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Abstract:
Contact network epidemiology is an approach to modeling the spread of infectious
diseases that explicitly considers patterns of person-to-person contacts within a
community. Contacts can be asymmetric, with a person more likely to infect one
of their contacts than to become infected by that contact. This is true for some
sexually transmitted diseases that are more easily caught by women than men
during heterosexual encounters; and for severe infectious diseases that cause an
average person to seek medical attention and thereby potentially infect health
care workers who would not, in turn, have an opportunity to infect that average
person. Here we use methods from percolation theory to develop a mathematical
framework for predicting disease transmission through semi-directed contact
networks in which some contacts are undirected – the probability of transmission
is symmetric between individuals – and others are directed – transmission is
possible only in one direction. We find that probability of an epidemic and the
expected fraction of a population infected during an epidemic can be different in
semi-directed networks, in contrast to the routine assumption that these two
quantities are equal. Using these methods, we furthermore demonstrate the
vulnerability of health care workers and the importance hospital-based
containment during outbreaks of severe respiratory diseases.
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Introduction
Many infectious diseases spread through direct person-to-person contact.
Respiratory-borne diseases like influenza, tuberculosis, meningococcal meningitis
and SARS, spread through the exchange of respiratory droplets between people in
close physical proximity to each other. Sexually transmitted diseases like HIV,
genital herpes, and syphilis spread through intimate sexual contact. Explicit
models of the patterns of contact among individuals in a community, contact
network models, provide a powerful approach for predicting and controlling the
spread of such infectious disease [1-13]. This approach has provided insight into
the impact of simultaneous sexual partners on HIV transmission [12] and effective
public health strategies for controlling STD’s [13] and mycoplasma pneumonia
[2], among others.

The simplest form of contact network model represents individuals as vertices
and contacts as edges connecting appropriate nodes. The undirected network
depicted in Figure 1A assumes that two vertices sharing an edge are equally likely
to infect each other.  There are many diseases for which this assumption does not
hold. For example, there may be as much as a two-fold difference between male-
to-female and female-to-male HIV transmission efficiency with females much
more vulnerable than males [14]; health care workers (HCW) and patients may
have asymmetric transmission probabilities because, perhaps, patients are more

likely to have immune deficiencies or caregivers
are more likely to be exposed to bodily fluids
during medical procedures; mothers can
transmit blood-borne diseases to offspring in
utero whereas there may be no opportunity for
transmission in the reverse direction. We can
model such asymmetries using bipartite contact
networks in which there are two classes of
nodes that transmit disease to each other at
different rates (Figure 1B). Mathematical
methods for predicting the spread of disease on
bipartite contact networks have been described
in [2, 6].

Asymmetry in disease transmission may also
arise if the disease influences individual
behavior. During an outbreak, infected
individuals may modify their typical patterns of
interaction. In particular, they may visit a
hospital or clinic at which they come into contact
with HCWs and other patients. Individuals that
are not infected, however, will likely have no
contact with hospital personnel. Since we cannot
know a priori which individuals will become
infected, we cannot easily capture such
conditional contacts in a simple network model.

Directed edges, in which transmission occurs
only in one direction, provide a way around this

A
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C

Figure 1. Contact Networks.
(A) Undirected network;
(B) Bipartite network; and
(C) Semi-directed network.
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difficulty (Figure 1C). A directed edge leading from a member of the general
population (P) to a HCW (H) reflects the following relationship: If P is infected, he
or she will expose H with some probability; but if H is infected, he or she will have
no contact with P. Thus, contact network models containing both directed and
undirected edges (henceforth semi-directed networks) can be used to model
community-based disease transmission in which there is a substantial one-way
flow of disease from the general public into health care facilities.

Here we develop mathematical tools for predicting the spread of disease and
impact of intervention on semi-directed networks and then apply these tools to
assess the impact of hospital-based transmission and intervention on the fate of
an outbreak. For part one, we use generating function methods to derive the
probability and expected demographic distribution of outbreaks, with and without
public health intervention. This is an extension of both epidemiological theory
previously developed for undirected contact networks [3] and a general theory of
random graphs containing only directed edges [15]. We show that in semi-
directed networks the probability of an epidemic and the expected fraction of the
population infected during such an epidemic may be different. In contrast, many
conventional models assume the equality of these two epidemiological values, and
then use disease incidence data to indirectly estimate the probability of an
epidemic [16]. Our analysis therefore suggests that this assumption may be
invalid for populations with asymmetric contact patterns. For part two, we make
epidemiological predictions using a simple model of urban contact patterns based
on demographic data from the city of Vancouver, British Columbia. By
incorporating conditional contacts within health care settings, we more accurately
assess the role of HCW’s in disease transmission and containment.

Derivations of Epidemic Quantities
Modeling the population and the disease
In a semi-directed network, each vertex (individual) has an undirected degree
representing the number of undirected edges joining the vertex to other vertices
as well as both an in-degree and an out-degree representing the number of
directed edges incoming from other individuals and outgoing to other individuals
respectively. The undirected-degree and in-degree indicate how many contacts
can spread disease to the individual, and thus is related to the likelihood that an
individual will become infected during an epidemic; and the undirected-degree
and out-degree indicate how many contacts may be infected by that individual
should he or she become infected, and thus is related to the likelihood that an
individual will ignite an epidemic. The semi-directed degree distribution tells us
the probability that a randomly chosen individual will have a particular
combination of an undirected-degree, in-degree, and out-degree.

One can predict analytically the spread of an infectious disease through a
population given two basic inputs: the semi-directed degree distribution and the
probabilities of disease transmission along the edges of the network. Some
pathogens, like smallpox, are highly contagious and will thus have a high
probability of moving along an edge in the network [17].  Other pathogens, like
SARS, are less likely to be transmitted [18].  For a given disease, the probability
of transmission along a particular edge will also depend on the health of the
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individuals lying at either end of the edge and the nature of their interaction with
each other.

