Problem session 9

We consider a projective space \mathbb{P}^{n} and let S be its homogeneous coordinate ring. Recall that a hypersurface in \mathbb{P}^{n} is a closed subvariety of \mathbb{P}^{n} whose corresponding radical homogeneous ideal is of the form (F), for some nonzero homogeneous polynomial of positive degree. If $\operatorname{deg}(F)=d$, then the hypersurface has degree d.

Note that two polynomials F and G define the same hypersurface if and only if there is $\lambda \in k^{*}$ such that $F=\lambda G$. Let $\mathbb{P}^{N_{d}}$ be the projective space parametrizing lines in the vector space S_{d}, hence $N_{d}=\binom{n+d}{n}-1$.
Problem 1. Show that the subset \mathcal{H}_{d} of $\mathbb{P}^{N_{d}}$ consisting of those $[F]$ such that the ideal (F) is radical is a non-empty open subset of $\mathbb{P}^{N_{d}}$.

Problem 2. Consider the incidence correspondence

$$
\mathcal{Z}_{d}:=\left\{(p,[F]) \in \mathbb{P}^{n} \times \mathbb{P}^{N_{d}} \mid F(p)=0\right\} .
$$

Show that \mathcal{Z} is an irreducible closed subvariety of $\mathbb{P}^{n} \times \mathbb{P}^{N_{d}}$, of dimension $N_{d}+n-1$.

The next goal is to discuss linear subspaces on projective hypersurfaces. Given $r<n$, let $G=G(r+1, n+1)$ be the Grassmann variety parametrizing the r-dimensional linear subspaces in \mathbb{P}^{n}. Consider the incidence correspondence $I \subseteq \mathbb{P}^{N_{d}} \times G$ consisting of pairs $([F],[\Lambda])$ such that F vanishes on Λ.

Problem 3. Show that I is a closed subset of $\mathbb{P}^{N_{d}} \times G$.

Problem 4. Show that the projective variety I is irreducible, of dimension

$$
(r+1)(n-r)+\binom{n+d}{d}-\binom{r+d}{d}-1
$$

Problem 5. Show that every hypersurface in \mathbb{P}^{3} defined as the zero-locus of a degree 3 polynomial, contains a line.

