Problem session 9

The goal of the first problem is to compute the cohomology of projective hypersurfaces, and more generally, to compute the cohomology of $\mathcal{O}_{D}(m)$, where D is an effective Cartier divisor on \mathbb{P}^{n}. We begin by setting up some notation.

Let $n \geq 1$ and let D be an effective Cartier divisor on \mathbb{P}^{n}. Recall that we have an isomorphism $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \simeq \mathbb{Z}$ that maps $\mathcal{O}_{\mathbb{P}^{n}}(m)$ to m (see Example 9.3.4 in the notes). Suppose that D has degree d, that is, $\mathcal{O}_{\mathbb{P}^{n}}(D) \simeq \mathcal{O}_{\mathbb{P}^{n}}(d)$; equivalently, if $D=\sum_{i=1}^{r} a_{i} D_{i}$, where D_{i} is an irreducible hypersurface in \mathbb{P}^{n} of degree d_{i}, then $d=\sum_{i=1}^{r} a_{i} d_{i}$.

Recall that by Proposition 9.4.24 in the notes, effective Cartier divisors of degree d on \mathbb{P}^{n} are in bijection with sections of $\Gamma\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(d)\right) \simeq S_{d}$, up to multiplication by non-zero elements of k, where $S=k\left[x_{0}, \ldots, x_{n}\right]$. We write $f_{D} \in S_{d}$ for such a polynomial corresponding to D. Note that if D is a hypersurface in \mathbb{P}^{n} (that is, it is a reduced divisor, that we identify with its support), then f_{D} is a generator for the principal radical ideal corresponding to this hypersurface. In general, if $D=\sum_{i=1}^{r} a_{i} D_{i}$, where D_{i} is an irreducible hypersurface in \mathbb{P}^{n}, with corresponding radical ideal generated by f_{i}, then we can take $f_{D}=\prod_{i=1}^{r} f_{i}^{a_{i}}$.
Problem 1. Let $n \geq 2$ and let D be an effective Cartier divisor of degree d on \mathbb{P}^{n}. The goal is to compute $H^{i}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right)$ for all m.
i) Show that

$$
H^{i}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right)=0 \quad \text { for } \quad 1 \leq i \leq n-2, m \in \mathbb{Z}
$$

ii) Show that

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right) \simeq(S / S h)_{m}
$$

where $S=k\left[x_{0}, \ldots, x_{n}\right]$ and $h \in S_{d}$ is an equation defining D. In particular, we have

$$
\operatorname{dim}_{k} H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right)=\binom{m+n}{n}-\binom{m+n-d}{n} \quad \text { for } \quad m \geq 0
$$

with the convention that the second binomial coefficient is 0 for $m<d$.
iii) Finally, show that for every m, we have an exact sequence

$$
0 \rightarrow H^{n-1}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right) \rightarrow H^{n}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(m-d)\right) \rightarrow H^{n}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(m)\right) \rightarrow 0
$$

In particular, we have

$$
\begin{gathered}
H^{n-1}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(m)\right)=0 \quad \text { for } \quad m \geq-n+d, \quad \text { and } \\
H^{n-1}\left(\mathbb{P}^{n}, \mathcal{O}_{D}(d-n-1)\right) \simeq k .
\end{gathered}
$$

We have seen in class that if X is a projective variety, then for every quasi-coherent sheaf \mathcal{F} on X, we have $\operatorname{dim}_{k} H^{i}(X, \mathcal{F})<\infty$ for all i. We will see next time that the same holds if we only assume that X is complete. The geometric genus of a smooth complete variety X is given by

$$
p_{g}(X)=\operatorname{dim}_{k} \Gamma\left(X, \omega_{X}\right) .
$$

Problem 2. Show that the geometric genus is a birational invariant: if X and Y are birational smooth complete varieties, then $p_{g}(X)=p_{g}(Y)$.

Problem 3. Compute the geometric genus of a smooth hypersurface in \mathbb{P}^{n}, with $n \geq 2$.