In [3], Newman showed that, when the rate of transmission of a disease
between pairs of individuals is assumed to be an i.i.d. random variable, the
spread of the disease depends only on the mean total probably of transmission
between individuals, or transmissibility, and not on the individual probabilities for
specific pairs. We make use of this result here also, and henceforth consider only
Td and Tu, the average probability that an infectious individual will transmit the
disease to a susceptible individual with whom they have a directed or undirected
contact respectively. Note that average transmissibilities Td and Tu vary from
disease to disease but are always in the range 0 ≤ Td ,Tu ≤ 1. We will also consider
the simpler case where average transmissibility is the same for directed and
undirected edges, that is, Td = Tu = T .

Suppose a disease begins to spread through a population from a particular
vertex. In our model, transmission will occur along each of the directed and
undirected edges pointing out of that vertex with probabilities Td and Tu

respectively. If we keep track of every edge in the network along which disease is
transmitted and call these occupied edges, then we can reconstruct the final size
and distribution of the outbreak. In particular, the outbreak will include exactly
the set of all vertices that are connected to initial vertex along a continuous path
of occupied edges. Because of its resemblance to bond percolation, this model can
be analyzed using mathematical methods from percolation theory [2, 3, 11]. In
what follows, we derive exact solutions for the expected size of an outbreak, the
probability of a large-scale epidemic, the size of such an epidemic, the risk to
individuals as a function of their degree, and the impact of various forms of
intervention.

Probabilitiy generating functions for semi-directed networks
In the theory of random directed graphs developed by Newman et al. [15], one
considers the joint probability distribution 

� 

p jk  that a randomly chosen vertex has

in-degree j and out-degree k. Then one defines a generating function   

� 

F (x,y)
whose coefficients are the probabilities in this distribution:

 
F (x, y) = pjkx

j

jk
∑ yk (1)

from which many properties of the network can then be derived. Adopting a
similar approach for our semi-directed networks, we consider the joint probability
distribution 

� 

p jkm  that a vertex has j incoming edges, k outgoing edges, and m

undirected edges. Then we define a generating function   

� 

G  that generates this
distribution thus:

 
G(x, y;u) = pjkmx

j

jkm
∑ ykum . (2)

This function has the properties that

 G(1,1;1) = 1 (3)
for normalized 

� 

p jkm, and



6

 zd =G (1,0;0) (1,1;1) =G (0,1;0) (1,1;1),        zu =G (0,0;1) (1,1;1), (4)
where 

� 

zd  is the average in-degree and out-degree of a vertex for directed edges
(the two must necessarily be the same, since every outgoing directed edge must
also be an incoming edge at some vertex) and 

� 

zu  is the average degree of

undirected edges. The notation   

� 

G (r,s;v )  indicates differentiation of   

� 

G  with respect
to its three arguments 

� 

r , 

� 

s, and 

� 

v  times respectively, so that for example

 
G (0,0;1) =

∂G
∂u

,        G (1,1;0) =
∂ 2G
∂x∂y

. (5)

The excess degrees are the numbers of each type of edge emerging from a
vertex arrived at by following an edge, not including the incoming edge.
Henceforth, subscript u refers to following an undirected edge in either direction
and subscripts d and r refer to following a directed edge in the designated and
reverse direction respectively.

The excess degrees are biased by the fact that edges are more likely to arrive
at vertices with higher degree, in direct proportion to that degree. Thus the
distribution of edges of the three types, incoming, outgoing, and undirected, at a
vertex reached by following a directed edge in the designated direction is

� 

jp jkm jp jkm∑ , and hence is generated by

 

H d (x, y;u) =
jpjkmx

j−1ykum
jkm
∑

jpjkm
jkm
∑

=
1
zd

G (1,0;0) (x, y;u). (6)

The generating function for the excess degree distribution for a directed edge in
the reverse direction is

 

H r (x, y;u) =
kpjkmx

j yk−1um
jkm
∑

kpjkm
jkm
∑

=
1
zd

G (0,1;0) (x, y;u). (7)

Similarly, the distribution at a vertex reached by following an undirected edge is
generated by

 

H u (x, y;u) =
mpjkmx

j ykum−1

jkm
∑

mpjkm
jkm
∑

=
1
zu

G (0,0;1) (x, y;u). (8)

We next modify these generating functions to consider the distribution of
occupied edges, that is, edges along which disease has been transmitted.
Following [3], we write the generating function for the number of occupied edges
of a vertex in the form
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G(x, y;u;Td ,Tu )

= pjkm
j
a

⎛
⎝⎜

⎞
⎠⎟
Td

a 1− Td( ) j−a k
b

⎛
⎝⎜

⎞
⎠⎟
Td

b 1− Td( )k−b m
c

⎛
⎝⎜

⎞
⎠⎟
Tu

c 1− Tu( )m−c xaybuc
m=c

∞

∑
k=b

∞

∑
j=a

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

c=0

∞

∑
b=0

∞

∑
a=0

∞

∑

= pjkm
j
a

⎛
⎝⎜

⎞
⎠⎟
Tdx( )a 1− Td( ) j−a k

b
⎛
⎝⎜

⎞
⎠⎟
Tdy( )b 1− Td( )k−b m

c
⎛
⎝⎜

⎞
⎠⎟
Tuu( )c 1− Tu( )m−c

c=0

m

∑
b=0

k

∑
a=0

j

∑⎡
⎣
⎢

⎤

⎦
⎥

jkm
∑

= pjkm 1− Td + xTd( ) j 1− Td + yTd( )k 1− Tu + uTu( )m
jkm
∑

=G(1+ (x −1)Td ,1+ (y −1)Td ;1+ (u −1)Tu )

(9)

We similarly derive the probability generating function for the number of occupied
edges emanating from a vertex arrived at by following a randomly chosen edge
(excluding the arrival edge).

