

Recall that by Example 6.1.5, we know that Ãn is the subset of An ×Pn−1 given
by the equations xiyj = xjyi, for 0 ≤ i, j ≤ n, where y1, . . . , yn are the homogeneous

coordinates on Pn−1. Consider the chart Ui on Ỹ given by yi 6= 0. Note that in
this chart we have xj = xi

yj
yi

for j 6= i, hence Ui ' An, with coordinates u1, . . . , un

such that π#(xi) = ui and π#(xj) = uiuj for j 6= i. If E = π−1(0), then E ∩ Ui is
defined by ui = 0.

The inverse image π−1(Y ) is defined in Ui by

π#(f) = f(u1ui, . . . , ui, . . . , unui)

= umi ·
(
fm(u1, . . . , 1, . . . , un)+ui·fm+1(u1, . . . , 1, . . . , un)+. . .+um−di fd(u1, . . . , 1, . . . , un)

)
.

Since the polynomial

f̃ := fm(u1, . . . , 1, . . . , un)+ui·fm+1(u1, . . . , 1, . . . , un)+. . .+um−di fd(u1, . . . , 1, . . . , un)

defines a hypersurface in Ui that does not contain E ∩ Ui, it follows that its zero-

locus defines Ỹ ∩ Ui. In fact, since the homomorphism k[x1, . . . , xn]xi
→ O(Ui)ui

is an isomorphism, it is easy to deduce that f̃ is square-free, hence it generates the

ideal of Ỹ ∩ Ui.
Let us specialize now to the case n = 2. In this case fm is a homogeneous

polynomial of degree d, which can thus be written as fm =
∏m
j=1 `j , where each `j

is a linear form (we use the fact that k is algebraically closed, hence every polynomial
in one variable is the product of degree 1 polynomials). The lines through the origin
defined by the factors of fm are the tangents to X at 0. Note that the lines through
0 in A2 are parametrized by P1 = π−1(0).

We claim that after the blow-up, the points of intersection of the strict trans-

form Ỹ with E correspond precisely to the tangent lines to X at 0. Indeed, if we

consider for example the chart U1, note that the points of Ỹ ∩E∩U1 are defined by
u1 = 0 = fm(1, u2). It follows that if fm =

∏m
j=1(ajx1 + bjx2), then the points of

Ỹ ∩E ∩U1 are precisely the points [bj ,−aj ] ∈ E with bj 6= 0. Similarly, the points

of Ỹ ∩ E ∩ U2 are precisely the points [bj ,−aj ] ∈ E with aj 6= 0. This proves our
claim. In fact, this is not just a set-theoretic correspondence: tangents that appear

with multiplicity > 1 in fm translate to tangency conditions between Ỹ and E at
the corresponding point. We will return to this phenomenon at a later point.
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6.2. The tangent space

We begin with the following general observation. If (R,m) is a local Noetherian
ring, then m/m2 is a finite-dimensional vector space over the residue field K =
R/m. It follows from Nakayama’s lemma that dimK m/m2 is the minimal number
of generators for the ideal m (see Remark C.1.3).

In this section we are interested in the case when (X,OX) is an algebraic
variety, p ∈ X is a point, and we consider the local ring OX,p, with maximal ideal
mp. Recall that in this case the residue field is the ground field k.

Definition 6.2.1. The tangent space of X at p is the k-vector space

TpX := (mp/m
2
p)
∗ = Homk(mp/m

2
p, k).

The following proposition explains the terminology in the above definition.
Note that TpX does not change if we replace X by an affine open neighborhood of
p. In particular, we may assume that X is affine and choose a closed immersion
X ↪→ An.

Proposition 6.2.2. If X is a closed subvariety of An with corresponding rad-
ical ideal IX ⊆ k[x1, . . . , xn], then TpX is isomorphic to the linear subspace of kn

defined by the equations
n∑
i=1

∂f

∂xi
(p)xi = 0 for all f ∈ IX .

Moreover, it is enough to only consider those equations corresponding to a system
of generators of IX .

In the case of a closed subset X of An, we will refer to the linear subspace in
the proposition as the embedded tangent space in the affine space.

Proof of Proposition 6.2.2. Let f1, . . . , fr be a system of generators of IX .
In this case, if p = (a1, . . . , an), we have

OX,p = OAn,p/(f1, . . . , fr) and mp = (x1 − a1, . . . , xn − an)OAn,p/(f1, . . . , fr).

Therefore we have

OX,p/m2
p = k[x1, . . . , xn]/(x1 − a1, . . . , xn − an)2 + (f1, . . . , fr).

On the other hand, for every f ∈ k[x1, . . . , xn], we have

f ≡ f(p) +

n∑
i=1

∂f

∂xi
(p) · (xi − ai) mod (x1 − a1, . . . , xn − an)2.

We thus see that mp/m
2
p is the quotient of the vector space over k with basis

ei = xi − ai for 1 ≤ i ≤ n, by the subspace generated by
n∑
i=1

∂f

∂xi
(p)ei for f ∈ (f1, . . . , fr).

This immediately gives the first assertion in the proposition.
Note now that if g ∈ (f1, . . . , fr) and we write g =

∑r
j=1 hjfj , then it follows

from the product rule and the fact that fj(p) = 0 for all j that
n∑
i=1

∂g

∂xi
(p)xi =

r∑
j=1

hj(p) ·
n∑
i=1

∂fj
∂xi

(p)xi.
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The last assertion in the proposition follows. �

Remark 6.2.3. If f : X → Y is a morphism of varieties and p ∈ X, we obtain
a local homomorphism of local rings

φ : OY,f(p) −→ OX,p.

This induces a k-linear morphism

mf(p)/m
2
f(p) −→ mp/m

2
p

and by taking duals, we obtain a k-linear map dfp : TpX → Tf(p)Y . It is easy to
see that this definition is functorial: if g : Y → Z is another morphism, then

dgf(p) ◦ dfp = d(g ◦ f)p.

Remark 6.2.4. If Y is a closed subvariety of the variety X and if i : Y → X
is the inclusion, then for every p ∈ Y , the linear map dip : TpY → TpX is injective.
This follows from the fact that the homomorphism OX,p → OY,p is surjective and
therefore the induced map mX,p/m

2
X,p → mY,p/m

2
Y,p is surjective, where mX,p ⊆

OX,p and mY,p ⊆ OY,p are the corresponding maximal ideals.
Note that if Y if if a closed subvariety of An and i : Y ↪→ An is the inclusion,

then the embedded tangent space of Y at p is the image of dip, where we identify
in the obvious way TpA

n to kn.

Remark 6.2.5. If X and Y are closed subvarieties of Am and An, respectively,
and if f = (f1, . . . , fn) : X → Y , then via the isomorphisms given by Proposi-
tion 6.2.2, the linear map dfp is induced by the linear map km → kn given with

respect of the standard bases by the Jacobian matrix
(
∂fi
∂xj

(p)
)

. Indeed, by func-

toriality, it is enough to check this when X = Am and Y = An. Let x1, . . . , xm be
the coordinate functions on Am and y1, . . . , yn the coordinate functions on An. If
p = (a1, . . . , am), then the maximal ideals defining p and f(p) are

mp = (x1 − a1, . . . , xm − am) and mf(p) =
(
y1 − f1(p), . . . , yn − fn(p)

)
.

Moreover, the map mf(p) → mp maps yi − fi(p) to fi − fi(p) and Taylor’s formula
shows that

fi − fi(p)−
m∑
j=1

∂fi
∂xj

(p)(xj − aj) ∈ m2
p,

which implies, after taking duals, our assertion.

In the case of a closed subvariety of a projective space, we also have an embed-
ded tangent space: this time, it is a linear subpace of the projective space. This
is defined as follows. Suppose that X is a closed subset of Pn, with corresponding
radical homogeneous ideal IX . Given a point p = [u0, . . . , un] ∈ X, the projective
tangent space of X at p, that we will denote by TpX, is the linear subspace of Pn

defined by the equations
n∑
i=0

∂f

∂xi
(u0, . . . , un)xi = 0,

where f varies over the homogeneous elements in IX . Note first that since f is
homogeneous, if we replace (u0, . . . , un) by (λu0, . . . , λun), for some λ ∈ k∗, then
the equation gets multiplied by λ. Note also that it is enough to consider a system
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of homogeneous generators of IX : if f =
∑r
j=1 gjfj , with fj ∈ IX , then we get

using the product rule and the fact that fj(u0, . . . , un) = 0 for all j

n∑
i=0

∂f

∂xi
(u0, . . . , un)xi =

r∑
j=1

gj(u0, . . . , un) ·
n∑
i=0

∂fj
∂xi

(u0, . . . , un)xi.

Finally, we note that TpX contains the point p: this is a consequence of Euler’s
identity, which says that if f is homogeneous, of degree d, then∑

i=0

xi
∂f

∂xi
= d · f.

The terminology is justified by the following

Proposition 6.2.6. Let X be a closed subvariety of Pn and p ∈ X. If i is
such that p ∈ Ui = (xi 6= 0) and if we identify Ui with An is the usual way, then
TpX ∩Ui is the image of the embedded tangent space in An for X ∩Ui at p by the
translation mapping 0 to p.

Proof. In order to simplify the notation, let us assume that i = 0. In this case,
we may assume that (u0, . . . , un) = (1, u1, . . . , un). Note that the ideal of X ∩ Ui
in k[x1, . . . , xn] is generated by f(1, x1, . . . , xn), where f varies over a set of homo-
geneous generators of IX (see Exercise 4.2.14). Fix such f and let g(x1, . . . , xn) =

f(1, x1, . . . , xn). Therefore we have ∂g
∂xi

(u1, . . . , un) = ∂f
∂xi

(1, u1, . . . , un). On the
other hand, it follows from Euler’s identity that

∂f

∂x0
(1, u1, . . . , un) = −

n∑
i=1

ui ·
∂f

∂xi
(1, u1, . . . , un).

This implies that

∂f

∂x0
(1, u1, . . . , un) +

n∑
i=1

∂f

∂xi
(1, u1, . . . , un)xi =

n∑
i=1

∂g

∂xi
(u1, . . . , un) · (xi − ui).

This implies the assertion in the proposition. �

Exercise 6.2.7. Given varieties X and Y , for every x ∈ X and y ∈ Y , the
projections X × Y → X and X × Y → Y induce a linear map

T(x,y)(X × Y )→ TxX × TyY.

Show that this is an isomorphism.

6.3. Smooth algebraic varieties

Let X be an algebraic variety. Given a point p ∈ X, recall that we put
dimpX := dim(OX,p). This is the largest dimension of an irreducible component
of X that contains p (see Remark 3.3.14), and also the codimension of {p} in X.
Our first goal is to show that dimk TpX ≥ dimpX.

More generally, we will get a similar statement for the localization of a finite
type k-algebra at a prime ideal. This applies, in particular, for the local ring
(OX,V ,mV ) of X at an irreducible closed subset V . Note that in this case the
residue field is the field of rational functions on V .
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Proposition 6.3.1. For every local ring (R,m) that is the localization of a
k-algebra of finite type at a prime ideal, we have

dim(R) ≤ dimK m/m2,

where K = R/m.

Proof. Suppose that R = Ap, where A is a k-algebra of finite type and p is

a prime ideal in A. Note that if I is the nil-radical of A and R = R/I · R, then
R is local, with maximal ideal m = m/I · R, and the same residue field. Since
dim(R) = dim(R), while

dimK m/m2 = dimK m/(m2 + I ·R) ≤ dimK m/m2,

we see that that it is enough to prove the assertion when A is reduced. Let X be
an affine variety with O(X) = A and let V be the irreducible closed subset defined
by p.

Recall that by Nakayama’s lemma, if r = dimK m/m2, then m is generated by
r elements. This implies that there is f ∈ A r p such that pAf is generated by r
elements. After replacing A by Af , we may thus assume that p is generated by r
elements. In this case, Corollary 3.3.7 implies dim(R) = codimX(V ) ≤ r, giving
the assertion in the proposition. �

Definition 6.3.2. A point p ∈ X is nonsingular (or smooth) if dimpX =
dimk TpX. Otherwise, it is singular. The variety X is nonsingular (or smooth) if
all its points are nonsingular points.

Given an irreducible, closed subset V ⊆ X, we say that X is nonsingular at V
if dim(OX,V ) = dimk(V ) mV /m

2
V . We will see later that this is equivalent with the

fact that some point p ∈ V is a nonsingular point.

Example 6.3.3. It is clear that every affine space An is a smooth variety.
Since a projective space has an open cover by affine spaces, it follows that every
projective space is a smooth variety.

Example 6.3.4. Let X be a hypersurface in An, defined by the radical ideal
(f) ⊆ k[x1, . . . , xn]. Since dimp(X) = n − 1 for every p ∈ X, it follows from
definition and Proposition 6.2.2 that the set of singular points in X is the zero
locus of the ideal

(f, ∂f/∂x1, . . . , ∂f/∂xn).

In particular, we see that the set of smooth points is open in X. A generalization
of this fact will be given in Theorem 6.3.7 below.

Remark 6.3.5. Since Krull’s Principal Ideal theorem holds in every Noetherian
ring, the inequality in Proposition 6.3.1 also holds for arbitrary Noetherian local
rings. A Noetherian local ring for which the inequality is an equality is a regular
ring.

Definition 6.3.6. For every regular local ring (R,m), a regular system of pa-
rameters is a minimal set of generators of m. Note that since R is regular, the
length of such a system is equal to dim(R). If X is a variety and p ∈ X is a smooth
point, we say that some regular functions f1, . . . , fn defined in a neighborhood of
p give a regular system of parameters at p if their images in OX,p give a regular
system of parameters.

The following is the main result of this section
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Theorem 6.3.7. For every variety X, the set Xsm of smooth points p ∈ X is
a dense open subset.

We prove the theorem, assuming the following proposition, and then give the
proof of the proposition.

Proposition 6.3.8. If p ∈ X is a nonsingular point, then the local ring OX,p
is a domain (that is, p lies on a unique irreducible component of X).

Proof of Theorem 6.3.7. In order to prove the assertion, we may assume
that X is irreducible. Indeed, if X1, . . . , Xr are the irreducible components of X,
then it follows from Proposition 6.3.8 that no point on the intersection of two
distinct components is nonsingular. It thus follows that if X ′i = Xir

⋃
j 6=iXj , then

Xsm =
r⋃
i=1

(X ′i)sm.

Therefore it is enough to know the assertion for irreducible varieties.
Suppose now that X is irreducible and let r = dim(X). If X =

⋃
i Ui is an

affine open cover, it is enough to show that each set Xsm ∩ Ui = (Ui)sm is open
and nonempty. Therefore we may and will assume that X is a closed subset of an
affine space An. If f1, . . . , fm are generators of the ideal defining X, then it follows
from definition and Proposition 6.2.2 that a point q ∈ X is a nonsingular point if

and only if the rank of the Jacobian matrix
(
∂fi
∂xj

(q)
)

is ≥ n − r. This is the case

if and only if one of the (n − r)-minors of the matrix
(
∂fi
∂xj

)
does not vanish at q,

condition that defines an open subset of X.
In order to prove that Xsm is nonempty, we may replace X by a birational

variety. By Proposition 1.6.13, we may thus assume that X is an irreducible hy-
persurface in Ar+1. Let f ∈ k[x1, . . . , xr+1] be the irreducible polynomial that
generates the prime ideal corresponding to X. As we have seen, for a point q ∈ X,
we have q ∈ Xsm if and only there is i such that ∂f

∂xi
(q) 6= 0. If Xsm = ∅, then ∂f

∂xi

vanishes on X for 1 ≤ i ≤ r + 1. Therefore ∂f
∂xi
∈ (f) for all i. If degxi

(f) = di,

then we clearly have degxi

(
∂f
∂xi

)
< di, hence ∂f

∂xi
∈ (f) implies that ∂f

∂xi
= 0. Since

this holds for every i, we conclude that char(k) = p > 0 and f ∈ k[xp1, . . . , x
p
n].

Since k is perfect, being algebraically closed, we conclude that f = gp for some
g ∈ k[x1, . . . , xr+1], contradicting the fact that f is irreducible. �

We now turn to the proof of Proposition 6.3.8. This will be a consequence of
the following useful fact about smooth points. Let X be a variety and p ∈ X a
smooth point. We put R = OX,p and let m be the maximal ideal in R. Since p
is a smooth point, if n = dim(R), then we can choose generators a1, . . . , an for m.
Note that R/m = k and the classes a1, . . . , an ∈ m/m2 give a k-basis. Consider the
graded k-algebra homomorphism

φ : k[x1, . . . , xn]→
⊕
i≥0

mi/mi+1

that maps each xi to ai. Since the right-hand side is generated by m/m2, it is clear
that φ is surjective.
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Proposition 6.3.9. If p ∈ X is a smooth point, then morphism φ defined above
is an isomorphism.

Proof. Let U be an affine open neighborhood of p and let A = O(U). If n ⊆ A
is the maximal ideal corresponding to x, then R = An and m = nAn. Note that⊕

i≥0

mi/mi+1 = grn(A),

hence this ring has dimension n by Example 6.1.4. Since φ is a surjective homo-
morphism and k[x1, . . . , xn] is a domain of dimension n, it follows that φ is an
isomorphism. �

Proof of Proposition 6.3.8. Let R = OX,p and m the maximal ideal of R.
We know, by Proposition 6.3.9, that the ring S =

⊕
i≥0 m

i/mi+1 is a domain. We

now show that this implies that R is a domain. Suppose that a, b ∈ R r {0} are
such that ab = 0. It follows from Krull’s Intersection theorem (see Theorem C.4.1)
that there are i and j such that a ∈ mi r mi+1 and b ∈ mj r mj+1. In this case,
since S is a domain, we conclude that ab 6∈ mi+j+1, a contradiction. Therefore R
is a domain. �

Remark 6.3.10. It follows from Proposition 6.3.8 that every connected compo-
nent of a smooth variety is irreducible. Because of this, when dealing with smooth
varieties, one can easily reduce to the case when the variety is irreducible.

Remark 6.3.11. The same line of argument can be used to prove a stronger
statement: if A is a k-algebra of finite type, but non-necessarily reduced, and m is
a maximal ideal in A such that Am is a regular local ring, then Am is a domain.
Indeed, let I be the nil-radical of A and A = A/I, m = m/I. After possibly
replacing A by the localization at a suitable element not in m, we may assume
that m is generated by n elements, where n = dim(Am) = dim(A). Consider the
following two surjective morphisms:

A/m[x1, . . . , xn]
φ−→ grm(A)

ψ−→ grm(A).

By Example 6.1.4, we have

dim
(
grm(A

)
= n,

which implies that ψ ◦φ is an isomorphism, which implies that φ is injective, hence
an isomorphism. The argument in the proof of Proposition 6.3.8 now implies that
Am is a domain.

Remark 6.3.12. Suppose that f ∈ k[x1, . . . , xn] is a non-constant polynomial
such that there is no point p ∈ An, with

f(p) = 0 =
∂f

∂xi
(p) for 1 ≤ i ≤ n.

In this case f generates a radical ideal and the corresponding hypersurface in An is
smooth. Indeed, note that if g is a non-constant polynomial such that g2 divides f ,
then for every p ∈ V (g), we have f(p) = 0 and ∂f

∂xi
= 0 for all i, a contradiction. The

fact that the hypersurface defined by f is smooth now follows from Example 6.3.4.
A similar assertion holds in the projective setting, with an analogous argument:

if F ∈ k[x0, . . . , xn] is a homogeneous polynomial of positive degree such that there
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is no point p ∈ Pn with

F (p) = 0 =
∂F

∂xi
(p) for 0 ≤ i ≤ n,

then the ideal (F ) is radical and it defines a smooth hypersurface in Pn. Moreover,
in this case we see that if n ≥ 2, then this hypersurface is irreducible: indeed, two
irreducible components would have non-empty intersection by Corollary 4.2.12 and
any point on the intersection would be a singular point by Proposition 6.3.8.

Exercise 6.3.13. Show that if X and Y are algebraic varieties, the points
x ∈ X and y ∈ Y are smooth if and only if (x, y) is a smooth point of X × Y .

