Problem session 6

Problem 1. Show that if X is an irreducible variety, that is smooth in codimension 1, then

 $\operatorname{Cl}(X \times \mathbb{P}^n) \simeq \operatorname{Cl}(X) \oplus \mathbb{Z}.$

Problem 2. Let X be an algebraic variety and U an open subvariety. Prove the following assertions:

- i) If \mathcal{F} is a coherent sheaf on U, then there is a coherent sheaf \mathcal{G} on X such that $\mathcal{G}|_U \simeq \mathcal{F}$.
- ii) Furthermore, if \mathcal{M} is a quasi-coherent sheaf on X such that \mathcal{F} is a subsheaf of $\mathcal{M}|_U$, then we may take \mathcal{G} to be a subsheaf of \mathcal{M} .

Hint: consider the following intermediate steps:

- a) Show that if X is an *affine* variety and \mathcal{P} is a quasicoherent sheaf on X, and if $(\mathcal{P}_i)_i$ is the family of coherent subsheaves of \mathcal{P} , then for every open subset U of X we have $\mathcal{P}(U) = \bigcup_i \mathcal{P}_i(U)$.
- b) Prove i) and ii) above when X is affine.
- c) Prove ii), and then i) above in the general case.