 H d (x, y;u;Td ,Tu ) = H d (1+ (x −1)Td ,1+ (y −1)Td ;1+ (u −1)Tu ), (10)

 H r (x, y;u;Td ,Tu ) = H r (1+ (x −1)Td ,1+ (y −1)Td ;1+ (u −1)Tu ), (11)

 H u (x, y;u;Td ,Tu ) = H u (1+ (x −1)Td ,1+ (y −1)Td ;1+ (u −1)Tu ) (12)
Eq. (9) implies that

 G(x, y;u;1,1) =G(x, y;u) (13)

 G(1,1;1;Td ,Tu ) =G(1) (14)

 G
1,0;0( )(1,1;1;Td ,Tu ) = TdG

1,0;0( )(1,1;1) (15)

 G
0,1;0( )(1,1;1;Td ,Tu ) = TdG

0,1;0( )(1,1;1) (16)

 G
0,0;1( )(1,1;1;Td ,Tu ) = TuG

0,0;1( )(1,1;1) (17)

and similarly for   

� 

H d ,   

� 

H r  and   

� 

H u .

Predicting the fate of an outbreak
The fundamental quantity we now wish to derive is the number s of vertices
contained in an outbreak that begins at a randomly selected vertex. Let
G(w;Td ,Tu )  be the generating function for the distribution of outbreak sizes:

G(w;Td ,Tu ) = Ps (Td ,Tu )w
s

s
∑ (18)

To solve for the average value of s, we first evaluate the size of an outbreak t that
begins with a transmission event along a randomly chosen edge. If that edge is
directed, then the set of vertices reached by occupied edges can be represented
in graphical form as in the top row of Figure 2. If we define a new generating
function Hd (w;Td ,Tu ) , which generates the probability distribution of t thus:

Hd (w;Td ,Tu ) = Pt (Td ,Tu )w
t

t
∑ (19)

then Figure 2 implies that Hd (w;Td ,Tu )  satisfies a condition of the form

 Hd w;Td ,Tu( ) = wH d 1,Hd w;Td ,Tu( );Hu w;Td ,Tu( );Td ,Tu( ) (20)

where 

� 

Hu (w) is the corresponding generating function for undirected edges,
which itself satisfies a condition of the form

 Hu w;Td ,Tu( ) = wH u 1,Hd w;Td ,Tu( );Hu w;Td ,Tu( );Td ,Tu( ) (21)
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+ + + + + + + + ...

+ + + + + + + + ...

Figure 2. Future Transmission Diagram. When disease is transmitted
along a directed (top) or undirected (bottom) edge, we can consider all
possible patterns of future transmission.

as depicted in the bottom row of Figure 2. The self-consistent solutions of Eqs.
(20) and (21) gives the distribution of t, given the definitions (10) and (12) of

  

� 

H d  and   

� 

H u . It follows that s, the size of an outbreak starting from a randomly
chosen vertex, is distributed according to

 G w;Td ,Tu( ) = wG 1,Hd w;Td ,Tu( );Hu w;Td ,Tu( );Td ,Tu( ). (22)

Consider now the average size of an outbreak starting from a random vertex

� 

s , which is given by

s = sPs (Td ,Tu )
s
∑ = ′G (1;Td ,Tu ) (23)

where the prime denotes differentiation with respect to 

� 

w. Differentiating Eqs.
(20), (21), and (22), we find

 ′G 1;Td ,Tu( ) = 1+G (0,1;0;0) 1,1;1;Td ,Tu( ) ′Hd 1;Td ,Tu( ) +G (0,0;1;0) 1,1;1;Td ,Tu( ) ′Hu 1;Td ,Tu( ) (24)

 ′Hd 1;Td ,Tu( ) = 1+H d
(0,1;0;0) 1,1;1;Td ,Tu( ) ′Hd 1;Td ,Tu( ) +H d

(0,0;1;0) 1,1;1;Td ,Tu( ) ′Hu 1;Td ,Tu( )(25)

 ′Hu 1;Td ,Tu( ) = 1+H u
(0,1;0;0) 1,1;1;Td ,Tu( ) ′Hd 1;Td ,Tu( ) +H u

(0,0;1;0) 1,1;1;Td ,Tu( ) ′Hu 1;Td ,Tu( ) (26)

where we have made use of the fact that Hd 1;Td ,Tu( ) = Hu 1;Td ,Tu( ) = 1 if the

distributions of values of s are properly normalized. Solving Eqs. (25) and (26)
simultaneously we find

 
′Hd (1;Td ,Tu ) =

1−H u
(0,0;1;0) +H d

(0,0;1;0)

1−H d
(0,1;0;0)( ) 1−H u

(0,0;1;0)( ) −H d
(0,0;1;0)H u

(0,1;0;0) (27)

 
′Hu (1;Td ,Tu ) =

1−H d
(0,1;0;0) +H u

(0,1;0;0)

1−H d
(0,1;0;0)( ) 1−H u

(0,0;1;0)( ) −H d
(0,0;1;0)H u

(0,1;0;0) , (28)

where the arguments of all generating functions are set to (1,1;1;Td,Tu).
Substituting these expressions into Eq. (24), we calculate the expected size of an
outbreak beginning at a random vertex:

 
s = 1+

G (0,1;0;0) 1−H u
(0,0;1;0) +H d

(0,0;1;0)( ) +G (0,0;1;0) 1−H d
(0,1;0;0) +H u

(0,1;0;0)( )
1−H d

(0,1;0;0)( ) 1−H u
(0,0;1;0)( ) −H d

(0,0;1;0)H u
(0,1;0;0) . (29)
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Equations (13) through (17) allow us to separate transmissibilities Td and Tu from
the semi-directed degree distributions as follows

 
s = 1+

TdG
(0,1;0) 1− Tu H u

(0,0;1) −H d
(0,0;1)( )( ) + TuG (0,0;1) 1− Td H d

(0,1;0) −H u
(0,1;0)( )( )