Exercise 6.3.14. Suppose that G is an algebraic group which has a transitive
algebraic action on the variety X. Show that X is smooth. Deduce that every
algebraic group is a smooth variety.

Example 6.3.15. If V is an irreducible, closed subset of X, with codimX(V ) =
1, then X is smooth at V if and only if the maximal ideal of OX,V is principal, that
is, OX,V is a DVR (for an elementary discussion of DVRs, see Section C.5).

Example 6.3.16. Let H be a hyperplane in Pn and X a closed subvariety of
H. Given a point p ∈ PnrH, the projective cone over X with vertex p is the union
Cp(X) of the lines joining p with the points on X. Note first that this is a closed
subvariety of Pn.

In order to see this, after applying a suitable transformation in PGLn+1(k),
we may assume that H = (xn = 0) and p = [0, . . . , 0, 1], and use the isomorphism
Pn−1 → H, given by [u0, . . . , un−1] → [u0, . . . , un−1, 0], to identify Pn−1 and H.
In this case,

Cp(X) = {p} ∪ {[u0, . . . , un] ∈ Pn | [u0, . . . , un−1] ∈ X} .

It is now clear that Cp(X) is closed in Pn; in fact, if IX ⊆ k[x0, . . . , xn−1] is the
homogeneous ideal corresponding to X, then the ideal of Cp(X) is IX ·k[x0, . . . , xn].
Note that if U is the affine chart U = (xn 6= 0) ' An, then Cp(X)∩U is isomorphic
to the affine cone over X.

We claim that p is a smooth point of Cp(X) if and only if X is a linear subspace
of H. Indeed, p is a smooth point of Cp(X) if and only if 0 is a smooth point of
the affine cone C(X) over X. Note that the embedded tangent cone to C(X) at
0 is defined by the linear polynomials in the ideal IX of X; in other words, this is
equal to the smallest vector subspace of kn containing C(X). This has the same
dimension as C(X) if and only if C(X) is a linear space.

In the remainder of this section we give some further properties of smooth
points.

Proposition 6.3.17. Let X be an algebraic variety and Y a closed subvariety,
with x ∈ Ysm, such that there is an affine open neighborhood U of x in X, and
f1, . . . , fr ∈ O(U) satisfying the following conditions:

i) We have IU (Y ∩ U) = (f1, . . . , fr), and
ii) The subvariety Y ∩ U of U is irreducible, of codimension r.

In this case x is a smooth point on X.
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Note that since x is a smooth point of Y , it follows from Proposition 6.3.8 that
x lies on a unique irreducible component of Y . Therefore after possibly replacing
U by a smaller open subset, we can always assume that Y ∩ U is irreducible.

Proof of Proposition 6.3.17. Let R = OX,x and R be the local rings at

x of X and Y , respectively. If m and m are the maximal ideals in R and R, then
m = m/(f1,x, . . . , fr,x), where we denote by fi,x the image of fi in R. It follows
that

m/m2 = m/m2 + (f1,x, . . . , fr,x),

hence dimk TxY ≥ dimk TxX − r. Since we clearly have

dim(OX,x) ≥ codimX(Y ) + dim(OY,x) = r + dim(OY,x),

we conclude that dim(OX,x) ≥ dimk TxX and thus x is a smooth point of X. �

Remark 6.3.18. An important special case of the above proposition is that of
a hypersurface: suppose that X is an algebraic variety and Y is a closed subvariety
of X such that for some point x ∈ Y and for some affine open neighborhood U ⊆ X
of x, we have IU (Y ∩U) = (f), for some non-zero divisor f ∈ O(U). In this case, if
x is a smooth point of Y , then x is a smooth point of X. Indeed, note that in this
case the fact that Y ∩ U has codimension 1 in U follows from Theorem 3.3.1 and
Remark 3.3.6.

Corollary 6.3.19. If X is a variety and V is an irreducible closed subset of
X such that X is nonsingular at V , then V ∩Xsm 6= ∅.

We will see later that the converse also holds. This is a special case of a result
due to Auslander-Buchsbaum and Serre, saying that if R is a regular local ring, then
for every prime ideal p in R, the localization Rp is regular (see [Eis95, Chapter 19]).
We will give later a direct proof of this result in our geometric setting.

Proof of Corollary 6.3.19. Let r = dim(OX,V ). By assumption, the
maximal ideal in OX,V is generated by r elements. After possibly replacing X
by a suitable affine open subset meeting V , we may assume that X is affine and
that IX(V ) is generated by r elements f1, . . . , fr. By Theorem 6.3.7, we can find a
point x ∈ Ysm. We then deduce from Proposition 6.3.17 that x is a smooth point
also on X, hence Y ∩Xsm 6= ∅. �

Proposition 6.3.20. Let p be a smooth point on a variety X. If f1, . . . , fr are
regular functions defined in an open neighborhood of p, vanishing at p, and whose
images in m/m2 are linearly independent, where m is the maximal ideal in OX,p,
then there is an affine open neighborhood U of x such that the following conditions
hold:

i) We have f1, . . . , fr ∈ O(U).
ii) We have a closed subvariety Y of X with IU (Y ∩ U) = (f1, . . . , fr).
ii) The subvariety Y is smooth at p and dimp(Y ) = dimp(X)− r.

Proof. We begin by choosing an affine open neighborhood U of p such that
fi ∈ O(U) for all i and let Y be the closure in X of the zero-locus in U of f1, . . . , fr.
Since p lies on a unique irreducible component of X by Proposition 6.3.8, we may
assume, after possibly shrinking U , that X is irreducible, and let n = dim(X).
Let R = OX,p and R = R/(f1,p, . . . , fr,p), where fi,p is the image of fi in R.

If we denote by m and m the maximal ideals in R and R, respectively, then by
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assumption, the classes of f1,p, . . . , fr,p in m/m2 are linearly independent, hence

dimk m/m
2 = n − r. On the other hand, it follows from Corollaries 3.3.7 and

3.3.13 that dim(R) ≥ n − r. We thus conclude that dimk m/m
2 ≤ dim(R) and it

follows from Proposition 6.3.1 that this is an equality, hence R is a regular local
ring. We also see that dim(R) = n − r. Since R is a regular ring, it follows
from Remark 6.3.11 that R is a reduced ring, hence after replacing U by a smaller
neighborhood of p, we may assume that f1, . . . , fr generate a radical ideal in O(U),
hence (f1, . . . , fr) = IU (Y ∩ U). Since R is a regular ring, it follows that Y is
smooth at p, with dimp(Y ) = dimp(X)− r. �

The next result describes the behavior of smooth closed subvarieties of a smooth
variety.

Proposition 6.3.21. Let X be an algebraic variety and Y a closed subvariety
of X. If p ∈ Y is a point that is smooth on both Y and X, then after replacing X
with a suitable affine open neighborhood of p, the following conditions hold:

i) The ideal I = IX(Y ) is generated by r elements, where r = dimp(X) −
dimp(Y ); in fact these elements can be chosen such that their images in
OX,p are part of a regular system of parameters.

ii) If R = O(X), then the generators of I induce an isomorphism

R/I[x1, . . . , xr] '
⊕
j≥0

Ij/Ij+1 =: grI(R).

Proof. Note first that by Proposition 6.3.8, the point p lies on unique irre-
ducible components of X and Y , hence we may assume that both X and Y are
irreducible. We may and will assume that X is affine, with O(X) = R, and Y is
defined by I = IX(Y ). Let m be the maximal ideal in R corresponding to p. By
assumption, we can write

(6.3.1) r = dimk TpX − dimk TpY.

It follows from (6.3.1) that

dimk(IRm + m2Rm)/m2Rm = r.

We can thus find r elements that are part of a regular system of parameters of
Rm and which lie in IRm. After possibly replacing X by a smaller affine open
neighborhood of x, we may assume, in addition, that these elements are the im-
ages f1,p, . . . , fr,p in Rm of f1, . . . , fr ∈ I. It follows from Proposition 6.3.20 that
after possibly replacing X by a suitable open neighborhood of p, we may assume
that f1, . . . , fr generate the ideal of a closed subvariety Z, smooth, irreducible, of
dimension equal to dim(X) − r. Since Y ⊆ Z, it follows that Y = Z, which gives
i).

We now prove the assertion in ii). This is trivial if I = 0, hence we assume
r > 0. We have a surjective homomorphism

φ : R/I[x1, . . . , xr] −→ grI(R)

that maps each xi to the class of fi in I/I2. Note now that

(6.3.2) dim
(
grI(R)

)
≥ dim(R).

Indeed, it follows from Proposition 6.1.3 that the blow-up g : X̃ → X of X along I
is a birational morphism and g−1(Y ) has all irreducible components of codimension
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1 in X̃. If J is the nil-radical of grI(R), then

g−1(Y ) ' MaxProj
(
grI(R)/J

)
,

which gives by Remark 4.3.20

dim
(
grI(R)

)
= dim

(
grI(R)/J)

)
≥ dim

(
MaxProj

(
grI(R)/J

))
+ 1 = dim(X).

Since R/I[x1, . . . , xr] is a domain of dimension equal to dim(X), we conclude that
φ is an isomorphism, completing the proof of the proposition. �

Corollary 6.3.22. If X is a smooth variety and Y,Z ⊆ X are irreducible
closed subsets, then every irreducible component W of Y ∩ Z satisfies

codimX(W ) ≤ codimX(Y ) + codimX(Z).

Proof. The idea is similar to the one used when X = An (cf. Exercise 3.3.21).
We may replace X by its unique irreducible component that contains W , and thus
assume that X is irreducible. Let n = dim(X). Consider the diagonal ∆X ⊆ X×X.
Note that we have an isomorphism

Y ∩ Z ' (Y × Z) ∩∆X ,

hence we may consider W as an irreducible component of the right-hand side. Since
X is smooth of dimension n and X ×X is smooth of dimension 2n, it follows from
the proposition that we can find a non-empty affine open subset U ⊆ X ×X such
that U ∩W 6= ∅, and we have f1, . . . , fn ∈ O(U) such that

∆X ∩ U = {x ∈ U | f1(x) = . . . = fn(x) = 0}.
We deduce that W ∩ U is an irreducible component of

{x ∈ (Y × Z) ∩ U | f1(x) = . . . = fn(x) = 0},
and therefore Corollary 3.3.7 implies that codim(Y×Z)∩U (W ∩ U) ≤ n. Using
Corollary 3.3.13, this gives dim(W ) ≥ dim(Y ) + dim(Z)− n, and further

codimX(W ) ≤ codimX(Y ) + codimX(Z).

�

Example 6.3.23. If X = MaxSpec(A) is a smooth variety and f : X̃ → X is the
blow-up of X along the radical ideal I, defining the smooth closed subvariety Y of

X, then X̃ is smooth. Indeed, note first that after covering X by suitable affine open
subsets, we may assume that X and Y are irreducible and, by Proposition 6.3.21,
that I is generated by r = codimX(Y ) elements f1, . . . , fr. In this case, we can

explicitly describe X̃ by equations, as follows.
The surjection

φ : A[y1, . . . , yr]→ R(A, I), φ(yi) = fit for 1 ≤ i ≤ r
induces a closed immersion

ι : X̃ ↪→ X ×Pr−1

of varieties over X. Note that if J is the ideal generated by all differences fiyj−fjyi,
for i 6= j, then J ⊆ ker(φ), hence ι maps X̃ inside V (J). We will show that in fact
ι(X) = V (J).

Note first that the morphism g : V (J) → X is an isomorphism over X r Y .
Indeed, we have (

A[y1, . . . , yr]/J
)
fi
' Afi [yi],



6.3. SMOOTH ALGEBRAIC VARIETIES 127

and therefore the inverse image of D(fi) in V (J) is isomorphic to

MaxProj
(
Afi [yi]

)
' MaxSpec(Afi).

We now show that V (J) is a smooth subvariety of X × Pr−1, of codimension
r − 1. This is clear at the points lying over X r Y , so that we consider a point
q =

(
p, [u1, . . . , ur]

)
∈ V (J) lying over Y , hence f1(p) = . . . = fr(p) = 0. Let i be

such that ui 6= 0 and consider the open subset Ui = X ×D+
Pr−1(xi) ⊆ X × Pr−1.

The intersection V (J)∩Ui is the zero-locus of the ideal generated by fj − fi yjyi , for

j 6= i. Let m be the ideal defining q. Note that we can write

fj − fi
yj
yi

= fj −
uj
ui
fi +

(
yj
yi
− uj
ui

)
fi.

Since
(
yj
yi
− uj

ui

)
fi ∈ m2 and the classes of fj− uj

ui
fi in m/m2, for j 6= i, are linearly

independent, it follows from Proposition 6.3.20 that q is a smooth point of V (J),

and the codimension of X̃ in X ×Pr−1 around q is r − 1.

We can now see that V (J) is irreducible, and thus it is equal to ι(X̃). Indeed,

every irreducible component of V (J) different from g−1(X r Y ) must be contained
in g−1(Y ) = Y ×Pr−1. However, we have seen that every irreducible component of
V (J) has dimension equal to dim(X) > dim(Y ) + r−1, hence it can’t be contained
in Y ×Pr−1.

We thus conclude that X̃ is smooth and is defined in X ×Pr−1 by the ideal J .

Definition 6.3.24. Given a smooth variety X and two smooth closed subva-
rieties Y and Z of X, recall that for every p ∈ Y ∩ Z, we may consider TpY and
TpZ as linear subspaces of TpX. We say that Y and Z intersect transversely if, for
every p ∈ Y ∩ Z, we have

codimTpX(TpY ∩ TpZ) = codimp
X(Y ) + codimp

X(Z)

(note that p lies on unique irreducible components X ′ and Y ′ of X and Y , re-
spectively, and we put codimp

X(Y ) = codimX′(Y
′); a similar definition applies for

codimp
X(Z)). The condition can be equivalently formulated as follows: for every

p ∈ Y ∩ Z, we have
TpY + TpZ = TpX.

Proposition 6.3.25. If X is a smooth variety and Y , Z are smooth closed
subvarieties of X that intersect transversely, then Y ∩ Z is smooth, and for every
p ∈ Y ∩ Z, we have

codimp
X(Y ∩ Z) = codimp

X(Y ) + codimp
X(Z) and

Tp(Y ∩ Z) = TpY ∩ TpZ.
Moreover, for every affine open subset U of X, we have

IU (Y ∩ Z ∩ U) = IU (Y ∩ U) + IU (Z ∩ U).

Proof. Let r = codimp
X(Y ) and s = codimp

X(Z). It follows from Proposi-
tion 6.3.21 that if U is a suitable irreducible affine open neighborhood of p, then
IU (Y ∩ U) is generated by r elements and IU (Z ∩ U) is generated by s elements.
Consider the ideal

J = IU (Y ∩ U) + IU (Z ∩ U)

that defines the closed subset Y ∩ Z. Since J is generated by r + s elements, it
follows from Corollaries 3.3.7 and 3.3.13 that every irreducible component of Y ∩Z
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has dimension ≥ dimp(X) − (r + s). On the other hand, we have Tp(Y ∩ Z) ⊆
Tp(Y ) ∩ Tp(Z), hence by assumption

dimk Tp(Y ∩ Z) ≤ dimp(X)− (r + s).

This implies that p is a smooth point of Y ∩ Z and Tp(Y ∩ Z) = TpY ∩ TpZ.
In fact we can do better: it is easy to see, by translating the above argument

algebraically, that if m ⊆ O(U) = R is the maximal ideal corresponding to p, then

dimk m/m
2 + J ≤ dimp(X)− (r + s) ≤ dim

(
Rm/JRm

)
.

This implies that Rm/JRm is a regular local ring, hence reduced by Remark 6.3.11.
Therefore Jm =

(
IU (Y ∩U) + IU (Z ∩U)

)
m

for every point in Y ∩Z, which implies

the last assertion in the proposition (see, for example, Corollary C.3.3 ). �

We end this section by stating one of the most useful results in algebraic ge-
ometry. Given an irreducible algebraic variety X, a resolution of singularities of X

is a proper, birational morphism f : X̃ → X, with X̃ a smooth, irreducible variety.
One can ask for more properties (for example, one can ask that f is projective, in
a sense that we will define later, which implies in particular that if X is projective

or quasi-projective, then X̃ has the same property; one can also ask for f to be an
isomorphism over Xsm). The following celebrated result is due to Hironaka.

Theorem 6.3.26. If char(k) = 0, then every irreducible variety X over k has
a resolution of singularities.

Remark 6.3.27. In fact, Hironaka’s theorem is more precise: suppose, for
simplicity, that X has a closed immersion in a smooth variety Y (for example, any
quasi-projective variety satisfies this condition). In this case the theorem says that
there is a sequence of morphisms

Yr
fr−→ Yr−1 −→ . . . −→ Y1

f1−→ Y0 = Y

with the following properties:

i) Each fi, with 1 ≤ i ≤ r, is the blow-up along a smooth variety Zi−1

(hence, by induction, all Yi are smooth).
ii) For every i, with 1 ≤ i ≤ r, the strict transform Xi−1 of X on Yi−1 is not

contained in Zi−1 (so that the next strict transform Xi is defined).
iii) The strict transform Xr of X on Yr is smooth.

Exercise 6.3.28. Consider the following curves in A2:

X = V (x2 − y3), Y = V
(
y2 − x2(x+ 1)

)
, and Z = V (x2 − y5).

Show that if π : Ã2 → A2 is the blow-up of the origin, then the strict transforms X̃

and Ỹ of X and Y , respectively, are smooth; the strict transform Z̃ of Z has one
singular point and by blowing that up, the resulting strict transform is smooth.

6.4. Bertini’s theorem

Recall that the hyperplanes in Pn are parametrized by a projective space (Pn)∗.
We will be using the following terminology: if Z is an irreducible variety, we say that
a property holds for a general point z ∈ Z if there is an open subset U of Z such that
the property holds for all z ∈ U . Note that if we have two such properties, then they
both hold for a general point in Z: this follows from the fact that the intersection of
two nonempty open subsets is again a nonempty open subset. This terminology is
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particularly convenient when the points of Z parametrize some geometric objects,
as is the case with (Pn)∗.

Given a projective variety X ⊆ Pn, one is often interested in the following type
of statement: if X has a certain property, then for a general hyperplane H in Pn,
the intersection X ∩H still has the same property. In this section we prove such a
result for smoothness.

Theorem 6.4.1 (Bertini). If X ⊆ Pn is a smooth variety, then for a general
hyperplane H in Pn, the subvarieties X and H of Pn intersect transversely; in
particular, the intersection X ∩H is smooth, and if X has pure dimension d, then
X ∩H has pure dimension d− 1.

Proof. We may assume that X is irreducible: indeed, if we know this, then
for every connected component of X, we find a corresponding open subset of (Pn)∗.
The intersection of these open subsets then satisfies the conclusion in the theorem.
From now on we assume that X is irreducible, and let d = dim(X).

Note that for every hyperplane H in Pn and every p ∈ H, we have TpH = H.
It follows from Proposition 6.2.6 that H and X do not intersect transversely if and
only if there is p ∈ X ∩H such that TpX ⊆ H. Consider the set

Z :=
{(
p, [H]

)
∈ X × (Pn)∗ | Tp(X) ⊆ H

}
.

We claim that Z is closed in X × (Pn)∗. In order to check this, let f1, . . . , fr be
homogeneous generators for the ideal IX of X in Pn. The linear subspace TpX at
a point p ∈ X is defined by the linear equations

n∑
j=0

∂fi
∂xj

(p)xj = 0 for 1 ≤ i ≤ r.

By assumption, for every p ∈ X, the rank of the matrix
(
∂fi
∂xj

(p)
)
i,j

is n− d. The

hyperplane H defined by
∑n
j=0 ajxj = 0 contains TpX if and only if the rank of

the matrix 
a0 a1 . . . an

∂f1
∂x0

(p) ∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)

. . . . . . . . . . . .
∂fr
∂x0

(p) ∂fr
∂x1

(p) . . . ∂fr
∂xn

(p)


is ≤ n− d. Equivalently, all (n− d+ 1)-minors of this matrix must be 0, and it is
clear that it is enough to only consider those minors involving the first row. Each
of these conditions is of the form

n∑
j=0

ajgj(p) = 0

for some homogeneous polynomials g0, . . . , gn, all of the same degree. It is now
straightforward to check (for example, by covering each of X and (Pn)∗ by the
standard affine charts) that the subset Z is closed in X × (Pn)∗. In particular, Z
is a projective variety.

