Math 632

Solutions for the take-home exam

Problem 1. Let $X \subseteq \mathbf{P}^{n}$ be a closed subvariety of \mathbf{P}^{n}, with $\operatorname{codim}_{\mathbf{P}^{n}}(X)=r$, which is a (global) complete intersection: this means that the associated homogeneous ideal $I_{X} \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ is generated by r homogeneous elements.
i) Show that X is Cohen-Macaulay.
ii) Show that $H^{i}\left(X, \mathcal{O}_{X}(m)\right)=0$ for all m and all i, with $1 \leq i \leq \operatorname{dim}(X)-1$.
iii) Show that if $\operatorname{dim}(X)>0$, then X is connected.
iv) Show that if X is smooth and the ideal of I_{X} is generated by the homogeneous polynomials f_{1}, \ldots, f_{r}, with $\operatorname{deg}\left(f_{i}\right)=d_{i}$, then the canonical line bundle of X is isomorphic to $\mathcal{O}_{X}\left(d_{1}+\ldots+d_{r}-n-1\right)$.
v) Under the assumption in iv), deduce that if $\operatorname{dim}(X) \geq 1$ and $d_{1}+\ldots+d_{r} \geq n+1$, then X is not a rational variety.

Solution.

There are several ways to proceed. In what follows, the key part of the argument will be based on induction.

Note that \mathbf{P}^{n} is smooth, hence Cohen-Macaulay. In order to show that X is CohenMacaulay, if \mathcal{I} is the radical ideal sheaf corresponding to X, it is enough to show that for every $p \in X$, the ideal $\mathcal{I}_{p} \subseteq \mathcal{O}_{\mathbf{P}^{n}, p}$ is generated by $\operatorname{codim}\left(\mathcal{I}_{p}\right)$ elements (indeed, we have $\operatorname{codim}\left(\mathcal{I}_{p}\right)=\operatorname{depth}\left(\mathcal{I}_{p}\right)$ since $\mathcal{O}_{\mathbf{P}^{n}, p}$ is Cohen-Macaulay, hence the system of generators forms a regular sequence by Corollary 12.2 .13 in the Notes; then X is Cohen-Macaulay by Proposition 12.3.12 in the Notes).

Let f_{1}, \ldots, f_{r} be homogeneous generators of I_{X}, with $d_{i}=\operatorname{deg}\left(f_{i}\right)>0$. If $p \in U_{i}=$ $\left(x_{i} \neq 0\right)$, then \mathcal{I}_{p} is generated by $\frac{f_{1}}{x_{i}^{d_{1}}}, \ldots, \frac{f_{r}}{x_{i}^{d_{r}}}$. In particular, we have $\operatorname{codim}\left(\mathcal{I}_{p}\right) \leq r$ by one of the consequences to the Principal Ideal theorem. On the other hand, we clearly have

$$
\operatorname{codim}\left(\mathcal{I}_{p}\right) \geq \operatorname{codim}_{\mathbf{P}^{n}}(X)=r
$$

hence this is an equality and X is Cohen-Macaulay, giving i). Moreover, this argument shows that every irreducible component of X has pure dimension $n-r$.

We next show that the following hold:
(α) If $r \leq n-1$, then the canonical morphism $S / I_{X} \rightarrow \bigoplus_{m \in \mathbf{Z}} \Gamma\left(X, \mathcal{O}_{X}(m)\right)$ is an isomorphism.
(β) For every q, with $1 \leq q \leq \operatorname{dim}(X)-1$, we have

$$
H^{q}\left(X, \mathcal{O}_{X}(m)\right)=0 \quad \text { for all } \quad m \in \mathbf{Z}
$$

In order to show this, we consider $\mathcal{F}_{j}=\mathcal{O}_{\mathbf{P}^{n}} / \mathcal{I}_{j}$, for $1 \leq j \leq r$, where \mathcal{I}_{j} is the ideal sheaf corresponding to the homogeneous ideal $\left(f_{1}, \ldots, f_{j}\right)$. Arguing as above, we
 equations. In particular, every irreducible component $\operatorname{Supp}\left(\mathcal{F}_{j}\right)$ has codimension $\leq j$ in
\mathbf{P}^{n}. In fact, the codimension is precisely j : otherwise, the intersection of this component with $\bigcap_{i=j+1}^{r} V\left(f_{i}\right)$ would be non-empty, of codimension $<r$ by Corollary 4.2.12 in the Notes, a contradiction with the fact $\operatorname{codim}_{\mathbf{P}^{n}}(X)=r$.

