Homework Set 7

Solutions are due Thursday, March 8.

Problem 1. Show that if X is an algebraic variety with irreducible components X_1, \ldots, X_r , then X is affine if and only if X_i is affine for $1 \le i \le r$.

Problem 2. Given a short exact sequence of \mathcal{O}_X -modules on the algebraic variety X:

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0,$$

show that if \mathcal{F}' and \mathcal{F}'' are quasi-coherent (coherent), then \mathcal{F} is quasi-coherent (respectively, coherent).

Problem 3. Show that if \mathcal{F} is a sheaf (say, of Abelian groups) on X and there is an open cover $X = \bigcup_{i \in I} U_i$ such that $\mathcal{F}|_{U_i}$ is flasque for every *i*, then \mathcal{F} is flasque.

Problem 4. Let $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces. Show that if \mathcal{E} is a locally free sheaf on Y, then for every \mathcal{O}_X -module \mathcal{F} on X, we have an isomorphism

 $R^p f_*(f^*(\mathcal{E}) \otimes_{\mathcal{O}_X} \mathcal{F}) \simeq \mathcal{E} \otimes_{\mathcal{O}_Y} R^p f_*(\mathcal{F}) \text{ for all } p \ge 0.$

Problem 5. Show that if X is an irreducible variety, then we have an isomorphism $\operatorname{Pic}(X) \simeq H^1(X, \mathcal{O}_X^*).$