

Hyperbaric Chambers Larry "Harris" Taylor, Ph.D. Diving Safety Coordinator, U of Michigan

Your Instructor

U of MI Diving Safety Coordinator AAUS sanctioned Diving Safety Officer Internationally rated 3 - star instructor (CMAS)

National Master Scuba Instructor (President's Council)

- > 100 Diving Certifications
- > 200 Diving Publications

> 1,200,000 visitors to "Diving Myths & Realities" web site Library: one of the best resources in North America

Scuba Diver since 1977 Scuba Instructor since 1980 DAN Instructor since 1991 EAN_x Instructor since 1992 Ph.D. Biochemistry

Lecture is a Democracy! You control speed with your questions

. .

There are no "stupid questions" !

The only "Dumb Question" is the one that is unanswered 'cause it was not asked The "Dumbest Question" is the unasked question that could've solved a problem

Socratic Method: Asking & Answering Questions

Still one of the best learning tools

Knowledgeable, Physically Fit Divers

LPT

HBO Hyperbaric Oxygen Therapy

Purpose of a Hyperbaric Chamber

Provides Physical Containment For Elevated Pressures Allows use of breathing gases other than air Treatment for barotrauma emergencies Treatment of a variety of non-diving related maladies Treatment of wounds Research in diving physiology Testing equipment used in diving

Hyper = higher Baric = pressure

Hyperbaric Oxygen Therapy

Mechanical Effects of Pressure: Pressure reduces bubble size May remove bubbles blocking circulation May reduce nerve conduction blocks Promotes re-absorption of bubbles Reduces further bubble growth Some oxygenation of hypoxic tissues May promote immune system response

Hyperbaric Oxygen Therapy Dive malady treatment can be expensive: Can be tens of thousands of dollars or more Cost of transport to chamber ar **Ambulance (land, sea, or air) Hospital costs ER** admission, diagnosis, tests Gases **Medications Medical staff Chamber treatment(s) Possible hospital stay DAN diver's insurance is wise**

LPT

Hyperbaric Oxygen Therapy

Diver injury treatment cannot sustain cost of chamber facility FDA HBOT approved treatments for chamber facilities: Radiation tissue damage Diabetic lower extremity wounds (diabetic foot ulcers) Failed skin grafts and flaps **Crush injury & other acute traumatic ischemias Necrotizing soft tissue infection Carbon monoxide poisoning and smoke inhalation Cyanide poisoning Central retinal artery occlusion Non-healing wounds Gas gangrene Brain injuries / dysfunction Refractory bone infections Diving Injuries**

Hyperbaric Oxygen Therapy Wound Healing is considered "Miraculous" For Skin grafts and thermal burns

Burn Scarring

1 Year After HBOT

Davis & Host, Hyperbaric Oxygen Therapy, p.238

Some History

Robert Boyle

Irish Alchemist Father of modern chemistry Founder of Royal Society

Pressure - Volume relationship (1660)

New Experiments: Phsico-Mechanical Touching the spring of air and their effects (1660) The Sceptical Chymst (Air, Earth, Fire, & Water not elements) (1661)

In an evacuated chamber Observed bubble in snake's eye Reduced Pressure Changes Physiology First documentation of "bubble trouble" Bell produced no sound Air needed to carry sound

1662: Nathaniel Henshaw

English physician and theologian

Built Chambers (Henshaw's Domicilium) Used organ bellows to alter internal pressure both hyper- and hypo- baric (most likely little change from atmospheric pressure)

Published "Aero-Chalinos" (1664)

"In times of good health this domicilium is proposed as a good expedient to help digestion, to promote insensible respiration, to facilitate breathing and expectoration and consequently, of excellent use for prevention of most affections of the lungs."

