Problem session 5

Problem 1. Let X be an irreducible, normal variety. Show that for two divisors D and E, we have $\mathcal{O}_X(D) \simeq \mathcal{O}_X(E)$ if and only if D and E are linearly equivalent.

Problem 2. Let X be an irreducible variety which is smooth in codimension 1, U an open subset, and suppose that the irreducible components of $X \\ V$ that have codimension 1 in X are Z_1, \ldots, Z_s . Show that we have a short exact sequence

$$\mathbb{Z}^s \xrightarrow{\alpha} \operatorname{Cl}(X) \xrightarrow{\beta} \operatorname{Cl}(U) \longrightarrow 0,$$

where

 $\alpha(m_1, \dots, m_s) = [m_1 Z_1 + \dots + m_s Z_s]$ and $\beta([D]) = [D|_U].$

Problem 3. Let Y be a hypersurface in \mathbb{P}^n . If the irreducible components of Y are Y_1, \ldots, Y_r and $\deg(Y_i) = d_i$, show that $\operatorname{Cl}(\mathbb{P}^n \setminus Y) \simeq \mathbb{Z}/d\mathbb{Z}$, where d is the greatest common divisor of d_1, \ldots, d_r .

Problem 4. Let X be the affine cone over a smooth quadric surface in \mathbb{P}^3 , that is, $X \subseteq \mathbb{A}^4$ is defined by the equation $x_1x_2 - x_3x_4 = 0$. Note that X is smooth in codimension 1 (in fact, it is normal, see the previous problem set). Show that if L_1 and L_2 are the lines in X given by $x_1 = x_3 = 0$ and, respectively $x_1 = x_4 = 0$, then L_1 and L_2 are prime divisors on X which are not Cartier, but $L_1 + L_2$ is Cartier.