Problem session 1

Problem 1. Describe the closed algebraic subsets of \mathbf{A}^{1}.
Problem 2. Let Y be the algebraic subset of \mathbf{A}^{3} defined by the two polynomials $x^{2}-y z$ and $x z-x$. Show that Y is a union of three irreducible components. Describe them and find the corresponding prime ideals.

Problem 3. For m and $n \geq 1$, let us identify $\mathbf{A}^{m n}$ with the set of all matrices $B \in$ $M_{m, n}(k)$. Show that the set

$$
M_{m, n}^{r}(k):=\left\{B \in M_{m, n}(k) \mid \operatorname{rk}(B) \leq r\right\}
$$

is an algebraic set of $M_{m, n}(k)$.
Problem 4. Show that the following subset of \mathbf{A}^{3}

$$
W_{1}=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\}
$$

is an algebraic subset, and describe $I\left(W_{1}\right)$. Can you do the same for

$$
W_{2}=\left\{\left(t^{2}, t^{3}, t^{4}\right) \mid t \in k\right\} ?
$$

How about

$$
W_{3}=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in k\right\} ?
$$

Problem 5. Show that if X_{1} and X_{2} are algebraic subsets of \mathbf{A}^{n}, then

$$
I\left(X_{1} \cap X_{2}\right)=\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)} .
$$

