Problem session 6

Recall that a topological space X is *paracompact* if it is Hausdorff and for every open cover $X = \bigcup_{i \in I} U_i$ there is a locally finite open cover $X = \bigcup_{j \in J} V_j$ that refines it. A useful property is that if $X = \bigcup_{j \in J} V_j$ is a locally finite open cover of a paracompact space X, then there is another open cover $X = \bigcup_{i \in J} W_j$ such that $\overline{W_j} \subseteq V_j$ for all $j \in J$.

Recall that if \mathcal{F} is a sheaf on a topological space X and Z is an arbitrary subset of X, with $i: Z \hookrightarrow X$ the inclusion map, then we put

$$\Gamma(Z,\mathcal{F}) := \Gamma(Z,i^{-1}(\mathcal{F})).$$

A sheaf \mathcal{F} on X is *soft* if for every closed subset Z of X, the restriction map

$$\Gamma(X,\mathcal{F}) \to \Gamma(Z,\mathcal{F})$$

is surjective.

Problem 1. Let X be a paracompact topological space and \mathcal{F} a sheaf of Abelian groups on X.

- i) Show that for every closed subset Z of X and every $s \in \mathcal{F}(Z)$, there is an open subset U containing Z and $t \in \mathcal{F}(U)$ such that $t|_Z = s$.
- ii) Deduce that if \mathcal{F} is flasque, then it is soft.

Problem 2. Let X be a paracompact topological space and \mathcal{F} a presheaf of Abelian groups on X that satisfies the following condition: for every open cover $X = \bigcup_{i \in I} U_i$ and for every $s_i \in \mathcal{F}(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i and j, there is $s \in \mathcal{F}(X)$ such that $s|_{U_i} = s_i$ for all i. Show that if $\mathcal{F} \to \mathcal{F}^+$ is the canonical morphism to the associated sheaf, then the morphism $\mathcal{F}(X) \to \mathcal{F}^+(X)$ is surjective.

Problem 3. Let X be a topological space and \mathcal{F} a sheaf of Abelian groups on X. For a section $s \in \Gamma(X, \mathcal{F})$, its support Supp(s) is the set of points $x \in X$ such that $s_x \in \mathcal{F}_x$ is non-zero.

i) Show that by associating to a sheaf \mathcal{F} the group of sections with support in Z:

$$\Gamma_Z(X,\mathcal{F}) = \{ s \in \Gamma(X,\mathcal{F}) \mid \text{Supp}(s) \subseteq Z \}$$

we get a left exact functor from the category of sheaves of Abelian groups to the category of Abelian groups.

ii) If X is an affine algebraic variety and $\mathcal{F} = \widetilde{M}$, for some $\mathcal{O}(X)$ -module M, describe $\Gamma_Z(X, \mathcal{F})$.