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Scientific collaboration networks. I. Network construction and fundamental results
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Using computer databases of scientific papers in physics, biomedical research, and computer science, we
have constructed networks of collaboration between scientists in each of these disciplines. In these networks
two scientists are considered connected if they have coauthored one or more papers together. We study a
variety of statistical properties of our networks, including numbers of papers written by authors, numbers of
authors per paper, numbers of collaborators that scientists have, existence and size of a giant component of
connected scientists, and degree of clustering in the networks. We also highlight some apparent differences in
collaboration patterns between the subjects studied. In the following paper, we study a number of measures of
centrality and connectedness in the same networks.
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I. INTRODUCTION

A social network@1,2# is a set of people or groups each
which has connections of some kind to some or all of
others. In the language of social network analysis, the pe
or groups are called ‘‘actors’’ and the connections ‘‘ties
Both actors and ties can be defined in different ways depe
ing on the questions of interest. An actor might be a sin
person, a team, or a company. A tie might be a friends
between two people, a collaboration or common member
tween two teams, or a business relationship between com
nies.

Social network analysis has a history stretching back
least half a century, and has produced many results conc
ing social influence, social groupings, inequality, disea
propagation, communication of information, and indeed
most every topic that has interested 20th century sociolo
The Physical Reviewis, however, a physics journal. Wh
should a physicist be interested in social networks? Th
has, in fact, been a substantial surge of interest in so
networks within the physics community recently, as e
denced by the large body of papers on the topic—see R
@3–24# and references therein. The techniques of statist
physics in particular turn out to be well suited to the study
these networks. Profitable use has been made of a varie
physical modeling techniques@5–7#, exact solutions@8–13#,
Monte Carlo simulation@14–17#, scaling and renormaliza
tion group methods@15–17#, mean-field theory@18,19#, per-
colation theory@20–22#, the replica method@23#, generating
functions@20,22,24#, and a host of other techniques famili
to the readers of this publication.

In this paper and the following one, we make use of so
of these techniques in the study of some specific example
social networks. However, our subject matter will be of
terest to physicists for another reason: it’s about them
these two papers, we study networks in which the actors
scientists, and the ties between them are scientific collab
tions, as documented by the learned articles that they w

II. COLLABORATION NETWORKS

Traditional investigations of social networks have be
carried out through field studies. Typically one looks a
1063-651X/2001/64~1!/016131~8!/$20.00 64 0161
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fairly self-contained community such as a business comm
nity @25–27#, a school@28,29#, a religious or ethnic commu
nity @30#, and so forth, and constructs the network of ties
interviewing participants, or by circulating questionnaires.
study will ask respondents to name those with whom th
have the closest ties, probably ranked by subjective clo
ness, and may optionally call for additional informatio
about those people or about the nature of the ties.

Studies of this kind have revealed much about the str
ture of communities, but they suffer from two substant
problems that make them poor sources of data for the kin
approach to network analysis that physics has adopted. F
the data they return are not numerous. Collecting and c
piling data from these studies is an arduous process and
data sets contain no more than a few tens or hundred
actors. It is a rare study that exceeds 1000 actors. This m
the statistical accuracy of many results poor, a particular
ficulty for the large-system-size methods used in statist
physics. Second, they contain significant and uncontro
errors as a result of the subjective nature of responde
replies. What one respondent considers to be a friendshi
acquaintance, for example, may be completely different fr
what another respondent does. In studies of schoolchild
@28,29#, for instance, it is found that some children will claim
friendship with every single one of their hundreds of scho
mates, while others will name only one or two friend
Clearly these respondents are employing different definiti
of friendship.

Reliable statistics do exist for some other types of n
works. Examples include the world-wide web@14,31,32#,
power grids@5#, telephone call graphs@33#, and airline time-
tables @34#. These graphs are certainly interesting in th
own right, and furthermore might loosely be regarded as
cial networks, since their structure clearly reflects someth
about the structure of the society that created them. H
ever, their connection to the ‘‘true’’ social networks di
cussed here is tenuous at best and so, for our purposes,
cannot offer a great deal of insight.

