Homework Set 8

Solutions are due Monday, November 20.

Problem 1. (The Segre embedding). Consider two projective spaces \mathbf{P}^m and \mathbf{P}^n . Let N = (m+1)(n+1)-1, and let us denote the coordinates on \mathbf{A}^{N+1} by $z_{i,j}$, with $0 \le i \le m$ and $0 \le j \le n$.

1) Show that the map $\mathbf{A}^{m+1} \times \mathbf{A}^{n+1} \to \mathbf{A}^{N+1}$ given by

$$((x_i)_i, (y_j)_j) \to (x_i y_j)_{i,j}$$

induces a morphism

$$\phi_{m,n} \colon \mathbf{P}^m \times \mathbf{P}^n \to \mathbf{P}^N.$$

2) Consider the ring homomorphism

 $f_{m,n}: k[z_{i,j} \mid 0 \le i \le m, 0 \le j \le n] \to k[x_1, \ldots, x_m, y_1, \ldots, y_n], \quad f_{m,n}(z_{i,j}) = x_i y_j.$ Show that ker $(f_{m,n})$ is a homogeneous prime ideal that defines in \mathbf{P}^N the image of $\phi_{m,n}$ (in particular, this image is closed).

- 3) Show that $\phi_{m,n}$ is a closed immersion.
- 4) Deduce that if X and Y are (quasi)projective varieties, then $X \times Y$ is a (quasi)projective variety.

Problem 2. Let *n* and *d* be positive integers, and let M_0, \ldots, M_N be all monomials in $k[x_0, \ldots, x_n]$ of degree *d* (hence $N = \binom{n+d}{d} - 1$).

- 1) Show that there is a morphism $\nu_{n,d} \colon \mathbf{P}^n \to \mathbf{P}^N$ that takes the point $[a_0, \ldots, a_n]$ to the point $[M_0(a), \ldots, M_N(a)]$.
- 2) Consider the ring homomorphism $f_d: k[z_0, \ldots, z_N] \to k[x_0, \ldots, x_n]$ defined by $f_d(z_i) = M_i$. Show that ker (f_d) is a homogeneous prime ideal that defines in \mathbf{P}^N the image of $\nu_{n,d}$ (in particular, this image is closed).
- 3) Show that $\nu_{n,d}$ is a closed immersion.
- 4) Show that if Z is a hypersurface of degree d in \mathbb{P}^n (this means that I(Z) = (F), where F is a homogeneous polyomial of degree d), then there is a hyperplane H in \mathbf{P}^N such that for every projective variety $X \subseteq \mathbf{P}^n$, the morphism $\nu_{n,d}$ induces an isomorphism between $X \cap Z$ and $\nu_{n,d}(X) \cap H$. This shows that the Veronese embedding allows to reduce the intersection with a hypersurface to the intersection with a hyperplane.
- 5) The rational normal curve in \mathbf{P}^n is the image of the Veronese embedding $\nu_{1,d} \colon \mathbb{P}^1 \to \mathbf{P}^d$, mapping [a, b] to $[a^d, a^{d-1}b, \ldots, b^d]$. Show that the rational normal curve is the zero-locus of the 2 × 2-minors of the matrix

$$\begin{pmatrix} z_0 & z_1 & \dots & z_{d-1} \\ z_1 & z_2 & \dots & z_d \end{pmatrix}.$$