1− TdH d
(0,1;0)( ) 1− TuH u

(0,0;1)( ) − TdTuH d
(0,0;1)H u

(0,1;0)
(30)

where the arguments of all generating functions are now set to (1,1;1). Thus we
can predict the expected size of an outbreak given the semi-directed degree
distribution and transmissibilities Td and Tu of the disease. If average
transmissibilities along directed and undirected edges are equal (Td = Tu = T ), then
the expected size of the outbreak is given by

 
s = 1+

TG (0,1;0) 1− T H u
(0,0;1) −H d

(0,0;1)( )( ) + TG (0,0;1) 1− T H d
(0,1;0) −H u

(0,1;0)( )( )
1− TH d

(0,1;0)( ) 1− TH u
(0,0;1)( ) − T 2H d

(0,0;1)H u
(0,1;0) (31)

The expression for 

� 

s  diverges when the denominator in Eq. (30) is zero.
Thus the equation

 1− TdH d
(0,1;0)( ) 1− TuH u

(0,0;1)( ) − TdTuH d
(0,0;1)H u

(0,1;0) = 0 (32)

marks the phase transition at which the size of an outbreak first becomes
extensive. Solving Eq. (32) for a given 0 ≤ Td ≤ 1 , we derive the critical
transmissibility Tcu  at which a large-scale epidemic becomes possible:

 
Tcu =

1− TdH d
(0,1;0)

H u
(0,0;1) − Td H d

(0,1;0)H u
(0,0;1) −H d

(0,0;1)H u
(0,1;0)( ) . (33)

Similarly, for some 0 ≤ Tu ≤ 1, the critical value is defined by

 
Tcd =

1− TuH u
(0,0;1)

H d
(0,1;0) − Tu H d

(0,1;0)H u
(0,0;1) −H d

(0,0;1)H u
(0,1;0)( ) . (34)

Thus, there is a line defined by (33) and (34) of transmissibility values, below
which we expect only small outbreaks of expected size s  and above which an

epidemic is possible. If average transmissibility is the same for directed and
undirected edges, then there is a single critical transmissibility:

 
Tc =

H d
(0,1;0) +H u

(0,0;1)( ) ± H d
(0,1;0) +H u

(0,0;1)( )2 − 4 H d
(0,1;0)H u

(0,0;1) −H d
(0,0;1)H u

(0,1;0)( )
2 H d

(0,1;0)H u
(0,0;1) −H d

(0,0;1)H u
(0,1;0)( ) , (35)

whichever value is positive. We call Tcd ,Tcu{ }  (or Tc) the epidemic threshold. By

differentiating Eqs. (6) and (8) and substituting the results into Eqs. (33) or (35)
one can express the epidemic threshold in terms of the underlying structure of the
contact network.

A simple example
We use these formulas to predict the spread of disease on a simple network in
which all three degree distributions are Poisson with mean in-degree and out-
degree of zd  and mean undirected degree of zu . The pgf for the degree
distribution is given by
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G(x, y;u) = zd

je− zd

j!
⎛
⎝⎜

⎞
⎠⎟
zd

ke− zd

k!
⎛
⎝⎜

⎞
⎠⎟
zu

je− zu

m!
⎛
⎝⎜

⎞
⎠⎟
x j

jkm
∑ ykum = ezd (x+ y−2)+ zu (u−1) . (36)

The excess degree pgf’s for this network are identical to the original degree
distribution, that is,  H d (x, y;u) = H r (x, y;u) = H u (x, y;u) =G(x, y;u) . Therefore the
expected size of an epidemic is defined by

s =
1− TdTu zd + zu( )
1− Tdzd − Tuzu

. (37)

We plot s  for a Poisson semi-directed network in Figure 3A. By setting the

denominator equal to zero, we find an epidemic threshold line of
Tcdzd + Tcuzu = 1. (38)

as depicted in Figure 3B.

A

Epidemic possible

No
Epidemic

Td

Tu

1/zu

1/zd

Epidemic threshold

  B

Td = 0.001
Td = 0.01
Td = 0.1
Td = 0.2

Tu

<s>

Figure 3. Simple Semi-Directed Network. (A) The epidemic threshold for a Poisson
semi-directed network with Poisson parameters zd  and zu . (B) The expected size of a

small outbreak as a function of Td  and Tu  for a Poisson semi-directed network with

Poisson parameters zd = 2  and zu = 3 .

Probability and size of large-scale epidemic
When the transmissibility of a disease is larger than the epidemic threshold, then
Eq. (30) no longer indicates the size of the infected subpopulation. This is because
transmission is so rampant that the chains of transmission are likely to loop back
upon themselves, thus violating the assumption underlying the calculations
depicted in Figure 2.

When we are above the epidemic threshold, in the region in which epidemics
can occur, we would like to know two quantities: the probability that a large-scale
epidemic occurs and the fraction of individuals that are infected in that case.
These quantities are equivalent to Sin and Sout – the fraction of vertices from which
an extensive numbers of others can be reached by following occupied edges and
the fraction of vertices contained in such an extensive interconnected group,
respectively. In the language of percolation, these are the giant strongly
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connected component (GSCC) plus the giant in-component (GIN) and the GSCC
plus the giant out-component (GOUT) defined by occupied edges. Figure 4
illustrates the component structure of semi-directed networks. The relative size of
the region shaded in vertical lines indicates the probability that any single
infection will lead to a wide-spread epidemic, and the relative size of the region
shaded in horizontal lines indicates the expected fraction of the population that
will become infected during such an epidemic.

     

GOUTGIN GSCC

Tendrils

Figure 4. Structure of a Semi-Directed Network. The largest set of vertices
for which you can move between any two by following edges in the correct
direction is the giant strongly connected component (GSCC). The set of vertices
not contained in the GSCC that can be reached by following edges in the correct
direction from the GSCC is called the giant out-component (GOUT). The set of
vertices not contained in the GSCC from which the GSCC can be reached by
following edges in the correct direction is called the giant in-component (GIN).
Vertices that are not in the GSCC, GIN, or GOUT but can either be reached from
the GIN or can reach the GOUT are in the tendrils of the network.