A more promising source of data is the affiliation ne
work. An affiliation network is a network of actors con
nected by common membership in groups of some sort, s
©2001 The American Physical Society31-1
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as clubs, teams, or organizations. Examples that have
studied in the past include company CEOs and the clubs
frequent@26#, company directors and the boards of directo
on which they sit@25,35#, women and the social events the
attend@36#, and movie actors and the movies in which th
appear@5,34#. Data on affiliation networks tend to be mo
reliable than those on other social networks, since mem
ship of a group can often be determined with a precision
available when considering friendship or other types of
quaintance. Very large networks can be assembled in
way as well, since in many cases group membership ca
ascertained from membership lists, making time-consum
interviews or questionnaires unnecessary. A network
movie actors, for example, and the movies in which th
appear has been compiled using the resources of the Int
Movie Database@37#, and contains the names of nearly ha
a million actors—a much better sample on which to perfo
statistics than most social networks, although it is uncl
whether this particular network has any real social intere

In this paper we construct affiliation networks of scienti
in which a link between two scientists is established by th
coauthorship of one or more scientific papers. Thus
groups to which scientists belong in this network are
groups of coauthors of a single paper. This network is
some ways more truly a social network than many affiliat
networks; it is probably fair to say that most pairs of peo
who have written a paper together are genuinely acquai
with one another, in a way that movie actors who appea
together in a movie may not be. There are exceptions—s
very large collaborations, for example in high-energy ph
ics, will contain coauthors who have never even met—a
we will discuss these at the appropriate point. By and lar
however, the network reflects genuine professional inte
tion between scientists, and may be the largest social
work ever studied@38#.

The idea of constructing a network of coauthorship is
new. Many readers will be familiar with the concept of th
Erdős number, named after Paul Erdo˝s, the Hungarian math
ematician, one of the founding fathers of graph theo
among other things@39#. At some point, it became a popula
cocktail party pursuit for mathematicians to calculate h
far removed they were in terms of publication from Erdo˝s.
Those who had published a paper with Erdo˝s were given an
Erdős number of 1, those who had published with one
those people but not with Erdo˝s a number of 2, and so forth
The present author, for example, has an Erdo˝s number of 3,
via Robert Ziff and Mark Kac@40#. In the jargon of social
networks, your Erdo˝s number is the geodesic distance b
tween you and Erdo˝s in the coauthorship network. In rece
studies@41–43#, it has been found that the average Erd˝s
number is about 4.7, and the maximum known finite Erd˝s
number~within mathematics! is 15. These results are prob
ably influenced to some extent by Erdo˝s’ prodigious math-
ematical output: he published at least 1512 papers, more
any other mathematician ever except possibly Leonhard
ler. However, quantitatively similar, if not quite so impre
sive, results are in most cases found if the network is c
tered on another mathematician.~On the other hand, the fifth
most published mathematician, Lucien Godeaux, produ
01613
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644 papers, on 643 of which he was the sole author. He
no finite Erdős number@41#. Clearly sheer size of output i
not a sufficient condition for high connectedness.!

There is also a substantial body of work in bibliometri
~a specialty within information science! on extraction of col-
laboration patterns from publication data—see Refs.@44–48#
and references therein. However, these studies have no
far attempted to reconstruct entire collaboration netwo
from bibliographic data, concentrating more on organiz
tional and institutional aspects of collaboration@49#.

In this paper and the following one, we study networks
scientists using bibliographic data drawn from four public
available databases of papers.

~1! Los Alamos e-Print Archive: a database of unrefere
preprints in physics, self-submitted by their authors, runn
from 1992 to the present. This database is subdivided
specialties within physics, such as condensed matter
high-energy physics.

~2! Medline: a database of articles on biomedical resea
published in refereed journals, stretching from 1961 to
present. Entries in the database are updated by the datab
maintainers, rather than papers’ authors, giving it relativ
thorough coverage of its subject area. The inclusion of b
medicine is crucial in a study such as this one. In most co
tries biomedical research easily dwarfs civilian research
any other topic, in terms of both expenditure and hum
effort. Any study that omitted it would be leaving out th
largest part of current scientific research.

~3! Stanford Public Information Retrieval Syste
~SPIRES!: a database of preprints and published papers
high-energy physics, both theoretical and experimental, fr
1974 to the present. The contents of this database are pr
sionally maintained. High-energy physics is an interest
case socially, having a tradition of much larger experimen
collaborations than other disciplines.