The projections onto the two components induce two morphisms π1 : Z → X
and π2 : Z → (Pn)∗. For every p ∈ X, consider the fiber π−1

1 (p). This is identified
with the subset of (Pn)∗ consisting of all hyperplanes containing Tp(X). This is a
linear subspace of dimension n − d − 1. Indeed, since X is smooth, of dimension
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d, the linear subspace Tp(X) of Pn has dimension d. After choosing suitable
coordinates, we may assume that this is given by xd+1 = . . . = xn = 0. In this
case, the hyperplane with equation

∑n
i=0 aixi = 0 contains Tp(X) if and only if

a0 = . . . = ad = 0; this is thus a linear subspace in (Pn)∗ of codimension d+ 1.
Therefore we conclude from Corollary 3.4.3 that

dim(Z) = dim(X) + (n− d− 1) = n− 1.

In this case, the morphism π2 : Z → (Pn)∗ can’t be dominant. Its image is thus
a proper closed subset of (Pn)∗ and if U is the complement of this image, we see
that for every hyperplane H in Pn with [H] ∈ U , X and H intersect transversely,
and therefore Proposition 6.3.25 implies that X ∩ H is a smooth variety of pure
dimension d− 1 (of course, if d = 0, this simply means that X ∩H is empty). �

Remark 6.4.2. It follows from the above proof that even if X ⊆ Pn is a
subvariety with finitely many singular points, for a general hyperplane H in Pn,
the intersection X ∩H is still smooth. Indeed, with the notation in the proof, we
still have that the fiber π−1

1 (p), for p ∈ X, has dimension ≤ n − d − 1 (in fact,
one can get a better bound at the singular points). We thus still have the bound
dim(Z) ≤ n − 1, which implies that Z does not dominate (PN )∗. Since a general
hyperplane does not contain any of the singular points of X, we deduce that such
a hyperplane intersects Xsm transversally, and therefore X ∩H is smooth.

Remark 6.4.3. There are several other versions of Bertini’s theorem. One
which is often useful says that if X ⊆ Pn is an irreducible closed subvariety, with
dim(X) ≥ 2, then for a general hyperplane H ⊆ Pn, the intersection X∩H is again
irreducible (see [Jou83] for this and related results). Another useful version, due
to Kleiman, concerns smoothness in the case when instead of a closed subvariety of
Pn one deals with an arbitrary morphism X → Pn (this, however, works only over
a ground field of characteristic 0). We will give a proof of this result at some later
point.

6.5. Smooth morphisms between smooth varieties

In this section we discuss the notion of smooth morphism between smooth
varieties. We will later return to this concept, to consider the case of arbitrary
varieties.

Definition 6.5.1. A morphism f : X → Y between smooth algebraic varieties
is smooth at a point x ∈ X if the linear map

dfx : TxX → Tf(x)Y

is surjective. The morphism f is smooth if it is smooth at every point.

Given a morphism of smooth varieties f : X → Y , for every irreducible compo-
nent X ′ of X there is a unique irreducible component Y ′ of Y such that f(X ′) ⊆ Y ′.
We can thus easily reduce to the case of morphisms between smooth, irreducible
varieties.

Proposition 6.5.2. If f : X → Y is a smooth morphism between the smooth,
irreducible varieties X and Y , then f is dominant and for every y ∈ f(X), the
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fiber f−1(y) is smooth, of pure dimension dim(X) − dim(Y ). Moreover, for every
x ∈ f−1(y), we have

Tx
(
f−1(y)

)
= ker(dfx : TxX → Tf(x)Y ).

Proof. By Theorem 3.4.1, we know that every irreducible component of f−1(y)
has dimension ≥ dim(X) − dim(Y ). Moreover, the inequality is strict if f is not
dominant.

On the other hand, the composition

f−1(y)
i
↪→ X

f−→ Y

where i is the inclusion map can also be factored as

f−1(y) −→ {y} ↪→ Y.

This implies that the restriction of dfx to Tx
(
f−1(y)

)
⊆ TxX is zero, hence Tx

(
f−1(y)

)
is contained in the kernel of dfx. Since dfx is surjective, it follows that

dimk Tx
(
f−1(y)

)
≤ dimk ker(dfx) = dimk TxX − dimk Tf(x)Y = dim(X)− dim(Y ).

Since dimx

(
f−1(y)

)
≤ dimk Tx

(
f−1(y)

)
, we thus conclude that this is, in fact, an

equality. This implies that f is dominant, Tx
(
f−1(y)

)
= ker(dfx), and f−1(y) is

smooth at x, of dimension dim(X)− dim(Y ). �

Example 6.5.3. Consider the morphism f : A1 → A1 given by f(t) = t2,
where we assume that char(k) 6= 2. For every point t ∈ A1, the map

TtA
1 = k → k = Tf(t)A

1

is given by multiplication by 2t (see Remark 6.2.5). It follows that f is smooth at
every point t 6= 0, but it is not smooth at 0.

Definition 6.5.4. A morphism of smooth varieties f : X → Y is étale at x ∈ X
if it is smooth at x and dimxX = dimf(x) Y . The morphism is étale if it is étale at
every point.

The following theorem is the Generic Smoothness theorem. We will prove this
later.

Theorem 6.5.5. If char(k) = 0, then for every dominant morphism of smooth
varieties f : X → Y , there is a non-empty open subset U ⊆ Y such that the induced
morphism f−1(U)→ U is smooth.

Remark 6.5.6. The hypothesis on the characteristic in the above theorem is
essential. If char(k) = p, note that the morphism f : A1 → A1 given by f(t) = tp

is not smooth at any point.

Remark 6.5.7. The Generic Smoothness theorem is the analogue of Sard’s
theorem in differential topology. Note that by combining it with Proposition 6.5.2,
we conclude that if f : X → Y is a dominant morphism of smooth, irreducible
algebraic varieties over an algebraically closed field of characteristic 0, then there
is a non-empty open subset U of Y such that for every y ∈ Y , the fiber f−1(y) is
smooth.





CHAPTER 7

The Grassmann variety and other examples

In this chapter we discuss various geometric examples related to the Grassmann
variety. In the first section we construct this variety and discuss several related
constructions, such as the Plücker embedding and the incidence correspondence.
In the second section we discuss flag varieties, while in the third section we give a
resolution of singularities for the generic determinantal variety. We next consider
the parameter space for projective hypersurfaces and discuss linear subspaces on
such hypersurfaces. In the last section we treat the variety of nilpotent matrices.

7.1. The Grassmann variety

Let V = kn and let r be an integer with 0 ≤ r ≤ n. In this section we describe
the structure of algebraic variety on the set G(r, n) parametrizing the r-dimensional
linear subspaces of V . These are the Grassmann varieties. Given an r-dimensional
linear subspace W of V , we denote by [L] the corresponding point of G(r, n).

This is trivial for r = 0 or r = n: in this case G(r, n) is just a point. The
first non-trivial case that we have already encountered is for r = 1: in this case
G(r, n) = Pn−1. A similar description holds for r = n−1: hyperplanes in kn are in
bijection with lines in (kn)∗ ' kn, hence these are again parametrized by a Pn−1

(cf. Exercise 4.2.18).
We now proceed with the description in the general case. Given an r-dimensional

linear subspaceW of kn, choose a basis u1, . . . , ur ofW . By writing ui = (ai,1, . . . , ai,n)
for 1 ≤ i ≤ r, we obtain a matrix A = (ai,j) ∈ Mr,n(k). Note that we have an
action of GLr(k) on Mr,n(k) given by left multiplication. Choosing a different basis
of W corresponds to multiplying the matrix on the left by an element of GLr(k).
Moreover a matrix in Mr,n(k) corresponds to some r-dimensional linear subspace in
kn if and only if it has maximal rank r. We can thus identify G(r, n) with the quo-
tient set U/GLr(k), where U is the open subset of Mr,n(k) consisting of matrices
of rank r.

For every subset I ⊆ {1, . . . , n} with r elements, let UI be the open subset of U
given by the non-vanishing of the r-minor on the columns indexed by the elements
of I. Note that this subset is preserved by the GLr(k)-action and let VI be the
corresponding subset of G(r, n). We now construct a bijection

φI : VI →Mr,n−r(k) = Ar(n−r).

In order to simplify the notation, say I = {1, . . . , r}. Given any matrix A ∈ UI , let
us write it as A = (A′, A′′) for matrices A′ ∈ Mr,r(k) and A′′ ∈ Mr,n−r(k). Note
that by assumption det(A′) 6= 0. In this case there is a unique matrix B ∈ GLr(k)
such that B · A = (Ir, C), for some matrix C ∈ Mr,n−r(k) (namely B = (A′)−1,
in which case C = (A′)−1 · A′′). Therefore every matrix class in VI is the class of

133
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a unique matrix of the form (Ir, C), with C ∈ Mr,n−r(k). This gives the desired

bijection between V{1,...,r} → Ar(n−r), and a similar argument works for every VI .
We put on each VI the topology and the sheaf of functions that make the

above bijection an isomorphism in T opk. We need to show that these glue to give
on G(r, n) a structure of a prevariety: we need to show that for every subsets I and
J as above, the subset φI(VI ∩ VJ) is an open subset of Ar(n−r) and the map

(7.1.1) φJ ◦ φ−1
I : φI(VI ∩ VJ)→ φJ(VI ∩ VJ)

is a morphism of algebraic varieties (in which case, by symmetry, it is an isomor-
phism). In order to simplify the notation, suppose that I = {1, . . . , r}. It is then
easy to see that if #(I ∩ J) = `, then φI(VI ∩ VJ) ⊆ Ar(n−r) is the principal affine
open subset defined by the non-vanishing of the (r− `)-minor on the rows indexed
by those i ∈ I r J and on the columns indexed by those j ∈ J r I. Moreover, the
map (7.1.1) is given by associating to a matrix C the r × n matrix M = (Ir, C),
multiplying it on the left with the inverse of the r × r-submatrix of M on the
columns in J to get M ′, and then keeping the r × (n− r) submatrix of M ′ on the
columns in {1, . . . , n}r J . It is clear that this is a morphism.

We thus conclude that G(r, n) is an object in T opk. In fact, it is a prevariety,
since it is covered by open subsets isomorphic to affine varieties. In fact, since
each VI is isomorphic to an affine space, it is smooth and irreducible, and since
we have seen that any two VI intersect, we conclude that G(r, n) is irreducible by
Exercise 1.3.17. Furthermore, since each VI has dimension r(n − r), we conclude
that dim

(
G(r, n)

)
= r(n− r). We collect these facts in the following proposition.

Proposition 7.1.1. The Grassmann variety G(r, n) is a smooth, irreducible
prevariety of dimension r(n − r), that has a cover by open subsets isomorphic to
Ar(n−r).

Example 7.1.2. If r = 1, the algebraic variety G(1, n) is just Pn−1, described
via the charts Ui = (xi 6= 0) ' An−1.

Example 7.1.3. If r = n − 1, the algebraic variety G(n − 1, n) has an open
cover

G(n− 1, n) = U1 ∪ . . . ∪ Un.
For every i, we have an isomorphism An−1 ' Ui such that (λ1, . . . , λi−1, λi+1, . . . λn)
is mapped to the hyperplane generated by {ej + λjei | j 6= i}. This is the hyper-
plane defined by the equation e∗i −

∑
j 6=i λje

∗
j = 0. We thus see that the variety

structure on G(n − 1, n) is the same one as on (Pn−1)∗, which is isomorphic to
Pn−1 (cf. Exercise 4.2.18).

Our next goal is to show that, in fact, G(r, n) is a projective variety. Note that
if W is an r-dimensional linear subspace of V = kn, then ∧rW is a 1-dimensional
linear subspace of ∧rV ' kd, where d =

(
n
r

)
. If e1, . . . , en is the standard basis of kn,

then we have a basis of ∧rV given by the eI = ei1 ∧ . . .∧ eir , where I = {i1, . . . , ir}
is a subset of {1, . . . , n} with r-elements (and where, in order to write eI , we order
the elements i1 < . . . < ir). We correspondingly denote the coordinates on the
projective space of lines in ∧rV by xI .

Proposition 7.1.4. The map f : G(r, n) → Pd−1 that maps [W ] to [∧rW ] is
a closed immersion. In particular, G(r, n) is a projective variety.
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The embedding in the above proposition is the Plücker embedding of the Grass-
mann variety.

Proof of Proposition 7.1.4. If W ⊆ V is an r-dimensional linear subspace
described by the matrix A, then f

(
[W ]

)
∈ Pd−1 is given in the above homogeneous

coordinates by the r-minors of A. In particular, we see that the inverse image of
the affine chart WI = (xI 6= 0) is the affine open subset VI ⊆ G(r, n).

In order to complete the proof, it is enough to show that for every I, the induced
map VI →WI is a morphism and the corresponding ring homomorphism

(7.1.2) O(WI)→ O(VI)

is surjective. The argument is the same for all I, but in order to simplify the
notation, we assume I = {1, . . . , r}. Note that the map VI → WI gets identified

to Mr,n−r(k)→ A(n
r)−1, than maps a matrix B to all r-minors of (Ir, B), with the

exception of the one on the first r columns. In particular, we see that this map is a
morphism. By choosing r− 1 columns of the first r ones and an additional column
of the last (n − r) ones, we obtain every entry of B as an r-minor as above. This
implies that the homomorphism (7.1.2) is surjective. �

Remark 7.1.5. The algebraic group GLn(k) acts on kn and thus acts onG(r, n)
by g · [W ] = [g ·W ]. Note that if W is described by the matrix A ∈Mr,n(k), then
g ·W is described by A · gt. It is straightforward to see that this is an algebraic
action. Since any two linear subspaces can by mapped one to the other by a linear
automorphism of kn, we see that the GLn(k)-action on G(r, n) is transitive.

Remark 7.1.6. If W is an r-dimensional linear subspace of V = kr, then we
have an induced surjection V ∗ →W ∗, whose kernel is an (n−r)-dimensional linear
subspace of (kn)∗ ' kn. In this way we get a bijection G(r, n) → G(n − r, n) and
it is not hard to check that this is, in fact, an isomorphism of algebraic varieties.

Remark 7.1.7. Given an arbitrary n-dimensional vector space V over k, let
G(r, V ) be the set of r-dimensional linear subspace of V . By choosing an isomor-
phism V ' kn, we obtain a bijection G(r, V ) ' G(r, n) and we put on G(r, V ) the
structure of an algebraic variety that makes this an isomorphism. Note that this is
independent of the choice of isomorphism V ' kr: for a different isomorphism, we
have to compose the map G(r, V )→ G(r, n) with the action on G(r, n) of a suitable
element in GLn(k).

Remark 7.1.8. It is sometimes convenient to identify G(r, n) with the set of
(r − 1)-dimensional linear subspaces in Pn−1.

Notation 7.1.9. Given a finite-dimensional k-vector space V , we denote by
P(V ) the projective space parametrizing hyperplanes in V . Therefore the homoge-
neous coordinate ring of P(V ) is given by the symmetric algebra Sym•(V ). With
this notation, the projective space parametrizing the lines in V is given by P(V ∗).

We end this section by discussing the incidence correspondence for the Grass-
mann variety and by giving some applications. More applications will be given in
the next sections.

Consider the set of r-dimensional linear subspaces in Pn, parametrized by
G = G(r + 1, n+ 1). The incidence correspondence is the subset

Z =
{(
q, [V ]

)
∈ Pn ×G | q ∈ V

}
.



136 7. THE GRASSMANN VARIETY AND OTHER EXAMPLES

Note that this is a closed subset of Pn × G. Indeed, if we represent [W ] by the
matrix A = (ai,j)0≤i≤r+1,0≤j≤n, then

(
[b0, . . . , bn], [W ]

)
lies in Z if and only if the

rank of the matrix

B =


b0 b1 . . . bn
a0,0 a0,1 . . . a0,n

. . . . . . . . . . . .
ar,0 ar,1 . . . ar,n


is ≤ r + 1. This is the case if and only if all (r + 2)-minors of B vanish. By
expanding along the first row, we can write each such minor as

∑
j∈I bjδj , where

I ⊆ {0, . . . , n} is the subset with r+ 2 elements determining the minor and each δj
is a suitable minor of A. Consider the closed immersion

Pn ×G i
↪→ Pn ×PN j

↪→ PM ,

where i is given by i(u, v) =
(
u, φ(v)

)
, with φ being the Plücker embedding, and j is

the Segre embedding. It follows from the above discussion that via this embedding,
Z is the inverse image of a suitable linear subspace of PM , and therefore it is closed
in Pn ×G. Since both Pn and G are projective varieties, we conclude that Z is a
projective variety.

The projections onto the two components induce the morphisms π1 : Z → Pn

and π2 : Z → G. It follows from the definition that for every [W ] ∈ G, we have
π−1

2

(
[W ]

)
'W .

Exercise 7.1.10. Show that the morphism π2 : Z → G is locally trivial, with
fiber1 Pr.

Since all fibers of π2 are irreducible, of dimension r, we conclude from Propo-
sition 5.5.1 that Z is irreducible, of dimension

dim(Z) = r + dim(G) = r + (r + 1)(n− r).

(we use here the fact that G is irreducible and Z is a projective variety).
Given a point q ∈ Pn, the fiber π−1(q) ⊆ G consists of all r-dimensional

linear subspaces of Pn containing q (equivalently, these are the (r+ 1)-dimensional
linear subspaces of kn+1 containing a given line). These are in bijection with the
Grassmann variety G(r, n).

Exercise 7.1.11. Show that the morphism π1 : Z → Pn is locally trivial, with
fiber G(r, n).

We use the incidence correspondence to prove the following

Proposition 7.1.12. Let X ⊆ Pn be a closed subvariety of dimension d and
let G = G(r + 1, n+ 1). If we put

Mr(X) =
{

[W ] ∈ G |W ∩X 6= ∅},

then the following hold:
i) The set Mr(X) is a closed subset of G, which is irreducible if X is irreducible.
ii) We have dim

(
Mr(X)

)
= dim(G)− (n− r − d) for 0 ≤ r ≤ n− d.

1Given a variety F , we say that a morphism f : X → Y is locally trivial, with fiber F , if there
is an open cover Y = U1∪ . . .∪Ur such that for every i, we have an isomorphism f−1(Ui) ' Ui×F
of varieties over Ui.
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Proof. Using the previous notation, note that Mr(X) = π2

(
π−1

1 (X)
)
, hence

Mr(X) is closed, since X is closed and π2 is a closed map (recall that Z is a
projective variety). Consider now the morphism π−1

1 (X) → X induced by π1.
Since all fibers are irreducible, of dimension r(n− r) (being isomorphic to G(r, n)),
and π−1

1 (X) is a projective variety, we deduce from Proposition 5.5.1 that if X is
irreducible, then π−1

1 (X) is irreducible, with

dim
(
π−1

1 (X)
)

= dim(X) + r(n− r).

The irreducibility of π−1(X) implies the irreducibility of π2

(
π−1

1 (X)
)
.

It is clear that if X = X ∪ . . .∪Xs is the irreducible decomposition of X, then
we have Mr(X) = Mr(X1)∪ . . .∪Mr(Xs). Therefore, in order to prove ii), we may
assume that X is irreducible. We claim that the morphism π−1

1 (X)→Mr(X) has
at least one finite, non-empty fiber. Using Theorems 3.4.1 and 3.4.1, this implies
that

dim
(
Mr(X)

)
= dim

(
π−1

1 (X)
)

= d+ r(n− r).
hence

codimG

(
Mr(X)

)
= (r + 1)(n− r)− d− r(n− r) = n− r − d.

We thus only need to find an r-dimensional linear subspace that intersects X in a
nonempty, finite set. This is easy to see and we leave the argument as an exercise
for the reader. �

Exercise 7.1.13. Consider the Grassmann varietyG = G(r+1, n+1) parametriz-
ing the r-dimensional linear subspaces in Pn. Show that if Z is a closed subset of
G, then the set

Z̃ :=
⋃

[V ]∈Z

V ⊆ Pn

is a closed subset of Pn, with dim(Z̃) ≤ dim(Z) + r.