To calculate the typical size of a large-scale epidemic, we make use of the
following argument. All vertices in the GSCC and GOUT are reachable from an
extensive number of others (those in the GSCC and GIN). And all vertices that are
not in these components are not reachable from an extensive number of others.
We can calculate from how many vertices a randomly chosen vertex is reachable
by following occupied edges backwards from that vertex and finding the resulting
component. This is precisely the reverse of the calculation we performed in the
previous section, and the distribution of the sizes of such components reached
along directed (backwards) or undirected edges is generated by Hr w;Td ,Tu( )  and

Hur w;Td ,Tu( )  which satisfy

 Hr w;Td ,Tu( ) = wH r Hr w;Td ,Tu( ),1;Hur w;Td ,Tu( );Td ,Tu( ), (39)

 Hur w;Td ,Tu( ) = wH u Hr w;Td ,Tu( ),1;Hur w;Td ,Tu( );Td ,Tu( ). (40)

then the distribution of components from which a randomly chosen vertex (rather
than edge) can be reached is generated by

 Gr w;Td ,Tu( ) = wG Hr w;Td ,Tu( ),1;Hur w;Td ,Tu( );Td ,Tu( ). (41)

The fraction of the graph filled by vertices for which the corresponding component
is finite in size is then given by Gr 1;Td ,Tu( )  and hence Sout = 1−Gr (1;Td ,Tu )  giving
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 Sout = 1−G(a,1;b;Td ,Tu ) (42)

where a ≡ Hr 1;Td ,Tu( )  and b ≡ Hur 1;Td ,Tu( )  are solutions of

 a = H r (a,1;b;Td ,Tu ),         b = H u (a,1;b;Td ,Tu ) (43)
In most cases (43) is not solvable in closed form, but once we have the
generating functions   

� 

H r  and   

� 

H u  and transmissibilities Td and Tu it can be solved
numerically by simple iteration, starting from appropriate initial values.
Translating into epidemiological terms, we can predict the size of a large-scale
epidemic from the degree distribution and transmissibility with

Ssize = Sout = 1− pjkm 1+ a −1( )Td( ) j 1+ b −1( )Tu( )m
jkm
∑ (44)

where a ≡ Hr 1;Td ,Tu( )  and b ≡ Hur 1;Td ,Tu( )  are solutions of

a =
kpjkm 1+ (a −1)Td( ) j 1+ (b −1)Tu( )m

jkm
∑

kpjkm
jkm
∑

, (45)

b =
mpjkm 1+ (a −1)Td( ) j 1+ (b −1)Tu( )m−1

jkm
∑

mpjkm
jkm
∑

. (46)

Similarly, one can also calculate Sin, the size of the GSCC plus the GIN, which
is the fraction of vertices from which an extensive number of others can be
reached. In epidemiology, this is Sprob, the probability single randomly placed
infection will spark a large-scale epidemic. By analogy with equations (42) and
(43), Sin is given by

 Sin = 1−G(1,α;β;Td ,Tu ) (47)
where

 α = H d (1,α;β;Td ,Tu ),        β = H u (1,α;β;Td ,Tu ). (48)
In terms of the degree distribution and transmissibility of disease, Eqs. (47) and
(48) become

Sprob = Sin = 1− pjkm 1+ α −1( )Td( )k 1+ β −1( )Tu( )m
jkm
∑ (49)

where α ≡ Hd 1;Td ,Tu( )  and β ≡ Hu 1;Td ,Tu( )  are solutions of

α =
jpjkm 1+ (α −1)Td( )k 1+ (β −1)Tu( )m

jkm
∑

jpjkm
jkm
∑

, (50)

β =
mpjkm 1+ (α −1)Td( )k 1+ (β −1)Tu( )m−1

jkm
∑

mpjkm
jkm
∑

. (51)
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Note that α  and β  in Eqs. (49)-(51) are the probabilities that infection at a
vertex at the end of a randomly selected directed and undirected edge
(respectively) will not spark a large-scale epidemic. If average transmissibility is
the same for directed and undirected edges, then simply substitute the single
transmissibility value T for Td and Tu in Eqs. (44), (45), (46), (49), (50), and (51).

Completely directed and completely undirected graphs
The epidemic threshold, expected size of a small outbreak, probability of a large
scale epidemic and the expected size of such an epidemic have been derived
previously for both undirected networks [3] and completely directed networks
[19]. For directed networks, the expected size of a small outbreak is given by

 
s = 1+ TG (0,1) 1,1( )

1− TH d
(0,1) 1,1( ) (52)

which yields an epidemic threshold of

 
Tc =

1
H d

(0,1) 1,1( ) . (53)

For transmissibility above Tc , the expected size of an epidemic is given by

Ssize
d = 1− pjk 1+ v −1( )T( ) j

jk
∑ (54)

where v is the solution to the equation

v =
kpjk 1+ v −1( )T( ) j

jk
∑

kpjk
jk
∑

, (55)

and the probability that such an epidemic will arise in the first place is given by

Sprob
d = 1− pjk 1+ w −1( )T( )k

jk
∑ (56)

where w is the solution to the equation

w =
jpjk 1+ w −1( )T( )k

jk
∑

jpjk
jk
∑

. (57)

For undirected networks, the expected size of a small outbreak is given by

 
s = 1+ T ′G 1( )

1− T ′H 1( ) (58)

with an epidemic threshold of

 
Tc =

1
′H 1( ) (59)

For T > Tc , the probability and expected size of an epidemic in an undirected
network are identical and given by

Su = Ssize
u = Sprob

u = 1− pm 1+ u −1( )T( )m
m
∑ (60)

where u is the solution to the equation
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u =
mpm 1+ u −1( )T( )m−1

m
∑

mpm
m
∑

. (61)

A simple example
Compartmental epidemiological models assume that the probability and expected
size of an epidemic are always equal. While this is true for undirected networks,
these two values can be different in directed and semi-directed networks. We
demonstrate this using three different networks: (N1) a completely undirected
Poisson network with mean degree z  (where z  is an even integer) that has
generating function

 
GN1(x) =

z je− z

j!
⎛
⎝⎜

⎞
⎠⎟
x j

j
∑ = ez(x−1), (62)

