
Math 632

Solutions for the take-home exam

Problem 1. Let X ⊆ Pn be a closed subvariety of Pn, with codimPn(X) = r, which
is a (global) complete intersection: this means that the associated homogeneous ideal
IX ⊆ S = k[x0, . . . , xn] is generated by r homogeneous elements.

i) Show that X is Cohen-Macaulay.
ii) Show that H i

(
X,OX(m)

)
= 0 for all m and all i, with 1 ≤ i ≤ dim(X)− 1.

iii) Show that if dim(X) > 0, then X is connected.
iv) Show that if X is smooth and the ideal of IX is generated by the homogeneous

polynomials f1, . . . , fr, with deg(fi) = di, then the canonical line bundle of X is
isomorphic to OX(d1 + . . .+ dr − n− 1).

v) Under the assumption in iv), deduce that if dim(X) ≥ 1 and d1 + . . .+dr ≥ n+1,
then X is not a rational variety.

Solution.

There are several ways to proceed. In what follows, the key part of the argument
will be based on induction.

Note that Pn is smooth, hence Cohen-Macaulay. In order to show that X is Cohen-
Macaulay, if I is the radical ideal sheaf corresponding to X, it is enough to show that for
every p ∈ X, the ideal Ip ⊆ OPn,p is generated by codim(Ip) elements (indeed, we have
codim(Ip) = depth(Ip) since OPn,p is Cohen-Macaulay, hence the system of generators
forms a regular sequence by Corollary 12.2.13 in the Notes; then X is Cohen-Macaulay
by Proposition 12.3.12 in the Notes).

Let f1, . . . , fr be homogeneous generators of IX , with di = deg(fi) > 0. If p ∈ Ui =
(xi 6= 0), then Ip is generated by f1

x
d1
i

, . . . , fr
xdri

. In particular, we have codim(Ip) ≤ r by

one of the consequences to the Principal Ideal theorem. On the other hand, we clearly
have

codim(Ip) ≥ codimPn(X) = r,

hence this is an equality and X is Cohen-Macaulay, giving i). Moreover, this argument
shows that every irreducible component of X has pure dimension n− r.

We next show that the following hold:

(α) If r ≤ n − 1, then the canonical morphism S/IX →
⊕

m∈Z Γ
(
X,OX(m)

)
is an

isomorphism.
(β) For every q, with 1 ≤ q ≤ dim(X)− 1, we have

Hq
(
X,OX(m)

)
= 0 for all m ∈ Z.

In order to show this, we consider Fj = OPn/Ij, for 1 ≤ j ≤ r, where Ij is the
ideal sheaf corresponding to the homogeneous ideal (f1, . . . , fj). Arguing as above, we
see that each Fj is a Cohen-Macaulay OPn-module. Indeed, Ij is locally defined by j
equations. In particular, every irreducible component Supp(Fj) has codimension ≤ j in
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Pn. In fact, the codimension is precisely j: otherwise, the intersection of this component
with

⋂r
i=j+1 V (fi) would be non-empty, of codimension < r by Corollary 4.2.12 in the

Notes, a contradiction with the fact codimPn(X) = r.

With the convention that F0 = OPn , we show by induction on j ≥ 0, that the
following hold:

(αj) If j ≤ n− 1, then the canonical morphism

S/(f1, . . . , fj)→
⊕
m∈Z

Γ
(
Pn,Fj(m)

)
is an isomorphism.

(βj) For every q, with 1 ≤ q ≤ n− j − 1, we have

Hq
(
Pn,Fj(m)

)
= 0 for all m ∈ Z.

For j = r, we obtain (α) and (β).