Exercise 7.1.14. Show that if X and Y are disjoint closed subvarieties of Pn,
then the join J(X,Y ) ⊆ Pn, defined as the union of all lines in Pn joining a point
in X and a point in Y , is a closed subset of Pn, with

dim
(
J(X,Y )

)
≤ dim(X) + dim(Y ) + 1.

7.2. Flag varieties

In this section we define flag varieties and prove some basic properties. Let V
be a vector space over k, with dimk V = n and let 1 ≤ `1 < . . . < `r ≤ n. A flag
of type (`1, . . . , `r) in V is a sequence of linear subspaces V1 ⊆ V2 ⊆ · · · ⊆ Vr ⊆ V ,
where dimk(Vi) = `i. A complete flag is a flag of type (1, 2, . . . , n).

The flag variety Fl`1,...,`r (V ) parametrizes flags in V . In other words, this is
the set

Fl`1,...,`r (V ) := {(V1, . . . , Vr) ∈ G(`1, V )× · · · ×G(`r, V ) | V1 ⊆ · · · ⊆ Vr}.

In particular, the complete flag variety Fl(V ) = Fl1,...,n(V ) parametrizes complete
flags in V .

Proposition 7.2.1. The subset Fl`1,...,`r (V ) of G(`1, V ) × · · · × G(`r, V ) is
closed, hence Fl`1,...,`r (V ) is a projective variety.
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Proof. The assertion is trivial for r = 1, hence we may assume r ≥ 2. For i
with 1 ≤ i ≤ r − 1, consider the map

πi,i+1 : G(`1, V )× · · · ×G(`r, V )→ G(`i, V )×G(`i+1, V )

given by the projection on the factors i and i+ 1. It is clear that

Fl`1,...,`r (V ) =

r−1⋂
i=1

π−1
i,i+1

(
Fl`i,`i+1

(V )
)
,

hence it s enough to prove the assertion in the proposition when r = 2.
Let us fix a basis e1, . . . , en on V . Consider now the set M1×M2 ⊆M`1,n(k)×

M`2,n(k) consisting of pairs of matrices of maximal rank. Let Z be the subset of
M1 ×M2 consisting of matrices (A,B) with the property that the linear span of
the rows of A is contained in the linear span of the rows of B. Recall that we have
morphisms

M1 → G(`1, V ) and M2 → G(`2, V )

such that the product map M1×M2 → G(`1, V )×G(`2, V ) maps Z onto Fl`1,`2(V ).
Note that Z is closed in M1 ×M2. Indeed, a pair

(
(ai,j , (bi,j)

)
lies in Z if and

only if the rank of the matrix (ci,j)1≤i≤`1+`2,1≤j≤n given by

ci,j = ai,j for i ≤ `1 and ci,j = bi−`1,j for `1 + 1 ≤ i ≤ `1
has rank ≤ `2. Using now the description of G(`1, V ) and G(`2, V ) in terms of
charts arising by covering M1 and M2 by corresponding open subsets, it is now
easy to see that Fl`1,`2(V ) is closed in G(`1, V )×G(`2, V ). �

Recall that the group GL(V ) of linear automorphisms of V has an induced
action on each G(`, V ) and it is clear that the product action on G(`1, V ) × · · · ×
G(`r, V ) induces an algebraic action of GL(V ) on Fl`1,...,`r (V ). This action is
clearly transitive: given any two flags of type (`1, . . . , `r), we can find an invertible
linear automorphism of GL(V ) that maps one to the other (for example, choose
for each flag a basis of V such that the ith element of the flag is generated by the
first `i elements of the basis, and then choose a linear transformation that maps
one basis to the other). By Exercise 6.3.14, we conclude that Fl(`1, . . . , `r)(V ) is a
smooth variety.

Example 7.2.2. If e1, . . . , en is a basis of n and Vi is the linear span of e1, . . . , ei,
then the stabilizer of the point on the complete flag variety corresponding to V1 ⊆
. . . ⊆ Vn is the subgroup B ⊆ GL(V ) ' GLn(k) of upper-triangular matrices.

It is clear that if r = 1, then Fl`1(V ) = G(`1, V ). Suppose now that r ≥ 2. For
every (`1, . . . , `r) as above the projection

G(`1, V )× · · · ×G(`r, V ) −→ G(`1, V )× · · · ×G(`r−1, V )

onto the first (r − 1) components induces a morphism

Fl`1,...,`r (V ) −→ Fl`1,...,`r−1
(V ).

The fiber over a point corresponding to the flag (V1, . . . , Vr−1) is isomorphic to
the Grassmann variety G(`r − `r−1, V/Vr−1), hence it is irreducible, of dimension
(`r − `r−1)(n − `r). Arguing by induction on r and using Proposition 5.5.1, we
obtain the following:
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Proposition 7.2.3. If V is an n-dimensional vector space over k, then for ev-
ery (`1, . . . , `r), the flag variety Fl`1,...,`r (V ) is an irreducible variety, of dimension∑r
i=1 `i(`i+1 − `i), where `r+1 = n. In particular, the complete flag variety Fl(V )

is an irreducible variety of dimension n(n−1)
2 .

7.3. A resolution of the generic determinantal variety

Fix positive integers m and n and a non-negative integer r ≤ min{m,n}. Recall
that if we identify the space Mm,n(k) of m×n matrices with entries in k with Amn

in the obvious way, we have a closed subset Mr
m,n(k) of Amn consisting of those

matrices of rank ≤ r. Two cases are trivial: if r = 0, then Mr
m,n(k) = {0}, and if

r = min{m,n}, then Mr
m,n(k) = Mm,n(k).

If we denote the coordinates on Amn by xi,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
then Mr

m,n(k) is defined by the vanishing of all (r+ 1)-minors of the matrix (xi,j).
We have already seen that Mr

m,n(k) is irreducible in Exercise 1.4.27. We will give
another argument for this, that allows us to also compute the dimension of this
variety. In fact, we will give a resolution of singularities for Mr

m,n(k).
As usual, we identify Mm,n(k) with Homk(kn, km). Consider the following

subset of Amn ×G(n− r, n):

Y = {(A, [W ]) ∈ Amn ×G(n− r, n) |W ⊆ ker(A)}.

We first show that Y is a closed subset of Amn ×G(n − r, n). Consider the affine
open cover G(n− r, n) by subsets VI ' A(n−r)r described in Section 7.1. Suppose,
as usual, that I = {1, . . . , r}. If B ∈ M(n−r)r(k) represents the linear subspace W
and if M = (In−r, B), then (A, [W ]) ∈ Y if and only if A ·M t = 0. We thus see
that Y ∩ (Amn × VI) is the zero-locus of the homogeneous degree 2 polynomials
given by writing the entries of A ·M t in terms of the entries of A and M . We thus
conclude that Y is a closed subset of Amn ×G(n− r, n)

The projections onto the two components induce maps π1 : Y → Amn and
π2 : Y → G(n−r, n). Note that since G(n−r, n) is a projective variety, π1 is a proper
morphism. Its image consists of that A ∈Mm,n(k) such that dimk ker(A) ≥ n− r:
this is precisely Mr

m,n(k).
Let us consider the fiber of π2 over a point [W ] ∈ G(n − r, n). This is iden-

tified to the set of all A ∈ Mm,n(k) that vanish of W , which is isomorphic to
Hom(kn/W, km) ' Arm. In fact we can say more: π1 is locally trivial, with fiber
Arm. Indeed, for every subset with r elements I ⊆ {1, . . . , n}, we have an isomor-
phism of varieties over VI :

π−1
1 (VI) ' VI ×Arm.

In order to see this, let us assume that I = {1, . . . , r}. Via the identification
VI ' Mn−r,r(k), the intersection Y ∩ (Mm,n(k) × VI) consists of pairs of matrices
A = (ai,j) (of size m× n) and B = (bp,q) (of size (n− r)× r) such that

ai,` +

r∑
j=1

ai,n−r+jb`,j = 0 for 1 ≤ i ≤ m, 1 ≤ ` ≤ n− r.

It is then clear that by mapping the pair(
(ai,j)1≤i≤m,1≤j≤n, (bp,q)

)
to

(
(ai,j)1≤i≤m,n−r+1≤j≤n, (bp,q)

)
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we obtain the desired isomorphism. Since G(n−r, n) is smooth, this clearly implies
that Y is smooth. We also see that Y is irreducible via the general lemma below.
Finally, it follows from Theorem 3.4.2 that

dim(Y) = dim
(
G(n− r, n)

)
+mr = (n− r)r +mr = (m+ n)r − r2.

Lemma 7.3.1. If F is an irreducible algebraic variety and f : X → Y is a
morphism of algebraic varieties that is locally trivial with fiber F , and such that Y
is irreducible, then X is irreducible.

Proof. Consider a cover Y = V1 ∪ . . . ∪ Vi, with each Vi a nonempty open
subset of Y such that f−1(Vi) is isomorphic to Vi × F as a variety over Vi. In
particular, since Y is irreducible, each Vi is irreducible, and therefore Vi × F is
irreducible. Moreover, using again the irreducibility of Y we see that Vi ∩ Vj 6= ∅
for every i and j. Therefore

f−1(Vi) ∩ f−1(Vj) ' (Vi ∩ Vj)× F
is nonempty, and we conclude that X is irreducible using Exercise 1.3.17. �

Since Mr
m,n(k) is the image of Y, we get another proof for the fact that Mr

m,n(k)

is irreducible. Note that if U = Mr
m,n(k) rMr−1

m,n (k), then for every A ∈ U , there

is a unique point in Y mapping to A, namely
(
A, [ker(A)]

)
. By Theorem 3.4.2,

we conclude that dim
(
Mr
m,n(k)

)
= dim(Y), hence the codimension of Mr

m,n(k) in
Mm,n(k) is

mn− (m+ n)r + r2 = (m− r)(n− r).
In fact, we will show that π2 is an isomorphism over U ; in particular, it is

birational. We need to show that the inverse map U → f−1(U) is a morphism.
Of course, since f−1(U) is a locally closed subvariety of Amn × G(n − r, n) it is
enough to show that the map taking A ∈ U to ker(A) ∈ G(n− r, n) is a morphism.
We cover U by the subsets UΛ,Γ, where Λ ⊆ {1, . . . ,m} and Γ ⊆ {1, . . . , n} are
subsets with r elements, and where UΛ,Γ is the subset of Mr

m,n(k) consisting of
those matrices A such that the minor on the rows in Λ and on the columns in Γ is
nonzero. We will show that each map UΛ,Γ → G(n− r, n) is a morphism.

In order to simplify the notation, let us assume that Λ = {1, . . . , r} and Γ =
{n−r+1, . . . , n}. Let A ∈ UΛ,Γ. Note that in this case, if e1, . . . , en is the standard
basis of kn, then A(en−r+1), . . . , A(en) are linearly independent, hence

ker(A) + 〈en−r+1, . . . , en〉 = kn.

This implies that ker(A) ∈ V{1,...,n−r}. Moreover, if ker(A) is described by the
matrix (bp,q)1≤p≤n−r,1≤q≤r, then the bp,q are determined by the condition

A(ep) = −
n∑

q=n−r+1

bp,qA(eq).

It thus follows easily from Cramer’s rule that if A = (ai,j) ∈ UΛ,Γ, then we can
write each bp,q as

bp,q =
Rp,q(A)

δ(A)
,

where Rp,q is a polynomial in the ai,j , while δ(A) = det(ai,j)1≤i≤r,n−r+1≤j≤n. This
completes the proof of the fact that π2 is birational. We collect the results we proved
in this section in the following proposition
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Proposition 7.3.2. The closed subset Mr
m,n(k) of Mm,n(k) is irreducible, of

codimension (m − r)(n − r), and the morphism π2 : Y → Mr
m,n(k) is a resolution

of singularities.

7.4. Linear subspaces on projective hypersurfaces

We consider a projective space Pn and let S be its homogeneous coordinate ring.
Recall that a hypersurface in Pn is a closed subvariety of Pn whose correspond-
ing radical homogeneous ideal is of the form (F ), for some nonzero homogeneous
polynomial of positive degree. If deg(F ) = d, then the hypersurface has degree d.

We begin by constructing a parameter space for hypersurfaces of degree d. Note
that two polynomials F and G define the same hypersurface if and only if there is
λ ∈ k∗ such that F = λG. Let PNd be the projective space parametrizing lines in
the vector space Sd, hence Nd =

(
n+d
n

)
−1. We consider on PNd the coordinates yα,

where α = (α0, . . . , αn) has |α| :=
∑
i αi = d; therefore the point [cα]α corresponds

to the hypersurface defined by
∑
α cαx

α, where xα = xα0
0 · · ·xαn

n . Therefore the set
Hd is parametrized by a subset of the projective space PNd consisting of classes
of homogeneous polynomials F ∈ Sd such that the ideal (F ) is radical. We will
denote by [H] the point of Hd corresponding to the hypersurface H ⊆ Pn.

Lemma 7.4.1. The subset Hd ⊆ PNd is a non-empty open subset.

Proof. Note that given F ∈ Sd, the ideal (F ) is not reduced if and only if
there is a positive integer e and a homogeneous polynomial G ∈ Se such that G2

divides F . For every e such that 0 < 2e ≤ d, consider the map

αe : PNe ×PNd−2e → PNd

that maps
(
[G], [H]

)
to [G2H]. It is straightforward to see that this is a morphism.

Since the source is a projective variety, it follows that the image of αe is closed.
Since Hd is equal to

PNd r
⋃

1≤e≤bd/2c

Im(αe),

we see that this set is open in PNd . In order to see that it is non-empty, it is enough
to consider f ∈ Sd which is the product of d distinct linear forms. �

Remark 7.4.2. We have seen in Theorem 6.4.1 that if X ⊆ Pn is a smooth
variety of pure dimension r, then for a general hyperplene H ⊆ Pn, the intersection
X ∩ H is smooth, of pure dimension r − 1. The same assertion holds if we take
H a general hypersurface in Pn, of degree d. Indeed, if νd : Pn ↪→ PNd is the dth

Veronese embeddings, then the intersections X∩H is isomorphic to the intersection
νd(X)∩L, where L ⊆ PNd is the hyperplane corresponding to H. We thus conclude
by applying Bertini’s theorem to νd(X).

By applying the above remark to the case X = Pn, we see that a general
hypersurface H ⊆ Pn of degree d is smooth. The following proposition makes this
more precise.

Proposition 7.4.3. The subset Singd ⊆ Hd consisting of singular hypersur-
faces is an irreducible closed subset, of codimension 1.
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Proof. Let Y be the subset of PNd consisting of pairs
(
p, [F ]

)
such that

(7.4.1) F (p) = 0 and
∂F

∂xi
(p) = 0 for 0 ≤ i ≤ n.

It is straightforward to see that Y is a closed subset of Pn ×PNd ; in particular, it
is a projective variety. Let α : Y → Pn and β : Y → PNd be the maps induced by
the two projections.

We claim that for every p ∈ Pn, the fiber α−1(p) ↪→ PNd is a linear subspace,
of codimension n + 1. Indeed, we may choose coordinates on Pn such that p =
[1, 0, . . . , 0]. In this case, the conditions in (7.4.1) are equivalent with the fact that

the coefficients of xd0, x
d−1
0 x1, . . . , x

d−1
0 xn are equal to 0, which gives our claim.

In particular, all fibers of α are irreducible, of the same dimension. Since α
is proper, we deduce using Proposition 5.5.1 that Y is irreducible, and Proposi-
tion 3.4.2 gives

dim(Y) = Nd − 1.

Since β is a closed map, it follows that its image is a closed, irreducible subset
of PNd . In order to conclude the proof of the proposition, it is enough to find a
singular hypersurface, with only finitely many singular points. Indeed, this implies
via Theorem 3.4.1 that dim

(
β(Y)

)
= dim(Y) = Nd − 1. Since

Singd = β(Y) ∩Hd,

it follows that Singd is closed in Hd, and being a non-empty open subset of β(Y),
it is irreducible, of dimension Nd − 1.

In order to construct a hypersurface that satisfies the required condition, it
is enough to consider g ∈ k[x0, . . . , xn−1] homogeneous, of degree d, defining a
smooth hypersurface in Pn−1. Such g exists by Remark 7.4.2. For an explicit
example, when char(k) 6 |d, one can take

g =

n−1∑
i=0

xdi .

For any such example, if we consider g as a polynomial in k[x0, . . . , xn], it defines a
hypersurface in Pn that has precisely one singular point, namely [0, . . . , 0, 1]. This
completes the proof of the proposition. �

Example 7.4.4. Let us describe the hypersurfaces of degree 2 (the quadrics)
in Pn. For simplicity, let us assume that char(k) 6= 2. Any non-zero homogeneous
polynomial F ∈ k[x0, . . . , xn] of degree 2 can be written as

F =
∑
i,j

ai,jxixj , with ai,j = aj,i for all i, j.

The rank of F is the rank of the symmetric matrix (ai,j) (note that if we do a linear
change of variables, this rank does not change).

Since k is algebraically closed, it follows that after a suitable linear change of
variables, we can write

(7.4.2) F =

r∑
i=0

x2
i ,
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in which case rank(F ) = r+1 ≥ 1. This can be deduced from the structure theorem
for symmetric bilinear forms over a field, but one can also give a direct argument:
we leave this as an exercise for the reader.

Given the expression in (7.4.2), note that (F ) is radical if and only if r ≥ 1
and (F ) is prime if and only if r ≥ 2. It follows from the above description that
a quadric is either smooth (precisely when r = n) or the projective cone over a
quadric of lower dimension.

For example, a quadric in P3 is either a smooth quadric, or a cone over a
smooth conic (quadric in P2) or a union of 2 planes. After a suitable change of
variables, a smooth quadric in P3 has equation x0x3 +x1x2 = 0. This is the image
of the Segre embedding

P1 ×P1 → P3,
(
[u0, u1], [v0, v1]

)
→ [u0u1, u0v1, u1v0, u1v1].

We next construct the universal hypersurface over Hd. In fact, for many pur-
poses, it is more convenient to work with the whole space PNd instead of restricting
to Hd (this is due to the fact that PNd is complete, while Hd is not). Define

Zd :=
{(
p, [F ]

)
∈ Pn ×PNd | F (p) = 0

}
.

It is easy to see that via the composition of closed embeddings

Pn ×PNd
νd×1
↪→ PNd ×PNd

β
↪→ PM ,

where νd is the dth Veronese embedding and β is the Segre embedding, Zd is the
inverse image of a hyperplane, hence it is a closed subset of Pn ×PNd .

Note that the projections onto the two components induce two morphisms

φ : Zd → Pn and ψ : Zd → PNd .

Since Pn and PNd are projective varieties, we deduce that both φ and ψ are proper
morphisms. It follows from definition that for every [H] ∈ Hd, we have ψ−1

(
[H]
)

=
H.

On the other hand, for every p ∈ Pn, the fiber φ−1(p) consists of the classes of
those F ∈ Sd such that F (p) = 0. This is a hyperplane in PNd . We deduce from
Proposition 5.5.1 that Zd is irreducible, of dimension Nd + n− 1.

We now turn to linear subspaces on projective hypersurfaces. Given r < n, let
G = G(r+1, n+1) be the Grassmann variety parametrizing the r-dimensional linear
subspaces in Pn. Consider the incidence correspondence I ⊆ PNd × G consisting
of pairs

(
[F ], [Λ]

)
such that F vanishes on Λ.

We first show that I is closed in PNd ×G. Suppose that we are over the open
subset V = V{1,...,r} ' A(r+1)(n−r) of G, where a subspace Λ is described by the
linear span of the rows of the matrix

1 0 . . . 0 a0,r+1 . . . a0,n

0 1 . . . 0 a1,r+1 . . . a1,n

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 ar,r+1 . . . ar,n

 .



144 7. THE GRASSMANN VARIETY AND OTHER EXAMPLES

The hypersurface corresponding to c = (cα), which is defined by fc =
∑
α cαx

α

contains the subspace corresponding to the above matrix if and only if

fc

x0, . . . , xr,
∑

0≤i≤r

ai,r+1xi, . . . ,
∑

0≤i≤r

ai,nxi

 = 0 in k[x0, . . . , xr].