~4! Networked Computer Science Technical Referen
Library ~NCSTRL!: a database of preprints in computer s
ence, submitted by participating institutions and stretch
back about ten years.

We have constructed complete collaboration networks
each of these databases separately, and analyzed them
a variety of techniques, some standard, some invented fo
purpose. A brief report of some of the work described h
has appeared previously as Ref.@50#.

III. FUNDAMENTAL RESULTS

For this study, we constructed collaboration networks
ing data from a five year period from 1995 to 1999 inclusiv
although data for much longer periods were available
some of the databases. There were several reasons for
this fairly short time window. First, older data are less co
plete than newer for all databases. Second, we wante
study the same time period for all databases, so as to be
to make valid comparisons between collaboration pattern
different fields. The coverage provided by both the Los A
mos Archive and the NCSTRL database is relatively po
before 1995, and this sets a limit on how far back we c
look. Third, networks change over time, both because peo
1-2
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TABLE I. Some fundamental statistics for the scientific collaboration networks studied here. Numb
parentheses are standard errors on the least significant figures.

Los Alamos e-Print Archive

Medline complete astro-ph cond-mat hep-th SPIRES NCSTR

Total number of papers 2163923 98502 22029 22016 19085 66652 131
Total number of authors 1520251 52909 16706 16726 8361 56627 119

First initial only 1090584 45685 14303 15451 7676 47445 10998
Mean papers per author 6.4(6) 5.1(2) 4.8(2) 3.65(7) 4.8(1) 11.6(5) 2.55(
Mean authors per paper 3.754(2) 2.530(7) 3.35(2) 2.66(1) 1.99(1) 8.96(18) 2.22
Collaborators per author 18.1(1.3) 9.7(2) 15.1(3) 5.86(9) 3.87(5) 173(6) 3.59(
Size of giant component 1395693 44337 14845 13861 5835 49002 639

First initial only 1019418 39709 12874 13324 5593 43089 6706
As a percentage 92.6(4)% 85.4(8)% 89.4(3) 84.6(8)% 71.4(8)% 88.7(1.1)% 57.2(1.9)%

2nd largest component 49 18 19 16 24 69 42
Clustering coefficient 0.066(7) 0.43(1) 0.414(6) 0.348(6) 0.327(2) 0.726(8) 0.496
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enter and leave the professions they represent and bec
practices of scientific collaboration and publishing chan
In this particular study we have not examined time evolut
in the network, although this is certainly an interesting to
for research and indeed is currently under investigat
@51,52#. For our purposes, a short window of data is des
able, to ensure that the collaboration network is roug
static during the study.

The raw data for the networks described here are c
puter files containing lists of papers, including autho
names and possibly other information such as title, abstr
date, journal reference, and so forth. Construction of the
laboration networks is straightforward. The files are par
to extract author names and as names are found a li
maintained of the ones seen so far—vertices already in
network—so that recurring names can be correctly assig
to extant vertices. Edges are added between each pa
authors on each paper. A naive implementation of this c
culation, in which names are stored in a simple array, wo
take timeO(pn), wherep is the total number of papers i
the database andn the number of authors. This, howeve
turns out to be prohibitively slow for large networks sincep
and n are of similar size and may be a million or mor
Instead therefore, we store the names of the authors in
ordered binary tree, which reduces the running time
O(p logn), making the calculation tractable, even for t
largest databases studied here.

In Table I we give a summary of some of the basic resu
for the networks studied here. We discuss these result
detail in the rest of this section.

A. Number of authors

The size of the databases varies considerably from abo
million authors for Medline to about ten thousand for N
STRL. In fact, it is difficult to say with precision how man
authors there are. One can say how many distinctnames
appear in a database, but the number of names is no
same as the number of authors. A single author may re
their name differently on different papers. For example, F
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Wright, Francis Wright, and Frank Lloyd Wright could all b
the same person. Also, two authors may have the same n
Grossman and Ion@41# point out that there are two America
mathematicians named Norman Lloyd Johnson, who
known to be distinct people but between whom compu
programs such as ours cannot hope to distinguish. Even
ditional clues such as home institution or field of specializ
tion cannot be used to distinguish such people, since m
scientists have more than one institution or publish in m
than one field. The present author, for example, has
dresses at the Santa Fe Institute and Cornell University,
publishes in both statistical physics and paleontology.