With the convention that $\mathcal{F}_{0}=\mathcal{O}_{\mathbf{P}^{n}}$, we show by induction on $j \geq 0$, that the following hold:
$\left(\alpha_{j}\right)$ If $j \leq n-1$, then the canonical morphism

$$
S /\left(f_{1}, \ldots, f_{j}\right) \rightarrow \bigoplus_{m \in \mathbf{Z}} \Gamma\left(\mathbf{P}^{n}, \mathcal{F}_{j}(m)\right)
$$

is an isomorphism.
$\left(\beta_{j}\right)$ For every q, with $1 \leq q \leq n-j-1$, we have

$$
H^{q}\left(\mathbf{P}^{n}, \mathcal{F}_{j}(m)\right)=0 \quad \text { for all } \quad m \in \mathbf{Z}
$$

For $j=r$, we obtain (α) and (β).
Both $\left(\alpha_{0}\right)$ and $\left(\beta_{0}\right)$ hold by Theorem 11.2.2 in the Notes, hence it is enough to show that for $0 \leq j \leq r-1$, if we know the assertions for j, then we obtain them for $j+1$. Since \mathcal{F}_{j} is Cohen-Macaulay, it follows from Proposition 12.3.13 in the Notes that the associated subvarieties of \mathcal{F}_{j} are precisely the irreducible components of $\operatorname{Supp}\left(\mathcal{F}_{j}\right)$. Moreover, we have seen that each such irreducible component has codimension j, and thus can't be contained in $\operatorname{Supp}\left(\mathcal{F}_{j+1}\right)$. Therefore $V\left(f_{j+1}\right)$ contains no associated subvariety of \mathcal{F}_{j}, and thus we have a short exact sequence

$$
0 \rightarrow \mathcal{F}_{j}\left(m-d_{j+1}\right) \rightarrow \mathcal{F}_{j}(m) \rightarrow \mathcal{F}_{j+1}(m) \rightarrow 0
$$

for every $m \in \mathbf{Z}$. By taking the long exact sequence in cohomology, we obtain exact sequences

$$
\begin{gather*}
0 \rightarrow \Gamma\left(\mathbf{P}^{n}, \mathcal{F}_{j}\left(m-d_{j+1}\right)\right) \rightarrow \Gamma\left(\mathbf{P}^{n}, \mathcal{F}_{j}(m)\right) \rightarrow \Gamma\left(\mathbf{P}^{n}, \mathcal{F}_{j+1}(m)\right) \tag{1}\\
\rightarrow H^{1}\left(\mathbf{P}^{n}, \mathcal{F}_{j}\left(m-d_{j+1}\right)\right)
\end{gather*}
$$

and

$$
\begin{equation*}
H^{q}\left(\mathbf{P}^{n}, \mathcal{F}_{j}(m)\right) \rightarrow H^{q}\left(\mathbf{P}^{n}, \mathcal{F}_{j+1}(m)\right) \rightarrow H^{q+1}\left(\mathbf{P}^{n}, \mathcal{F}_{j}\left(m-d_{j+1}\right)\right) \tag{2}
\end{equation*}
$$

for all $q \geq 0$. It is clear that using $\left(\beta_{j}\right)$, the sequence in (??) implies $\left(\beta_{j+1}\right)$. Moreover, if $j+1 \leq n-1$, then $\left(\beta_{j}\right)$ implies $H^{1}\left(\mathbf{P}^{n}, \mathcal{F}_{j}\left(m-d_{j+1}\right)\right)=0$, and thus (??) and $\left(\alpha_{j}\right)$ imply $\left(\alpha_{j+1}\right)$. This completes the proof of the induction step. In particular, we obtain ii).

In particular, it follows from (α) that if $r \leq n-1$, then $\Gamma\left(X, \mathcal{O}_{X}\right)=k$. We thus conclude that in this case X is connected, giving iii).