(N2) a semi-directed network with a Poisson distribution of undirected edges of

mean degree z 2 , a Poisson in-degree distribution of mean z 2 , and a regular out-

degree distribution in which every vertex has an out-degree of exactly z 2  that

has generating function

 
GN 2 (x, y;u) =

z
2( ) j e− z

2

j!
⎛

⎝⎜
⎞

⎠⎟
z
2( )m e− z

2

m!
⎛

⎝⎜
⎞

⎠⎟
x j

jm
∑ yz

2um = e
z
2( )(x+u−2)yz

2 , (63)

and (N3) a fully directed network with a Poisson in-degree distribution of mean z ,
and a regular out-degree distribution in which every vertex has an out-degree of
exactly z  that has generating function

 
GN 3(x, y) =

z je− z

j!
⎛
⎝⎜

⎞
⎠⎟
x j

j
∑ yz = ez(x−1)yz . (64)

These three networks have the same total number of edges. We use different in-
and out-degree distributions to demonstrate the inequality of Sprob  and Ssize ,
because semi-directed and directed networks with identical in- and out-degree
distributions have an equal-sized GIN and GOUT and therefore equal values of
Sprob  and Ssize .

All three networks share the same epidemic threshold of Tc =
1
z

. Above the

threshold, the probabilities and expected sizes of epidemics in these networks are
predicted by the following equations:

SN1 = SN 2size = SN 3size = 1− e
z(u−1)T  where u = ez(u−1)T , (65)

SN 2prob = 1− (1+ (α −1)T ) z 2 ez
2 (α −1)T  where α = (1+ (α −1)T ) z 2 ez

2 (α −1)T , (66)

SN 3prob = 1− (1+ (w −1)T )z  where w = (1+ (w −1)T )z . (67)

Figure 5 illustrates these predictions for two sets of networks ( z = 4  and z = 8 ).
For each set of networks, all three share the same expected size of an epidemic.
The probability of an epidemic is identical to the expected size of an epidemic in
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SN1 = SN2size = SN3size
SN2prob
SN3prob

T

S

z = 8
z = 4

Figure 5. Epidemiological predictions for undirected, directed and semi-
directed networks. The probability of an epidemic and expected fraction of the
population infected during an epidemic for three classes networks: (N1) a
completely undirected Poisson network with mean degree z ; (N2) a semi-
directed network with Poisson undirected and in-degree distributions of mean
degree z 2 , and with every vertex having an out-degree of exactly z 2 ; and (N3) a
completely directed network with a Poisson in-degree distribution of mean degree
z , and with every vertex having an out-degree of exactly z . The left and right
three lines correspond to networks with z = 8  and z = 4 , respectively.

the undirected network, significantly larger than the expected size in the
completely directed network, and at an intermediate value in the semi-directed
network. Our particular choice of in- and out-degree distributions yields networks
with GIN larger than GOUT. If we reverse these two distributions, then GOUT
would be larger than GIN, and therefore, the expected size of the epidemic would
be larger than the probability of an epidemic.

Initial conditions
We can refine our predictions if we know something about the behavior of patient
zero – the first case of disease in a population. Suppose, for instance, that we
know patient zero has out-degree k and undirected-degree m. The probability that
he or she will spark a large-scale epidemic is just the probability that transmission
of the disease along at least one of the edges emanating from patient zero will
lead to an epidemic. For any one of its k out edges and m undirected edges, the
probability that the disease is not transmitted along the edge is 1-Td and 1-Tu

respectively. As defined in Eqs. (50) and (51), α  and β  are the probabilities that
an outbreak traveling along a given directed or undirected edge will spread to
only a local component of the population. Thus the probability that disease is
transmitted along one of the k+m edges but does not proceed from there into a
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full-blown epidemic is Tdα  for a directed edge or Tuβ  for an undirected edge, and
the overall probability that patient zero will spark an epidemic is given by

εkm = 1− 1− Td + Tdα( )k 1− Tu + Tuβ( )m . (68)

For completely directed and completely undirected networks, this expression
becomes

εk = 1− 1− T + Tw( )k ,         εm = 1− 1− T + Tu( )m (69)

respectively, where w and u are as described by Eqs. (57) and (61).
The probability that an outbreak of size N will lead to a large-scale epidemic is

� 

1− (1−εkimi
)

i=1

N
∏  where 

� 

ki  is the out-degree and 

� 

mi is the undirected-degree of

individual i. This is just one minus the probability that none of the N infected
individuals sparks an epidemic. If we know the number of current cases but not
their contact patterns, then our best estimate for the probability of an epidemic is
calculated similarly, with each of the 

� 

(1−εkimi
) ’s replaced with the probability that

a typical infected individual does not spark an epidemic. Such an individual was
infected either along a directed edge with a priori probability 

� 

zd
zd +zu  or along an

undirected edge with a priori probability 

� 

zu
zd +zu . The number of edges through

which the individual can start an epidemic is given by the excess degree
generating functions   

� 

H d  and   

� 

H u , and the probability that one of those edges will
not give rise to an epidemic is 1− Td + Tdα  for a directed edge and 1− Tu + Tuβ  for
an undirected edge. Thus the probability that a typical infected individual does not
start an epidemic is given by

 

zdH d 1, 1− Td + Tdα( ); 1− Tu + Tuβ( )( ) + zuH u 1, 1− Td + Tdα( ); 1− Tu + Tuβ( )( )
zd + zu

, (70)

and the probability that an outbreak of size N sparks an epidemic is given by

 
1−

zdH d 1, 1− Td + Tdα( ); 1− Tu + Tuβ( )( ) + zuH u 1, 1− Td + Tdα( ); 1− Tu + Tuβ( )( )
zd + zu

⎛

⎝
⎜

⎞

⎠
⎟

N

(71)

where α  and β  are as described by Eqs. (50) and (51). Simplifying slightly, we
can rewrite Eq. (71) as

1−
jp jkm (1−Td +Tdα )

k (1−Tu +Tuβ )
m + mpjkm (1−Td +Tdα )

k (1−Tu +Tuβ )
m−1

jkm
∑

jkm
∑

j+m( ) pjkm
jkm
∑

⎛

⎝
⎜

⎞

⎠
⎟

N

. (72)

