Known misprints in Equilibrium Statistical Physics

L. M. Sander

May 1, 2014

As of 5/01/14:

1. Equation 1.10: the magnetic moment, μ is a vector, even though it isn't marked as one. Consider it to be $\vec{\mu}$.
2. Chapter 1 problem 2: there should be a thermal average of the potential thus:

$$
\frac{1}{2} \sum_{i, j}<\phi\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|>\right.
$$

3. Chapter 3, after Equation 3.10: the volume of an n-sphere is:

$$
\mathbb{V}=C_{d} R^{d}
$$

4. Chapter 3, Equation 3.11 should read:

$$
\mathrm{W}=\frac{\Delta V^{N}}{h^{3 N} N!} \frac{(2 m \pi E)^{3 N / 2}}{E(3 N / 2-1)!}
$$

5. Chapter 3 Eq. 3.61: $S \circ$ accounts for other degrees of freedom, and can be a function of energy.
6. Chapter 3, problem 6 :

$$
\begin{aligned}
& T d S=C_{v} d T+T\left(\frac{\partial p}{\partial T}\right)_{V} d V \\
& T d S=C_{p} d T+T\left(\frac{\partial V}{\partial T}\right)_{p} d p
\end{aligned}
$$

7. Chapter 3, problem 9: $E=-N J \tanh \left(J / k_{B} T\right)$
8. Chapter 4, Equation 4.3: The N ! is the number of indistinguishable particles in the system. If there are several species with numbers N_{1}, N_{2}, \ldots then the factor is $\prod_{i} N_{i}!$.
9. Chapter 4, Figure 4.1: The y-axis should be $C_{v} / 3 N K_{B} T$.
10. Chapter 4, Section 4.4.1: Step 1:

For a classical system with $3 N$ generalized coordinates, q and their corresponding momenta, p calculate:
11. Chapter 4, Equation 4.45:First line $p=n k_{B} T\left(1+\left[b-a / k_{B} T\right] n\right)$
12. Chapter 5, Section 5.3: Step 5:
\ldots in a classical system with $3 N$ generalized coordinates, q and their corresponding momenta, p calculate:
13. Chapter 5, above Equation 5.19: $g=\lambda^{3} / k_{B} T$
14. Chapter 6, Section 6.1.4: The first equation should read:

$$
\left\langle n_{i}\right\rangle=\frac{g}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1} \rightarrow g e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

15. Chapter 6, Figure 6.7: The slope of the dashed gray line ...
16. Chapter 6 , problem 5 should read: $s / k_{B}=(d+1) \ldots$
