Homework Set 4

Solutions are due Wednesday, October 18.

Problem 1. Suppose that S is the image of a morphism of semigroups $\phi: \mathbb{N}^{r} \rightarrow \mathbb{Z}^{m}$ (this is how semigroups are usually described). Show that the kernel of the induced surjective k-algebra homomorphism

$$
k\left[x_{1}, \ldots, x_{r}\right] \simeq k\left[\mathbb{N}^{r}\right] \rightarrow k[S]
$$

is the ideal generated by

$$
\left\{x^{a}-x^{b} \mid a, b \in \mathbb{N}^{r}, \phi(a)=\phi(b)\right\} .
$$

The next two problems describe the torus-invariant subvarieties of $\mathrm{TV}(S)$ and the orbits of the torus action. We begin by defining the corresponding concept at the level of the semigroup.

Definition A face F of a semigroup S is a subsemigroup such that whenever $u_{1}, u_{2} \in S$ satisfy $u_{1}+u_{2} \in F$, we have $u_{1} \in F$ and $u_{2} \in F$.

Note that if F is a face of S, then $S \backslash F$ is a subsemigroup of S. Moreover, if S is generated by u_{1}, \ldots, u_{n}. then a face F of S is generated by those u_{i} that lie in F. In particular, if S is an integral, finitely generated semigroup, then S has only finitely many faces, and each of these is an integral, finitely generated semigroup.
Problem 2. Let $X=\operatorname{TV}(S)$ be an affine toric variety, with torus $T \subset X$. A subset Y of X is torus-invariant if $t \cdot Y \subseteq Y$ for every $t \in T$.
i) Show that a closed subset Y of X is torus-invariant if and only if each irreducible component of Y is torus-invariant.
ii) Show that the torus-invariant irreducible closed subsets of X are precisely the closed subsets defined by ideals of the form

$$
\bigoplus_{u \in S \backslash F} k \chi^{u},
$$

where F is a face of S.
iii) Show that if Y is the closed subset defined by the ideal in ii), then we have $\mathcal{O}(Y) \simeq k[F]$, hence Y has a natural structure of affine toric variety.

Problem 3. Let $X=\mathrm{TV}(S)$ be an affine toric variety, with torus $T_{X} \subseteq X$.
i) Show that if $M \hookrightarrow M^{\prime}$ is an injective homomorphism of finitely generated, free Abelian groups, then the induced morphism of tori $\mathrm{TV}\left(M^{\prime}\right) \rightarrow \mathrm{TV}(M)$ is surjective.
ii) Show that if F is a face of S with corresponding closed invariant subset Y, then the inclusion of semigroups $F \subseteq S$ induces a morphism of toric varieties $f_{Y}: X \rightarrow Y$, which is a retract of the inclusion $Y \hookrightarrow X$. Show that if we denote by O_{F} the torus in Y, then O_{F} is an orbit for the action of T_{X} on X.
iii) Show that the map $F \rightarrow O_{F}$ gives a bijection between the faces of S and the orbits for the T_{X}-action on X.

Problem 4. We have seen in Problem 2 that if X is an affine toric variety and Y is a torus-invariant closed, irreducible subset, then Y has a natural structure of toric variety. Show that if X is normal, then every such Y is normal.