We can write

(7.4.3) fc

x0, . . . , xr,
∑

0≤i≤r

ai,r+1xi, . . . ,
∑

0≤i≤r

ai,nxi

 =
∑
β

Fβ(a, c)xβ ,

where the sum is running over those β = (β0, . . . , βr) with
∑
i βi = d. Note that

each Fβ is a polynomial in the ai,j and cα variables, homogeneous of degree 1 in
the cα’s. With this notation, I ∩ (PNd × V ) is the zero-locus in PNd × V of the
ideal generated by all Fβ ; in particular, it is a closed subset. The equations over
the other charts in G are similar.

In particular, we see that I is a projective variety. Let π1 : I → PNd and
π2 : I → G be the morphisms induced by the projections onto the two factors.

Definition 7.4.5. For every hypersurfaceH of degree d in Pn, the Fano variety
of r-planes in H, denoted Fr(H), is the fiber π−1

1

(
[H]
)

of π1, parametrizing the
r-dimensional linear subspaces contained in H. .

Proposition 7.4.6. The projective variety I is irreducible, of dimension

(r + 1)(n− r) +

(
n+ d

d

)
−
(
r + d

d

)
− 1.

Proof. Consider the morphism π2 : I → G. By Proposition 5.5.1, it is enough
to show that every fiber π−1

(
[Λ]
)

is isomorphic to a linear subspace of PNd , of

codimension
(
r+d
d

)
. In order to see this, we may assume that Λ is defined by

xr+1 = . . . = xn = 0. It is clear that a polynomial f vanishes on Λ if and only if all
coefficients of the monomials in x0, . . . , xr in f vanish; this gives a linear subspace
of codimension

(
r+d
d

)
. �

Exercise 7.4.7. Given a smooth quadric X in P3, we have 2 families of lines
on X: choose coordinates such that X is given by x0x3 − x1x2 = 0, hence X is
the image of the Segre embedding ι : P1 × P1 ↪→ P3. One family of lines is given
by
(
ι(P1 × {q})

)
q∈P1 and the other one is given by

(
ι({p} ×P1)

)
p∈P1 . Show that

these are all the lines on X; deduce that the Fano variety of lines on X has two
connected components, each of them isomorphic to P1.

Example 7.4.8. Consider lines on cubic surfaces: that is, we specialize to the
case when n = 3 = d and r = 1. Note that in this case I is an irreducible variety
of dimension 19, the same as the dimension of the projective space parametrizing
homogeneous polynomials of degree 3 in S = k[x0, x1, x2, x3]. We claim that the
morphism π1 : I → P19 is surjective; in other words, every hypersurface in P3 which
is the zero-locus of a degree 3 homogeneous polynomial contains at least one line.
In order to see this, it is enough to exhibit such a hypersurface that only contains
finitely many lines (this follows from Theorem 3.4.1). At least for char(k) 6= 3, such
an example is given by the Fermat cubic surface below.
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Example 7.4.9. Suppose that char(k) 6= 3 and let X be the Fermat surface in
P3 defined by the equation

x3
0 + x3

1 + x3
2 + x3

3 = 0.

Of course, if char(k) = 3, then the zero locus of this polynomial is the hyperplane
x0 + x1 + x2 + x3 = 0, which contains infinitely many lines.

Up to reordering the variables, every line L ⊆ X can be given by equations of
the form

x0 = αx2 + βx3 and x1 = γx2 + δx3,

for some α, β, γ, δ ∈ k. This line lies on X if and only if

(αx2 + βx3)3 + (γx2 + δx3)3 + x3
2 + x3

3 = 0 in k[x2, x3].

This is equivalent to the following system of equations:

α3 + γ3 = −1, α2β + γ2δ = 0, αβ2 + γδ2 = 0, and β3 + δ3 = −1.

If α, β, γ, δ are all nonzero, then it follows from the third equation that

γ = −αβ2δ−2,

and plugging in the second equation, we get

α2β + α2β4δ−4 = 0,

which implies β3 = −δ3, contradicting the fourth equation.
Suppose now, for example, that α = 0. We deduce from the second equation

that γδ = 0. Moreover, γ3 = −1 by the first equation, hence δ = 0 and β3 = −1
by the fourth equation. We thus get in this way the 9 lines with the equations

x0 = βx3 and x1 = γx2,

where β, γ ∈ k are such that β3 = −1 = γ3. After permuting the variables, we
obtain 2 more sets of lines on X, hence in total we have 27 lines.

We next discuss hypersurfaces that contain linear spaces of small codimension.

Proposition 7.4.10. We consider hypersurfaces in Pn of degree d ≥ 2.

i) If X is a smooth such hypersurface containing a linear subspace Λ ⊆ Pn

of dimension r, then r ≤ n−1
2 .

ii) If Λ ⊆ Pn is a linear subspace of dimension r ≤ n−1
2 , then a general

hypersurface containing Λ is smooth.

Proof. After a suitable choice of coordinates on Pn, we may assume that Λ
is the linear subspace defined by

xr+1 = . . . = xn = 0.

Suppose that X is the hypersurface defined by a homogeneous polynomial F , of
degree d. If X contains Λ, then we can write

(7.4.4) F =

n−r∑
i=1

xr+ifi,

for some fi ∈ k[x0, . . . , xn], homogeneous of degree d− 1. For every i, with 1 ≤ i ≤
n− r, consider the homogeneous polynomials of degree d− 1

gi(x0, . . . , xr) = fi(x0, . . . , xr, 0, . . . , 0).
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If n− r ≤ r, then a repeated application of Corollary 4.2.12 implies that there is a
point [u0, . . . , ur] ∈ Pr such that

gi(u0, . . . , ur) = 0 for 1 ≤ i ≤ n− r.
In other words, there is a point p ∈ Λ such that fi(p) = 0 for all 1 ≤ i ≤ n− r. In
this case, it follows from (7.4.4) that F (p) = 0 and ∂F

∂xj
(p) = 0 for 0 ≤ j ≤ n, hence

p is a singular point of X. We thus deduce that if X is smooth, then n− r ≥ r+ 1,
giving i).

Suppose now that r ≤ n−1
2 and consider the subset W of PNd consisting of

those [F ] such that Λ is contained in the zero-locus (F = 0). This consists of those
[F ] such that F ∈ (xr+1, . . . , xn), which is a linear subspace in PNd , of codimension(
r+d
d

)
. Let U be the subset of W consisting of those [F ] such that there is no p ∈ Pn,

with

(7.4.5) F (p) = 0 =
∂F

∂xi
(p) for 0 ≤ i ≤ n.

Note that such F generates a radical ideal (see Remark 6.3.12) and the correspond-
ing degree d hypersurface contains Λ and is smooth. We need to show that U is
open and non-empty.

As in Proposition 7.4.3, we consider the set YW of pairs (p, [F ]) ∈ Pn ×W
such that (7.4.5) holds. This is a closed subset of Pn ×W , hence it is a projective
variety. Let α : YW → Pn and β : YW →W be the morphisms induced by the two
projections. Since U = Wrβ(YW ), it follows that U is open in W , and it is enough
to show that β(YW ) 6= W .

We now describe the fiber α−1(p) for p ∈ Pn. Suppose first that p ∈ Λ.
We may choose coordinates such that p = [1, 0, . . . , 0]. The conditions in (7.4.5)

are equivalent with the fact that the coefficients of xd0, x
d−1
0 x1, . . . , x

d−1
0 xn in F

are 0. Since F ∈ (xr+1, . . . , xn), we see that α−1(p) ↪→ W is a linear subspace
of codimension n − r. Suppose now that p 6∈ Λ, in which case we may choose
coordinates such that p = [0, . . . , 0, 1], in which case the conditions in (7.4.5) are
equivalent with the fact that the coefficients of xdn, x

d−1
n xn−1, . . . , x

d−1
n x0 are 0. We

thus see that in this case α−1(p) ↪→ W is a linear subspace of codimension n + 1.
We deduce from Corollary 3.4.3 that

dim
(
α−1(Λ)

)
= dim(Λ) + dim(W )− (n− r) = dim(W ) + (2r − n)

and

dim
(
α−1(Pn r Λ)

)
= dim(Pn r Λ) + dim(W )− (n+ 1) = dim(W )− 1.

Since by assumption we have 2r − n ≤ −1, we deduce that dim(YW ) = dim(W )−
1, hence dim

(
β(YW )

)
≤ dim(YW ) < dim(W ). This completes the proof of the

proposition. �

7.5. The variety of nilpotent matrices

Fix a positive integer n and let

Nn = {A ∈Mn(k) | A is nilpotent}.
The case n = 1 is trivial (N1 consists of one point), hence from now on we will
assume that n ≥ 2.

Recall that a matrix A ∈ Mn(k) is nilpotent if and only if An = 0. Since
the entries of An are homogeneous polynomials of degree n in the entries of A, it
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follows that Nn is a closed subset of Mn(k), preserved by the standard k∗-action
on Mn(k). Note that there are nonzero nilpotent matrices (we use here the fact
that n ≥ 2). It follows that we have a non-empty projective variety N proj

n in the

projective space P ' Pn2−1 of lines in Mn(k), such that Nn is the affine cone over
N proj
n .

In fact, we can define Nn by only n equations. Indeed, a matrix A is nilpotent
if and only if its characteristic polynomial det(A − λI) is equal to (−λ)n. If we
write

det(A− λI) =

n∑
i=0

(−1)ipi(A)λi,

then pn(A) = 1 and for each i, with 0 ≤ i ≤ n − 1, pi(A) is a homogeneous
polynomial of degree n− i in the entries of A. We thus see that Nn is the zero-locus
of the ideal (p0, . . . , pn−1).

Our next goal is to show that Nn is irreducible and compute its dimension. For
this, it is a bit more convenient to work with the corresponding projective variety
N proj
n .

The key observation is the following: a matrix A ∈ Mn(k) is nilpotent if and
only if there is a complete flag of subspaces

V1 ⊆ V2 ⊆ . . . ⊆ Vn = V,

with dimk(Vi) = i and A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n (where we put V0 = 0). Indeed,
it is clear that if we have such a flag, then An = 0. Conversely, if An = 0, let
Wi = An−i(kn). It follows from definition that

W0 = 0 ⊆W1 ⊆ . . . ⊆Wn = kn

and A(Wi) ⊆ Wi−1 for 1 ≤ i ≤ n. If we refine this sequence of subspaces to a
complete flag, this flag will satisfy the required conditions.

Motivated by this, we define

Z =
{(

[A], (V1, . . . , Vn)
)
∈ P× Fl(kn) | A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n

}
(where in the above formula we make the convention that V0 = {0}). We leave it
as an exercise for the reader to check that Z is a closed subset of P × Fl(kn). In
particular, we see that Z is a projective variety. The projections of P×Fl(kn) onto
the two components induce proper morphisms

π1 : Z → P and π2 : Z → Fl(kn).

Let us consider the fiber of π2 over a flag V• = (V1, . . . , Vn). If we choose a
basis e1, . . . , en such that each Vi is generated by e1, . . . , ei, it follows that π−1

2 (V•)
is isomorphic to the the subvariety of P consisting of classes of nonzero strictly

upper-triangular matrices, hence it is isomorphic to P
n(n−1)

2 −1. Since Fl(kn) is

irreducible, of dimension n(n−1)
2 , it follows from Proposition 5.5.1 that Z is an

irreducible variety, of dimension n2 − n− 1.
Consider now the morphism π1 : Z → P, whose image is N proj

n . This implies
that N proj

n is irreducible. We next show that over a non-empty open subset of
N proj
n , each fiber of π1 consists of just one point. Note that if A ∈ Mn(k) is a

nilpotent matrix, then its rank is ≤ n − 1. Let Uproj
n be the open subset of N proj

n

consisting of matrices of rank n − 1. Note that this is a non-empty subset: for
example, the nilpotent matrix (ai,j) with a`,`−1 = 1 for 2 ≤ ` ≤ n and all other ai,j
equal to 0 has rank n− 1. We note that if [A] ∈ Uproj

n , then π−1
(
[A]
)

has only one
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element: if (V1, . . . , Vn) is a flag in kn such that A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n, then
Vi = An−i(V ) for all i. Indeed, the condition on the flag implies that An−i(kn) ⊆ Vi
and the condition on the rank of A implies easily, by descending induction on i,
that dimk A

n−i(kn) = i. Therefore An−i(kn) = Vi for 1 ≤ i ≤ n.
Since π1 has finite fibers over Un, we deduce from Theorem 3.4.2 that

dim(N proj
n ) = dim(Z) = n2 − n− 1.

We thus conclude that Nn is an irreducible variety of dimension n2 − n.

Remark 7.5.1. In fact, the above construction, but done for the affine cone
Nn, gives a resolution of singularities of Nn. Indeed, let

W =
{(
A, (V1, . . . , Vn−1)

)
∈Mn(k)× Fl(kn) | A(Vi) ⊆ Vi−1 for 1 ≤ i ≤ n

}
.

One can check that the projection onto the second component induces a morphism

π2 : W → Fl(kn) that is locally trivial, with fiber A
n(n−1)

2 . In particular, it follows
that W is smooth, irreducible, of dimension n2 − n. The projection onto the first
component induces a proper, surjective morphism π1 : W → Nn. In order to see
that this is birational, note that if

Un = {A ∈ Nn | rk(A) = n− 1},
then the induced morphism π−1

1 (Un)→ Un is an isomorphism, whose inverse maps
A to

(
A, (An−1(kn), . . . , A(kn), kn)

)
.

Remark 7.5.2. One can see that the ideal (p0, . . . , pn−1) ⊆ O
(
Mn(k)

)
is a

radical ideal, but we do not pursue this here, since the argument involves some
deeper facts of commutative algebra than we have used so far.



CHAPTER 8

Coherent sheaves on algebraic varieties

In algebra, when one is interested in the study of rings, modules naturally
appear: for example, as ideals and quotient rings. Because of this, it is more
natural to study the whole category of modules over the given ring. This method
becomes even more powerful with the introduction of cohomological techniques,
since by working in the category of modules over a given ring, we can construct
derived functors of familiar functors like Hom and the tensor product. Our goal
in this chapter is to introduce objects that in the context of arbitrary varieties
extend what (finitely generated) modules over a ring are in the case of an affine
variety: these are the quasi-coherent (respectively, the coherent) sheaves. This
will provide us with the language to treat in later chapters global objects, such as
divisors, vector bundles, and projective morphisms. We begin with some general
constructions for sheaves of R-modules, then discuss sheaves of OX -modules, and
then introduce quasi-coherent and coherent sheaves. In particular, we use these
to globalize the MaxSpec and MaxProj constructions. In the last section of this
chapter we describe coherent sheaves on varieties of the form MaxProj(S).

8.1. General constructions with sheaves

In this section we discuss several general constructions involving sheaves. We
fix a commutative ring R and consider presheaves and sheaves of R-modules. Im-
portant examples are the cases when R = Z or R is a field. Given a topological
space X, we denote by PshRX and ShRX the categories of presheaves, respectively
sheaves, of R-modules on X. However, when R is understood, we simply write
PshX and ShX .

8.1.1. The sheaf associated to a presheaf. Let R be a fixed commuta-
tive ring and consider a topological space X. We show that the inclusion functor
PshX ↪→ ShX has a left adjoint. Explicitly, this means that for every presheaf F
on X, we have a sheaf F+, together with a morphism of presheaves φ : F → F+

that satisfies the following universal property: given any morphism of presheaves
ψ : F → G, where G is a sheaf, there is a unique morphism of sheaves α : F+ → G
such that α ◦ φ = ψ. In other words, φ induces a bijection

HomShX
(F+,G) ' HomPshX

(F ,G).

Note that the universal property implies that given any morphism of presheaves
u : F → G, we obtain a unique morphism of sheaves u+ : F+ → G+ such that the
diagram

149
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F

u

��

// F+

u+

��
G // G+

is commutative.
Given a presheaf F , for every open subset U ⊆ X we define F+(U) to consist

of all maps t : U →
⊔
x∈U Fx that satisfy the following properties:

i) We have t(x) ∈ Fx for all x ∈ U .
ii) For every x ∈ U , there is an open neighborhood Ux ⊆ U of x and s ∈
F(Ux), such that t(y) = sy for all y ∈ Ux.

Note that since each Fx is an R-module, addition and scalar multiplication of
functions makes each F+(U) an R-module. We also see that restriction of functions
induces for every open subsets U ⊆ V a map F+(V ) → F+(U) that make F+ a
presheaf of R-modules. In fact, it is straightforward to check that F+ is a sheaf:
this is a consequence of the local characterization of the sections of F+. We have
a morphism of presheaves of R-modules φ : F → F+ that maps s ∈ F(U) to the
map U →

⊔
x∈U Fx that takes x to sx.

Let’s check the universal property: consider a morphism of presheaves ψ : F →
G, where G is a sheaf. Given t ∈ F+(U), it follows from definition that we can cover
U by open subsets Ui and we have si ∈ F(Ui) such that for every i and every y ∈ Ui,
we have t(y) = (si)y ∈ Fy. This implies that the sections t′i := ψ(si) ∈ G(Ui) have
the property that (t′i)y = (t′j)y for all y ∈ Ui ∩ Uj . Using the fact that G is a
sheaf, we first see that t′i|Ui∩Uj = t′j |Ui∩Uj for all i and j, and then that there is
a unique t′ ∈ G(U) such that t′|Ui

= t′i for all i. We then define α(t) = t′. It is
straightforward to see that this gives a morphism of sheaves α : F+ → G such that
α ◦ φ = ψ and that in fact α is the unique morphism of sheaves with this property.

Remark 8.1.1. It is straightforward to check, using the definition, that if F is
a sheaf, then the canonical morphism φ : F → F+ is an isomorphism.

Remark 8.1.2. For every presheaf F and every x ∈ X, the morphism φ : F →
F+ induces an isomorphism φx : Fx → F+

x . The inverse map is defined as follows.
Given an element u ∈ F+

x represented by
(
U, t ∈ F+(U)

)
, by hypothesis we have

an open neighborhood Ux of x and s ∈ F(Ux) such that t(y) = sy for all y ∈ Ux.
We define τ(u) = sx ∈ Fx and leave it as an exercise for the reader to check that
this is well-defined and that τ gives an inverse of φx.

Remark 8.1.3. Wherever we mention stalks in this section, the same results
hold, with analogous proofs, for the stalks at irreducible closed subsets of the given
topological space. For simplicity, we only give the statements at points of X,
since this is sufficient for the study of sheaves on topological spaces; however, in
the setting of algebraic varieties it is sometimes convenient to also consider more
general stalks (corresponding to localizing a ring to a possibly non-maximal prime
ideal).

Remark 8.1.4. It is clear from definition that if U is an open subset of X,
then we have a canonical isomorphism

(F|U )+ ' F+|U .
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Example 8.1.5. If F is a sheaf and G is a subpresheaf of F , then the inclusion
morphism ı : G ↪→ F induces a morphism of sheaves j : G+ → F . This gives an
isomorphism of G+ with the subsheaf F ′ of F such that for an open subset U of
X, F ′(U) consists of those s ∈ F(U) such that for every x ∈ U , there is an open
neighborhood Ux ⊆ U of x such that s|Ux

lies in G(Ux). Indeed, it is easy to see
that F ′ is a subsheaf of F and j induces a morphism of sheaves α : G+ → F ′ such
that for all x ∈ X, the induced morphism G+

x → F ′x is an isomorphism; therefore α
is an isomorphism (see Exercise 2.1.20).

Example 8.1.6. If M is any R-module, then we have the constant presheaf
on X that associates M to every open subset of X, the restriction maps being the
identity maps. The associated sheaf is the constant sheaf M associated to M . If X
has the property that every open subset is a union of open connected subsets (for
example, this is the case for an algebraic variety), then Γ(U,M) can be identified
with the set of maps U →M that are constant on every connected open subset of
U .

8.1.2. Kernels and cokernels. Let R be a fixed commutative ring and X
a fixed topological space. We first note that for every two sheaves F and G, the
set of morphisms HomShX

(F ,G) is an R-module. In particular, we have a zero
morphism. We also note that composition of morphisms of sheaves is bilinear.

