Homework Set 8

Solutions are due Thursday, March 15.

The first problem we could have discussed a while ago. It is included here because it is useful for the second problem, but the result is interesting in itself. It says that if $f: X \rightarrow Y$ is a finite morphism, then the functor f_{*} between the corresponding categories of coherent sheaves has a right adjoint (recall that it also has a left adjoint, namely f^{*}).

Problem 1. Let $f: X \rightarrow Y$ be a finite morphism.
i) Show that for every coherent (quasi-coherent) sheaf \mathcal{G} on Y, there is a coherent (respectively, quasi-coherent) sheaf $f^{!}(\mathcal{G})$ on X such that we have an isomorphism

$$
f_{*}\left(f^{!}(\mathcal{G})\right) \simeq \operatorname{Hom}_{\mathcal{O}_{Y}}\left(f_{*}\left(\mathcal{O}_{X}\right), \mathcal{G}\right)
$$

Moreover, show that in this way we get a functor $f^{!}$from $\mathcal{C o h}(Y)$ to $\operatorname{Coh}(X)$ (and similarly, from $\mathcal{Q} \operatorname{coh}(Y)$ to $\mathcal{Q} \operatorname{coh}(X)$).
ii) Show that for every quasi-coherent sheaf \mathcal{F} on X and every quasi-coherent sheaf \mathcal{G} on Y, we have a functorial isomorphism

$$
f_{*} \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{F}, f^{!}(\mathcal{G})\right) \simeq \mathcal{H o m}_{\mathcal{O}_{Y}}\left(f_{*}(\mathcal{F}), \mathcal{G}\right)
$$

iii) Deduce that the functor $f^{!}: \mathcal{C} o h(Y) \rightarrow \mathcal{C} o h(X)$ is the right adjoint of the functor $f_{*}: \mathcal{C o h}(X) \rightarrow \mathcal{C} o h(Y)$ (and similarly for the functors between the categories of quasi-coherent sheaves).

Problem 2. Prove the following result of Chevalley: if $f: X \rightarrow Y$ is a finite surjective morphism of algebraic varieties, and X is affine, then Y is affine. Hint: use the following steps:
i) Reduce to the case when both X and Y are irreducible.
ii) Show that if X and Y are irreducible, then there is a coherent sheaf \mathcal{F} on X, and a morphism of sheaves $\phi: \mathcal{O}_{Y}^{\oplus r} \rightarrow f_{*}(\mathcal{F})$ for some $r \geq 1$, such that ϕ is an isomorphism over an open subset of Y.
iii) Use ii) and the functor $f^{!}$to show that if X and Y are irreducible, then given a coherent sheaf \mathcal{N} on Y, there is a coherent sheaf \mathcal{M} on X and a morphism $f_{*}(\mathcal{M}) \rightarrow \mathcal{N}^{\oplus r}$ that is an isomorphism over an open subset of Y.
iv) Deduce Chevalley's result by Noetherian induction.

Problem 3. Suppose that we have a pointwise finite filtration $F_{\bullet} K^{\bullet}$ on a complex K^{\bullet}, leading to the spectral sequence

$$
E_{2}^{p, q} \Rightarrow_{p} \mathcal{H}^{p+q}\left(K^{\bullet}\right)
$$

Show that if this is a first-quadrant spectral sequence (that is, $E_{2}^{p, q}=0$ unless $p \geq 0$ and $q \geq 0$), then we have an associated five-term exact sequence:

$$
0 \rightarrow E_{2}^{1,0} \rightarrow \mathcal{H}^{1}\left(K^{\bullet}\right) \rightarrow E_{2}^{0,1} \rightarrow E_{2}^{2,0} \rightarrow \mathcal{H}^{2}\left(K^{\bullet}\right) .
$$