In order to control for these biases, we constructed t
different versions of each of the collaboration networks st
ied here, as follows. In the first, we identify each author
his or her surname and first initial only. This method
clearly prone to confusing two people for one, but will rare
fail to identify two names which genuinely refer to the sam
person. In the second version of each network, we iden
authors by surname and all initials. This method can mu
more reliably distinguish authors from one another, but w
also identify one person as two if they give their initia
differently on different papers. Indeed this second meas
appears to overestimate the number of authors in a data
substantially. Networks constructed in these two differe
fashions therefore give upper and lower bounds on the n
ber of authors, and hence also give bounds on many of
other quantities studied here. In Table I we give numbers
authors in each network using both methods, but for many
the other quantities we give only an error estimate based
the separation of the bounds.

B. Number of papers per author

The average number of papers per author in the vari
subject areas is in the range of around three to six over
five year period. The only exception is the SPIRES datab
covering high-energy physics, in which the figure is sign
cantly higher at 11.6. One possible explanation for this
that SPIRES is the only database that contains both prep
1-3
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and published papers. It is possible that the high figure
papers per author reflects duplication of papers in both
print and published form. However, the maintainers of
database go to some lengths to avoid this@53#, and a more
probable explanation is perhaps that publication rates
higher for the large collaborations favored by high-ene
physics, since a large group of scientists has more per
hours available for the writing of papers.

In addition to the average numbers of papers per autho
each database, it is interesting to look at the distributionpk
of numbersk of papers per author. In 1926, Alfred Lotk
@54# showed, using a data set compiled by hand, that
distribution followed a power law, with exponent approx
mately22, a result that is sometimes referred to as Lotk
law of scientific productivity. In other words, in addition t
the many authors who publish only a small number of
pers, one expects to see a ‘‘fat tail’’ consisting of a sm
number of authors who publish a very large number of
pers. In Fig. 1 we show on logarithmic scales histograms
each of our four databases of the numbers of papers
lished.~These histograms and all the others shown here w
created using the ‘‘all initials’’ versions of the collaboratio
networks.! For the Medline and NCSTRL databases the
histograms follow a power law quite closely, at least in th
tails, with exponents of 22.86(3) and 23.41(7),
respectively—somewhat steeper than those found by Lo
but in reasonable agreement with other more recent stu
@44,55,56#. For the Los Alamos Archive the pure power la
is a poor fit. An exponentially truncated power law do
much better:

pk5Ck2te2k/k, ~1!

wheret and k are constants andC is fixed by the require-
ment of normalization.~The probabilityp0 of having zero
papers is taken to be zero, since the names of scientists
have not written any papers do not appear in the databa!
The exponential cutoff we attribute to the finite time windo

FIG. 1. Histograms of the number of papers written by auth
in Medline, the Los Alamos Archive, and NCSTRL. The dott
lines are fits to the data as described in the text. Inset: the equiv
histogram for the SPIRES database.
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of five years used in this study, which prevents any o
author from publishing a very large number of papers. Lo
and subsequent authors who have confirmed his law have
usually used such a window.

It is interesting to speculate why the cutoff appears o
in physics and not in computer science or biomedici
Surely the five year window limits everyone’s ability to pu
lish very large numbers of papers, regardless of their are
specialization? For the case of Medline one possible ex
nation is suggested by an inspection of the list of the m
published authors: it transpires that most of these auth
have names that are known to occur frequently. It is th
conceivable that these apparently highly published auth
are really each several different people who have been c
flated in our analysis, and hence that there is not after all
fat tail in the distribution, only the illusion of one produce
by the large number of scientists with commonly occurri
names.~This does not, however, explain why the tail appe
to follow a power law.! This argument is strengthened by th
sheer numbers of papers involved. For instance, the num
1 author in the Medline database published, it appears, 1
papers, or about one paper a day, including weekends
holidays, every day for the entire course of our five ye
study. This seems to be an improbably large output.