Given finitely many sheaves F1, . . .Fn on X, we define F1 ⊕ . . .⊕Fn by

(F1 ⊕ . . .⊕Fn)(U) := F1(U)⊕ . . .⊕Fn(U),

with the restriction maps being induced by those for each Fi. It is straightforward
to see that this is a sheaf. We have canonical sheaf morphisms Fi → F1⊕ . . .⊕Fn
that make F1 ⊕ . . .⊕Fn the coproduct of F1, . . .Fn and we have sheaf morphisms
F1 ⊕ . . .⊕Fn → Fi that make F1 ⊕ . . .⊕Fn the product of F1, . . . ,Fn. Note that
for every x ∈ X we have a canonical isomorphism

(F1 ⊕ . . .⊕Fn)x ' (F1)x ⊕ . . .⊕ (Fn)x,

due to the fact that filtered direct limits commute with finite direct sums.
We now show that the category ShX has kernels. Given a morphism of sheaves

φ : F → G, define for an open subset U of X

ker(φ)(U) := ker
(
φU : F(U)→ G(U)

)
.

The restriction maps of F induce restriction maps for ker(φ) that make ker(φ) a
presheaf and it is straightforward to see that it is a sheaf (in fact, a subsheaf of F).
It is an easy exercise to see that the inclusion morphism i : ker(φ) ↪→ F is a kernel
of φ: this means that φ ◦ i = 0 and for every morphism of sheaves u : F ′ → F such
that φ ◦ u = 0, there is a unique morphism of sheaves v : F ′ → ker(φ) such that
u = i◦ v. Note that since filtered inductive limits are exact functors, it follows that
for every x ∈ X, we have

ker(φ)x ' ker(Fx → Gx).

We now define the cokernel of a morphism of sheaves of R-modules φ : F → G.
For every open subset U of X, define

c̃oker(φ)(U) := coker
(
φU : F(U)→ G(U)

)
.
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It is straightforward to see that the restriction maps of G induce restriction maps

for c̃oker(φ) which make it a presheaf. We define

coker(φ) := c̃oker(φ)+.

Note that the composition map p

G → c̃oker(φ)→ coker(φ)

is a cokernel of φ; this means that p ◦ φ = 0 and for every morphism of sheaves
u : G → G′ such that u◦φ = 0, there is a unique morphism of sheaves v : coker(φ)→
G′ such that v ◦ p = u (this follows using the corresponding property of cokernels
of morphsms of R-modules and the universal property of the sheaf associated to
a presheaf). Finally, we note that since filtering direct limits are exact and since
passing to the associated sheaf preserves the stalks, for every x ∈ X we have a
canonical isomorphism

coker(φ)x ' coker(Fx → Gx).

If F ′ is a subsheaf of F , we define F/F ′ as the cokernel of the inclusion mor-
phism F ′ ↪→ F . It follows that for every x ∈ X, we have a short exact sequence

0→ F ′x → Fx → (F/F ′)x → 0.

The image Im(φ) of a morphism of sheaves φ : F → G is defined as the kernel
of

G → coker(φ).

Using the universal property of the kernel and of the cokernel, we obtain a canonical
morphism

(8.1.1) F/ker(φ)→ Im(φ).

This is an isomorphism: this follows by considering the induced morphisms at
the levels of stalks, using the fact that a morphism of sheaves α : A → B is an
isomorphism if and only if αx : Ax → Bx is an isomorphism for every x ∈ X
(see Exercise 2.1.20). The existence of kernels and cokernels, together with the

fact that the canonical morphism (8.1.1) is an isomorphism mean that ShRX is an
Abelian category.

Example 8.1.7. Given a morphism of sheaves φ : F → G, the image Im(φ) is
the subsheaf of G described as follows: for every open subset U ⊆ X, the subset
Im(φ)(U) ⊆ G(U) consists of those s ∈ G(U) such that for every x ∈ U , there is an
open neighborhood Ux ⊆ U of x, such that s|Ux

lies in the image of F(Ux)→ G(Ux).
This follows from Example 8.1.5.

A morphism of sheaves φ : F → G is injective if ker(φ) = 0. Equivalently, for
every open subset U of X, the morphism F(U)→ G(U) is injective; moreover, this
holds if and only if φx : Fx → Gx is injective for every x ∈ X. In this case, φ gives
an isomorphism of F with a subsheaf of G.

The morphism of sheaves φ : F → G is surjective if coker(φ) = 0, or equivalently,
Im(φ) = G (in this case we say that G is a quotient of F). Equivalently, for every
x ∈ X, the morphism Fx → Gx is surjective. However, this does not imply that
for an open subset U of X, the morphism F(U) → G(U) is surjective. What we
can say in this case is that for every s ∈ G(U) and every x ∈ U , there is an open
neighborhood Ux ⊆ U of x such that s|Ux

lies in the image of F(Ux)→ G(Ux).
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As in any Abelian category, we can consider exact sequences: given morphisms

F ′ u−→ F v−→ F ′′,
this is exact if Im(u) = ker(v); equivalently, for every x ∈ X, the sequence of
R-modules

F ′x → Fx → F ′′x
is exact.

In particular, the sequence

0 −→ F ′ u−→ F v−→ F ′′ −→ 0

is exact if v is surjective and u gives an isomorphism F ′ ' ker(v); equivalently, u is
injective and v induces an isomorphism coker(u) ' F ′′. Moreover, this is equivalent
with the fact that for every x ∈ X, the sequence of R-modules

0 −→ F ′x −→ Fx −→ F ′′x −→ 0

is exact. Note that in this case, for every open subset U of X, the induced sequence

0 −→ F ′(U) −→ F(U) −→ F ′′(U)

is exact. In other words, the functor Γ(U,−) is left exact. However, in general this
is not an exact functor.

8.1.3. The sheaf Hom. If F and G are sheaves of R-modules on X, then
for every open subset U of X, we may consider the R-module HomShU

(F|U ,G|U ).
If φ : F|U → G|U is a morphism of sheaves and V ⊆ U is an open subset, then
we clearly get an induced morphism φ|V : F|V → G|V . We thus get a presheaf of
R-modules denoted HomR(F ,G). In fact, this is a sheaf: this follows from the fact
that morphisms of sheaves can be uniquely patched together (see Exercise 2.1.22).

8.1.4. The functor f−1. Recall that if f : X → Y is a continuous map, then
we have the functor f∗ : ShRX → Sh

R
Y such that

Γ(V, f∗F) = Γ
(
f−1(V ),F

)
for every open subset V ⊆ Y.

A special case is that when Y is a point, in which case this functor gets identified
with Γ(X,−).

Like the special case of the functor Γ(X,−), the functor f∗ is left-exact. Indeed,
given an exact sequence of sheaves on X

0→ F ′ → F → F ′′ → 0

and an open subset V in Y , the corresponding sequence

0→ F ′
(
f−1(V )

)
→ F

(
f−1(V )

)
→ F ′′

(
f−1(V )

)
is exact.

We now construct a left adjoint of this functor. Given a sheaf of R-modules G
on Y , consider the presheaf G̃ on X given by

G̃(U) := lim−→
f(U)⊆V

G(V ),

where the direct limit is over the open subsets V of Y containing f(U), ordered by
reverse inclusion. Note that if U1 ⊆ U2, then for every open subset V in Y such
that f(U2) ⊆ V , we also have f(U1) ⊆ V , which induces a restriction map

G̃(U2)→ G̃(U1)



154 8. COHERENT SHEAVES ON ALGEBRAIC VARIETIES

and it is easy to see that these maps make G̃ a presheaf. We define f−1(G) := G̃+.
If φ : G → G′ is a morphism of sheaves on Y , then for every open subset U of

X, we have a morphism of R-modules

lim−→
f(U)⊆V

φV : lim−→
f(U)⊆V

G(V )→ lim−→
f(U)⊆V

G′(V )

and these give a morphism of presheaves G̃ → G̃′. This in turn induces a morphism
of sheaves f−1(G)→ f−1(G′). This is compatible with composition of morphisms,
hence we get a functor

f−1 : ShRY → Sh
R
X .

Note that for every sheaf G on Y and every x ∈ X, we have canonical isomor-
phisms

f−1(G)x ' G̃x ' lim−→
x∈U

lim−→
f(U)⊆V

G(V ) ' lim−→
f(x)∈V

G(V ) ' Gf(x).

This immediately implies that f−1 is an exact functor.

Example 8.1.8. Note that if U is an open subset of X and i : U ↪→ X is the
inclusion, then we have a canonical isomorphism i−1(F) ' F|U .

An important property is that the pair (f−1, f∗) is an adjoint pair of functors.
This means that for every sheaves of R-modules F on X and G on Y , we have a
canonical isomorphism

HomShX

(
f−1(G),F

)
' HomShY

(
G, f∗(F)

)
.

Indeed, giving a morphism of sheaves f−1(G) → F is equivalent to giving a mor-

phism of presheaves G̃ → F , which is equivalent to giving for every open subsets
U ⊆ X and V ⊆ Y such that f(U) ⊆ V morphisms of R-modules

G(V )→ F(U)

that are compatible with the maps induced by restriction. Because of this com-
patibility, it is enough to give such maps when U = f−1(V ), and such a family
of maps compatible with the restriction maps is precisely a morphism of sheaves
G → f∗(F).

8.2. Sheaves of OX-modules

Suppose now that (X,OX) is a ringed space, that is, X is a topological space
and OX is a sheaf of rings on X. Our main example will be that when X is an
algebraic variety and OX is the sheaf of regular functions on X, but it is more
natural to develop the notions that we need here in the general framework.

Definition 8.2.1. A sheaf of OX-modules (or, simply, OX-module) is a sheaf
of Abelian groups F such that for every open subset U of X we have an OX(U)-
module structure on F(U), and these structures are compatible with restriction
maps, in the sense that for every open sets V ⊆ U , we have

(a · s)|V = a|V · s|V for all a ∈ OX(U) and s ∈ F(U).

If F is a presheaf, instead of a sheaf, we call it a presheaf of OX-modules.
A morphism of sheaves (or presheaves) of OX -modules F → G is a morphism

of sheaves (respectively, presheaves) of Abelian groups such that for every open
subset U of X, the map F(U)→ G(U) is a morphism of OX(U)-modules. We write
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HomOX
(F ,G) for the set of such morphisms. It is clear that the OX -modules form

a category that we will denote OX -mod.

Example 8.2.2. The sheaf OX has an obvious structure of OX -module.

Example 8.2.3. If F is an OX -module and U is an open subset of X, with
OU = OX |U , then F|U is an OU -module.

Remark 8.2.4. It is easy to see that a sheaf (presheaf) of OX -modules is
the same as a sheaf (respectively, presheaf) of Abelian groups F , together with a
morphism of sheaves (respectively, presheaves)

OX → HomZ(F ,F).

This easily implies that if OX = R, for a ring R, then giving a sheaf of OX -modules
is equivalent to giving a sheaf of R-modules.

Remark 8.2.5. Note that every OX -module F is in particular an OX(X)-
module. Indeed, for every open subset U of X, the restriction map OX(X) →
OX(U) induces an OX(X)-module structure on F(U). We get in this way a functor

from OX -mod to ShOX(X)
X .

Remark 8.2.6. It follows easily from definition that if F is a presheaf of OX -
modules, then for every x ∈ X, the stalk Fx has a canonical structure of OX,x-
module. More generally, if V is an irreducible, closed subset of X, then FV has a
canonical structure of OX,V -module.

Remark 8.2.7. Note that if F and G are sheaves of OX -modules, then

HomOX
(F ,G) ⊆ HomZ(F ,G)

is a subgroup. In fact, it follows from Remark 8.2.5 that HomOX
(F ,G) has a natural

OX(X)-module structure.
Moreover, we have a subsheaf

HomOX
(F ,G) ⊆ HomZ(F ,G),

whose sections over an open subset U ⊆ X consist of the morphisms of OU -modules
F|U → G|U . Since each HomOU

(F|U ,G|U ) is an OX(U)-module, we see that
HomOX

(F ,G) becomes naturally an OX -module.
Note that for every OX -module G, we have a canonical isomorphism of OX(X)-

modules

HomOX
(OX ,F) ' F(X), φ→ φX(1)

and therefore an isomorphism of OX -modules

HomOX
(OX ,F) ' F .

Remark 8.2.8. It is clear that if F1, . . . ,Fn are sheaves of OX -modules, then
F1 ⊕ . . .⊕Fn has a natural structure of OX -module such that with respect to the
obvious maps, it is both the coproduct and the product of the Fi.

Remark 8.2.9. It follows immediately from Remark 8.2.6 that if F is a presheaf
of OX -modules, then F+ has an induced structure of sheaf of OX -modules such
that the canonical map F → F+ is a morphism of presheaves of OX -modules.
Moreover, this satisfies an obvious universal property with respect to morphisms
to sheaves of OX -modules.
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Remark 8.2.10. It follows from definitions and the previous remark that if
φ : F → G is a morphism of OX -modules, then ker(φ), coker(φ), and Im(φ) carry
natural OX -module structures. In particular, ker(φ) and coker(φ) are the kernel,
respectively the cokernel, of φ in the category of OX -modules. Moreover, the iso-
morphism of sheaf of Abelian groups

F/ ker(φ)→ Im(φ)

is now an isomorphism in the category of OX -modules. Therefore OX -mod is an
Abelian category.

The notions of injective and surjective morphisms of OX -modules are defined
as in the case of sheaves of R-modules. We also have a notion of OX-submodule,
which is an OX -module that is also a subsheaf. In particular, a sheaf of ideals is
an OX -submodule of OX .

Example 8.2.11. The following notion will play an important role later: an
OX -module F is locally free (of finite rank) if for every x ∈ X, there is an open
neighborhood U of x such that we have an isomorphism

F|U ' O⊕nU .

If the integer n does not depend on x, then we say that F has rank n.

Exercise 8.2.12. Show that if (Mi)i∈I in an inverse system of OX -modules,
then the inverse limit lim←−

i∈I
Mi can be constructed as follows. For every open subset

U of X, consider the OX(U)-module

M(U) := lim←−
i∈I
Mi(U).

If V ⊆ U , then the inverse limit of the restriction maps induce a restriction map
M(U) → M(V ) and these maps make M an OX -module. Moreover, for every
j ∈ I, the projection

lim←−
i∈I
Mi(U)→Mj(U)

defines a morphism of OX -modules M → Mj and M, together with these mor-
phisms, is the inverse limit of (Mi)i∈I .

Exercise 8.2.13. Show that if (Mi)i∈I is a direct system of OX -modules, then
the direct limit lim−→

i∈I
Mi can be constructed as follows. For every open subset U ⊆ X,

consider the OX(U)-module

M(U) := lim−→
i∈I
Mi(U).

If V is an open subset of U , then the direct limit of the restriction maps induces
a restriction map M(U) → M(V ) and these maps make M a presheaf of OX -
modules. Moreover, for every j ∈ I, the canonical morphismsMj(U)→ lim−→

i∈I
Mi(U)

give a morphism of presheaves Mj →M.

i) Show that the compositionsMj →M→M+ makeM+ the direct limit
of the direct system (Mi)i∈I .
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ii) Deduce that for every x ∈ X, we have a canonical isomorphism

(lim−→
i∈I
Mi)x ' lim−→

i∈I
Mi,x.

8.2.1. Multilinear algebra for OX-modules. Operations like tensor prod-
uct, exterior, and symmetric products have analogues for OX -modules. If F and
G are OX -modules, the we can consider the presheaf that associates to an open
subset U of X, the OX(U)-module

F(U)⊗OX(U) G(U).

If V is an open subset of U , the restriction map

F(U)⊗OX(U) G(U)→ F(V )⊗OX(V ) G(V )

is the tensor product of the restriction maps of F and G. The associated sheaf is
the tensor product of F and G, and it is denoted by F ⊗OX

G. It is easy to see that
we have a bilinear map of sheaves

F ⊕ G → F ⊗OX
G

that satisfies the same universal property in OX -mod as the usual tensor product
in the category of R-modules.

While the sections of F ⊗OX
G over some U are not vert explicit, the stalks of

this sheaf are easier to understand. In fact, using the fact that a presheaf and its
associated sheaf have the same stalks, and the fact that tensor product commutes
with direct limits, we obtain for every x ∈ X a canonical isomorphsim

(8.2.1) (F ⊗OX
G)x ' lim−→

U3x
F(U)⊗OX(U) G(U) ' Fx ⊗OX,x

Gx.

Similarly, given an OX -module F and a non-negative integer m, we define OX -
modules ∧mF and Symm(F) by taking the sheaf associated to the presheaf that
maps an open subset U to ∧mOX(U)F(U), respectively to Symm

OX(U)F(U). Again,

for every x ∈ X, we have canonical isomorphisms

(∧mF)x ' ∧mOX,x
Fx and

(
Symm(F)

)
x
' Symm

OX,x
(Fx).

Similar isomorphisms hold for the stalks at irreducible closed subsets of X.

8.2.2. Push-forward and pull-back for OX-modules. A morphism of
ringed spaces (X,OX) → (Y,OY ) is given by a pair (f, f#), where f : X → Y
is a continuous map and f# : OY → f∗OX is a morphism of sheaves of rings. By
a slight abuse, f# is sometimes dropped from the notation and the morphism is
simply denoted by f . The main example for us is that given by a morphism of
algebraic varieties. A special feature in this case is that f# is determined by the
continuous map f .

Note that morphisms of ringed spaces can be composed: if f : (X,OX) →
(Y,OY ) and g : (Y,OY )→ (Z,OZ) are morphisms of ringed spaces, with associated
morphisms of sheaves of rings

f# : OY → f∗OX and g# : OZ → g∗OY ,
then the composition (X,OX)→ (Z,OZ) is given by the continuous map g ◦ f and
the morphism of sheaves of rings

OZ
g#−→ g∗OY

g∗(f
#)−→ g∗(f∗OX).
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It is easy to see that in this way the ringed spaces form a category.
Let f : X → Y be a morphism of ringed spaces. If F is an OX -module, we see

that for every open subset V of Y , the Abelian group

Γ
(
V, f∗(F)

)
= Γ

(
f−1(V ),F

)
is a module over Γ

(
f−1(V ),OX

)
, hence via the given homomorphism Γ(V,OY )→

Γ
(
f−1(V ),OX) it becomes a module over Γ(V,OV ). This makes f∗(F) an OY -

module. We thus obtain a left exact functor, the push-forward functor

f∗ : OX -mod→ OY -mod.

We now construct a left adjoint of this functor, the pull-back. Recall that
we have a left adjoint f−1 for the corresponding functor between the categories
of sheaves of Abelian groups. Note also that by the adjointness of (f−1, f∗) the
structure morphism OY → f∗(OX) corresponds to a morphism of sheaves of rings
ψ : f−1(OY ) → OX . It is straightforward to see that if G is an OY -module, then
f−1(G) has a natural structure of f−1(OY )-module. We put

f∗(G) := f−1(G)⊗f−1(OY ) OX
and this has a natural structure of O-module. Again, it is not easy to describe
the sections of f∗(G) over an open subset of X, but for every x ∈ X, we have a
homomorphism OY,f(x) → OX,x induced by f# and a canonical isomorphism

(8.2.2) f∗(G)x ' Gf(x) ⊗OY,f(x)
OX,x.

Since the functor −⊗OY,f(x)
OX,x is right-exact, it follows that the functor f∗ is right

exact. More generally, if V is an irreducible, closed subset of X and W = f(V ),
then for every OY -module G, we have a canonical isomorphism

f∗(G)V ' GW ⊗OY,W
OX,V .

Example 8.2.14. It follows from definition that, with the above notation, we
have f∗(OY ) = OX .

Example 8.2.15. If U is an open subset of X and OU = OX |U , then we
have a morphism of ringed spaces i : (U,OU ) → (X,OX), where i : U → X is the
inclusion and the morphism of sheaves OX → i∗OU maps φ ∈ OX(V ) to φ|U∩V .
The corresponding morphism i−1OX = OU → OU is the identity, so that we have
a canonical isomorphism i∗(F) ' F|U for every OX -module F . In particular, in
this case the functor i∗ is exact.

