Problem session 1

Problem 1. Describe the closed algebraic subsets of A^1 .

Problem 2. Let Y be the algebraic subset of A^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find the corresponding prime ideals.

Problem 3. For m and $n \geq 1$, let us identify \mathbf{A}^{mn} with the set of all matrices $B \in M_{m,n}(k)$. Show that the set

$$M_{m,n}^r(k) := \{ B \in M_{m,n}(k) \mid \mathrm{rk}(B) \le r \}$$

is an algebraic set of $M_{m,n}(k)$.

Problem 4. Show that the following subset of A^3

$$W_1 = \{(t, t^2, t^3) \mid t \in k\}$$

is an algebraic subset, and describe $I(W_1)$. Can you do the same for

$$W_2 = \{(t^2, t^3, t^4) \mid t \in k\}$$
?

How about

$$W_3 = \{(t^3, t^4, t^5) \mid t \in k\}?$$

Problem 5. Show that if X_1 and X_2 are algebraic subsets of \mathbf{A}^n , then

$$I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}.$$