Homework Set 10

Solutions are due Friday, December 8.

Problem 1. Let m, n be positive integers and $r \leq \min\{m, n\}$. Consider the generic determinantal variety

$$M_{m,n}^r(k) = \{B \in M_{m,n}(k) \mid \operatorname{rank}(B) \le r\}$$

(see Problem 3 on HW #1). Compute the dimension of $M_{m,n}^r(k)$, as follows (we identify in the obvious way $M_{m,n}(k)$ and $\operatorname{Hom}_k(k^n, k^m)$).

i) Show that the set

$$Y = \{ (A, [W]) \in M_{m,n}(k) \times G(n-r, n) \mid W \subseteq \ker(A) \}$$

is a closed subset of $M_{m,n}(k) \times G(n-r,n)$.

- ii) Show that the projection onto the second component induces a morphism $p: Y \to G(n-r,n)$ which is locally trivial¹, with fiber \mathbf{A}^{rm} . Deduce that Y is irreducible, of dimension $mr + nr r^2$.
- iii) Note that the image of the map $f: Y \to M_{m,n}(k)$ induced by the projection onto the first component is $M_{m,n}^r(k)$ (in particular, this is irreducible). Show that there is an open subset U of $M_{m,n}^r(k)$ such that f has finite fibers over U. Deduce that

$$\operatorname{codim}_{M_{m,n}(k)}(M_{m,n}^r(k)) = (m-r)(n-r).$$

iv) For extra credit, show that the morphism $Y \to M_{m,n}^r(k)$ is birational.

Let V be a vector space over k, with $\dim_k V = n$ and let $1 \leq \ell_1 < \ldots < \ell_r \leq n$. A flag of type (ℓ_1, \ldots, ℓ_r) in V is a sequence of linear subspaces $V_1 \subseteq V_2 \subseteq \cdots \subseteq V_r \subseteq V$, where $\dim_k(V_i) = \ell_i$. A complete flag is a flag of type $(1, 2, \ldots, n)$.

The flag variety $\operatorname{Fl}_{\ell_1,\ldots,\ell_r}(V)$ parametrizes flags in V of type (ℓ_1,\ldots,ℓ_r) . In other words, this is the set

 $\mathrm{Fl}_{\ell_1,\ldots,\ell_r}(V) := \{ (V_1,\ldots,V_r) \in G(\ell_1,V) \times \cdots \times G(\ell_r,V) \mid V_1 \subseteq \cdots \subseteq V_r \}.$

In particular, the *complete flag variety* $Fl(V) = Fl_{1,\dots,n}(V)$ parametrizes complete flags in V.

Problem 2.

- i) Show that the subset $\operatorname{Fl}_{\ell_1,\ldots,\ell_r}(V)$ of $G(\ell_1, V) \times \cdots \times G(\ell_r, V)$ is closed, hence $\operatorname{Fl}_{\ell_1,\ldots,\ell_r}(V)$ is a projective variety.
- ii) Show that for every (ℓ_1, \ldots, ℓ_r) , the flag variety $\operatorname{Fl}_{\ell_1, \ldots, \ell_r}(V)$ is a smooth, irreducible variety, of dimension $\sum_{i=1}^r \ell_i(\ell_{i+1} \ell_i)$, where $\ell_{r+1} = n$. In particular, the complete flag variety $\operatorname{Fl}(V)$ is a smooth, irreducible variety of dimension $\frac{n(n-1)}{2}$.

¹A morphism of algebraic varieties $f: X \to Y$ is *locally trivial*, with fiber a variety F, if Y has an open cover $Y = \bigcup_i U_i$ such that for every i, we have an isomorphism $f^{-1}(U_i) \simeq U_i \times F$, compatible with the maps to U_i .

Problem 3. Given varieties X and Y, for every $x \in X$ and $y \in Y$, the projections $X \times Y \to X$ and $X \times Y \to Y$ induce a linear map

$$T_{(x,y)}(X \times Y) \to T_x X \times T_y Y.$$

Show that this is an isomorphism. Deduce that x and y are smooth points of X and Y, respectively, if and only if (x, y) is a smooth point of $X \times Y$.