Example 8.2.16. If f : X → Y is a flat morphism of algebraic varieties, then
the functor f∗ is exact. This follows from the fact that for every OY -module G and
every x ∈ X we have the isomorphism (8.2.2) and OX,x is a flat OY,f(x)-module.

Proposition 8.2.17. The pair of functors (f∗, f∗) is an adjoint pair, that is,
for every OX-module F and every OY -module G, we have a natural isomorphism
of Abelian groups

HomOX

(
f∗(G),F

)
' HomOX

(
G, f∗(F)

)
.

Proof. The assertion follows easily from the fact that (f−1, f∗) is an adjoint
pair of functors between the corresponding categories of sheaves of Abelian groups,
together with the universal property of the tensor product. �
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Remark 8.2.18. The push-forward and pull-back functors are compatible with
compositions of morphisms of ringed spaces: if f : X → Y and g : Y → Z are
morphisms of ringed spaces, then for every OX -modules F and every OZ-module
G, we have

(g ◦ f)∗(F) = g∗
(
f∗(F)

)
and a natural isomorphism

(g ◦ f)∗(G) ' f∗
(
g∗(G)

)
.

Indeed, the first assertion follows directly from definition, and the second one follows
from the fact that both functors (g ◦ f)∗ and f∗ ◦ g∗ are left adjoints of (g ◦ f)∗.

We end this section by showing that the pull-back is compatible with multilinear
operations. For example, we have the following:

Proposition 8.2.19. If F and G are OY -modules, then we have a natural
isomorphism

f∗(F ⊗OY
G) ' f∗(F)⊗OX

f∗(G).

Proof. Note first that if M and N are OX -modules, we have a canonical
morphism of OY -modules

(8.2.3) f∗(M)⊗OY
f∗(N )→ f∗(M⊗OX

N )

defined as follows. Let S be the presheaf of OY -modules such that for an open
subset V of Y , we have

S(V ) = f∗(M)(V )⊗OY (V ) f∗(N )(V ) =M
(
f−1(V )

)
⊗OY (V ) N

(
f−1(V )

)
and T the presheaf of OX -modules such that for an open subset U of X, we have

T (U) =M(U)⊗OX(U) N (U).

It thus follows from definition that

M⊗OX
N = T + and f∗(M)⊗OY

f∗(N ) = S+.

It is clear that we have a morphism of OY -modules

S → f∗(T )

which for an open subset V ⊆ Y is given by the canonical morphism

M
(
f−1(V )

)
⊗OY (V ) N

(
f−1(V )

)
→M

(
f−1(V )

)
⊗OX(f−1(V )) N

(
f−1(V )

)
.

mapping u ⊗OY (V ) v → u ⊗OX(f−1(V )) v. By composing this with the morphism

f∗(T ) → f∗(T +), we obtain a morphism S → f∗(T +) and since the target is a
sheaf, this corresponds to a unique morphism of OY -modules

S+ → f∗(T +)

which is the morphism in (8.2.3).
Note now that the adjoint property of (f∗, f∗) gives canonical morphisms

α : F → f∗
(
f∗(F)

)
and β : G → f∗

(
f∗(G)

)
. We thus obtain the following com-

position

F ⊗OX
G → f∗

(
f∗(F)

)
⊗OX

f∗
(
f∗(G)

)
→ f∗

(
f∗(F)⊗OY

f∗(G)
)
,
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where the first morphism is α ⊗ β and the second morphism is given by (8.2.3).
Using the fact that (f∗, f∗) is an adjoint pair, this corresponds to a morphism of
OX -modules

(8.2.4) f∗(F ⊗OY
G) −→ f∗(F)⊗OX

f∗(G).

In order to complete the proof, it is enough to show that this is an isomorphism
and this follows if we show that it induces an isomorphism at the level of stalks (see
Exercise 2.1.20). This is a consequence of the formulas in (8.2.1) and (8.2.2). �

Remark 8.2.20. A similar argument shows that if F is an OY -module, then
for every non-negative integer m, we have canonical isomorphisms

f∗
(
Symm(F)

)
' Symm

(
f∗(F)

)
and f∗(∧mF) ' ∧mf∗(F).

8.3. Quasi-coherent sheaves on affine varieties

We now introduce quasi-coherent sheaves in the setting of affine varieties. We
will see that these correspond to modules over the coordinate ring of the affine
variety.

We begin with a general proposition about constructing sheaves in the presence
of a suitable basis of open subsets. We will use it for the principal affine open subsets
of an affine variety and later, for the principal affine open subsets of varieties of
the form MaxProj(S). We state it for OX -modules, but the reader will see that a
similar statement holds in other settings (for example, for sheaves of R-algebras).

Let (X,OX) be a ringed space and P a family of open subsets of X that satisfies
the following two properties:

i) Every open subset of X is a union of subsets in P (that is, P gives a basis
of open subsets), and

ii) For every U, V ∈ P, we have U ∩ V ∈ P.

We define a P-sheaf of OX -modules on X to be a map α that associates to every
U ∈ P an OX(U)-module α(U) and to every inclusion U ⊆ V a map α(V )→ α(U),
s→ s|U , such that

(a · s)|U = a|U · s|U for every a ∈ OX(V ), s ∈ α(V ).

These restriction maps are supposed to satisfy the usual compatibility conditions.
Furthermore, the map α should satisfy the following gluing condition: for every
cover U =

⋃
i∈I Ui, with U and Ui in P, and for every family (si)i∈I , with si ∈

α(Ui) for all i, such that si|Ui∩Uj
= sj |Ui∩Uj

for all i and j, there is a unique
s ∈ α(U) such that s|Ui = si for all i. If α and β are P-sheaves of OX -modules,
a morphism g : α → β associates to every U ∈ P a morphism of OX(U)-modules
gU : α(U)→ β(U) and these are compatible with the restriction maps in the obvious
sense. It is clear that P-sheaves form a category.

Proposition 8.3.1. The functor from the category of sheaves of OX-modules
to the category of P-sheaves of OX-modules, given by only recording the information
for the open subsets in P, is an equivalence of categories.

Proof. Given a P-sheaf of OX -modules α, we define a corresponding sheaf
Fα, such that for an open subset W ⊆ X, we let Fα(W ) be the kernel of the map∏
U∈P;U⊆W

α(U)→
∏

U,V ∈P;U,V⊆W

α(U ∩ V ), (sU )U → (sU |U∩V − sV |U∩V )U,V .
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Component-wise addition makes this an Abelian group and we get a structure of
OX(U)-module by putting

a · (sU )U = (a|U · sU )U for all a ∈ OX(W ), (sU )U ∈ Fα(U).

Note that if W ′ ⊆W , then we have a restriction map given by

(sU )U → (sV )V ,

where the second tuple is indexed by those V that lie inside W ′. It is clear that this
is compatible with scalar multiplication and makes Fα a presheaf of OX -modules.
Moreover, it is a straightforward (though somewhat tedious) to check that the
glueing condition on α implies that Fα is a sheaf.

Suppose now that g : α→ β is a morphism of P-sheaves of OX -modules. Given
any open subset W of X, we have a commutative diagram∏

U∈P;U⊆W α(U)

∏
U gU

��

// ∏
U,V ∈P;U,V⊆W α(U ∩ V )

∏
U,V gU∩V

��∏
U∈P;U⊆W β(U) // ∏

U,V ∈P;U,V⊆W β(U ∩ V ),

which induces a morphism of OX(U)-modules Fα(U) → Fβ(U). It is straightfor-
ward to check that these maps are compatible with the restriction maps and that
in this way we get a functor from the category of P-sheaves of OX -modules to
the category of sheaves of OX -modules. Checking that this is an inverse of the
functor in the statement of the proposition is an easy exercise that we leave for the
enthusiastic reader. �

Suppose now that (X,OX) is an affine variety and A = OX(X). We consider
the set P consisting of the principal affine open subsets of X. Recall that DX(f)∩
DX(g) = DX(fg). Let M be an A-module. Given any U ∈ P, say U = DX(f), we
put

α(U) := Mf .

Note that if DX(f) ⊇ DX(g), then V (f) ⊆ V (g), hence
√

(f) ⊇
√

(g). We thus
have a localization morphism Af → Ag and a corresponding canonical morphism of
Af -modules Mf →Mg. In particular, we see that α(U) only depends on U (up to
a canonical isomorphism) and that we have restriction maps that satisfy the usual
compatibility relations. The next lemma allows us to apply Proposition 8.3.1 to

conclude that we have a sheaf of OX -modules on X, that we denote M̃ , such that
for every f ∈ A, we have a canonical isomorphism

Γ
(
DX(f), M̃

)
'Mf .

Lemma 8.3.2. If X is an affine variety, with A = O(X), and M is an A-
module, then for every cover

DX(f) =
⋃
i∈I

DX(gi),

the sequence

0 −→Mf −→
∏
i∈I

Mgi −→Mgigj

is exact.
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Proof. The proof is similar to the proof of Proposition 1.4.7. After replacing
X by DX(f) and M by Mf , we may assume that f = 1. The condition X =⋃
i∈I DX(gi) is equivalent to the fact that the ideal (gi | i ∈ I) is the unit ideal.

The injectivity of the map M →
∏
i∈IMgi is clear: if u ∈M is such that u

1 = 0 in
Mgi for all i, then there is mi such that gmi

i ∈ AnnA(u). Since the elements gmi
i

generate the unit ideal, it follows that AnnA(u) = A, hence u = 0.
Suppose now that we have ui ∈Mgi for all i ∈ I, such that for all i, j ∈ I, the

images of ui and uj in Mgigj coincide. Note first that we may assume that I is finite.
Indeed, we may choose a finite subset J ⊆ I such that (gi | i ∈ J) = A. If we can
find u ∈M such that u

1 = ui ∈Mgi for all i ∈ J , then it follows that u
1 = ui ∈Mgi

also for all i ∈ I. Indeed, DX(gi) =
⋃
j∈J DX(gigj), and we deduce using the first

part of the proof that it is enough to show that u
1 and ui have the same image in

Mgigj for all j ∈ J . This is a consequence of the fact that u
1 = uj ∈ Mgj and the

fact that by hypothesis, ui and uj have the same image in Mgigj .
Suppose now that I is finite and let us write

ui =
vi
gni
i

for all i ∈ I.

After replacing each gi by a suitable power, we may assume that ni = 1 for all i.
The condition that ui and uj have the same image in Mgigj implies that

(gigj)
qi,j (gjvi − givj) = 0 for some qi,j .

After replacing one more time each gi by a suitable power, we may assume that
givj = gjvi for all i and j. In this case, if we write 1 =

∑
i∈I aigi and take

u =
∑
i∈I aivi ∈M , we have u

1 = ui ∈Mgi for all i. Indeed, we have

giu =
∑
j∈I

ajgiuj =
∑
j∈I

ajgjui = ui.

This completes the proof of the lemma. �

Example 8.3.3. With the above notation, the sheaf Ã is the structure sheaf
OX . This follows from the fact that for every f ∈ A, the canonical morphism
OX(X)f → OX

(
DX(f)

)
is an isomorphism.

Remark 8.3.4. If F = M̃ , then for every irreducible, closed subset V ⊆ X, we
have a canonical isomorphism

FV 'Mp,

where p ⊆ A is the prime ideal corresponding to V . Indeed, it follows from definition
that

FV = lim−→
V ∩DX(f)6=∅

F
(
DX(f)

)
= lim−→
f 6∈p

Mf 'Mp.

Given a morphism of A-modules φ : M → N , for every f ∈ A, we have an
induced morphism of Af -modules Mf → Nf and these satisfy the obvious com-
patibility conditions with respect to inclusions of principal affine open subsets. By

Proposition 8.3.1, we thus get a morphism of sheaves φ̃ : M̃ → Ñ such that over
every DX(f), this is given by Mf → Nf . It is clear that in this way we get a
functor from the category of A-modules to the category of OX -modules.
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Definition 8.3.5. Let X be an affine variety and A = OX(X). A quasi-

coherent sheaf on X is an OX -module isomorphic to M̃ , for some A-module M .
The sheaf is coherent if, in addition, M is a finitely generated A-module. The
category of quasi-coherent (or coherent) sheaves on X is a full subcategory of the
category of OX -modules on X.

TO BE CONTINUED





APPENDIX A

Finite and integral homomorphisms

A running assumption for all the appendices is that all rings are commutative,
unital (that is, they have multiplicative identity), and all homomorphisms are of
unital rings (that is, they map the identity to the identity). In this appendix we dis-
cuss the definition and basic properties of integral and finite ring homomorphisms.

A.1. Definitions

Let ϕ : R → S be a ring homomorphism. One says that ϕ is of finite type if
S becomes, via ϕ, a finitely generated R-algebra. One says that ϕ is finite if S
becomes, via ϕ, a finitely generated R-module. One says that ϕ is integral if every
element y ∈ S is integral over R, that is, there is a positive integer n, and elements
a1, . . . , an ∈ R, such that

yn + a1y
n−1 + . . .+ an = 0 in S.

Remark A.1.1. It is clear that if ϕ is finite, then it is of finite type: if
y1, . . . , ym ∈ S generate S as an R-module, then they also generate it as an R-
algebra. The converse is of course false: for example, the inclusion R ↪→ R[x] is
finitely generated, but not finite (the R-submodule of R[x] generated by finitely
many polynomials consists of polynomials of bounded degree).

Remark A.1.2. If ϕ is of finite type and integral, then it is finite. Indeed, if
y1, . . . , yr generate S as an R-algebra, and we can write

ydii + ai,1y
di−1
i + . . .+ ai,di = 0

for some positive integers di and some ai,j ∈ R, then it is easy to see that

{ya11 · · · yarr | 0 ≤ ai ≤ di − 1}

generate S as an R-module.

Proposition A.1.3. If ϕ is finite, then it is integral.

Proof. The assertion follows from the Determinant Trick : suppose that b1, . . . , bn
generate S as an R-module. For every y ∈ S, we can write for each 1 ≤ i ≤ n:

ybi =

n∑
j=1

ai,jbj for some ai,j ∈ R.

If A is the matrix (ai,j)1≤i,j≤n and I is the identity matrix, then we see that

(yI −A) ·

 b1
. . .
bn

 = 0.

165
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By multiplying with the classical adjoint of yI−A, we see that if D = det(yI−A),
then Dbi = 0 for all i. This implies D ·S = 0, and in particular D ·1S = 0. However,
it is clear that we can write

D = yn + c1y
n−1 + . . .+ cn for some c1, . . . , cn ∈ R.

We thus see that y is integral over R. �

Remark A.1.4. We will almost always consider homomorphisms of finite type.
For such a homomorphism ϕ, it follows from Remark A.1.2 and Proposition A.1.3
that ϕ is finite if and only if it is integral.

A.2. Easy properties

The following property of integral morphisms is very useful.

Proposition A.2.1. If ϕ : R ↪→ S is an integral injective homomorphism of
integral domains, then R is a field if and only if S is a field.

Proof. Suppose first that R is a field, and let u ∈ Sr {0}. Since u is integral
over R, it follows that we can write

un + a1u
n−1 + . . .+ an = 0

for some positive integer n, and some a1, . . . , an ∈ R. We may assume that n is
chosen to be minimal; in this case, since u 6= 0, we have an 6= 0. We see that we
have uv = 1, where

v = (−an)−1 · (un−1 + . . .+ an−2u+ an−1),

hence u is invertible. Since this holds for every nonzero u, it follows that S is a
field.

Conversely, suppose that S is a field and let a ∈ Rr {0}. Let b = 1
a ∈ S. Since

b is integral over R, we can write

br + α1b
r−1 + . . .+ αr = 0

for some positive integer r and some α1, . . . , αr ∈ R. Since

1

a
= −α1 − α2a− . . .− αrar−1 ∈ A,

we conclude that a in invertible in R. Since this holds for every nonzero a, it follows
that R is a field. �

Proposition A.2.2. Given a ring homomorphism ϕ : R→ S, the subset

S′ := {y ∈ S | y integral overR}
is a subring of S. This is the integral closure of R in S.

Proof. Since it is clear that 1S ∈ S′, we only need to check that for every
y1, y2 ∈ S′, we have y1 − y2, y1y2 ∈ S′. Since y1 and y2 are integral over R, the
subring R[y1, y2] of S is finite over R (the argument is the same as in Remark A.1.2).
In particular, it is integral over R by Proposition A.1.3. This implies that y1 − y2

and y1y2, which lie in R[y1, y2], are integral over R. �

Proposition A.2.3. Let R
ϕ−→ S

ψ−→ T be two ring homomorphisms. If both
ϕ and ψ are of finite type (respectively finite, integral), then ψ ◦ ϕ has the same
property.
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Proof. The assertion is straightforward for finite and finite type morphisms.
Suppose now that ϕ and ψ are integral. Given u ∈ T , we can write

un + b1u
n−1 + . . .+ bn = 0

for some positive integer n and b1, . . . , bn ∈ S. Since b1, . . . , bn are integral over R,
it follows that R′ := R[b1, . . . , bn] is finite over R (see Remark A.1.2). Since u is
integral over R′, it follows that R′[u] is finite over R′, and therefors it is finite over
R. By Proposition A.1.3, we conclude that u is integral over R. �





APPENDIX B

Noetherian rings and modules

In this appendix we discuss the definition and basic properties of Noetherian
rings and modules. The main result is Hilbert’s basis theorem.

B.1. Definitions

Proposition B.1.1. Given a ring R and an R-module M , the following are
equivalent:

i) Every submodule N of M is finitely generated.
ii) There is no infinite strictly increasing chain of submodules of M :

N1 ( N2 ( N3 ( . . . .

iii) Every nonempty family of submodules of M contains a maximal element.

An R-module M is Noetherian if it satisfies the equivalent conditions in the
proposition. The ring R is Noetherian if it is Noetherian as an R-module.

Proof of Proposition B.1.1. Suppose first that i) holds. If there is an
infinite strictly increasing sequence of submodules of M as in ii), consider N :=⋃
i≥1Ni. This is a submodule of M , hence it is finitely generated by i). If u1, . . . , ur

generate N , then we can find m such that ui ∈ Nm for all m. In this case we have
N = Nm, contradicting the fact that the sequence is strictly increasing.

The implication ii)⇒iii) is clear: if a nonempty family F has no maximal
element, let us choose N1 ∈ F . Since this is not maximal, there is N2 ∈ F such
thatN1 ( N2, and we continue in this way to construct an infinite strictly increasing
sequence of submodules of M .

In order to prove the implication iii)⇒i), let N be a submodule of M and
consider the family F of all finitely generated submodules of N . This is nonempty,
since it contains the zero submodule. By iii), F has a maximal element N ′′. If N ′′ 6=
N , then there is u ∈ N rN ′′ and the submodule N ′′ + Ru is a finitely generated
submodule of N strictly containing N ′′, a contradiction. Therefore N ′′ = N and
thus N is finitely generated. �

Proposition B.1.2. Given a short exact sequence

0→M ′ →M →M ′′ → 0

of R-modules, M is Noetherian if and only if both M ′ and M ′′ are Noetherian.

Proof. Suppose first that M is Noetherian. Since every submodule of M ′ is a
submodule of M , hence finitely generated, it follows that M ′ is Noetherian. Since
every submodule of M ′′ 'M/M ′ is isomorphic toN/M ′, for a submodule N of M
that contains M ′, and since N being finitely generated implies that N/M ′ is finitely
generated, we conclude that M ′′ is Noetherian.
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Conversely, suppose that both M ′ and M ′′ 'M/M ′ are Noetherian, and let N
be a submodule of M . Since N ∩M ′ is a submodule of M ′, it is finitely generated,
and since N/(N∩M ′) is isomorphic to a submodule of M/M ′, we have that N/(N∩
M ′) is finitely generated. Finally, since both N ∩M ′ and N/(N ∩M ′) are finitely
generated, it is clear that N is finitely generated. �

Corollary B.1.3. If R is a Noetherian ring, then an R-module M is Noe-
therian if and only if it is finitely generated.