For completely directed and completely undirected networks, the likelihood of an
epidemic given N cases in the initial outbreak is given by

1−
jp jk (1−T +Tw)k

jk
∑

jp jkm
jk
∑

⎛

⎝
⎜

⎞

⎠
⎟

N

,        1−
jp jk (1−T +Tw)k

jk
∑

jp jkm
jk
∑

⎛

⎝
⎜

⎞

⎠
⎟

N

(73)

respectively, where w and u are as described by Eqs. (57) and (61).
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Individual risk and intervention
The likelihood that an individual of in-degree j and undirected-degree m will be
infected during an epidemic is equal to one minus the probability that none of his
or her j+m contacts will transmit the disease to him or her. The probability that a
contact does not transmit the disease is equal to the probability that the contact
was infected, but did not transmit the disease, 1-Td for a contact along a directed
edge and 1-Tu for a contact along an undirected edge, plus the probability that the
contact was not infected in the first place, Tda for a contact along a directed edge
or Tub for a contact along an undirected edge, where a and b are as defined by
Eqs. (45) and (46). Thus, a randomly chosen vertex of in-degree k and
undirected-degree m will become infected with probability

ν jm = 1− 1− Td + Tda( ) j 1− Tu + Tub( )m . (74)

For completely directed and completely undirected networks, this expression
becomes

ν j = 1− (1− T + Tv) j ,        νm = 1− (1− T + Tu)m (75)

respectively, where v and u are as described by Eqs. (55) and (61).
When a single individual of degrees j, k, m lowers the likelihood of

transmission to or from himself or herself (by wearing a face mask in the case of
an airborne disease, for example) from Td  and Tu  to φdTd  and φuTu  (0 ≤ φd ,φu ≤ 1),
then the expressions for the likelihood of causing an epidemic and becoming
infected during an epidemic become

εkmφ = 1− 1−φdTd + φdTdα( )k 1−φuTu + φuTuβ( )m , (76)

ν jm
φ = 1− 1−φdTd + φdTda( ) j 1−φuTu + φuTub( )m (77)

where 

� 

a, 

� 

b, α  and β  are as in Eqs. (45), (46), (50), and (51). Note that these
two quantities are different for some semi-directed networks, whereas they are
always identical for undirected networks.

A case study in hospital-based transmission of respiratory disease
The contact networks
We have previously developed a method to simulate urban contact networks
based on demographic data for the city of Vancouver, British Columbia [20-25].
Using the degree distribution from a contact network model containing 10,000
households (~25,000 individuals), we predict the fate of an outbreak for a
spectrum of respiratory-borne diseases for which hospitalization is likely. As
reported in [22], the undirected-degree distribution is roughly exponential. The
in-degree and out-degree distributions are solely determined by the flow of
infected people into health care facilities. In this model, we make the simple
assumption that each non-HCW member of the population has three directed
edges pointing to randomly chosen HCWs in his or her local hospital. Thus a
typical individual has out-degree of three and in-degree of zero; and a typical
HCW has out-degree of zero and in-degree ranging from 409 to 530. Because the
mode of transmission (respiratory-borne) is the same for directed and undirected
edges in this network, we assume that there is a single average transmissibility
across the entire network, that is, Td = Tu = T .  (This assumption would not be
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appropriate for a disease in which directed and undirected edges represented
different modes of transmission, as with the example given earlier of HIV, which
can be transmitted both sexually and by needle sharing.)

Using the formulae derived above, we calculated the epidemic threshold for
this particular contact network, the expected size of an outbreak for diseases
below the epidemic threshold, and the probability and expected size of an
epidemic for diseases above the epidemic threshold (Figure 6). The inclusion of
one-directional disease transmission from the general public into health care
settings significantly increases the vulnerability of a population. The epidemic
threshold is lowered from 

� 

Tc = 0.0322 to 

� 

Tc = 0.0278. The lower the transmissibility
of the disease, the more pronounced the impact of hospital-based transmission.
For diseases close to the epidemic threshold, the probability of an epidemic in the
more realistic semi-directed network is more than double that of the simpler
undirected network. Note that if an epidemic does ensue, the expected size of an
epidemic is almost identical for the two contact networks.

We can also predict the role of HCWs in the spread of disease and the impact
of intervention. There are two basic categories of intervention [22]. Contact
reducing interventions modify the basic patterns of interaction. Within hospitals,
for example, suspected cases are isolated in negative pressure rooms and the
number of caregivers attending to such patients is limited. For the population at
large, public health officials may implement quarantines and travel restrictions.
Such interventions can be modeled by removing appropriate edges from the

Figure 6. Epidemiological Predictions on Undirected and Semi-
directed Contact Networks. This graph shows the expected size of small
outbreaks (left), the epidemic threshold (center), and the probability and
expected size of a large-scale epidemic (rate) for diseases with various
transmission rates (T) spreading through an urban contact network.
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contact network. Vaccination prior to an outbreak, which entails removing a
vertex and all of its edges from the contact network, is the extreme form of such
interventions. Transmission reducing interventions like the use of facemasks,
surgical gowns, and hand washing lower the probability of infecting existing
contacts.

During an outbreak of a new infectious disease, the patient burden to
hospitals may be so severe that health care officials cannot reasonably lower the
number of contacts between HCW’s and patients. Instead, as with SARS, they

often implement strict hygienic
precautions that lower
transmissibility [26, 27]. Figure 7
illustrates the impact of various
levels of transmission reducing
interventions within hospitals. Here
we assume that the average
transmission rate along directed
edges only (Td) is reduced. This
models hygienic precautions taken
by HCW’s while treating suspected
cases of the disease. The probability
of an epidemic will depend on
whether or not the initial carrier is a
HCW. As the stringency of
intervention increases, this
probability decreases only if the
initial carrier does not work in a
hospital setting. If a HCW becomes
infected, the threat remains high
because of a large number of
uncontrolled undirected contacts
with othe HCW’s and patients who
are hospitalized for other
conditions. These measures would
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Figure 7. Hospital-based intervention.
The probability of a large-scale epidemic
decreases as the HCW’s use increasingly
strict hygienic precautions for a disease
originally above the epidemic threshold,
Td = Tu = 0.1  (black bars). The x-axis

gives the percent reduction in
transmissibility along directed edges
between members of the general public
and HCW’s. The impact of the intervention
depends on whether the initial case occurs
in the general public (gray bars) or within
the hospital community (white bars).

