Homework Set 3

Solutions are due Tuesday, January 30.

Problem 1. Show that if X is an algebraic variety and \mathcal{A} is a quasi-coherent, reduced, finitely generated \mathcal{O}_{X}-algebra, then for every variety over X given by $g: Z \rightarrow X$, we have a canonical bijection

$$
\operatorname{Hom}_{\operatorname{Var} / X}(Z, \mathcal{M a x S p e c}(\mathcal{A})) \rightarrow \operatorname{Hom}_{\mathcal{O}_{X}-\operatorname{alg}}\left(g^{*}(\mathcal{A}), \mathcal{O}_{Z}\right)
$$

Problem 2. Let X be an algebraic variety, $\pi: E \rightarrow X$ a geometric vector bundle, and \mathcal{E} the corresponding sheaf of sections. Show that for every $x \in X$, we have a canonical isomorphism of k-vector spaces between $\mathcal{E}_{(x)}$ and $\pi^{-1}(x)$.

Problem 3. Let R be a commutative ring and $\phi: A \rightarrow B$ a morphism of commutative R-algebras.
i) Show that for every B-module M, we have a short exact sequence of B-modules

$$
0 \longrightarrow \operatorname{Der}_{A}(B, M) \xrightarrow{u_{M}} \operatorname{Der}_{R}(B, M) \xrightarrow{v_{M}} \operatorname{Der}_{R}(A, M),
$$

where $u_{M}(D)=D$ and $v_{M}(D)=D \circ \phi$.
ii) Show that a sequence of B-modules

$$
N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
$$

is exact if and only if for every B-module M, the induced sequence

$$
0 \rightarrow \operatorname{Hom}_{B}\left(N^{\prime \prime}, M\right) \rightarrow \operatorname{Hom}_{B}(N, M) \rightarrow \operatorname{Hom}_{B}\left(N^{\prime}, M\right)
$$

is exact.
iii) Show that under our assumptions, there are morphisms of B-modules

$$
\alpha: \Omega_{A / R} \otimes_{A} B \rightarrow \Omega_{B / R} \quad \text { and } \quad \beta: \Omega_{B / R} \rightarrow \Omega_{B / A}
$$

given by

$$
\alpha\left(d_{A / R}(a) \otimes b\right)=b \cdot d_{B / R}(\phi(a)) \quad \text { and } \quad \beta\left(d_{B / R}(b)\right)=d_{B / A}(b)
$$

such that the sequence

$$
\Omega_{A / R} \otimes_{A} B \xrightarrow{\alpha} \Omega_{B / R} \xrightarrow{\beta} \Omega_{B / A} \longrightarrow 0
$$

is exact.

Problem 4. Let R be a commutative ring and $\phi: A \rightarrow B$ a surjective morphism of commutative R-algebras, with $I=\operatorname{ker}(\phi)$.
i) Show that for every B-module M, there is an exact sequence of B-modules

$$
0 \longrightarrow \operatorname{Der}_{R}(B, M) \xrightarrow{v_{M}} \operatorname{Der}_{R}(A, M) \xrightarrow{w_{M}} \operatorname{Hom}_{B}\left(I / I^{2}, M\right),
$$

where v_{M} is the same as in the previous problem and $w_{M}(D)$ maps \bar{a} to $D(a) \in M$ for every $a \in I$.
ii) Deduce that we have a morphism of B-modules $\delta: I / I^{2} \rightarrow \Omega_{A / R} \otimes_{A} B$ given by $\delta(\bar{a})=d_{A / R}(a) \otimes 1$ for every $a \in I$ that fits in an exact sequence

$$
I / I^{2} \xrightarrow{\delta} \Omega_{A / R} \otimes_{A} B \xrightarrow{\alpha} \Omega_{B / R} \longrightarrow 0,
$$

where α is the morphism in the previous problem.