Both (α0) and (β0) hold by Theorem 11.2.2 in the Notes, hence it is enough to
show that for 0 ≤ j ≤ r − 1, if we know the assertions for j, then we obtain them for
j + 1. Since Fj is Cohen-Macaulay, it follows from Proposition 12.3.13 in the Notes that
the associated subvarieties of Fj are precisely the irreducible components of Supp(Fj).
Moreover, we have seen that each such irreducible component has codimension j, and thus
can’t be contained in Supp(Fj+1). Therefore V (fj+1) contains no associated subvariety
of Fj, and thus we have a short exact sequence

0→ Fj(m− dj+1)→ Fj(m)→ Fj+1(m)→ 0

for every m ∈ Z. By taking the long exact sequence in cohomology, we obtain exact
sequences

(1) 0→ Γ
(
Pn,Fj(m− dj+1)

)
→ Γ

(
Pn,Fj(m)

)
→ Γ

(
Pn,Fj+1(m)

)
→ H1

(
Pn,Fj(m− dj+1)

)
and

(2) Hq
(
Pn,Fj(m)

)
→ Hq

(
Pn,Fj+1(m)

)
→ Hq+1

(
Pn,Fj(m− dj+1)

)
for all q ≥ 0. It is clear that using (βj), the sequence in (??) implies (βj+1). Moreover, if
j+ 1 ≤ n−1, then (βj) implies H1

(
Pn,Fj(m−dj+1)

)
= 0, and thus (??) and (αj) imply

(αj+1). This completes the proof of the induction step. In particular, we obtain ii).

In particular, it follows from (α) that if r ≤ n − 1, then Γ(X,OX) = k. We thus
conclude that in this case X is connected, giving iii).

It is easy to compute the normal bundle of X. Indeed, s = (f1, . . . , fr) is a regular
section of

⊕r
j=1OPn(di) such that I(s) = I. We saw in a problem session (see also

Example 12.2.21 in the Notes) that in this case NX/Pn '
⊕r

j=1OX(di).

If X is smooth, then we have a short exact sequence

0→ N∨X/Pn → ΩPn|X → ΩX → 0.
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By taking determinants, we see that

ωX ' ωPn|X ⊗OX
det(NX/Pn) ' OX(d1 + . . .+ dr − n− 1).

This proves iv).

Finally, suppose that r ≤ n − 1 and X is smooth, hence also irreducible by iii).
Recall that the geometric genus of X is a birational invariant of smooth, irreducible,
projective varieties. Using iv) and (α), we see that if m = d1 + . . .+ dr−n− 1 ≥ 0, then

pg(X) = h0(X,ωX) = h0
(
X,OX(m)

)
= dimk

(
S/(f1, . . . , fr)

)
m
> 0.

Since the geometric genus of the projective space is 0, it follows that in this case X is
not rational.

Problem 2. Determine the Grothendieck group K0(P
n), as follows:

i) Prove the following graded version of Nakayama’s lemma: if M is a finitely gener-
ated, graded module over S = k[x0, . . . , xn] and M = (x0, . . . , xn)M , then M = 0.

ii) Deduce that if M is a finitely generated, graded S-module, such that M is projec-
tive, then M is free, that is, it is isomorphic to

⊕r
i=1 S(ai) for some non-negative

integer r and some a1, . . . , ar ∈ Z.
iii) Deduce that the Abelian group K0(P

n) is generated by
[
OPn(m)

]
, for m ∈ Z.

iv) Show that, in fact, K0(P
n) is generated just by

[
OPn(m)

]
, for −n ≤ m ≤ 0.

v) Show that there is a group homomorphism K0(P
n)→ Q[t] that maps [F ] to the

Hilbert polynomial PF(t).
vi) Use the morphism in v) to show that K0(P

n) is freely generated by
[
OPn(m)

]
,

for −n ≤ m ≤ 0, hence we have a group isomorphism K0(P
n) ' Zn+1.

vii) Deduce that we have a ring isomorphism K0(Pn) ' Z[x]/(xn+1).

Solution. In order to prove i), suppose that M 6= 0 and let u1, . . . , ur be non-zero
homogeneous generators of M , with deg(ui) = di. If d = mini di, then using the fact that
mi = 0 for i ≤ 0, it follows that (mM)i = 0 for i < d+ 1. This contradicts that fact that
we have a non-zero homogeneous element of degree d in M = mM .

