Problem session 1

Problem 1 Show that if $f: X \to Y$ is a morphism of algebraic varieties and \mathcal{M} is a quasi-coherent sheaf on X, then $f_*(\mathcal{M})$ is a quasi-coherent sheaf on Y.

Problem 2. Let X be an algebraic variety. Given a quasi-coherent sheaf \mathcal{M} on X and quasi-coherent subsheaves \mathcal{M}_i of \mathcal{M} , for $i \in I$, consider the subsheaf \mathcal{F} of \mathcal{M} given by

$$\Gamma(U,\mathcal{F}) = \bigcap_{i \in I} \Gamma(U,\mathcal{F}_i).$$

Show that if I is infinite, \mathcal{F} might not be quasi-coherent.

Problem 3. Let X be an algebraic variety, $x \in X$ a point, and \mathcal{F} the presheaf on X given by

$$\mathcal{F}(U) = k \quad \text{if} \quad x \in U$$

and $\mathcal{F}(U) = 0$, otherwise (with the nonzero restriction maps being id_k). Show that \mathcal{F} is a sheaf and that one can put an \mathcal{O}_X -module structure on \mathcal{F} such that it is a coherent sheaf.

Problem 4. Let X be an algebraic variety. Show that if $(\mathcal{M}_i)_{i \in I}$ is a family of quasicoherent sheaves, then $\bigoplus_{i \in I} \mathcal{M}_i$ is quasi-coherent.

Problem 5.

- i) Show that if X is an algebraic variety, then every locally free sheaf \mathcal{F} on X is coherent (recall that a *locally free sheaf* is an \mathcal{O}_X -modules such that for every $x \in X$, there is an open neighborhood U of X such that $\mathcal{F}|_U \simeq \mathcal{O}_U^{\oplus r}$ for some r).
- ii) Show that if $f: X \to Y$ is a morphism of algebraic varieties and \mathcal{F} is a locally free sheaf on Y, then $f^*(\mathcal{F})$ is locally free. On the other hand, show that if \mathcal{M} is locally free on X, then $f_*(\mathcal{M})$ might not be locally free on Y.

Problem 6. Show that if $f: X \to Y$ is a morphism of algebraic varieties, then for every locally free sheaf \mathcal{E} on Y and for every \mathcal{O}_X -module \mathcal{F} on X, we have a canonical isomorphism

$$f_*(f^*(\mathcal{E}) \otimes_{\mathcal{O}_X} \mathcal{F}) \simeq \mathcal{E} \otimes_{\mathcal{O}_Y} f_*(\mathcal{F})$$

(this is known as the *projection formula*).