Homework Set 5

Solutions are due Wednesday, October 25.

Problem 1. Show that if X and Y are quasi-affine varieties, then $\dim(X \times Y) = \dim(X) + \dim(Y).$

Problem 2. Show that if X is an affine variety such that $\mathcal{O}(X)$ is a UFD, then for every closed subset $Y \subseteq X$, having all irreducible components of codimension 1, the ideal $I_X(Y)$ defining Y is principal.

Problem 3. Show that if X and Y are irreducible closed subsets of \mathbf{A}^n , then every irreducible component of $X \cap Y$ has dimension $\geq \dim(X) + \dim(Y) - n$ (Hint: describe $X \cap Y$ as the intersection of $X \times Y \subseteq \mathbf{A}^n \times \mathbf{A}^n$ with the diagonal $\Delta = \{(x, x) \mid x \in \mathbf{A}^n\}$).

Problem 4. Let X be a (quasi-affine) variety, and p a point on X. Show that $\dim_p(X) := \dim(\mathcal{O}_{X,p})$ is equal to the largest dimension of an irreducible component of X that contains p.

Problem 5. Let R be a commutative ring and consider the *spectrum* of R:

 $\operatorname{Spec}(R) := \{ \mathfrak{p} \mid \mathfrak{p} \text{ prime ideal in } R \}.$

For every ideal J in R, consider

 $V(J) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid J \subseteq \mathfrak{p} \}.$

Show that the following hold:

i) For every ideals J_1 , J_2 in R, we have

$$V(J_1) \cup V(J_2) = V(J_1 \cap J_2) = V(J_1 \cdot J_2).$$

ii) For every family $(J_{\alpha})_{\alpha}$ of ideals in R, we have

$$\bigcap_{\alpha} V(J_{\alpha}) = V\left(\sum_{\alpha} J_{\alpha}\right).$$

iii) We have

$$V(0) = \operatorname{Spec}(R) \text{ and } V(R) = \emptyset.$$

- iv) Deduce that $\operatorname{Spec}(R)$ has a topology (the Zariski topology) whose closed subsets are the V(J), with J an ideal in R.
- v) Show that V(J) = V(J') if and only if rad(J) = rad(J').
- vi) Show that the closed irreducible subsets in Spec(R) are those of the form V(P), where P is a prime ideal in R. Deduce that

$$\dim(R) = \dim\left(\operatorname{Spec}(R)\right).$$