Review sheet 3: Modules of finite length

We review the definition of modules of finite length and their characterization over Noetherian rings.

Let R be a commutative ring. Recall that an R-module M is simple if $M \neq 0$ and for every submodule M' of M, we have either M' = 0 or M' = M. It is straightforward to see that a module M is simple if and only if it is isomorphic to A/\mathfrak{m} , for some maximal ideal \mathfrak{m} of R.

Definition 0.1. An R-module M is of *finite length* if it has a *composition series*, that is, a sequence of submodules

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_r = M$$

such that M_i/M_{i-1} is a simple module for $1 \leq i \leq r$. It is a consequence of the Jordan-Hölder theorem that if M satisfies this property, then the quotients M_i/M_{i-1} are independent of the choice of composition series, up to reordering. In particular, the length ronly depends on M; this is the *length* of M, denoted $\ell(M)$ (or $\ell_R(M)$ if the ring is not clear from the context).

Example 0.2. If R is a DVR with discrete valuation v, then for every $a \in R$, we have $\ell(R/(a)) = v(a)$.

We begin with some easy properties regarding finite length modules.

Proposition 0.3. Given an exact sequence of *R*-modules

$$0 \to M' \to M \to M'' \to 0,$$

the module M has finite length if and only if both M' and M'' have finite length, and in this case

$$\ell(M) = \ell(M') + \ell(M'').$$

Proof. It is clear that if M' and M'' have finite length, then we obtain a composition series for M by concatenating the composition series for M' and M''. This implies that $\ell(M) = \ell(M') + \ell(M'')$. The converse follows from the fact, easy to check, that given a composition series for M, by intersecting each submodule with M' (respectively, by taking the image of each submodule in M'') we obtain after removing repeated submodules a composition series for M' (respectively, M'').

Remark 0.4. Every *R*-module of finite length is Artinian: if

$$M = M_0 \supsetneq M_1 \supsetneq \dots$$

is a strictly decreasing sequence of submodules, then it follows from the above proposition that we have a strictly decreasing sequence of non-negative integers

$$\ell(M_0) > \ell(M_1) > \dots,$$

a contradiction.

Proposition 0.5. If R is a Noetherian ring, then an R-module M has finite length if and only if M is finitely generated and dim $(R/\operatorname{Ann}_R(M)) = 0$.

Proof. Suppose first that M has a composition series

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_r = M,$$

with $M_i/M_{i-1} \simeq R/\mathfrak{m}_i$ for $1 \leq i \leq r$, where each \mathfrak{m}_i is a maximal ideal of R. Since each M_i/M_{i-1} is finitely generated, we conclude that M is finitely generated. Moreover, we have $\prod_{i=1}^r \mathfrak{m}_i \subseteq \operatorname{Ann}_R(M)$, hence the only primes containing $\operatorname{Ann}(R)$ are the \mathfrak{m}_i . This implies that dim $(R/\operatorname{Ann}_R(M)) = 0$.

Conversely, if M is finitely generated over a Noetherian ring, then it follows from Corollary 1.4 in Review Sheet 1 that we have submodules

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_r = M,$$

such that $M_i/M_{i-1} \simeq A/\mathfrak{p}_i$ for $1 \le i \le r$, where each \mathfrak{p}_i is a prime ideal in R. If we have $\dim (R/\operatorname{Ann}_R(M)) = 0$, then every prime ideal in $R/\operatorname{Ann}_R(M)$ is a maximal ideal. Since we clearly have $\operatorname{Ann}_R(M) \subseteq \mathfrak{p}_i$ for all i, we conclude that each quotient M_i/M_{i-1} is a simple module, hence M has finite length. \Box

Example 0.6. If (R, \mathfrak{m}) is a Noetherian local ring, then an *R*-module *M* has finite length if and only if it is finitely generated and $\mathfrak{m}^r \cdot M = 0$ for some $r \geq 1$.

Example 0.7. If k is a field and A is a finite k-algebra, then A is clearly Noetherian and $\dim(A) = 0$ (if \mathfrak{p} is a prime ideal in A, then A/\mathfrak{p} is a domain which is a finite k-algebra, hence it is a field). In particular, we see that A has finite length as a module over itself.

We also note that in this case A is a product of local, finite k-algebras. Indeed, given a minimal primary decomposition

$$(0) = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_r,$$

by the Chinese Remainder theorem we have

$$R \simeq \prod_{i=1}^r R/\mathfrak{q}_i$$

(note that the ideals $rad(\mathfrak{q}_i)$ are mutually distinct maximal ideals, hence $\mathfrak{q}_i + \mathfrak{q}_j = R$ whenever $i \neq j$).