Problem set 3

Problem 1. Let X be an algebraic variety and let $X_{\rm sm}$ be the set of smooth points of X. We have seen last semester that if V is a closed irreducible subset of X such that $V \cap X_{\rm sm} \neq \emptyset$, then X is smooth at V (that is, the local ring $\mathcal{O}_{X,V}$ is regular). Prove now the converse: if X is smooth at V, then $V \cap X_{\rm sm} \neq \emptyset$.

Problem 2. We have seen in the last problem session that on \mathbb{P}^n we have an injective morphism of vector bundles

$$\mathcal{O}_{\mathbb{P}^n}(-1) \hookrightarrow \mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)}.$$

i) Deduce that we have a surjection

$$\psi \colon \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus (n+1)} \to \mathcal{O}_{\mathbb{P}^n}.$$

ii) Show that there is an exact sequence

$$0 \to \Omega_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus (n+1)} \to \mathcal{O}_{\mathbb{P}^n} \to 0.$$

- iii) Deduce that we have $\omega_{\mathbb{P}^n} \simeq \mathcal{O}_{\mathbb{P}^n}(-n-1)$.
- iv) Show that the exact sequence in ii) is not split.

Problem 3. Show that if X and Y are algebraic varieties and $p: X \times Y \to X$ and $q: X \times Y \to Y$ are the two projections, then there is an isomorphism

 $\Omega_{X\times Y}\simeq p^*(\Omega_X)\oplus_{\mathcal{O}_{X\times Y}}q^*(\Omega_Y).$