Problem session 8

Problem 1. The Grassmann variety G(r, n) parametrizes r-dimensional linear subspaces in $V = k^{n+1}$. If W is such a linear subspace, we denote by [W] the corresponding point of G(r, n). Put a structure of algebraic prevariety on G(r, n), as follows.

- i) Show that by fixing a basis on V (e.g. the standard basis), we can identify G(r, n) with the quotient of the set of $r \times n$ -matrices with entries in k, of maximal rank, modulo the action of $GL_r(k)$, given by left multiplication.
- ii) Show that by choosing nonzero maximal minors of this matrix, we can cover G(r, n) by subsets that are in bijection with $\mathbb{A}^{r(n-r)}$. Show that one can put a structure of prevariety on G(r, n) such that these bijections are isomorphisms. Note that G(r, n) is irreducible, of dimension r(n r).

Problem 2. Show that G(r, n) is a projective variety by showing that the map $G(r, n) \to \mathbb{P}^{\binom{n}{r}-1}$ that maps a subspace W to the line $\wedge^r W$ of $\wedge^r V \simeq k^{\binom{n}{r}}$ is a closed immersion. This is the $Pl\ddot{u}$ cker embedding of G(r, n).

Remarks.

- i) If r = 1, we recover \mathbb{P}^{n-1} , while if r = n 1, we recover the "dual" projective space, parametrizing the hyperplanes in \mathbb{P}^{n-1} .
- ii) In general, we have an isomorphism $G(r,n) \simeq G(n-r,n)$ that maps a subspace $W \subseteq V = k^n$ to the kernel of $k^n \simeq V^* \to W^*$.
- iii) The group of linear automorphisms $GL_n(V)$ has an induced transitive action on G(r, n).
- iv) Note that the set of r-dimensional linear subspaces of \mathbb{P}^n can be identified to G(r+1, n+1).

Problem 3. With the above identification, consider the following *incidence correspondence*:

$$\mathcal{Z} = \left\{ \left(q, [V] \right) \in \mathbb{P}^n \times G \mid q \in V \right\},\$$

where G = G(r + 1, n + 1) is the Grassman variety parametrizing r-dimensional linear subspaces in \mathbb{P}^n .

- i) Show that \mathcal{Z} is a closed subset of $\mathbb{P}^n \times G$.
- ii) Consider the morphisms $\pi: \mathbb{Z} \to \mathbb{P}^n$ and $\pi_2: \mathbb{Z} \to G$ induced by the projections onto the two components. Describe the fibers of these two morphisms and use this to show that \mathbb{Z} is irreducible, with dim $(\mathbb{Z}) = r + (r+1)(n-r)$.

Problem 4. Given a closed subset X in \mathbb{P}^n , let

$$M_r(X) = \{ [V] \in G = G(r+1, n+1) \mid V \cap X \neq \emptyset \}.$$

- i) Show that $M_r(X)$ is a closed subset of G.
- ii) Show that $M_r(X)$ is irreducible if X is irreducible. iii) Show that $\operatorname{codim}_G(M_r(X)) = n r d$ for $0 \le r \le n d$.