Proof. We only need to show that if M is finitely generated, then it is Noe-
therian, since the converse follows from definition. Since M is finitely generated, we
have a surjective morphism R⊕n →M , and it follows from the proposition that it
is enough to show that R⊕n is Noetherian. This follows again from the proposition
by induction on n. �

Remark B.1.4. If R is a Noetherian ring and I is an ideal in R, then R/I is
a Noetherian ring. This is an immediate application of Corollary B.1.3.

Remark B.1.5. If R is a Noetherian ring and S ⊆ R is a multiplicative system,
then the fraction ring S−1R is Noetherian. Indeed, every ideal in S−1R is of the
form S−1I for some ideal I of R. If I is generated by a1, . . . , ar, then S−1I is
generated as an ideal of S−1R by a1

1 , . . . ,
ar
r .

B.2. Hilbert’s basis theorem

The following theorem is one of the basic results in commutative algebra.

Theorem B.2.1 (Hilbert). If R is a Noetherian ring, then the polynomial ring
R[x] is Noetherian.

Proof. Let I be an ideal in R[x]. We consider the following recursive con-
struction. If I 6= 0, let f1 ∈ I be a polynomial of minimal degree. If I 6= (f1), then
let f2 ∈ I r (f1) be a polynomial of minimal degree. Suppose now that f1, . . . , fn
have been chosen. If I 6= (f1, . . . , fn), let fn+1 ∈ I r (f1, . . . , fn) be a polynomial
of minimal degree.

If this process stops, then I is finitely generated. Let us assume that this is not
the case, aiming for a contradiction. We write

fi = aix
di + lower degree terms, with ai 6= 0.

By our minimality assumption, we have

d1 ≤ d2 ≤ . . . .
Let J be the ideal of R generated by the ai, with i ≥ 1. Since R is Noetherian, J is
a finitely generated ideal, hence there is m such that J is generated by a1, . . . , am.
In particular, we can find u1, . . . , um ∈ R such that

am+1 =

m∑
i=1

aiui.

In this case, we have

h := fm+1 −
m∑
i=1

uix
dm+1−difi ∈ I r (f1, . . . , fm)

and deg(h) < dm+1, a contradiction. This completes the proof of the theorem. �
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By applying Theorem B.2.1 several times, we obtain

Corollary B.2.2. If R is a Noetherian ring, then the polynomial ring R[x1, . . . , xn]
is Noetherian for every positive integer n.

In particular, since a field is clearly Noetherian, we obtain

Corollary B.2.3. For every field k and every positive integer n, the polyno-
mial ring k[x1, . . . , xn] is Noetherian.





APPENDIX C

Nakayama’s lemma and Krull’s intersection
theorem

In this appendix we collect a few basic results on local rings and localization.
We begin with Nakayama’s lemma and an application to finitely generated projec-
tive modules over local rings. We then overview some general results concerning
the behavior of certain properties of modules under localization. We prove the
Artin-Rees lemma and deduce Krull’s Intersection theorem. In the last section we
introduce discrete valuation rings (we will return to this topic in a later appendix).

C.1. Nakayama’s lemma

The following is one of the most basic results in commutative algebra, known
as Nakayama’s lemma.

Proposition C.1.1. If (A,m) is a local ring and M is a finitely generated
module over A such that M = mM , then M = 0.

Proof. The proof is another application of the determinant trick. Let u1, . . . , un
be generators of M over A. Since M = mM , for every i we can write

ui =

n∑
j=1

ai,juj for some ai,j ∈ m.

If A is the matrix (ai,j)1≤i,j≤n and I is the identity matrix, then we can rewrite
the above relations as

(I −A) ·

u1

. . .
un

 = 0.

By multiplying with the classical adjoint of I−A, we conclude that det(I−A)·ui = 0
for all i. Since all entries of A lie in m, it is clear that

det(I −A) ≡ 1 (modm).

Since A is local, it follows that det(I − A) is invertible, and therefore we conclude
that ui = 0 for all i, hence M = 0. �

This is sometimes applied in the following form.

Corollary C.1.2. If (A,m) is a local ring, M is a finitely generated module
over A, and N is a submodule of M such that M = N + mM , then N = M .

Proof. The assertion follows by applying the proposition to M/N . �
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Remark C.1.3. The above corollary implies, in particular, that given elements
u1, . . . , ur of M , they generate M if and only if their classes u1, . . . , ur ∈ M/mM
generate M/mM over k = A/m. We thus see that the cardinality of every minimal
system of generators of M is equal to dimkM/mM .

C.2. Projective modules over local rings

Proposition C.2.1. If (A,m) is a local Noetherian ring and M is a finitely
generated A-module, then M is projective if and only if M is free.

Proof. Consider a minimal system of generators u1, . . . , un for M and the
surjective morphism of A-modules

φ : F = A⊕n →M, φ(ei) = ui for 1 ≤ i ≤ n.
If N = ker(φ), since A is Noetherian and F is a finitely generated A-module, it
follows that N is a finitely generated A-module. Since M is projective, the exact
sequence

0→ N → F →M → 0

is split, hence tensoring with k = A/m gives an exact sequence

0→ N/mN → k⊕n →M/mM → 0.

However, we have seen in Remark C.1.3 that the elements u1, . . . , un ∈ M/mM
form a basis, so that we deduce from the above exact sequence that N/mN = 0.
Since N is finitely generated, it follows from Nakayama’s lemma that N = 0, hence
M ' F is free. �

Remark C.2.2. It is a result of Kaplansky (see [Kap58]) that if M is any
projective module over a local ring, then M is free.

C.3. Modules and localization

We collect in this section some easy properties relating statements about mod-
ules to corresponding statements about certain localizations.

Proposition C.3.1. Given an A-module M , the following are equivalent:

i) M = 0.
ii) Mp = 0 for all maximal ideals p in A.
iii) Mp = 0 for all prime ideals p in A.
iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and Mfi = 0

for all i.

Proof. The implication iv)⇒iii) follows from the fact that if f1, . . . , fr gener-
ate the unit ideal, then for every prime ideal p in A, there is i such that fi 6∈ p, in
which case Mp is a localization of Mfi . Since the implications i)⇒iv) and iii)⇒ii)
are trivial, in order to complete the proof it is enough to prove the implication
ii)⇒i). Let u ∈ M and consider AnnA(u). For every maximal ideal p in A, we
have u

1 = 0 in Mp, hence AnnA(u) 6⊆ p. This implies that AnnA(u) = A, hence
u = 0. �

Remark C.3.2. The same argument in the proof of the above proposition shows
that if M is an A-module and u ∈M , then the following assertions are equivalent:

i) u = 0.
ii) u

1 = 0 in Mp for all maximal ideals p in A.
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iii) u
1 = 0 in Mp for all prime ideals p in A.

iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and u
1 = 0

in Mfi for all i.

Corollary C.3.3. If M is an A-module and M ′, M ′′ are submodules of M ,
then the following are equivalent:

i) M ′ ⊆M ′′.
ii) M ′p ⊆M ′′p for all maximal ideals p in A.
iii) M ′p ⊆M ′′p for all prime ideals p in A.
iv) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and M ′fi ⊆

M ′′fi for all i.

Proof. We can simply apply Proposition C.3.1 for theA-module (M ′+M ′′)/M ′′.
�

Corollary C.3.4. Given two morphisms of A-modules

M ′
φ−→M

ψ−→M ′′,

the following are equivalent:

i) The above sequence is exact.
ii) The induced sequence

M ′p →Mp →M ′′p

is exact for every prime (maximal) ideal p in A.
iii) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and each

induced sequence

M ′fi →Mfi →M ′′fi

is exact

Proof. The exactness of the sequence in the statement is equivalent to the
two inclusions

Im(φ) ⊆ ker(φ) and ker(φ) ⊆ Im(φ).

The equivalence in the statement now follows by applying Corollary C.3.3 for the
submodules Im(φ) and ker(ψ) of M (note that localization is an exact functor,
hence it commutes with taking the image and kernel). �

Corollary C.3.5. Given an A-module M , the following are equivalent:

i) M is a finitely generated A-module.
ii) There are elements f1, . . . , fr ∈ A such that (f1, . . . , fr) = A and each

Mfi is a finitely generated Afi-module.

Proof. For every i, we may choose finitely many ui,j ∈M such that
{ui,j

1 | j
}

generate Mfi as an Afi-module. It follows that if N is the A-submodule of M
generated by all ui,j , then N is finitely generated and (M/N)fi = 0 for all i. We
then deduce from Proposition C.3.1 that M = N . �
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C.4. Krull’s Intersection theorem

Theorem C.4.1. If I is an ideal in a Noetherian ring A, M is a finitely gen-
erated A-module, and N =

⋂
m≥1 I

mM , then IN = N . In particular, if (A,m) is
a local ring and I ⊆ m, then N = 0.

We will deduce the theorem from the following result, known as the Artin-Rees
lemma.

Lemma C.4.2. Let A be a Noetherian ring and I an ideal in A. If M is a
finitely generated A-module and N is a submodule of M , then for every n ≥ 0,
there is m ≥ 0 such that

ImM ∩N ⊆ InN.

Proof. Consider the N-graded ring

R(A, I) :=
⊕
j≥0

Intn ⊆ A[t].

Note that if I is generated by a1, . . . , ar, then R(A, I) is generated over A by
a1t, . . . , art. In particular, R(A, I) is a Noetherian ring.

Consider now the N-graded R(A, I)-module

T =
⊕
j≥0

IjMtj ⊆M [t] = M ⊗A A[t].

Since M is finitely generated over A, it is clear that T is a finitely generated
R(A, I)-module. Consider the R(A, I)-submodule of T given by⊕

j≥0

(N ∩ IjM)tj .

Since M is a finitely generated module over a Noetherian ring, it follows that M
is Noetherian, hence N is finitely generated. Choose generators of N of the form
ujt

dj for some uj ∈ N ∩ IdjM , with 1 ≤ j ≤ r. Given any u ∈ N ∩ ImM we can
thus write

utm =

r∑
j=1

(ajt
bj ) · (ujtdj )

for some aj ∈ Ibj , where bj = m−dj . We thus see that if m ≥ n+dj for all j, then

N ∩ ImM ⊆ InN.
This completes the proof of the lemma. �

Proof of Theorem C.4.1. Of course, we only need to show that N ⊆ IN .
We apply the lemma for the submodule N of M to get a non-negative integer m
such that ImM ∩N ⊆ IN . However, since N ⊆ ImM , this implies N ⊆ IN . The
last assertion in the theorem is a consequence of Nakayama’s lemma. �

C.5. Discrete Valuation Rings

Recall that a discrete valuation on a field K is a surjective map v : K → Z∪{∞}
that satisfies the following properties:

i) v(a) =∞ if and only if a = 0.
ii) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.
iii) v(ab) = v(a) + v(b) for all a, b ∈ K.
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Proposition C.5.1. Given an integral domain R, with fraction field K, the
following are equivalent:

i) There is a discrete valuation v on K such that R = {a ∈ K | v(a) ≥ 0}.
ii) R is a local PID.

iii) R is local and the maximal ideal is principal.

A ring that satisfies the above equivalent properties is a discrete valuation ring
(or DVR, for short).

Proof. Let us show first that i)⇒ii). Let m = {a ∈ K | v(a) > 0}. It follows
from the definition of a discrete valuation that m is an ideal in R and that for every
u ∈ Rrm, we have u−1 ∈ R. Therefore R is local and m is the maximal ideal of R.
Given any non-zero ideal I in R, consider a ∈ I such that v(a) is minimal. Given
any other b ∈ I, we have v(b) ≥ v(a), hence v(ba−1) ≥ 0, and therefore b ∈ (a).
This shows that I = (a) and therefore R is a PID.

Since the implication ii)⇒iii) is trivial, in order to complete the proof, it is
enough to prove iii)⇒i). Suppose that (R,m) is a local domain and m = (π), for
some π 6= 0. Given any non-zero element α, it follows from Theorem C.4.1 that
there is j ≥ 0 such that α ∈ mj r mj+1. Therefore we can write α = uπj , with u
invertible. Since K is the fraction ring of R, it follows that every non-zero element
β in K can be written as β = uπj for some j ∈ Z and u ∈ R r m. If we put
v(β) = j, then it is straightforward to check that v is a discrete valuation and
R = {a ∈ K | v(a) ≥ 0}. �





APPENDIX D

The norm map for finite field extensions

In this appendix we define and prove some basic properties of the norm map
for a finite field extension.

D.1. Definition and basic properties

Let K/L be a finite field extension. Given an element u ∈ K, we define
NK/L(u) ∈ L as the determinant of the L-linear map

ϕu : K → K, v → uv.

This is the norm of u with respect to K/L.
We collect in the first proposition some easy properties of this map.

Proposition D.1.1. Let K/L be a finite field extension.

i) We have NK/L(0) = 0 and NK/L(u) 6= 0 for every nonzero u ∈ K.
ii) We have

NK/L(u1u2) = NK/L(u1) ·NK/L(u2) for every u1, u2 ∈ K.

iii) For every u ∈ L, we have

NK/L(u) = u[K:L].

Proof. The first assertion in i) is clear and the second one follows from the
fact that ϕu is invertible for every nonzero u. The assertion in ii) follows from the
fact that

ϕu1 ◦ ϕu2 = ϕu1u2 for every u1, u2 ∈ K
and the multiplicative behavior of determinants. Finally, iii) follows from the fact
that for u ∈ L, the map ϕu is given by scalar multiplication. �

Proposition D.1.2. Let K/L be a finite field extension and u ∈ K. If f ∈ L[x]
is the minimal polynomial of u over L and char(ϕu) is the characteristic polynomial
of ϕu:

char(ϕu) = det(x · Id− ϕu),

then char(ϕu) = fr, where r = [K : L(u)]. In particular, we have

NK/L(u) = (−1)[K:L] · f(0)r.

Proof. Let char′(ϕu) be the characteristic polynomial of ϕ′u = ϕu|L(u). We
write

f = xm + a1x
m−1 + . . .+ am,
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where m = [L(u) : L]. By writing the linear map ϕ′u in the basis 1, u, . . . , um−1 of
L(u) over L, we see that x · Id− ϕ′u is given by the matrix

A =


x 0 . . . 0 am
1 x . . . 0 am−1

. . . . . . . . . . . . . . .
0 0 . . . x a2

0 0 . . . 1 a1

 ,

whose determinant can be easily computed to be equal to f . If e1, . . . , er is a basis
of K over L(u) and we write x · Id−ϕu with respect to the basis given by uiej , for
0 ≤ i ≤ m− 1 and 1 ≤ j ≤ r (suitably ordered), this is the block diagonal matrix A 0 . . . 0

0 A . . . 0
0 0 . . . A

 .

The first assertion in the proposition follows. The last assertion is a consequence
of the fact that the constant term in char(ϕu) is (−1)[K:L] · det(ϕu). �

D.2. A property of the norm for integrally closed domains

Recall that an integral domain A with fraction field K is integrally closed if
every element of K that is integral over A lies in A.

Proposition D.2.1. Let B ↪→ A be an integral ring extension of integral do-
mains such that the corresponding field extension L ↪→ K between the two fraction
fields is finite. If B is integrally closed, then for every element u ∈ A, we have
v := NK/L(u) ∈ B. Moreover, if u ∈ J , where J is an ideal in A, then v ∈ J ∩B.

Proof. Let f = xm + a1x
m−1 + . . .+ am ∈ L[x] be the minimal polynomial of

u over L. Since u is integral over B, there is a monic polynomial g ∈ B[x] such that
g(u) = 0. Note that f divides g in L[x]. Every other root of f (in some algebraic
closure K of K) is automatically a root of g, and therefore it is again integral over
B. Since the set of elements of K integral over B is a ring (see Proposition 2.2. in
Review Sheet 1), and every ai is (up to sign) a symmetric function of the roots of
f , we conclude that ai is integral over B. Finally, since B is integrally closed in L
and the ai lie in L, we conclude that the ai lie in B. By Proposition D.1.2, we can
write NK/L(u), up to sign, as a power of am, hence NK/L(u) ∈ B.

Suppose now that u ∈ J , for an ideal J in A. Since

am = −u(um−1 + a1u
m−2 + . . .+ am−1),

and ai ∈ B ⊆ A for all i, we deduce that am ∈ J . Arguing as before, we conclude
that NK/L(u) ∈ J ∩B. �



APPENDIX E

Zero-divisors in Noetherian rings

In the first section we prove a basic result about prime ideals, the prime avoid-
ance lemma. In the second section we give a direct proof for the fact that minimal
prime ideals consist of zero-divisors. Finally, in the last section we discuss more
generally zero-divisors on finitely generated modules over a Noetherian ring and
primary decomposition.

E.1. The prime avoidance lemma

The following result, known as the Prime Avoidance lemma, is often useful.

Lemma E.1.1. Let R be a commutative ring, r a positive integer, and p1, . . . , pr
ideals in R such that pi is prime for all i ≥ 3. If I is an ideal in R such that
I ⊆ p1 ∪ . . . ∪ pr, then I ⊆ pi for some i ≥ 1.

Proof. The assertion is trivial for r = 1. We prove it by induction on r ≥ 2.
If r = 2 and I 6⊆ p1 and I 6⊆ p2, then we may choose a ∈ I r p1 and b ∈ I r p2.
Note that since I ⊆ p1 ∪ p2, we have a ∈ p2 and b ∈ p1. Note that a+ b ∈ I, hence
a + b ∈ p1 or a + b ∈ p2. In the first case, we see that a = (a + b) − b ∈ p1, a
contradiction and in the second case, we see that b = (a+ b)−a ∈ p2, leading again
to a contradiction. This settles the case r = 2.

Suppose now that r ≥ 3 and that we know the assertion for r − 1 ideals. If
I 6⊆ pi for every i, it follows from the induction hypothesis that given any i, we
have I 6⊆

⋃
j 6=i pj . Let us choose

ai ∈ I r
⋃
j 6=i

pj .

By hypothesis, we must have ai ∈ pi for all i.
Since pr is a prime ideal and ai 6∈ pr for i 6= r, it follows that

∏
1≤j≤r−1 aj 6∈ pr.

Consider now the element

u = ar +
∏

1≤j≤r−1

aj ∈ I.

By assumption, we have u ∈ p1 ∪ . . . ∪ pr. If u ∈ pr, since ar ∈ pr, we deduce
that

∏
1≤j≤r−1 aj ∈ pr, a contradiction. On the other hand, if u ∈ pi for some

i ≤ r − 1, since
∏

1≤j≤r−1 aj ∈ pi, we conclude that ar ∈ pi, a contradiction. We
thus conclude that I ⊆ pi for some i, completing the proof of the induction step. �

E.2. Minimal primes and zero-divisors

Let R be a Noetherian ring. We refer to Exercise 3.1.4 for the definition of the
topological space Spec(R). Since R is a Noetherian ring, Spec(R) is a Noetherian
topological space, hence we can apply Proposition 1.3.12 to write it as the union
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of finitely many irreducible components. Since the irreducible closed subsets of
Spec(R) are those of the form V (p), with p a prime ideal in R, we conclude that
there are finitely many minimal primes p1, . . . pr in Spec(R). The decomposition

Spec(R) = V (p1) ∪ . . . ∪ V (pr)

says that

rad(0) =

r⋂
i=1

pi.

Proposition E.2.1. With the above notation, every minimal prime ideal pi is
contained in the set of zero-divisors of R.

Proof. Given a ∈ pi, we choose for every j 6= i an element bj ∈ pj r pi. If
b =

∏
j 6=i bj , then b 6∈ pi, but b ∈ pj for all j 6= i. We thus have

ab ∈ p1 ∩ . . . ∩ pr = rad(0),

hence (ab)N = 0 for some positive integer N . If a is a non-zero-divisor, we would
get that bN = 0, hence b ∈ pi, a contradiction. �

Remark E.2.2. If R is reduced, then the set of zero-divisors of R is precisely
the union of the minimal prime ideals. Indeed, in this case we have

⋂r
i=1 pi = 0.

It follows that if ab = 0 and a 6∈ pi for all i, then b ∈ pi for all i, hence b = 0. In
the next section we will discuss the set of zero-divisors for an arbitrary Noetherian
ring (and, more generally, for a finitely generated module over such a ring).

E.3. Associated primes and zero-divisors
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