Homework Set 7

Solutions are due Monday, November 13.

Problem 1.

- i) Show that if X_1, \ldots, X_n are algebraic varieties, then on the disjoint union $X = \bigsqcup_{i=1}^n X_i$ there is a unique structure of algebraic variety such that each inclusion map $X_i \hookrightarrow X$ is an open immersion.
- ii) Show that every variety X is a disjoint union of connected open subvarieties; each of these is a union of irreducible components of X.
- iii) Show that if X is an affine variety and $R = \mathcal{O}(X)$, then X is disconnected if and only if there is an isomorphism $R \simeq R_1 \times R_2$ for suitable nonzero k-algebras R_1 and R_2 .

Problem 2. A hypersurface in \mathbf{P}^n is a closed subset defined by

$$\{[x_0, \ldots, x_n] \in \mathbf{P}^n \mid F(x_0, \ldots, x_n) = 0\},\$$

for some homogeneous polynomial F, of positive degree. Given a closed subset $X \subseteq \mathbf{P}^n$, show that the following are equivalent:

- i) X is a hypersurface.
- ii) The ideal I(X) is a principal ideal.
- iii) All irreducible component of X have codimension 1 in \mathbf{P}^n .

Note that if X is any irreducible variety and U is a nonempty open subset of X, then the map taking $Z \subseteq U$ to \overline{Z} and the map taking $W \subseteq X$ to $W \cap U$ give inverse bijections (preserving the irreducible decompositions) between the nonempty closed subsets of U and the nonempty closed subsets of X that have no irreducible component contained in the $X \setminus U$. This applies, in particular, to the open immersion

$$\mathbf{A}^n \hookrightarrow \mathbf{P}^n, \quad (x_1, \dots, x_n) \to [1, x_1, \dots, x_n].$$

The next exercise describes this correspondence at the level of ideals.

Problem 3. Let
$$S = k[x_0, \ldots, x_n]$$
 and $R = k[x_1, \ldots, x_n]$. For an ideal J in R , we put $J^{\text{hom}} := (f^{\text{hom}} \mid 0 \neq f \in J)$,

where $f^{\text{hom}} = x_0^{\text{deg}(f)} \cdot f(x_1/x_0, \dots, x_n/x_0) \in S$. On the other hand, if \mathfrak{a} is a homogeneous ideal in S, then we put $\overline{\mathfrak{a}} := \{h(1, x_1, \dots, x_n) \mid h \in \mathfrak{a}\} \subseteq R$.

An ideal \mathfrak{a} in S is called x_0 -saturated if $(\mathfrak{a}: x_0) = \mathfrak{a}$ (recall that $(\mathfrak{a}: x_0) := \{u \in S \mid x_0 u \in \mathfrak{a}\}$).

i) Show that the above maps give inverse bijections between the ideals in R and the x_0 -saturated homogeneous ideals in S.

- ii) Show that we get induced bijections between the radical ideals in R and the homogeneous x_0 -saturated radical ideals in S. Moreover, a homogeneous radical ideal \mathfrak{a} is x_0 -saturated if and only if either no irreducible component of $V(\mathfrak{a})$ is contained in the hyperplane ($x_0 = 0$), or if $\mathfrak{a} = S$.
- iii) The above correspondence induces a bijection between the prime ideals in R and the prime ideals in S that do not contain x_0 .
- iv) Consider the open immersion

$$\mathbf{A}^n \hookrightarrow \mathbf{P}^n, \ (u_1, \dots, u_n) \to (1: u_1: \dots: u_n),$$

which allows us to identify \mathbb{A}^n with the complement of the hyperplane $(x_0 = 0)$ in \mathbb{P}^n . Show that for every ideal J in R we have $\overline{V_{\mathbb{A}^n}(J)} = V_{\mathbb{P}^n}(J^{\text{hom}})$.

v) Show that for every homogeneous ideal \mathfrak{a} in S, we have $V_{\mathbf{P}^n}(\mathfrak{a}) \cap \mathbf{A}^n = V_{\mathbf{A}^n}(\overline{\mathfrak{a}})$.

Problem 4. Recall that $GL_{n+1}(k)$ denotes the set of invertible $(n+1) \times (n+1)$ matrices with entries in k. Let $PGL_{n+1}(k)$ denote the quotient $GL_{n+1}(k)/k^*$, where k^* acts on $GL_{n+1}(k)$ by

$$\lambda \cdot (a_{i,j})_{i,j} = (\lambda a_{i,j})_{i,j}.$$

- i) Show that $PGL_{n+1}(k)$ has a natural structure of linear algebraic group, and that it is irreducible.
- ii) Prove that $PGL_{n+1}(k)$ acts algebraically on \mathbf{P}^n .

Definition 0.1. Two subsets of \mathbf{P}^n are *projectively equivalent* if they differ by an automorphism in $PGL_{n+1}(k)$ (we will see later that these are, indeed, all automorphisms of \mathbf{P}^n).

Definition 0.2. A *linear subspace* of \mathbf{P}^n is a closed subvariety of \mathbf{P}^n defined by an ideal generated by homogeneous polynomials of degree one. A *hyperplane* is a linear subspace of codimension one.

Problem 5. Consider the projective space \mathbf{P}^n .

- i) Show that a closed subset Y of \mathbf{P}^n is a linear subspace if and only if the affine cone $C(Y) \subseteq \mathbf{A}^{n+1}$ is a linear subspace.
- ii) Show that if L is a linear subspace in \mathbf{P}^n of dimension r, then there is an isomorphism $L \simeq \mathbf{P}^r$.
- iii) Show that the hyperplanes in \mathbf{P}^n are in bijection with the points of "another" projective space \mathbf{P}^n , usually denoted by $(\mathbf{P}^n)^*$.
- iv) Show that given two sets of points in \mathbf{P}^n

 $\Gamma = \{P_0, \dots, P_{n+1}\}$ and $\Gamma' = \{Q_0, \dots, Q_{n+1}\},\$

such that no (n + 1) points in the same set lie in a hyperplane, there is a unique $A \in PGL_n(k)$ such that $A \cdot P_i = Q_i$ for every *i*.

Problem 6. Let $X \subseteq \mathbf{P}^n$ be an irreducible closed subset of codimension r. Show that if $H \subseteq \mathbf{P}^n$ is a hypersurface such that X is not contained in H, then every irreducible component of $X \cap H$ has codimension r + 1 in \mathbf{P}^n .

Problem 7. Let $X \subseteq \mathbf{P}^n$ be a closed subset of dimension r. Show that there is a linear space $L \subseteq \mathbf{P}^n$ of dimension (n - r - 1) such that $L \cap X = \emptyset$.