Interestingly, the names that top the list in physics a
computer science are not ones that are known to be comm
Thus it is still unclear why the NCSTRL database shou
have a power-law tail, although this database is small an
is possible that it does possess a cutoff in the producti
distribution which is just not visible because of the limits
the data set.

For the SPIRES database, which is shown separatel
the inset of the figure, neither pure nor truncated power
fits the data well, the histogram displaying a significa
bump around the 100 paper mark. A possible explanation
this is that a small number of large collaborations publish
around this number of papers during the time period stud
Since each author in such a collaboration is then cred
with publishing 100 papers, the statistics in the tail of t
distribution can be substantially skewed by such practice

C. Numbers of authors per paper

Grossman and Ion@41# have given results showing tha
the average number of authors on papers in mathematics
increased steadily over the last 60 years, from a little ove
to its current value of about 1.5. Higher numbers still seem
apply to current studies in the sciences. Purely theoret
papers appear to be typically the work of two scientists, w
high-energy theory and computer science showing avera
of 1.99 and 2.22 authors per paper in our calculations.
databases covering experimental or partly experimental s
ject areas the averages are, not surprisingly, higher: 3.75
biomedicine, 3.35 for astrophysics, 2.66 for condensed m
ter physics. The SPIRES high-energy physics database, h
ever, shows the most startling results, with an average
8.96 authors per paper, obviously a result of the presenc
papers in the database written by very large collaboratio
~Perhaps what is most surprising about this result is actu

s

nt
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how small it is. The hundreds strong megacollaborations
CERN and Fermilab are sufficiently diluted by theoretic
and smaller experimental groups that the number is onl
and not 100.!

Distributions of numbers of authors per paper are sho
in Fig. 2, and appear to have power-law tails with wide
varying exponents of26.2(3) ~Medline!, 23.34(5) ~Los
Alamos Archive!, 24.6(1) ~NCSTRL!, and 22.18(7)
~SPIRES!. The SPIRES data, which are again shown in
separate inset, also display a pronounced peak in the d
bution around 200–500 authors. This peak presumably
responds to the large experimental collaborations that do
nate the upper end of this histogram.

The largest number of authors on a single paper was 1
~in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines rep
sented in the databases are emphasized still more by
numbers of collaborators that a scientist has, the total n
ber of people with whom a scientist wrote papers during
five year period. The average number of collaborators
markedly lower in the purely theoretical disciplines (3.87
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicin
15.1 in astrophysics!. But the SPIRES high-energy physic
database takes the prize once again, with scientists havin
impressive 173 collaborators, on average, over a five y
period. This clearly begs the question whether the hi
energy coauthorship network can be considered an accu
representation of the high-energy physics community at
it seems unlikely that many authors would know 173 c
leagues well.

The distributions of numbers of collaborators are sho
in Fig. 3. In all cases they appear to have long tails, but o
the SPIRES data~inset! fit a power-law distribution well,
with a low measured exponent of21.20. Note also the sma

FIG. 2. Histograms of the number of authors on papers in M
line, the Los Alamos Archive, and NCSTRL. The dotted lines a
the best fit power-law forms. Inset: the equivalent histogram for
SPIRES database, showing a clear peak in the 200 to 500 au
range.
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peak in the SPIRES data around 700—presumably aga
result of the presence of large collaborations.

For the other three databases, the distributions show s
curvature. This may, as we have previously suggested@50#,
be the signature of an exponential cutoff, produced o
again by the finite time window of the study. Redner@57# has
suggested an alternative origin for the cutoff using grow
models of networks—see Ref.@10#. Another possibility has
been put forward by Baraba´si @58#, based on models of the
collaboration process. In one such model@51#, the distribu-
tion of the number of collaborators of an author follows
power law with slope22 initially, changing to slope23 in
the tail, the position of the crossover depending on the len
of time for which the collaboration network has been evo
ing. We show slopes22 and 23 as dotted lines on the
figure, and the agreement with the curvature seen in the
is moderately good, particularly for the Medline data.~For
the Los Alamos and NCSTRL databases, the slope in the
seems to be somewhat steeper than23.!

