Homework Set 6

Solutions are due Thursday, February 22.

Problem 1. Show that if (X, \mathcal{O}_X) is a ringed space and

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is a morphism of \mathcal{O}_X -modules, with \mathcal{F}' flasque, then we have a short exact sequence

$$0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X) \to 0.$$

Hint: given $s'' \in \mathcal{F}''(X)$, consider a lift $s \in \mathcal{F}(U)$ of $s''|_U$, with U maximal, and argue that U = X.

Problem 2. Let (X, \mathcal{O}_X) be a ringed space.

i) Given an open subset U of X, with $i: U \hookrightarrow X$ the inclusion map, define the ideal $i_!(\mathcal{O}_U)$ of \mathcal{O}_X by

$$\Gamma(V, i_!(\mathcal{O}_U)) = \Gamma(V, \mathcal{O}_U(V)) \quad \text{if} \quad V \subseteq U,$$

and $\Gamma(V, i_!(\mathcal{O}_U)) = 0$ if $V \not\subseteq U$. Show that for every \mathcal{O}_X -module \mathcal{F} we have a natural isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X}(i_!(\mathcal{O}_U),\mathcal{F})\simeq \mathcal{F}(U).$$

ii) Deduce that every injective \mathcal{O}_X -module is flasque.

The next problem concerns the étale space of a presheaf. Its main purpose is to describe each sheaf as the sheaf of sections of some continuous map. Moreover, it is quite useful for dealing with sections of a sheaf over non-empty subsets.

If \mathcal{F} is a sheaf on a topological space X and Z is an arbitrary subset of X, with $i: Z \hookrightarrow X$ the inclusion map, then we put

$$\mathcal{F}(Z) = \Gamma(Z, \mathcal{F}) := \Gamma(Z, i^{-1}(\mathcal{F})).$$

Problem 3. Let X be a topological space and \mathcal{F} a presheaf on X (say, of Abelian groups). We let $\operatorname{Et}(\mathcal{F}) = \bigsqcup_{x \in X} \mathcal{F}_x$ and consider the map $\pi \colon \operatorname{Et}(\mathcal{F}) \to X$ that maps the stalk \mathcal{F}_x to $x \in X$. For every open subset U of X and every $s \in \mathcal{F}(U)$, consider the map $\tilde{s} \colon U \to \operatorname{Et}(\mathcal{F})$ given by $s(x) = s_x \in \mathcal{F}_x$ (we thus have $\pi \circ \tilde{s}(x) = x$ for all $x \in U$). We consider on $\operatorname{Et}(\mathcal{F})$ the strongest topology that makes all maps \tilde{s} continuous; explicitly, a subset $V \subseteq \operatorname{Et}(\mathcal{F})$ is open if and only if for every map \tilde{s} as above, the subset $\tilde{s}^{-1}(V)$ of U is open.

- i) Show that for every open subset U of X and every $s \in \mathcal{F}(U)$, the subset $\tilde{s}(U)$ of $\operatorname{Et}(\mathcal{F})$ is open.
- ii) Show that π is a local homeomorphism of $Et(\mathcal{F})$ onto X.

- iii) Show that the subsets $\tilde{s}(U)$, with U open in X and $s \in \mathcal{F}(U)$, give a basis for the topology of $\text{Et}(\mathcal{F})$.
- iv) Show that if \mathcal{F}^+ is the sheaf associated to \mathcal{F} , then \mathcal{F}^+ is naturally isomorphic to the sheaf of sections of π (this is the sheaf that maps U to the set of continuous maps $\phi: U \to \text{Et}(\mathcal{F})$ such that $\pi \circ \phi(x) = x$ for all $x \in U$).

Suppose now that \mathcal{F} is a sheaf.

- v) Given a subset Z of X (with the induced topology), show that we can identify $\Gamma(Z, \mathcal{F})$ with the set of continuous maps $f: Z \to \text{Et}(\mathcal{F})$ such that $\pi \circ f(x) = x$ for all $x \in Z$.
- vi) Deduce that if $X = \bigcup_{i \in I} Z_i$ is a locally finite¹ cover of X by closed subsets, then the following sequence induced by the restriction maps

$$0 \to \mathcal{F}(X) \to \prod_{i \in I} \mathcal{F}(Z_i) \to \prod_{i,j \in I} \mathcal{F}(Z_i \cap Z_j)$$

is exact.

¹A cover $X = \bigcup_{j \in J} V_j$ is *locally finite* if every $x \in X$ has an open neighborhood V that intersects only finitely many of the V_j .