Problem session 11

Problem 1. Let $f: X \to Y$ be a morphism of algebraic varieties and \mathcal{L}, \mathcal{M} line bundles on X. Show that the following hold:

- i) If \mathcal{L} is very ample over Y, then \mathcal{L} is globally generated.
- ii) If \mathcal{L} is very ample over Y and \mathcal{M} is globally generated, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M}$ is very ample over Y.
- iii) If $\hat{\mathcal{L}}$ is very ample over Y, then \mathcal{L}^d is very ample over Y for all d > 0.

Problem 2. Let X be a complete variety and \mathcal{L} an ample line bundle on X. Show that if $f: W \to X$ is a finite morphism, then $f^*(\mathcal{L})$ is ample.

Remark. In particular, the above problem implies that if $f: W \to X$ is a finite morphism of algebraic varieties and X is projective, then W is projective. For example, this implies that the normalization of any projective variety is again a projective variety.

Problem 3. Prove now the following converse to the previous problem: if X is a complete variety, $f: W \to X$ is a finite, surjective morphism, and \mathcal{L} is a line bundle on X such that $f^*(\mathcal{L})$ is ample, then \mathcal{L} is ample.

Problem 4. We have seen that every line bundle on $\mathbb{P}^m \times \mathbb{P}^n$ is of the form

$$\mathcal{O}(a,b) := \operatorname{pr}_1^* (\mathcal{O}_{\mathbb{P}^m}(a)) \otimes \operatorname{pr}_2^* (\mathcal{O}_{\mathbb{P}^n}(b)).$$

Describe for which values of a and b the line bundle $\mathcal{O}(a, b)$ is ample or very ample.

Problem 5. Show that if (X, \mathcal{O}_X) is a ringed space and \mathcal{E} , \mathcal{F} , and \mathcal{G} are \mathcal{O}_X -modules on X, with \mathcal{E} locally free, then we have functorial isomorphisms

$$\mathcal{E}xt^{i}_{\mathcal{O}_{X}}(\mathcal{E}\otimes_{\mathcal{O}_{X}}\mathcal{F},\mathcal{G})\simeq \mathcal{E}xt^{i}_{\mathcal{O}_{X}}(\mathcal{F},\mathcal{E}^{\vee}\otimes_{\mathcal{O}_{X}}\mathcal{G})\simeq \mathcal{E}xt^{i}_{\mathcal{O}_{X}}(\mathcal{F},\mathcal{G})\otimes_{\mathcal{O}_{X}}\mathcal{E}^{\vee}$$

and

$$\operatorname{Ext}^{i}_{\mathcal{O}_{X}}(\mathcal{E} \otimes_{\mathcal{O}_{X}} \mathcal{F}, \mathcal{G}) \simeq \operatorname{Ext}^{i}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_{X}} \mathcal{G}).$$