## Homework Set 7

## Solutions are due Monday, November 13.

## Problem 1.

i) Show that if $X_{1}, \ldots, X_{n}$ are algebraic varieties, then on the disjoint union $X=$ $\bigsqcup_{i=1}^{n} X_{i}$ there is a unique structure of algebraic variety such that each inclusion map $X_{i} \hookrightarrow X$ is an open immersion.
ii) Show that every variety $X$ is a disjoint union of connected open subvarieties; each of these is a union of irreducible components of $X$.
iii) Show that if $X$ is an affine variety and $R=\mathcal{O}(X)$, then $X$ is disconnected if and only if there is an isomorphism $R \simeq R_{1} \times R_{2}$ for suitable nonzero $k$-algebras $R_{1}$ and $R_{2}$.

Problem 2. A hypersurface in $\mathbf{P}^{n}$ is a closed subset defined by

$$
\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbf{P}^{n} \mid F\left(x_{0}, \ldots, x_{n}\right)=0\right\}
$$

for some homogeneous polynomial $F$, of positive degree. Given a closed subset $X \subseteq \mathbf{P}^{n}$, show that the following are equivalent:
i) $X$ is a hypersurface.
ii) The ideal $I(X)$ is a principal ideal.
iii) All irreducible component of $X$ have codimension 1 in $\mathbf{P}^{n}$.

Note that if $X$ is any irreducible variety and $U$ is a nonempty open subset of $X$, then the map taking $Z \subseteq U$ to $\bar{Z}$ and the map taking $W \subseteq X$ to $W \cap U$ give inverse bijections (preserving the irreducible decompositions) between the nonempty closed subsets of $U$ and the nonempty closed subsets of $X$ that have no irreducible component contained in the $X \backslash U$. This applies, in particular, to the open immersion

$$
\mathbf{A}^{n} \hookrightarrow \mathbf{P}^{n}, \quad\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left[1, x_{1}, \ldots, x_{n}\right] .
$$

The next exercise describes this correspondence at the level of ideals.
Problem 3. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ and $R=k\left[x_{1}, \ldots, x_{n}\right]$. For an ideal $J$ in $R$, we put

$$
J^{\text {hom }}:=\left(f^{\text {hom }} \mid 0 \neq f \in J\right)
$$

where $f^{\text {hom }}=x_{0}^{\operatorname{deg}(f)} \cdot f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right) \in S$. On the other hand, if $\mathfrak{a}$ is a homogeneous ideal in $S$, then we put $\overline{\mathfrak{a}}:=\left\{h\left(1, x_{1}, \ldots, x_{n}\right) \mid h \in \mathfrak{a}\right\} \subseteq R$.

An ideal $\mathfrak{a}$ in $S$ is called $x_{0}$-saturated if $\left(\mathfrak{a}: x_{0}\right)=\mathfrak{a}\left(\right.$ recall that $\left(\mathfrak{a}: x_{0}\right):=\{u \in S \mid$ $\left.x_{0} u \in \mathfrak{a}\right\}$ ).
i) Show that the above maps give inverse bijections between the ideals in $R$ and the $x_{0}$-saturated homogeneous ideals in $S$.
ii) Show that we get induced bijections between the radical ideals in $R$ and the homogeneous $x_{0}$-saturated radical ideals in $S$. Moreover, a homogeneous radical ideal $\mathfrak{a}$ is $x_{0}$-saturated if and only if either no irreducible component of $V(\mathfrak{a})$ is contained in the hyperplane $\left(x_{0}=0\right)$, or if $\mathfrak{a}=S$.
iii) The above correspondence induces a bijection between the prime ideals in $R$ and the prime ideals in $S$ that do not contain $x_{0}$.
iv) Consider the open immersion

$$
\mathbf{A}^{n} \hookrightarrow \mathbf{P}^{n}, \quad\left(u_{1}, \ldots, u_{n}\right) \rightarrow\left(1: u_{1}: \ldots: u_{n}\right)
$$

which allows us to identify $\mathbb{A}^{n}$ with the complement of the hyperplane $\left(x_{0}=0\right)$ in $\mathbf{P}^{n}$. Show that for every ideal $J$ in $R$ we have $\overline{V_{\mathbf{A}^{n}}(J)}=V_{\mathbb{P}^{n}}\left(J^{\text {hom }}\right)$.
v) Show that for every homogeneous ideal $\mathfrak{a}$ in $S$, we have $V_{\mathbf{P}^{n}}(\mathfrak{a}) \cap \mathbf{A}^{n}=V_{\mathbf{A}^{n}}(\overline{\mathfrak{a}})$.

Problem 4. Recall that $G L_{n+1}(k)$ denotes the set of invertible $(n+1) \times(n+1)$ matrices with entries in $k$. Let $P G L_{n+1}(k)$ denote the quotient $G L_{n+1}(k) / k^{*}$, where $k^{*}$ acts on $G L_{n+1}(k)$ by

$$
\lambda \cdot\left(a_{i, j}\right)_{i, j}=\left(\lambda a_{i, j}\right)_{i, j} .
$$

i) Show that $P G L_{n+1}(k)$ has a natural structure of linear algebraic group, and that it is irreducible.
ii) Prove that $P G L_{n+1}(k)$ acts algebraically on $\mathbf{P}^{n}$.

Definition 0.1. Two subsets of $\mathbf{P}^{n}$ are projectively equivalent if they differ by an automorphism in $P G L_{n+1}(k)$ (we will see later that these are, indeed, all automorphisms of $\mathbf{P}^{n}$ ).
Definition 0.2. A linear subspace of $\mathbf{P}^{n}$ is a closed subvariety of $\mathbf{P}^{n}$ defined by an ideal generated by homogeneous polynomials of degree one. A hyperplane is a linear subspace of codimension one.

Problem 5. Consider the projective space $\mathbf{P}^{n}$.
i) Show that a closed subset $Y$ of $\mathbf{P}^{n}$ is a linear subspace if and only if the affine cone $C(Y) \subseteq \mathbf{A}^{n+1}$ is a linear subspace.
ii) Show that if $L$ is a linear subspace in $\mathbf{P}^{n}$ of dimension $r$, then there is an isomorphism $L \simeq \mathbf{P}^{r}$.
iii) Show that the hyperplanes in $\mathbf{P}^{n}$ are in bijection with the points of "another" projective space $\mathbf{P}^{n}$, usually denoted by $\left(\mathbf{P}^{n}\right)^{*}$.
iv) Show that given two sets of points in $\mathbf{P}^{n}$

$$
\Gamma=\left\{P_{0}, \ldots, P_{n+1}\right\} \text { and } \Gamma^{\prime}=\left\{Q_{0}, \ldots, Q_{n+1}\right\}
$$

such that no $(n+1)$ points in the same set lie in a hyperplane, there is a unique $A \in P G L_{n}(k)$ such that $A \cdot P_{i}=Q_{i}$ for every $i$.

Problem 6. Let $X \subseteq \mathbf{P}^{n}$ be an irreducible closed subset of codimension $r$. Show that if $H \subseteq \mathbf{P}^{n}$ is a hypersurface such that $X$ is not contained in $H$, then every irreducible component of $X \cap H$ has codimension $r+1$ in $\mathbf{P}^{n}$.

Problem 7. Let $X \subseteq \mathbf{P}^{n}$ be a closed subset of dimension $r$. Show that there is a linear space $L \subseteq \mathbf{P}^{n}$ of dimension $(n-r-1)$ such that $L \cap X=\emptyset$.

