Problem session 10

Problem 1. Let X be an algebraic variety and \mathcal{F} a coherent sheaf on X. An irreducible closed subset Y of X is an *associated variety* of \mathcal{F} if for an affine open subset U of X with $U \cap Y \neq \emptyset$, the prime ideal corresponding to $Y \cap U$ in $\mathcal{O}(U)$ lies in $\operatorname{Ass}_{\mathcal{O}(U)}(\mathcal{F}(U))$. We denote the set of associated subvarieties of \mathcal{F} by $\operatorname{Ass}(\mathcal{F})$.

- i) Show that the above condition is independent of the chosen subset U.
- ii) Show that $Ass(\mathcal{F})$ is a finite set containing the irreducible components of $Supp(\mathcal{F})$.
- iii) Show that if X is irreducible and D is an effective Cartier divisor on X, then we have a short exact sequence

$$0 \to \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-D) \to \mathcal{F} \to \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_D \to 0.$$

Problem 2. Show that if \mathcal{F} is a coherent sheaf on a projective space \mathbb{P}^n , for a positive integer *n*, then there is a polynomial $P_{\mathcal{F}} \in \mathbb{Q}[t]$ such that

$$P_{\mathcal{F}}(m) = \chi(\mathcal{F}(m)) \text{ for all } m \in \mathbb{Z}.$$

Moreover, if $\mathcal{F} \neq 0$, then $\deg(P_{\mathcal{F}}) = \dim(\operatorname{Supp}(\mathcal{F}))$.

The polynomial $P_{\mathcal{F}}$ in the above problem is the *Hilbert polynomial* of \mathcal{F} . If X is a closed subvariety of \mathbb{P}^n , then we write P_X for $P_{\mathcal{O}_X}$; this is the *Hilbert polynomial* of X (note that this depends not just on X, but also on the embedding in \mathbb{P}^n).

Problem 3. Let $S = k[x_0, \ldots, x_n]$ and M a finitely generated, graded S-module. Show that there is a polynomial P_M such that

 $P_M(j) = \dim_k M_j \quad \text{for} \quad j \gg 0.$

This is the Hilbert polynomial of M.

Problem 4. Compute the Hilbert polynomial for the following subvarieties of \mathbb{P}^n :

- i) A linear subspace of \mathbb{P}^n .
- ii) A hypersurface of degree d in \mathbb{P}^n .

Problem 5. Let \mathcal{F} be a non-zero coherent sheaf on \mathbb{P}^n . Show that if dim $(\text{Supp}(\mathcal{F})) = d$, then the top degree term in $P_{\mathcal{F}}(t)$ is $\frac{e}{d!}t^d$, where e is a positive integer called the *degree* of \mathcal{F} . If X is a closed subvariety of \mathbb{P}^n , then the *degree* of X is the degree of \mathcal{O}_X . Show that for hypersurfaces, this notion of degree agrees with our old notion.