Homework Set 2

Solutions are due Tuesday, January 23.

Given two vector bundles \mathcal{E} and \mathcal{F} on a variety X, a morphism of vector bundles $\mathcal{E} \to \mathcal{F}$ is a morphism of sheaves such that the map

$$x \to \operatorname{rank}(E_{(x)} \to F_{(x)})$$

is constant on each connected component of X.

Problem 1. Show that if $\phi : \mathcal{E} \to \mathcal{F}$ is a morphism of vector bundles, then $\operatorname{coker}(\phi)$, $\operatorname{Im}(\phi)$, and $\operatorname{ker}(\phi)$ are vector bundles.

Problem 2. Show that the composition of two morphisms of vector bundles might not be a morphism of vector bundles.

Problem 3. Show that for every coherent sheaves \mathcal{E} and \mathcal{F} on X, there is a canonical morphism of \mathcal{O}_X -modules

$$\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}).$$

Show that this is an isomorphism if either \mathcal{E} of \mathcal{F} is locally free.

Problem 4. Let \mathcal{E} be a coherent sheaf on X.

i) Show that there is a canonical morphism of \mathcal{O}_X -modules

$$\mathcal{E} \to (\mathcal{E}^{\vee})^{\vee},$$

which is an isomorphism if \mathcal{E} is locally free.

ii) Show that there is a canonical morphism of \mathcal{O}_X -modules

$$\mathcal{O}_X \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{E})$$

which is an isomorphism if \mathcal{E} is locally free, of rank 1.

Given a vector bundle \mathcal{E} , a *subbundle* of \mathcal{E} is a subsheaf \mathcal{F} of \mathcal{E} , which is a vector bundle, and such that the inclusion map $\mathcal{F} \hookrightarrow \mathcal{E}$ is a morphism of vector bundles.

Problem 5. Let \mathcal{E} be a vector bundle on the algebraic variety X. Show that a subsheaf \mathcal{F} of \mathcal{E} is a subbundle if and only if it is a vector bundle and for all $x \in X$, the induced map $\mathcal{F}_{(x)} \to \mathcal{E}_{(x)}$ is injective.