The assertion in i) implies that if M is a finitely generated graded S-module and N
is a graded submodule of M , such that M = mM+N , then M = N . Indeed, it is enough
to apply i) for M/N . As in the local case, this allows us to talk about minimal systems
of homogeneous generators for M . Indeed, if u1, . . . , ur ∈M are homogeneous elements,
these generate M if and only if their classes in M/mM generate this k-vector space.
Therefore u1, . . . , ur form a minimal system of generators if and only if their classes in
M/mM form a k-basis.

Suppose now that M is a projective finitely generated graded S-module, and con-
sider a minimal system of homogeneous generators u1, . . . , ur. We have a surjective
morphism of graded R-modules φ : F → M , with F a finitely generated, free, graded
R-module. Since the classes u1, . . . , ur ∈ M/mM form a k-basis, it follows that if
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K = ker(φ), then K ⊆ mM . If M is a projective R-module, then φ is a split surjection,
and we thus have an exact sequence

0→ K/mK → F/mF →M/mM → 0.

Since K ⊆ mF , we conclude that K = mK, hence K = 0 by i).

We now prove the assertion in iii). Recall that for every coherent sheaf F on Pn,

we have a finitely generated graded S-module M , such that F ' M̃ . By choosing finitely
many homogeneous generators for M , we construct a surjective graded homomorphism

φ : F0 →M, where F0 =
⊕
j

S(−j)⊕β0,j .

By taking the kernel of φ and repeating this construction step by step, we obtain an
exact complex

0→ Fn+1 → Fn → . . .→ F1 → F0 →M → 0,

where F0, . . . , Fn are finitely generated, free, graded S-modules. Since the affine variety
corresponding to S is smooth, irreducible, of dimension n + 1, it follows from Proposi-
tion 12.2.15 that for every maximal ideal m of S, we have pdSm

(Mm) ≤ n + 1, hence
(Fn+1)m is a projective Sm-module. Therefore Fn+1 is a projective S-module, and thus it
is a free graded S-module by ii). By passing to the corresponding sheaves, we see that F
has a finite free resolution by direct sums of line bundles. This implies that [F ] ∈ K0(P

n)
lies in the subgroup generated by [OPn(m)], for m ∈ Z, proving iii).

Recall that we have the exact Koszul complex:

0→ OPn(−n− 1)→ OPn(−n)⊕(n+1) → . . .→ OPn(−1)⊕(n+1) → OPn → 0.

By tensoring this with OPn(m), we see that [OPn(m)] lies in the subgroup generated by
[OPn(m−i)] for 1 ≤ i ≤ n+1. We thus deduce, by induction on m ≥ 0, that [OPn(m)] lies
in the subgroup A of K0(P

n) generated by [OPn ], [OPn(−1)], . . . , [OPn(−n)]. Similarly,
by tensoring the Koszul complex with OPn(m+ n+ 1), we see that [OPn(m)] lies in the
subgroup generated by [OPn(m+ i)], for 1 ≤ i ≤ n+ 1. Using this, we see by decreasing
induction on m ≤ −n− 1 that [OPn(m)] lies in A. We thus conclude that A = K0(P

n),
proving iv).

Note that for every closed subvariety X of Pn, given an exact sequence of coherent
sheaves on X

0→ F ′ → F → F ′′ → 0,

by tensoring this with OX(m) and taking the Euler-Poincaré characteristic, we obtain

χ
(
F(m)

)
= χ

(
F ′(m)

)
+ χ

(
F ′′(m)

)
for all m ∈ Z.

We thus have PF = PF ′ +PF ′′ . This implies that we have a morphism of Abelian groups
K0(X) → Q[t] that maps [F ] to the Hilbert polynomial PF . This applies in particular
when X = Pn, proving v).

We thus have a morphism γ : K0(P
n) → Q[t] that maps [OPn(−i)] to the polyno-

mial P (t− i), where

P (t) =
(t+ 1) · · · (t+ n)

n!
.
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We claim that P (t), P (t − 1), . . . , P (t − n) are linearly independent over Z. Indeed, if∑n
i=0 λiP (t−i) = 0, where not all λi are 0, and if j = max{i | λi 6= 0}, then by taking t =

j, we obtain λj = 0, a contradiction. Since the images of [OPn ], [OPn(−1)], . . . , [OPn(−n)]
by γ are linearly independent over Z, we conclude that these elements freely generate
K0(P

n), completing the proof of vi).