It is easy to compute the normal bundle of X. Indeed, $s=\left(f_{1}, \ldots, f_{r}\right)$ is a regular section of $\bigoplus_{j=1}^{r} \mathcal{O}_{\mathbf{P}^{n}}\left(d_{i}\right)$ such that $\mathcal{I}(s)=\mathcal{I}$. We saw in a problem session (see also Example 12.2.21 in the Notes) that in this case $N_{X / \mathbf{P}^{n}} \simeq \bigoplus_{j=1}^{r} \mathcal{O}_{X}\left(d_{i}\right)$.

If X is smooth, then we have a short exact sequence

$$
\left.0 \rightarrow N_{X / \mathbf{P}^{n}}^{\vee} \rightarrow \Omega_{\mathbf{P}^{n}}\right|_{X} \rightarrow \Omega_{X} \rightarrow 0
$$

By taking determinants, we see that

$$
\left.\omega_{X} \simeq \omega_{\mathbf{P}^{n}}\right|_{X} \otimes_{\mathcal{O}_{X}} \operatorname{det}\left(N_{X / \mathbf{P}^{n}}\right) \simeq \mathcal{O}_{X}\left(d_{1}+\ldots+d_{r}-n-1\right)
$$

This proves iv).
Finally, suppose that $r \leq n-1$ and X is smooth, hence also irreducible by iii). Recall that the geometric genus of X is a birational invariant of smooth, irreducible, projective varieties. Using iv) and (α), we see that if $m=d_{1}+\ldots+d_{r}-n-1 \geq 0$, then

$$
p_{g}(X)=h^{0}\left(X, \omega_{X}\right)=h^{0}\left(X, \mathcal{O}_{X}(m)\right)=\operatorname{dim}_{k}\left(S /\left(f_{1}, \ldots, f_{r}\right)\right)_{m}>0
$$

Since the geometric genus of the projective space is 0 , it follows that in this case X is not rational.

Problem 2. Determine the Grothendieck group $K_{0}\left(\mathbf{P}^{n}\right)$, as follows:
i) Prove the following graded version of Nakayama's lemma: if M is a finitely generated, graded module over $S=k\left[x_{0}, \ldots, x_{n}\right]$ and $M=\left(x_{0}, \ldots, x_{n}\right) M$, then $M=0$.
ii) Deduce that if M is a finitely generated, graded S-module, such that M is projective, then M is free, that is, it is isomorphic to $\bigoplus_{i=1}^{r} S\left(a_{i}\right)$ for some non-negative integer r and some $a_{1}, \ldots, a_{r} \in \mathbf{Z}$.
iii) Deduce that the Abelian group $K_{0}\left(\mathbf{P}^{n}\right)$ is generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$, for $m \in \mathbf{Z}$.
iv) Show that, in fact, $K_{0}\left(\mathbf{P}^{n}\right)$ is generated just by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$, for $-n \leq m \leq 0$.
v) Show that there is a group homomorphism $K_{0}\left(\mathbf{P}^{n}\right) \rightarrow \mathbf{Q}[t]$ that maps $[\mathcal{F}]$ to the Hilbert polynomial $P_{\mathcal{F}}(t)$.
vi) Use the morphism in v) to show that $K_{0}\left(\mathbf{P}^{n}\right)$ is freely generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$, for $-n \leq m \leq 0$, hence we have a group isomorphism $K_{0}\left(\mathbf{P}^{n}\right) \simeq \mathbf{Z}^{n+1}$.
vii) Deduce that we have a ring isomorphism $K^{0}\left(\mathbf{P}^{n}\right) \simeq \mathbf{Z}[x] /\left(x^{n+1}\right)$.

Solution. In order to prove i), suppose that $M \neq 0$ and let u_{1}, \ldots, u_{r} be non-zero homogeneous generators of M, with $\operatorname{deg}\left(u_{i}\right)=d_{i}$. If $d=\min _{i} d_{i}$, then using the fact that $\mathfrak{m}_{i}=0$ for $i \leq 0$, it follows that $(\mathfrak{m} M)_{i}=0$ for $i<d+1$. This contradicts that fact that we have a non-zero homogeneous element of degree d in $M=\mathfrak{m} M$.

