Homework Set 3

Solutions are due Monday, October 9.

definition A linear algebraic group over k is an affine variety G over k that is also a group, and such that the multiplication $\mu: G \times G \rightarrow G, \mu(g, h)=g h$, and the inverse map $\iota: G \rightarrow G, \iota(g)=g^{-1}$ are morphisms of algebraic varieties. If G_{1} and G_{2} are linear algebraic groups, a morphism of algebraic groups is a morphism of affine varieties $f: G_{1} \rightarrow G_{2}$ that is also a group homomorphism.

Linear algebraic groups over k form a category. In particular, we have a notion of isomorphism between linear algebraic groups: this is an isomorphism of affine algebraic varieties that is also a group isomorphism.

Problem 1.

i) Show that $(k,+)$ and $\left(k^{*}, \cdot\right)$ are linear algebraic groups.
ii) Show that the set $\mathrm{GL}_{n}(k)$ of $n \times n$ invertible matrices with coefficients in k has a structure of linear algebraic group.
iii) Show that the set $\mathrm{SL}_{n}(k)$ of $n \times n$ matrices with coefficients in k and with determinant 1 has a structure of linear algebraic group.
iv) Show that if G and H are linear algebraic groups, then the product $G \times H$ has an induced structure of linear algebraic group. In particular, the (algebraic) torus $\left(k^{*}\right)^{n}$ is a linear algebraic group with respect to component-wise multiplication.

Definition. Let G be a linear algebraic group and X a quasi-affine variety. An algebraic group action of G on X is a (say, left) action of G on X such that the map $G \times X \rightarrow X$ giving the action is a morphism of algebraic varieties.

Problem 2. Show that $\mathrm{GL}_{n}(k)$ has an algebraic action on \mathbf{A}^{n}.
Problem 3. Let G be a linear algebraic group acting algebraically on an affine variety X. Show that in this case G has an induced linear action on $\mathcal{O}(X)$ given by

$$
(g \cdot \phi)(u)=\phi\left(g^{-1}(u)\right)
$$

While $\mathcal{O}(X)$ has in general infinite dimension over k, show that the action of G on $\mathcal{O}(X)$ has the following finiteness property: every element $f \in \mathcal{O}(X)$ lies in some finitedimensional vector subspace V of $\mathcal{O}(X)$ that is preserved by the G-action (Hint: consider the image of f by the corresponding k-algebra homomorphism $\left.\mathcal{O}(X) \rightarrow \mathcal{O}(G) \otimes_{k} \mathcal{O}(X)\right)$.
Problem 4. Let G and X be as in the previous problem. Consider a system of k-algebra generators f_{1}, \ldots, f_{m} of $\mathcal{O}(X)$, and apply the previous problem to each of these elements to show that there is a morphism of algebraic groups $G \rightarrow \mathrm{GL}_{N}(k)$, and an isomorphism of X with a closed subset of \mathbf{A}^{N}, such that the action of G on X is induced by the standard action of $\mathrm{GL}_{N}(k)$ on \mathbf{A}^{N}. Use a similar argument to show that every linear algebraic group is isomorphic to a closed subgroup of some $\mathrm{GL}_{N}(k)$.

Problem 5. Show that the linear algebraic group $\mathrm{GL}_{m}(k) \times \mathrm{GL}_{n}(k)$ has an algebraic action on the space $M_{m, n}(k)$ (identified to $\mathbf{A}^{m n}$), induced by left and right matrix multiplication. What are the orbits of this action ? Note that the orbits are locally closed subsets of $M_{m, n}(k)$ (as we will see later, this is a general fact about orbits of algebraic group actions).