E. Size of the giant component

In the theory of random graphs@24,59–61# it is known
that there is a continuous phase transition with increas
density of edges in a graph at which a ‘‘giant componen
forms, i.e., a connected subset of vertices whose size sc
extensively. Well above this transition, in the region whe
the giant component exists, the giant component fills a la
portion of the graph, and all other components~i.e., con-
nected subsets of vertices! are small, with average size inde
pendent of the numbern of vertices in the graph. We see
situation reminiscent of this in all of the graphs studied he
a single large component of connected vertices that fills
majority of the volume of the graph, and a number of mu
smaller components filling the rest. In Table I we show t
size of the giant component for each of our databases, b
as total number of vertices and as a fraction of system s

-

e
or

FIG. 3. Histograms of the number of collaborators of authors
Medline, the Los Alamos Archive, and NCSTRL. The dotted lin
show how power-law distributions with exponents22 and 23
would look on the same axes. Inset: the equivalent histogram for
SPIRES database, which is well fitted by a single power law~dotted
line!.
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In all cases the giant component fills around 80% or 90%
the total volume, except for high-energy theory and co
puter science, which give smaller figures. A possible exp
nation of these two anomalies may be that the correspon
databases give poorer coverage of their subjects. The he
high-energy database is quite widely used in the field,
overlaps to an extent with the longer established SPIR
database, and it is possible that some authors neglect i
this reason@53#. The NCSTRL computer science databa
differs from the others in this study in that the preprints
contains are submitted by participating institutions, of wh
there are about 160. Preprints from institutions not part
pating are mostly left out of the database, and its coverag
the subject area is, as a result, incomplete.

We also show in Table I the size of the second larg
component in each of our networks. This component is in
cases far smaller than the giant component—typically c
sisting of only 20 or 30 authors—in qualitative agreeme
with our expectations from the theory of random graphs.

The figure of 80–90 % for the size of the giant compon
is a promising one. It indicates that the vast majority of s
entists are connected via collaboration, and hence via
sonal contact, with the rest of their field. Furthermore, as
show in the following paper@62#, the path through the net
work that connects two scientists is typically very short. D
spite the prevalence of journal publishing and conference
the sciences, person-to-person contact is still of paramo
importance in the communication of scientific informatio
and it is reasonable to suppose that the scientific enterp
would be significantly hindered if scientists were not so w
connected to one another.

F. Clustering coefficients

An interesting idea circulating in the social networ
community currently is that of ‘‘transitivity,’’ which, along
with its sibling ‘‘structural balance,’’ describes symmetry
interaction among trios of actors. ‘‘Transitivity’’ has a di
ferent meaning in sociology from its meaning in mathem
ics and physics, although the two are related. It refers to
extent to which the existence of ties between actorsA andB
and between actorsB andC implies a tie betweenA andC.
The transitivity, or more precisely the fraction of transitiv
triples, is that fraction of connected triples of vertices whi
also form ‘‘triangles’’ of interaction. Here a connected trip
means an actor who is connected to two others. In the p
ics literature, this quantity is usually called the clusteri
coefficientC @5#, and can be written

C5
33number of triangles on the graph

number of connected triples of vertices
. ~2!

The factor of 3 in the numerator compensates for the fact
each complete triangle of three vertices contributes th
connected triples, one centered on each of the three vert
and ensures thatC51 on a completely connected graph. O
all random graphsC5O(n21) @5,24#, wheren is the number
of vertices, and hence goes to zero in the limit of large gra
size. In social networks it is believed that the clustering
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efficient will take a nonzero value even in very large n
works, because there is a finite~and probably quite large!
probability that two people will be acquainted if they ha
another acquaintance in common. This is a hypothesis
can test with our collaboration networks. In Table I we sho
values of the clustering coefficientC, calculated from Eq.
~2!, for each of the databases studied, and as we see
values are indeed large, as large as 0.7 in the case o
SPIRES database, and around 0.3 or 0.4 for most of
others.

There are a number of possible explanations for th
high values ofC. First of all, it may be that they indicate
simply that collaborations of three or more people are co
mon in science. Every paper that has three authors cle
contributes a triangle to the numerator of Eq.~2! and hence
increases the clustering coefficient. This is, in a sense
trivial form of clustering, although it is by no means social
uninteresting.

