Homework Set 1

Solutions are due Tuesday, January 16.

Work out all of the following problems. Write solutions to four of them, of your choice.

Problem 1.

i) Show that if A is a Noetherian ring, then for every A-modules M and N, with M finitely generated, and for every multiplicative system S in A, we have a canonical isomorphism

$$S^{-1}\operatorname{Hom}_{A}(M, N) \simeq \operatorname{Hom}_{S^{-1}A}(S^{-1}M, S^{-1}N).$$

ii) Deduce that if X is an affine variety and $A = \mathcal{O}(X)$, then for every A-modules M and N, with M finitely generated, we have

$$\operatorname{Hom}_{A}(\widetilde{M}, N) \simeq \mathcal{H}om_{\mathcal{O}_{X}}(\widetilde{M}, \widetilde{N}).$$

- iii) Show that if A is a Noetherian ring, then for every finitely generated A-modules M and N, the A-module $\operatorname{Hom}_A(M, N)$ is finitely generated.
- iv) Deduce that if X is an algebraic variety and \mathcal{M} , \mathcal{N} are \mathcal{O}_X -modules, with \mathcal{M} coherent and \mathcal{N} quasi-coherent (coherent), then $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N})$ is quasi-coherent (respectively, coherent).

For every sheaf of Abelian groups \mathcal{F} on X, the support of \mathcal{F} is the subset

$$\operatorname{Supp}(\mathcal{F}) := \{ x \in X \mid \mathcal{F}_x \neq 0 \}.$$

If $Y = \text{Supp}(\mathcal{F})$, we also say that \mathcal{F} is supported on Y.

Problem 2. Let X be an algebraic variety. Show that if \mathcal{M} is a coherent sheaf on X, then $\operatorname{Supp}(\mathcal{M})$ is a closed subset of X; in fact, if U is an affine open subset of X, then $\operatorname{Supp}(\mathcal{M}) \cap U$ is the zero-locus of $\operatorname{Ann}_{\mathcal{O}_X(U)}\mathcal{M}(U)$.

Given a coherent ideal $\mathcal{I} \hookrightarrow \mathcal{O}_X$, the *co-support* or *zero-locus* $V(\mathcal{I})$ of \mathcal{I} is the support of the coherent sheaf $\mathcal{O}_X/\mathcal{I}$. It follows from the above problem that if U is an affine open subset of X, then $V(\mathcal{I}) \cap U$ is the zero-locus of $\mathcal{I}(U) \subseteq \mathcal{O}_X(U)$

Problem 3. Let X be an algebraic variety. Given an \mathcal{O}_X -module \mathcal{M} on X, its annihilator $\operatorname{Ann}_{\mathcal{O}_X}(\mathcal{M})$ is the subsheaf of \mathcal{O}_X given by

$$\Gamma(U, \operatorname{Ann}_{\mathcal{O}_X}(\mathcal{M})) := \operatorname{Ann}_{\mathcal{O}_X(U)}\mathcal{M}(U)$$

for every open subset U of X. Show that if \mathcal{M} is a coherent sheaf on X, then $\operatorname{Ann}_{\mathcal{O}_X}(\mathcal{M})$ is a coherent ideal and for every irreducible closed subset $V \subseteq X$, we have

$$\operatorname{Ann}_{\mathcal{O}_X}(\mathcal{M})_V \simeq \operatorname{Ann}_{\mathcal{O}_{X,V}}(\mathcal{M}_V).$$

Note that the zero-locus of $\operatorname{Ann}_{\mathcal{O}_X}(\mathcal{M})$ is equal to $\operatorname{Supp}(\mathcal{M})$.

Problem 4. Let Y be a closed subvariety of X and $i: Y \hookrightarrow X$ be the inclusion.

- i) Show that the canonical morphism $\mathcal{O}_X \to i_*(\mathcal{O}_Y)$ is surjective.
- ii) The *ideal sheaf defining* Y is defined as the kernel $\mathcal{I}_{Y/X}$ of the canonical morphism $\mathcal{O}_X \to i_*(\mathcal{O}_Y)$ (or equivalently, as $\operatorname{Ann}_{\mathcal{O}_X} i_*(\mathcal{O}_Y)$). Show that $\mathcal{I}_{Y/X}$ is a coherent ideal of \mathcal{O}_X .
- iii) Show that for every affine open subset U of X, we have

$$\mathcal{I}_{Y/X}(U) = I_U(Y \cap U).$$

Problem 5. Let X be an algebraic variety.

i) If \mathcal{I} is a coherent sheaf of ideals in \mathcal{O}_X , then the radical rad(\mathcal{I}) of \mathcal{I} is the sheaf given by

$$\Gamma(U, \operatorname{rad}(\mathcal{I})) = \operatorname{rad}(\Gamma(U, \mathcal{I})) \subseteq \Gamma(U, \mathcal{O}_X).$$

Show that $rad(\mathcal{I})$ is a coherent sheaf.

ii) Show that if Y is a closed subvariety of X and $\mathcal{I} = \mathcal{I}_{Y/X}$, then $Y = V(\mathcal{I})$. Conversely, if \mathcal{I} is any coherent ideal sheaf on X and $Y = V(\mathcal{I})$, then $\mathcal{I}_{Y/X} = \operatorname{rad}(\mathcal{I})$.

Problem 6. Let X be an algebraic variety, \mathcal{M} a quasi-coherent sheaf on X, and $\mathcal{M}_1, \ldots, \mathcal{M}_r$ quasi-coherent subsheaves of \mathcal{M} .

i) The sum $\sum_{i=1}^{r} \mathcal{M}_i$ is the sheaf associated to the presheaf that maps an open subset $U \subseteq X$ to

$$\sum_{i=1}^{r} \mathcal{M}_i(U) \subseteq \mathcal{M}(U).$$

Show that this is quasi-coherent and it is coherent if all \mathcal{M}_i are coherent.

ii) The intersection $\bigcap_{i=1}^{r} \mathcal{M}_{i}$ is the subsheaf of \mathcal{M} that maps an open subset $U \subseteq X$ to

$$\bigcap_{i=1}^{r} \mathcal{M}_{i}(U) \subseteq \mathcal{M}(U).$$

Show that this is quasi-coherent and it is coherent if one of the \mathcal{M}_i is coherent.

Problem 7. Let $f: X \to Y$ be a morphism of algebraic varieties and \mathcal{I} a coherent sheaf of ideals on Y.

i) Show that the image of the induced morphism

$$f^*(\mathcal{I}) \to f^*(\mathcal{O}_Y) = \mathcal{O}_X$$

is a coherent sheaf of ideals on X, that we denote $\mathcal{I} \cdot \mathcal{O}_X$.

ii) Show that

$$V(\mathcal{I} \cdot \mathcal{O}_X) = f^{-1}(V(\mathcal{I})).$$

Problem 8. Show that if Y is a closed subvariety of X and $i: Y \hookrightarrow X$ is the inclusion, then the map $\mathcal{F} \to i_*(\mathcal{F})$ gives an equivalence of categories between $\mathcal{Q}coh(Y)$ (or $\mathcal{C}oh(Y)$) and the full subcategory of $\mathcal{Q}coh(X)$ (respectively, $\mathcal{C}oh(X)$) consisting of those \mathcal{F} such that $\mathcal{I}_{Y/X} \subseteq \operatorname{Ann}_{\mathcal{O}_X}(\mathcal{F})$.