Problem set 2

Problem 1. Given $n \geq 1$, consider the blow-up of \mathbb{A}^{n+1} at the origin:

$$
\operatorname{Bl}_{0}\left(\mathbb{A}^{n+1}\right):=\left\{(P, \ell) \in \mathbb{A}^{n+1} \times \mathbb{P}^{n} \mid P \in \ell\right\} .
$$

The first projection is the blow-up map of \mathbb{A}^{n+1}. Let us consider now the morphism $q: \mathrm{Bl}_{0}\left(\mathbb{A}^{n+1}\right) \rightarrow \mathbb{P}^{n}$ induced by the second projection $f: \mathbb{A}^{n+1} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$.
i) Show that q gives a geometric vector bundle of rank 1 , in fact a subbundle of the trivial rank $(n+1)$ bundle given by f. This is the tautological subbundle on \mathbb{P}^{n}. The sheaf of sections of this bundle is denoted $\mathcal{O}_{\mathbb{P}^{n}}(-1)$ and its dual by $\mathcal{O}_{\mathbb{P}^{n}}(1)$, while the corresponding $m^{\text {th }}$ tensor powers (for $m>0$) are denoted by $\mathcal{O}_{\mathbb{P}^{n}}(-m)$ and $\mathcal{O}_{\mathbb{P}^{n}}(m)$, respectively.
ii) Show that

$$
\Gamma\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(m)\right) \simeq k\left[y_{0}, \ldots, y_{n}\right]_{m}
$$

where the right-hand side is 0 for $m<0$.

If \mathcal{E} is a vector bundle on X, then the determinant $\operatorname{det}(\mathcal{E})$ is obtained by taking on each connected component of X, the top exterior power of \mathcal{E}. This is a line bundle on X.

Problem 2. Consider an exact sequence of vector bundles on the algebraic variety X :

$$
0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0
$$

i) For every $p \geq 0$ and for every $0 \leq i \leq p$, let \mathcal{F}_{i} be the image of the composition

$$
S^{i}\left(\mathcal{E}^{\prime}\right) \otimes_{\mathcal{O}_{X}} S^{p-i}(\mathcal{E}) \rightarrow S^{i}(\mathcal{E}) \otimes_{\mathcal{O}_{X}} S^{p-i}(\mathcal{E}) \rightarrow S^{p}(\mathcal{E})
$$

Show that for every $0 \leq i \leq p$, we have a sequence of subbundles of $S^{p}(\mathcal{E})$

$$
0=\mathcal{F}_{p+1} \hookrightarrow \mathcal{F}_{p} \hookrightarrow \mathcal{F}_{p-1} \hookrightarrow \ldots \hookrightarrow \mathcal{F}_{0}=S^{p}(\mathcal{E})
$$

and we have canonical isomorphisms

$$
\mathcal{F}_{i} / \mathcal{F}_{i+1} \simeq S^{i}\left(\mathcal{E}^{\prime}\right) \otimes_{\mathcal{O}_{X}} S^{p-i}\left(\mathcal{E}^{\prime \prime}\right) \quad \text { for } \quad 0 \leq i \leq p
$$

ii) Similarly, show that for every $p \geq 0$ and $0 \leq i \leq p$, we have a sequence of subbundles

$$
0=\mathcal{G}_{p+1} \hookrightarrow \mathcal{G}_{p} \hookrightarrow \ldots \hookrightarrow \mathcal{G}_{0}=\wedge^{p} \mathcal{E}
$$

such that we have canonical isomorphisms

$$
\mathcal{G}_{i} / \mathcal{G}_{i+1} \simeq \wedge^{i} \mathcal{E}^{\prime} \otimes_{\mathcal{O}_{X}} \wedge^{p-i} \mathcal{E}^{\prime \prime} \quad \text { for } \quad 0 \leq i \leq p
$$

In particular, we have a canonical isomorphism

$$
\operatorname{det}(\mathcal{E}) \simeq \operatorname{det}\left(\mathcal{E}^{\prime}\right) \otimes_{\mathcal{O}_{X}} \operatorname{det}\left(\mathcal{E}^{\prime \prime}\right)
$$