The assertion in i) implies that if M is a finitely generated graded S-module and N is a graded submodule of M, such that $M=\mathfrak{m} M+N$, then $M=N$. Indeed, it is enough to apply i) for M / N. As in the local case, this allows us to talk about minimal systems of homogeneous generators for M. Indeed, if $u_{1}, \ldots, u_{r} \in M$ are homogeneous elements, these generate M if and only if their classes in $M / \mathfrak{m} M$ generate this k-vector space. Therefore u_{1}, \ldots, u_{r} form a minimal system of generators if and only if their classes in $M / \mathfrak{m} M$ form a k-basis.

Suppose now that M is a projective finitely generated graded S-module, and consider a minimal system of homogeneous generators u_{1}, \ldots, u_{r}. We have a surjective morphism of graded R-modules $\phi: F \rightarrow M$, with F a finitely generated, free, graded R-module. Since the classes $\overline{u_{1}}, \ldots, \overline{u_{r}} \in M / \mathfrak{m} M$ form a k-basis, it follows that if
$K=\operatorname{ker}(\phi)$, then $K \subseteq \mathfrak{m} M$. If M is a projective R-module, then ϕ is a split surjection, and we thus have an exact sequence

$$
0 \rightarrow K / \mathfrak{m} K \rightarrow F / \mathfrak{m} F \rightarrow M / \mathfrak{m} M \rightarrow 0
$$

Since $K \subseteq \mathfrak{m} F$, we conclude that $K=\mathfrak{m} K$, hence $K=0$ by i).
We now prove the assertion in iii). Recall that for every coherent sheaf \mathcal{F} on \mathbf{P}^{n}, we have a finitely generated graded S-module M, such that $\mathcal{F} \simeq \widetilde{M}$. By choosing finitely many homogeneous generators for M, we construct a surjective graded homomorphism

$$
\phi: F_{0} \rightarrow M, \quad \text { where } \quad F_{0}=\bigoplus_{j} S(-j)^{\oplus \beta_{0, j}}
$$

By taking the kernel of ϕ and repeating this construction step by step, we obtain an exact complex

$$
0 \rightarrow F_{n+1} \rightarrow F_{n} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where F_{0}, \ldots, F_{n} are finitely generated, free, graded S-modules. Since the affine variety corresponding to S is smooth, irreducible, of dimension $n+1$, it follows from Proposition 12.2.15 that for every maximal ideal \mathfrak{m} of S, we have $\operatorname{pd}_{S_{\mathfrak{m}}}\left(M_{\mathfrak{m}}\right) \leq n+1$, hence $\left(F_{n+1}\right)_{\mathfrak{m}}$ is a projective $S_{\mathfrak{m}}$-module. Therefore F_{n+1} is a projective S-module, and thus it is a free graded S-module by ii). By passing to the corresponding sheaves, we see that \mathcal{F} has a finite free resolution by direct sums of line bundles. This implies that $[\mathcal{F}] \in K_{0}\left(\mathbf{P}^{n}\right)$ lies in the subgroup generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$, for $m \in \mathbf{Z}$, proving iii).

Recall that we have the exact Koszul complex:

$$
0 \rightarrow \mathcal{O}_{\mathbf{P}^{n}}(-n-1) \rightarrow \mathcal{O}_{\mathbf{P}^{n}}(-n)^{\oplus(n+1)} \rightarrow \ldots \rightarrow \mathcal{O}_{\mathbf{P}^{n}}(-1)^{\oplus(n+1)} \rightarrow \mathcal{O}_{\mathbf{P}^{n}} \rightarrow 0
$$

By tensoring this with $\mathcal{O}_{\mathbf{P}^{n}}(m)$, we see that $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$ lies in the subgroup generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m-i)\right]$ for $1 \leq i \leq n+1$. We thus deduce, by induction on $m \geq 0$, that $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$ lies in the subgroup A of $K_{0}\left(\mathbf{P}^{n}\right)$ generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}\right],\left[\mathcal{O}_{\mathbf{P}^{n}}(-1)\right], \ldots,\left[\mathcal{O}_{\mathbf{P}^{n}}(-n)\right]$. Similarly, by tensoring the Koszul complex with $\mathcal{O}_{\mathbf{P}^{n}}(m+n+1)$, we see that $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$ lies in the subgroup generated by $\left[\mathcal{O}_{\mathbf{P}^{n}}(m+i)\right]$, for $1 \leq i \leq n+1$. Using this, we see by decreasing induction on $m \leq-n-1$ that $\left[\mathcal{O}_{\mathbf{P}^{n}}(m)\right]$ lies in A. We thus conclude that $A=K_{0}\left(\mathbf{P}^{n}\right)$, proving iv).