Recall now that by a homework problem (see Proposition 12.2.18 in the Notes),
since Pn is smooth and carries an ample line bundle, the canonical group homomorphism
K0(Pn) → K0(P

n) is an isomorphism. What we proved so far thus shows that if h =
[OPn(−1)], then 1, h, . . . , hn give a Z-basis of K0(Pn). Moreover, the Koszul complex
gives the relation

∑n+1
i=0 (−1)i

(
n+1
i

)
hi = 0, that is, (1 − h)n+1 = 0. This implies that we

have a morphism Z[x]/(xn+1) → K0(Pn) that maps the class of x to 1 − [OPn(−1)].
Since {(1− x)i | 0 ≤ i ≤ n} gives a basis of Z[x]/(xn+1), we see that this morphism is an
isomorphism, proving vii).

Remark. We emphasize that for n ≥ 2, it is not true that every locally free sheaf on
Pn is a direct sum of line bundles. For example, for n ≥ 2, the cotangent bundle is not
isomorphic to a direct sum of line bundles. Since H1

(
Pn,OPn(m)

)
= 0 for every m by

Theorem 11.2.2 in the Notes, it is enough to show that H1(Pn,ΩPn) 6= 0. Recall that we
have the Euler exact sequence

0→ ΩPn → OPn(−1)⊕(n+1) → OPn → 0.

The long exact sequence in cohomology gives an exact sequence

0 = Γ
(
Pn,OPn(−1)⊕(n+1)

)
→ Γ(Pn,OPn)→ H1(Pn,ΩPn)

→ H1
(
Pn,OPn(−1)⊕(n+1)

)
= 0.

We thus obtain H1(Pn,ΩPn) ' k.

Problem 3. Let C ⊆ Pn be an irreducible curve (that is, dim(C) = 1). We assume that
C is non-degenerate (that is, it is not contained in a hyperplane).

i) Show that if H ⊆ Pn is a general hyperplane, then C ∩ H is a non-degenerate
subset in H.

ii) Deduce that deg(C) ≥ n (recall that the degree of a variety is the degree of its
structure sheaf, defined using the Hilbert polynomial).

Solution. By assumption, for every hyperplane H in Pn, we have C 6⊆ H. Let F :=
OC ⊗OPn OH . Since C is irreducible, the only associated subvariety of OC is C itself.
Since C 6⊆ H, we have a short exact sequence

0→ OC(−1)→ OC → OC ⊗OH → 0,

which by tensoring with OC(m) and taking Euler-Poincaré characteristics gives

PF(m) = PC(m)− PC(m− 1),
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where PF is the Hilbert polynomial of F and PC is the Hilbert polynomial of C. It is
thus easy to deduce that deg(C) = deg(OC) = deg(F). Note that F has support the
finite set C ∩H, hence

d = deg(F) =
∑

p∈C∩H

`OPn,p
(Fp).

In particular, we see that C ∩H consists of at most d points.

Suppose now that H is a general hyperplane. Since C has finitely many singular
points, it follows from Bertini’s theorem that H is transversal to C, meeting C only
at smooth points of C (see Remark 6.4.2 in the Notes). In this case, it follows from
Proposition 6.3.26 in the Notes that the radical ideal sheaf corresponding to C ∩ H is
equal to IC +OPn(−H), where IC is the radical ideal sheaf corresponding to C. In other
words, in this case we have F = OC∩H , and thus C ∩H consists precisely of d points.

It is now easy to see that for such generalH, the intersection C∩H is non-degenerate
in H ' Pn−1. Indeed, if C ∩H is contained in a codimension 1 linear subspace Λ ⊆ H,
and if p ∈ C rH, then the linear span H ′ of Λ and p is a hyperplane in Pn that meets
C in at least (d + 1) points. We have seen that this is not possible, and thus C ∩ H is
non-degenerate in H. Since any (n − 1) points in Pn−1 are contained in a hyperplane,
we conclude that d ≥ n.


