Problem session 12

Problem 1. Show that if R is a Noetherian local ring, M is a non-zero finitely generated R-module, and x_1, \ldots, x_n generate an ideal \mathfrak{a} contained in the maximal ideal, then $r = \text{depth}(\mathfrak{a}, M) \leq n$ and

$$\mathcal{H}_i(K(\underline{x}; M)) = 0 \text{ for } i > n - r, \text{ while } \mathcal{H}_{n-r}(K(\underline{x}, M)) \neq 0.$$

Problem 2. Deduce the following consequences:

• If (R, \mathfrak{m}) is a Noetherian local ring, M is a finitely generated non-zero R-module, and $\mathfrak{a} = (x_1, \ldots, x_n) \subseteq \mathfrak{m}$, then depth $(\mathfrak{a}, M) = n$ if and only if x_1, \ldots, x_n form an M-regular sequence.

• If (A, \mathfrak{m}) is a Noetherian local ring and $\phi: A \to B$ is a finite homomorphism, then for every finitely generated *B*-module *M* and every ideal $\mathfrak{a} \subseteq \mathfrak{m}$, we have

$$depth(\mathfrak{a}, M) = depth(\mathfrak{a}B, M)$$

(this is a result that we used in class for $\mathfrak{a} = \mathfrak{m}$ and M = B).

Let \mathcal{E} be a locally free sheaf of rank r on a variety X, and let $s \in \Gamma(X, \mathcal{E})$. We may consider s as a morphism $\mathcal{E}^{\vee} \to \mathcal{O}_X$ and denote by $\mathcal{I}(s)$ the image of this morphism and by V(s) the closed subset that is the zero locus of $\mathcal{I}(s)$. The section s is a *regular* section if for every $x \in V(s)$, we have depth $(\mathcal{I}(s)_x) = r$. Equivalently, if we choose an isomorphism $\mathcal{E}_x \simeq \mathcal{O}_{X,x}^{\oplus r}$, such that s_x corresponds to (a_1, \ldots, a_r) , then a_1, \ldots, a_r is an $\mathcal{O}_{X,x}$ -regular sequence.

Problem 3. Suppose that \mathcal{E} is a locally free sheaf of rank r on a variety X, and let $s \in \Gamma(X, \mathcal{E})$ be a regular section. Show that if $\mathcal{I}(s)$ is a radical sheaf of ideals defining the closed subvariety Y, then the normal sheaf $N_{Y/X}$ is isomorphic to $\mathcal{E}|_Y$.