Note that for every closed subvariety X of \mathbf{P}^{n}, given an exact sequence of coherent sheaves on X

$$
0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime \prime} \rightarrow 0
$$

by tensoring this with $\mathcal{O}_{X}(m)$ and taking the Euler-Poincaré characteristic, we obtain

$$
\chi(\mathcal{F}(m))=\chi\left(\mathcal{F}^{\prime}(m)\right)+\chi\left(\mathcal{F}^{\prime \prime}(m)\right) \quad \text { for all } \quad m \in \mathbf{Z}
$$

We thus have $P_{\mathcal{F}}=P_{\mathcal{F}^{\prime}}+P_{\mathcal{F}^{\prime \prime}}$. This implies that we have a morphism of Abelian groups $K_{0}(X) \rightarrow \mathbf{Q}[t]$ that maps $[\mathcal{F}]$ to the Hilbert polynomial $P_{\mathcal{F}}$. This applies in particular when $X=\mathbf{P}^{n}$, proving v).

We thus have a morphism $\gamma: K_{0}\left(\mathbf{P}^{n}\right) \rightarrow \mathbf{Q}[t]$ that maps $\left[\mathcal{O}_{\mathbf{P}^{n}}(-i)\right]$ to the polynomial $P(t-i)$, where

$$
P(t)=\frac{(t+1) \cdots(t+n)}{n!}
$$

We claim that $P(t), P(t-1), \ldots, P(t-n)$ are linearly independent over \mathbf{Z}. Indeed, if $\sum_{i=0}^{n} \lambda_{i} P(t-i)=0$, where not all λ_{i} are 0 , and if $j=\max \left\{i \mid \lambda_{i} \neq 0\right\}$, then by taking $t=$ j, we obtain $\lambda_{j}=0$, a contradiction. Since the images of $\left[\mathcal{O}_{\mathbf{P}^{n}}\right],\left[\mathcal{O}_{\mathbf{P}^{n}}(-1)\right], \ldots,\left[\mathcal{O}_{\mathbf{P}^{n}}(-n)\right]$ by γ are linearly independent over \mathbf{Z}, we conclude that these elements freely generate $K_{0}\left(\mathbf{P}^{n}\right)$, completing the proof of vi).

Recall now that by a homework problem (see Proposition 12.2.18 in the Notes), since \mathbf{P}^{n} is smooth and carries an ample line bundle, the canonical group homomorphism $K^{0}\left(\mathbf{P}^{n}\right) \rightarrow K_{0}\left(\mathbf{P}^{n}\right)$ is an isomorphism. What we proved so far thus shows that if $h=$ $\left[\mathcal{O}_{\mathbf{P}^{n}}(-1)\right]$, then $1, h, \ldots, h^{n}$ give a \mathbf{Z}-basis of $K^{0}\left(\mathbf{P}^{n}\right)$. Moreover, the Koszul complex gives the relation $\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} h^{i}=0$, that is, $(1-h)^{n+1}=0$. This implies that we have a morphism $\mathbf{Z}[x] /\left(x^{n+1}\right) \rightarrow K^{0}\left(\mathbf{P}^{n}\right)$ that maps the class of x to $1-\left[\mathcal{O}_{\mathbf{P}^{n}}(-1)\right]$. Since $\left\{(1-x)^{i} \mid 0 \leq i \leq n\right\}$ gives a basis of $\mathbf{Z}[x] /\left(x^{n+1}\right)$, we see that this morphism is an isomorphism, proving vii).

