Problem session 9

We consider a projective space \mathbb{P}^n and let S be its homogeneous coordinate ring. Recall that a hypersurface in \mathbb{P}^n is a closed subvariety of \mathbb{P}^n whose corresponding radical homogeneous ideal is of the form (F), for some nonzero homogeneous polynomial of positive degree. If deg(F) = d, then the hypersurface has degree d.

Note that two polynomials F and G define the same hypersurface if and only if there is $\lambda \in k^*$ such that $F = \lambda G$. Let \mathbb{P}^{N_d} be the projective space parametrizing lines in the vector space S_d , hence $N_d = \binom{n+d}{n} - 1$.

Problem 1. Show that the subset \mathcal{H}_d of \mathbb{P}^{N_d} consisting of those [F] such that the ideal (F) is radical is a non-empty open subset of \mathbb{P}^{N_d} .

Problem 2. Consider the incidence correspondence

$$\mathcal{Z}_d := \left\{ \left(p, [F] \right) \in \mathbb{P}^n \times \mathbb{P}^{N_d} \mid F(p) = 0 \right\}.$$

Show that \mathcal{Z} is an irreducible closed subvariety of $\mathbb{P}^n \times \mathbb{P}^{N_d}$, of dimension $N_d + n - 1$.

The next goal is to discuss linear subspaces on projective hypersurfaces. Given r < n, let G = G(r+1, n+1) be the Grassmann variety parametrizing the *r*-dimensional linear subspaces in \mathbb{P}^n . Consider the incidence correspondence $I \subseteq \mathbb{P}^{N_d} \times G$ consisting of pairs $([F], [\Lambda])$ such that F vanishes on Λ .

Problem 3. Show that I is a closed subset of $\mathbb{P}^{N_d} \times G$.

Problem 4. Show that the projective variety I is irreducible, of dimension

$$(r+1)(n-r) + \binom{n+d}{d} - \binom{r+d}{d} - 1.$$

Problem 5. Show that every hypersurface in \mathbb{P}^3 defined as the zero-locus of a degree 3 polynomial, contains a line.