Figure 8. Individual precautions. An
individual can lower the probability that he or
she will become infected during an epidemic by
taking measures that limit transmission. The x-
axis gives the percent reduction in
transmissibility between the individual and all
of his or her directed and undirected contacts
for a disease originally above the epidemic
threshold, Td = Tu = 0.1 . The average

likelihood of infection across the entire
population is shown in black bars. The benefit
of intervention is much greater for members of
the general public (gray bars) than for HCW’s
(white bars).
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therefore be more effective if they were extended to all HCW-patient interactions.
In sum, the use of transmission reducing interventions by HCW’s treating
suspected cases will protect the population only when they block transmission to
hospital personnel entirely.

In the absence of organized intervention, individuals may choose to take
precautions. Before much was known about SARS, HCW’s made individual choices
about prevention, and later in the outbreak, some members of the general public
voluntarily donned facemasks [28]. In Figure 8, we show the personal impact of
such precautions. On average, taking drastic transmission reducing measures can
significantly lower the probability of becoming infected during an epidemic. Yet
HCW’s are not nearly as protected by such individual measures as are members of
the general public.  This stems from the sheer numbers of potential contacts
between HCW’s and infected patients.

Discussion
We have derived a number of important epidemiological quantities for semi-
directed contact networks in which the average transmissibility can be different
for directed and undirected contacts. When there are, in fact, two different
transmission rates, the epidemic threshold becomes a line dividing the space of
transmission rates into a region in which there are only small outbreaks that die
out before reaching a sizable fraction of the population and another region in
which an epidemic is possible (Figure 3).

Above the epidemic threshold, semi-directed networks are more complicated
than undirected networks. When the in-degree and out-degree distributions differ,
then so do the probability of an epidemic and the expected incidence should one
occur. We have illustrated the differences between undirected, semi-directed, and
directed networks using three simple networks that share the same total number
of contacts. The gap between the probability and expected size of an epidemic is
non-existent for the undirected networks, quite large for the directed network,
and somewhere in between for the semi-directed network (Figure 5). In addition
to these fundamental epidemiological quantities, we have also calculated the
probability of an epidemic as a function of the degree of the first case and the
impact of control measures on the complying individual and the population as a
whole.

We have applied these methods to study the pivotal role of hospitals in the
spread of airborne diseases through communities. Worldwide outbreaks of SARS
between November 2002 and May 2003 increased public awareness about the
devastating human, economic and psychological impact of emerging infectious
diseases. SARS probably emerged in Southern China from an animal reservoir and
was transmitted primarily through respiratory droplets and secondarily through
aerosolized gastrointestinal secretions [29]. From the beginning, SARS exhibited
distinctive epidemiological patterns. During its initial four months of spread in
China, 32% of confirmed cases were HCW’s and 39% were food handlers (hence
the hypothesis that cooking wild animals was the primary route of SARS
transmission into human populations), yet there were no cases among
schoolchildren or housewives [18].
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As SARS spread out from China, the fate of outbreaks was tightly linked to
containment efforts within hospitals [26, 27]. For example, the first cases of SARS
in Vancouver and Toronto were infected almost simultaneously while staying in
Hotel M in Hong Kong. Whereas the Toronto case sparked a sizeable outbreak that
involved extensive hospital-based transmission, no secondary cases occurred from
the initial Vancouver case. The successful containment in Vancouver may have
stemmed from rigorous hospital precautions. In particular, the Vancouver
emergency room at which the first case sought treatment had recently
participated in an infection control audit that emphasized the importance of
barrier precautions for all acute onset respiratory infections [30-32]. In contrast,
patient zero in Toronto died at home as an undiagnosed case of SARS after
infecting several relatives. The first case to arrive in a Toronto hospital (on March
7, 2003) was a second-generation, locally acquired case.  He was treated with
nebulized salbutamol in the emergency room, where he remained for 18 hours
without special precautions. After 21 hours, he was placed in airborne isolation in
the ICU for possible tuberculosis, and droplet and contact precautions were not
applied until his fourth day in the hospital.  He died on March 13. By the time the
WHO issued a global alert on March 12, at least 14 persons in Toronto had been
infected with SARS-CoV through four generations of spread, much of which took
place from patients to HCW’s who were unaware of the special threat [33, 34].

Given the importance of hospitals to the transmission and control of diseases
like SARS, we have developed a mathematical framework that explicitly models
the flow of patients into hospitals during outbreaks. In particular, we demonstrate
that a semi-directed contact network can capture a conditional contact between a
layperson and a HCW that only occurs if the layperson becomes infected and goes
to the hospital. We can rapidly predict the spread of disease through such a
network using an extension of the methods developed in [3] and [22].

When we add interactions between HCW’s and infected patients to our model,
the predicted epidemic threshold – the critical transmission rate above which
outbreaks may evolve into full-blown epidemics – decreases and the risk of
infection for HCW’s dramatically increases. Furthermore, interventions targeted at
reducing the likelihood of transmission from patients and HCW’s may significantly
lower the likelihood of an epidemic. Thus, models that ignore hospital-based
transmission may underestimate both the threat of an epidemic and the impact of
control measures targeted at protecting HCW’s from the onslaught of patients
they may face during an outbreak.

The extension of contact network epidemiology to semi-directed graphs will
allow us to build and rapidly analyze more realistic models of infectious disease
transmission when there are asymmetries in disease causing contacts. As our
hospital example demonstrates, such models may provide important new insights
into epidemiological patterns and public health strategy.
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