Remark. We emphasize that for $n \geq 2$, it is not true that every locally free sheaf on \mathbf{P}^{n} is a direct sum of line bundles. For example, for $n \geq 2$, the cotangent bundle is not isomorphic to a direct sum of line bundles. Since $H^{1}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(m)\right)=0$ for every m by Theorem 11.2.2 in the Notes, it is enough to show that $H^{1}\left(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}\right) \neq 0$. Recall that we have the Euler exact sequence

$$
0 \rightarrow \Omega_{\mathbf{P}^{n}} \rightarrow \mathcal{O}_{\mathbf{P}^{n}}(-1)^{\oplus(n+1)} \rightarrow \mathcal{O}_{\mathbf{P}^{n}} \rightarrow 0
$$

The long exact sequence in cohomology gives an exact sequence

$$
\begin{gathered}
0=\Gamma\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(-1)^{\oplus(n+1)}\right) \rightarrow \Gamma\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}\right) \rightarrow H^{1}\left(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}\right) \\
\rightarrow H^{1}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(-1)^{\oplus(n+1)}\right)=0 .
\end{gathered}
$$

We thus obtain $H^{1}\left(\mathbf{P}^{n}, \Omega_{\mathbf{P}^{n}}\right) \simeq k$.

Problem 3. Let $C \subseteq \mathbf{P}^{n}$ be an irreducible curve (that is, $\operatorname{dim}(C)=1$). We assume that C is non-degenerate (that is, it is not contained in a hyperplane).
i) Show that if $H \subseteq \mathbf{P}^{n}$ is a general hyperplane, then $C \cap H$ is a non-degenerate subset in H.
ii) Deduce that $\operatorname{deg}(C) \geq n$ (recall that the degree of a variety is the degree of its structure sheaf, defined using the Hilbert polynomial).

Solution. By assumption, for every hyperplane H in \mathbf{P}^{n}, we have $C \nsubseteq H$. Let $\mathcal{F}:=$ $\mathcal{O}_{C} \otimes_{\mathcal{O}_{\mathrm{P} n}} \mathcal{O}_{H}$. Since C is irreducible, the only associated subvariety of \mathcal{O}_{C} is C itself. Since $C \nsubseteq H$, we have a short exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(-1) \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{C} \otimes \mathcal{O}_{H} \rightarrow 0
$$

which by tensoring with $\mathcal{O}_{C}(m)$ and taking Euler-Poincaré characteristics gives

$$
P_{\mathcal{F}}(m)=P_{C}(m)-P_{C}(m-1),
$$

where $P_{\mathcal{F}}$ is the Hilbert polynomial of \mathcal{F} and P_{C} is the Hilbert polynomial of C. It is thus easy to deduce that $\operatorname{deg}(C)=\operatorname{deg}\left(\mathcal{O}_{C}\right)=\operatorname{deg}(\mathcal{F})$. Note that \mathcal{F} has support the finite set $C \cap H$, hence

$$
d=\operatorname{deg}(\mathcal{F})=\sum_{p \in C \cap H} \ell_{\mathcal{O}_{\mathbf{P}^{n}, p}}\left(\mathcal{F}_{p}\right) .
$$

In particular, we see that $C \cap H$ consists of at most d points.
Suppose now that H is a general hyperplane. Since C has finitely many singular points, it follows from Bertini's theorem that H is transversal to C, meeting C only at smooth points of C (see Remark 6.4.2 in the Notes). In this case, it follows from Proposition 6.3.26 in the Notes that the radical ideal sheaf corresponding to $C \cap H$ is equal to $\mathcal{I}_{C}+\mathcal{O}_{\mathbf{P}^{n}}(-H)$, where \mathcal{I}_{C} is the radical ideal sheaf corresponding to C. In other words, in this case we have $\mathcal{F}=\mathcal{O}_{C \cap H}$, and thus $C \cap H$ consists precisely of d points.

It is now easy to see that for such general H, the intersection $C \cap H$ is non-degenerate in $H \simeq \mathbf{P}^{n-1}$. Indeed, if $C \cap H$ is contained in a codimension 1 linear subspace $\Lambda \subseteq H$, and if $p \in C \backslash H$, then the linear span H^{\prime} of Λ and p is a hyperplane in \mathbf{P}^{n} that meets C in at least $(d+1)$ points. We have seen that this is not possible, and thus $C \cap H$ is non-degenerate in H. Since any $(n-1)$ points in \mathbf{P}^{n-1} are contained in a hyperplane, we conclude that $d \geq n$.

