Homework Set 5

Solutions are due Thursday, February 15.

Problem 1 Show that given two surjective, finite morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ of irreducible varieties, all of them being smooth in codimension 1, we have $(g \circ f)_{*}=g_{*} \circ f_{*}$ as maps $\mathrm{Cl}(X) \rightarrow \mathrm{Cl}(Z)$.

Problem 2. Show that if X is a variety that is smooth in codimension 1, then for every $n \geq 1$, the product $X \times \mathbf{A}^{n}$ has the same property, and by mapping V to $V \times \mathbf{A}^{n}$ we get an isomophism

$$
\mathrm{Cl}(X) \simeq \mathrm{Cl}\left(X \times \mathbf{A}^{n}\right)
$$

Problem 3. Let X be an irreducible variety.
i) Show that for every Cartier divisors D and E, we have an isomorphism

$$
\mathcal{O}_{X}(D) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(E) \rightarrow \mathcal{O}_{X}(D+E)
$$

ii) Show that if D is a principal Cartier divisor, then we have an isomorphism $\mathcal{O}_{X}(D) \simeq \mathcal{O}_{X}$.
iii) Deduce that we have a group morphism

$$
\operatorname{Cart}(X) / \operatorname{PCart}(X) \rightarrow \operatorname{Pic}(X)
$$

that maps the class of D to the (isomorphism class) of $\mathcal{O}_{X}(D)$. Show that this is injective.

The next problem gives a compatibility property between push-forward and pullback of divisors, known as the projection formula.

Problem 4.

If : $X \rightarrow Y$ is a finite surjective morphism between irreducible varieties, both of them being smooth in codimension 1, then for every Cartier divisor D on Y, we have the following equality ${ }^{1}$ in $\operatorname{Div}(Y)$:

$$
f_{*}\left(f^{*}(D)\right)=\operatorname{deg}(f) \cdot D
$$

Problem 5. Show that if \mathcal{L} is a line bundle on the irreducible, complete variety X, such that $\Gamma(X, \mathcal{L}) \neq 0$ and $\Gamma\left(X, \mathcal{L}^{-1}\right) \neq 0$, then $\mathcal{L} \simeq \mathcal{O}_{X}$.

[^0]
[^0]: ${ }^{1}$ On the left-hand side, we apply f_{*} to the Weil divisor corresponding to $f^{*}(D)$, while on the right-hand side, we consider the Weil divisor corresponding to D.

