Homework Set 10

Solutions are due Friday, December 8.

Problem 1. Let m, n be positive integers and $r \leq \min \{m, n\}$. Consider the generic determinantal variety

$$
M_{m, n}^{r}(k)=\left\{B \in M_{m, n}(k) \mid \operatorname{rank}(B) \leq r\right\}
$$

(see Problem 3 on HW \#1). Compute the dimension of $M_{m, n}^{r}(k)$, as follows (we identify in the obvious way $M_{m, n}(k)$ and $\left.\operatorname{Hom}_{k}\left(k^{n}, k^{m}\right)\right)$.
i) Show that the set

$$
Y=\left\{(A,[W]) \in M_{m, n}(k) \times G(n-r, n) \mid W \subseteq \operatorname{ker}(A)\right\}
$$

is a closed subset of $M_{m, n}(k) \times G(n-r, n)$.
ii) Show that the projection onto the second component induces a morphism $p: Y \rightarrow$ $G(n-r, n)$ which is locally trivial ${ }^{1}$, with fiber $\mathbf{A}^{r m}$. Deduce that Y is irreducible, of dimension $m r+n r-r^{2}$.
iii) Note that the image of the map $f: Y \rightarrow M_{m, n}(k)$ induced by the projection onto the first component is $M_{m, n}^{r}(k)$ (in particular, this is irreducible). Show that there is an open subset U of $M_{m, n}^{r}(k)$ such that f has finite fibers over U. Deduce that

$$
\operatorname{codim}_{M_{m, n}(k)}\left(M_{m, n}^{r}(k)\right)=(m-r)(n-r) .
$$

iv) For extra credit, show that the morphism $Y \rightarrow M_{m, n}^{r}(k)$ is birational.

Let V be a vector space over k, with $\operatorname{dim}_{k} V=n$ and let $1 \leq \ell_{1}<\ldots<\ell_{r} \leq n$. A flag of type $\left(\ell_{1}, \ldots, \ell_{r}\right)$ in V is a sequence of linear subspaces $V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{r} \subseteq V$, where $\operatorname{dim}_{k}\left(V_{i}\right)=\ell_{i}$. A complete flag is a flag of type $(1,2, \ldots, n)$.

The flag variety $\mathrm{Fl}_{\ell_{1}, \ldots, \ell_{r}}(V)$ parametrizes flags in V of type $\left(\ell_{1}, \ldots, \ell_{r}\right)$. In other words, this is the set

$$
\mathrm{Fl}_{\ell_{1}, \ldots, \ell_{r}}(V):=\left\{\left(V_{1}, \ldots, V_{r}\right) \in G\left(\ell_{1}, V\right) \times \cdots \times G\left(\ell_{r}, V\right) \mid V_{1} \subseteq \cdots \subseteq V_{r}\right\}
$$

In particular, the complete flag variety $\mathrm{Fl}(V)=\mathrm{Fl}_{1, \ldots, n}(V)$ parametrizes complete flags in V.

Problem 2.

i) Show that the subset $\mathrm{Fl}_{\ell_{1}, \ldots, \ell_{r}}(V)$ of $G\left(\ell_{1}, V\right) \times \cdots \times G\left(\ell_{r}, V\right)$ is closed, hence $\mathrm{Fl}_{\ell_{1}, \ldots, \ell_{r}}(V)$ is a projective variety.
ii) Show that for every $\left(\ell_{1}, \ldots, \ell_{r}\right)$, the flag variety $\mathrm{Fl}_{\ell_{1}, \ldots, \ell_{r}}(V)$ is a smooth, irreducible variety, of dimension $\sum_{i=1}^{r} \ell_{i}\left(\ell_{i+1}-\ell_{i}\right)$, where $\ell_{r+1}=n$. In particular, the complete flag variety $\mathrm{Fl}(V)$ is a smooth, irreducible variety of dimension $\frac{n(n-1)}{2}$.

[^0]Problem 3. Given varieties X and Y, for every $x \in X$ and $y \in Y$, the projections $X \times Y \rightarrow X$ and $X \times Y \rightarrow Y$ induce a linear map

$$
T_{(x, y)}(X \times Y) \rightarrow T_{x} X \times T_{y} Y
$$

Show that this is an isomorphism. Deduce that x and y are smooth points of X and Y, respectively, if and only if (x, y) is a smooth point of $X \times Y$.

[^0]: ${ }^{1}$ A morphism of algebraic varieties $f: X \rightarrow Y$ is locally trivial, with fiber a variety F, if Y has an open cover $Y=\bigcup_{i} U_{i}$ such that for every i, we have an isomorphism $f^{-1}\left(U_{i}\right) \simeq U_{i} \times F$, compatible with the maps to U_{i}.

