Problem session 5

Problem 1. Let X be an irreducible, normal variety. Show that for two divisors D and E, we have $\mathcal{O}_{X}(D) \simeq \mathcal{O}_{X}(E)$ if and only if D and E are linearly equivalent.

Problem 2. Let X be an irreducible variety which is smooth in codimension $1, U$ an open subset, and suppose that the irreducible components of $X \backslash U$ that have codimension 1 in X are Z_{1}, \ldots, Z_{s}. Show that we have a short exact sequence

$$
\mathbb{Z}^{s} \xrightarrow{\alpha} \mathrm{Cl}(X) \xrightarrow{\beta} \mathrm{Cl}(U) \longrightarrow 0,
$$

where

$$
\alpha\left(m_{1}, \ldots, m_{s}\right)=\left[m_{1} Z_{1}+\ldots+m_{s} Z_{s}\right] \quad \text { and } \quad \beta([D])=\left[\left.D\right|_{U}\right] .
$$

Problem 3. Let Y be a hypersurface in \mathbb{P}^{n}. If the irreducible components of Y are Y_{1}, \ldots, Y_{r} and $\operatorname{deg}\left(Y_{i}\right)=d_{i}$, show that $\operatorname{Cl}\left(\mathbb{P}^{n} \backslash Y\right) \simeq \mathbb{Z} / d \mathbb{Z}$, where d is the greatest common divisor of d_{1}, \ldots, d_{r}.

Problem 4. Let X be the affine cone over a smooth quadric surface in \mathbb{P}^{3}, that is, $X \subseteq \mathbb{A}^{4}$ is defined by the equation $x_{1} x_{2}-x_{3} x_{4}=0$. Note that X is smooth in codimension 1 (in fact, it is normal, see the previous problem set). Show that if L_{1} and L_{2} are the lines in X given by $x_{1}=x_{3}=0$ and, respectively $x_{1}=x_{4}=0$, then L_{1} and L_{2} are prime divisors on X which are not Cartier, but $L_{1}+L_{2}$ is Cartier.