In fact it turns out that this effect can account for som
but not all of the clustering seen in our graphs. One c
construct a random graph model of a collaboration netw
that mimics the trivial clustering effect, and the results in
cate that only about a half of the clustering that we see
result of authors collaborating in groups of three or mo
@24#. The rest of the clustering must have a social expla
tion, and there are some obvious possibilities.

~1! A scientist may collaborate with two colleagues ind
vidually, who may then become acquainted with one anot
through their common collaborator, and so end up colla
rating themselves. This is the usual explanation for transi
ity in acquaintance networks@1#.

~2! Three scientists may all revolve in the same circles
read the same journals, attend the same conferences—an
a result, independently start up separate collaboration
pairs, and so contribute to the value ofC, although only the
workings of the community, and not any specific perso
interaction, is responsible for introducing them.

~3! As a special case of the previous possibility—and p
haps the most likely case—three scientists may all work
the same institution, and as a result may collaborate with
another in pairs.

Interesting studies could no doubt be made of these p
cesses by combining our network data with data on, for
stance, institutional affiliations of scientists. Such studies a
however, perhaps better left to the social scientists.

The clustering coefficient of the Medline database is w
thy of brief mention, since its value is far smaller than tho
for the other databases. One possible explanation of
comes from the unusual social structure of biomedical
search, which, unlike the other sciences, has tradition
been organized into laboratories, each with a ‘‘principal
vestigator’’ supervising a large number of postdoctoral as
ciates, students, and technicians working on differ
projects. This organization produces a treelike hierarchy
collaborative ties. A tree has no loops in it, and hence
triangles to contribute to the clustering coefficient. Althou
the biomedicine hierarchy is certainly not a perfect tree
may be sufficiently treelike for the difference to show up
the value ofC. Another possible explanation comes from t
1-6
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generous tradition of authorship in the biomedical scienc
It is common, for example, for a researcher to be mad
coauthor of a paper in return for synthesizing reagents u
in an experimental procedure. Such a researcher will in m
cases have a less than average likelihood of developing
collaborations with their collaborators’ friends, and therefo
of increasing the clustering coefficient.

IV. CONCLUSIONS

In this paper we have studied social networks of scient
in which the actors are authors of scientific papers, and a
between two actors represents coauthorship of one or m
papers. Drawing on the lists of authors in four database
papers in physics, biomedical research, and computer
ence, we have constructed explicit networks for papers
pearing between the beginning of 1995 and the end of 19
We have calculated a large number of statistics for our n
works, including typical numbers of papers per author,
thors per paper, and numbers of collaborators per autho
the various fields. We note that the distributions of the
quantities roughly follow a power-law form, although the
are some deviations which may be due to the finite ti
window used for the study. We also note that in all the n
works studied there exists a giant component of scien
any two of whom can be connected by a short path of in
mediate collaborators.

A number of differences are apparent between the fie
studied. Researchers in experimental disciplines are foun
have larger numbers of collaborators on average than th
in theoretical disciplines, with high-energy physicists havi
easily the largest average number of collaborators. We
A
-

et

y
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find that in biomedicine the degree of network clustering
much lower than in other fields, possibly indicating diffe
ences in social organization between biomedical and o
research communities.

In the following paper@62#, we continue the study of the
networks introduced here, looking at a variety of nonloc
network properties. Among other things, we look at the ty
cal distances between pairs of scientists through the netw
evaluate a number of centrality indices for our networks, a
propose a method for calculating the strength of collabo
tion between scientists.
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Proc. Natl. Acad. Sci. U.S.A.97, 11 149~2000!.

@35# G.F. Davis and H.R. Greve, Am. J. Sociol.103, 1 ~1997!.
@36# A. Davis, B.B. Gardner, and M.R. Gardner,Deep South~Uni-

versity of Chicago Press, Chicago, 1941!.
@37# http://www.imdb.com/
@38# If one considers the worldwide web to be a social network@an

issue of some debate—see B. Wellman, J. Salaff, D. D
itrova, L. Garton, M. Gulia, and C. Haythornthwaite, Ann
Rev. Sociol.22, 213 ~1996!#, then it certainly dwarfs the net
works studied here, having, it is estimated, about a bill
vertices at the time of writing.

@39# P. Hoffman,The Man Who Loved Only Numbers~Hyperion,
New York, 1998!.
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