Homework Set 8

Solutions are due Thursday, March 15.

The first problem we could have discussed a while ago. It is included here because it is useful for the second problem, but the result is interesting in itself. It says that if $f: X \to Y$ is a finite morphism, then the functor f_* between the corresponding categories of coherent sheaves has a right adjoint (recall that it also has a left adjoint, namely f^*).

Problem 1. Let $f: X \to Y$ be a finite morphism.

i) Show that for every coherent (quasi-coherent) sheaf \mathcal{G} on Y, there is a coherent (respectively, quasi-coherent) sheaf $f^{!}(\mathcal{G})$ on X such that we have an isomorphism

$$f_*(f^!(\mathcal{G})) \simeq \operatorname{Hom}_{\mathcal{O}_Y}(f_*(\mathcal{O}_X), \mathcal{G}).$$

Moreover, show that in this way we get a functor $f^!$ from Coh(Y) to Coh(X) (and similarly, from Qcoh(Y) to Qcoh(X)).

ii) Show that for every quasi-coherent sheaf \mathcal{F} on X and every quasi-coherent sheaf \mathcal{G} on Y, we have a functorial isomorphism

$$f_*\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, f^!(\mathcal{G})) \simeq \mathcal{H}om_{\mathcal{O}_Y}(f_*(\mathcal{F}), \mathcal{G}).$$

iii) Deduce that the functor $f^!: Coh(Y) \to Coh(X)$ is the right adjoint of the functor $f_*: Coh(X) \to Coh(Y)$ (and similarly for the functors between the categories of quasi-coherent sheaves).

Problem 2. Prove the following result of Chevalley: if $f: X \to Y$ is a finite surjective morphism of algebraic varieties, and X is affine, then Y is affine. Hint: use the following steps:

- i) Reduce to the case when both X and Y are irreducible.
- ii) Show that if X and Y are irreducible, then there is a coherent sheaf \mathcal{F} on X, and a morphism of sheaves $\phi \colon \mathcal{O}_Y^{\oplus r} \to f_*(\mathcal{F})$ for some $r \geq 1$, such that ϕ is an isomorphism over an open subset of Y.
- iii) Use ii) and the functor $f^!$ to show that if X and Y are irreducible, then given a coherent sheaf \mathcal{N} on Y, there is a coherent sheaf \mathcal{M} on X and a morphism $f_*(\mathcal{M}) \to \mathcal{N}^{\oplus r}$ that is an isomorphism over an open subset of Y.
- iv) Deduce Chevalley's result by Noetherian induction.

Problem 3. Suppose that we have a pointwise finite filtration $F_{\bullet}K^{\bullet}$ on a complex K^{\bullet} , leading to the spectral sequence

$$E_2^{p,q} \Rightarrow_p \mathcal{H}^{p+q}(K^{\bullet}).$$

Show that if this is a first-quadrant spectral sequence (that is, $E_2^{p,q} = 0$ unless $p \ge 0$ and $q \ge 0$), then we have an associated *five-term exact sequence*:

$$0 \to E_2^{1,0} \to \mathcal{H}^1(K^{\bullet}) \to E_2^{0,1} \to E_2^{2,0} \to \mathcal{H}^2(K^{\bullet}).$$