Problem set 4

Problem 1. Show that if $\phi: R \rightarrow S$ is a finite homomorphism of Noetherian rings, with (R, \mathfrak{m}) a local ring, then an S-module M has finite length over S if and only if it has finite length over R, and in this case, if $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ are the maximal ideals in S, then

$$
\ell_{R}(M)=\sum_{i=1}^{r} \ell_{S_{\mathfrak{q}_{i}}}\left(M_{\mathfrak{q}_{i}}\right) \cdot\left[S / \mathfrak{q}_{i}: R / \mathfrak{m}\right]
$$

Problem 2. Let $f: R \hookrightarrow S$ be a finite, injective homomorphism, where (R, \mathfrak{m}) is a DVR, with discrete valuation v, and S is a domain, and denote by $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ the maximal ideals of S. Show that if $K=\operatorname{Frac}(R)$ and $L=\operatorname{Frac}(S)$, then for every non-zero $b \in S$, we have

$$
v\left(N_{L / K}(b)\right)=\sum_{i=1}^{r} \ell_{S_{\mathfrak{q}_{i}}}\left(S_{\mathfrak{q}_{i}} /(b)\right) \cdot\left[S / \mathfrak{q}_{i}: R / \mathfrak{m}\right]
$$

Problem 3. Let S be an integral, finitely generated semigroup. Recall that S is saturated if for every $u \in S^{\mathrm{gp}}$ such that $m u \in S$ for some $m \geq 1$, then $u \in S$. Show that $k[S]$ is integrally closed if and only if S is saturated.

Problem 4. Let $f \in k\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right]$ be an irreducible polynomial of the form

$$
f=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}}-y_{1}^{b_{1}} \cdots y_{s}^{b_{s}}
$$

for non-negative integers $a_{1}, \ldots, a_{r}, b_{1} \ldots, b_{s}$. Let $Z \subseteq \mathbf{A}^{r+s}$ be the hypersurface defined by f.
i) Show that if Z is normal, then either $a_{i} \in\{0,1\}$ for $1 \leq i \leq r$ or $b_{j} \in\{0,1\}$ for all $1 \leq j \leq s$.
ii) Show that conversely, if $a_{i} \in\{0,1\}$ for all i, then f is an irreducible polynomial that defines a normal hypersurface in \mathbf{A}^{r+s}.

