Problem session 13

This problem set treats two applications of Generic Smoothness.

Problem 1. Prove the following version of Bertini's theorem, due to Kleiman: let X be a smooth, irreducible variety, over an algebraically closed field of characteristic 0. If \mathcal{L} is a line bundle on X and $V \subseteq \Gamma(X, \mathcal{L})$ is a finite-dimensional vector space that generates \mathcal{L} , then there is a non-empty open subset U of $\mathbb{P}(V^{\vee})$ such that every effective Cartier divisor corresponding to a point in U is smooth (that is, it is reduced, with smooth support).

The second problem is concerned with the *reflexivity of the dual variety*. Let us begin with a definition. Let $X \subseteq \mathbb{P}^n$ be a closed subvariety and consider the subset of $\mathbb{P}^n \times (\mathbb{P}^n)^*$ given by

$$I_0 := \{ (p, H) \in \mathbb{P}^n \times (\mathbb{P}^n)^* \mid p \in X_{\mathrm{sm}}, H \supseteq T_p X \}.$$

Let I be the closure of I_0 in $\mathbb{P}^n \times (\mathbb{P}^n)^*$ and let $p: I \to X$ and $q: I \to (\mathbb{P}^n)^*$ be the maps induced by the two projections.

Let $V = \Gamma(\mathbb{P}^n, \mathcal{O}(1))^{\vee}$, so that \mathbb{P}^n parametrizes lines in V and $(\mathbb{P}^n)^*$ parametrizes hyperplanes in V (we thus have surjective maps $V \setminus \{0\} \to \mathbb{P}^n$ and $V^{\vee} \setminus \{0\} \to (\mathbb{P}^n)^*$, and for $v \in V \setminus \{0\}$ and $u \in V^{\vee} \setminus \{0\}$, we write [v] and [u] for the images in \mathbb{P}^n and, respectively, $(\mathbb{P}^n)^*$).

Problem 2.

- i) Show that I is irreducible, of dimension n-1. The subvariety $q(I) \subseteq (\mathbb{P}^n)^*$ is the dual variety of X, denoted X^* .
- ii) Note that we have canonical isomorphisms

 $T_{[v]}\mathbb{P}^n \simeq V/k \cdot v$ and $T_{[u]}(\mathbb{P}^n)^* \simeq V^{\vee}/k \cdot u$.

Show that for every $([v], [u]) \in I$, we have

$$T_{([v],[u])}I \subseteq \left\{ \left([a], [b] \right) \in V/k \cdot v \times V^{\vee}/k \cdot u \mid \langle b, v \rangle + \langle u, a \rangle = 0 \right\},\$$

where $\langle -, - \rangle \colon V^{\vee} \times V \to k$ is the duality pairing.

iii) Use the assertion in ii) and Generic Smoothness, to prove the following: if we write I_X instead of I and, similarly, I_{X^*} for the corresponding incidence variety associated to X^* , then the isomorphism $\mathbb{P}^n \times (\mathbb{P}^n)^* \to (\mathbb{P}^n)^* \times \mathbb{P}^n$, $([v], [u]) \to ([u], [v])$ maps I_X onto I_{X^*} . In particular, we have $(X^*)^* = X$.