His work was basically ignored by the medical community

1832: French Pneumatic Chamber

Physicians: Tabarie (1832) Junod (1834) Pravez (1837) "Compressed Air Baths" 2-4 ata **Claimed "baths" were panacea for:** lung diseases such as tuberculosis, laryngitis, tracheitis, and pertussis and **Other maladies:** deafness, cholera, rickets, menorrhagia and conjunctivitis

1856: Georg von Liebig

"Pneumatic Chambers" 5-11 chambers Max capacity 64 patients

At Bad Reicherthall Spa

1875: Carlo Forlanini

Lavish Italian "Pneumatic Institutes"

1879: J.A. Fontaine

French Surgeon Mobile Operating Room 2-4 ata ~20 surgeries: faster healing and no infections

Origin of term "The Bends"

Building of Brooklyn Bridge (1870's) ~ 100 Caisson workers experienced pain on surfacing

Assumed postures similar to women dancing "Grecian Bend" Wanted to return to work to lessen the pain Being "Bent" was an insult

Suggested: Caisson's disease and Sponge Diver's disease Same malady

1877: Paul Bert

Studied Caisson's Disease and Sponge Diver's Disease Concluded they had the same mechanism

Nitrogen from air at higher pressures dissolved in body tissues Suggested slow ascent from bottom to surface prevented symptoms

Demonstrated:

Hyperbaric treatment relieved pain Oxygen facilitated pain recovery But Oxygen at higher pressures was "toxic"

> **CNS Oxygen Toxicity: Termed "Paul Bert Effect"**

1878: Published "La Pression Barométrique"

1917: Drager's First Portable Chamber

Allowed home treatments Hand-powered compressor For those who could not access "air baths"

Early 1900's: John Scott Haldane

Scottish physiologist

Used goats as a model for decompression sickness Developed first successful set of decompression tables Deduced that nitrogen gas followed Henry's Law in dissolving in tissues

Tables compiled that did not bend goat forelegs Goats bent foreleg was used as indication of being "bent"

Late 1920's: Cleveland Hyperbaric Hotel

Opened in 1928 Designed by Orval Cunningham Operated at 2 ata Assumed hyperbaric environment would cure bacterial infections

Banned by US Medical Community 1934 – closed 1942 – demolished for metal content

Oxygen Toxicity

Oxygen Necessary For Life Metabolism: narrow oxygen partial pressure window Too little oxygen (hypoxic) \rightarrow no life $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$ Too much oxygen (hyperoxic) \rightarrow toxic reaction Cellular components $+ O_2 \rightarrow$ "Bad stuff" (ROS)

Hyperoxia pO₂ > 1.6 ata

Hyperoxia

Reactive Oxygen Species (ROS) Constantly Produced Direct result of oxygen molecule's chemical reactivity

ROS are biologically very destructive Numerous biological defenses against ROS SOD Superoxide Dismutase GTP Glutathione Peroxidase Lots of anti-oxidant molecules

Hyperoxia Effects

Higher pO₂ increases ROS concentrations

Le Châtelier's Principle

Increase partial pressure: drive reaction to the right Cellular components + O₂ → "Bad stuff" (ROS)

Hyperoxia Effects

Symptoms depend on pO₂ and exposure time

Hyperoxia Effects on CNS

VENTID – C

- V Vision
- **E Ears**
- N Nausea
- T Twitching
- I Irritability
- **D Dizziness**
- **C Convulsions**

ConVENTID

Not a progression ... maybe no warning May start with convulsions Twitching usually starts at lower lip

Historically, CNS Effects termed "Paul Bert Effect"

Hyperoxia Effects on CNS

Oxygen toxicity effects may be enhanced by: Heavy exercise Breathing dense gas Breathing against resistance Increased CO₂ buildup Chilling or hypothermia Water immersion (as opposed to "chamber diving")

Individual tolerance to oxygen toxicity varies over time Tolerance varies from individual to individual

Oxygen tolerance tests no longer considered valid

Hyperoxia Effects on CNS Anecdotal suggestion that Sudafed increases seizure risk (seizures are a side effect in children) **Other concerns:** anti-motion drugs (especially transderm (scopolamine)) aspirin, caffeine, viagra, nitro heart medication **Never rigorously studied** Best to avoid diving with any drugs

Biological Defenses Occasionally Sold to Divers No evidence that ingestion of unprotected SOD has any physiological effects Ingested SOD is broken down into amino acids before being absorbed SOD bound to wheat proteins MIGHT improve its ROS protection

Nitrox Therapy is a power workout Nitric Oxide promoter An absolute contraindication for diving (Nitric oxide implicated in oxygen toxicity convulsions)

Recent Findings suggest eating dark chocolate bar ~ 30 minutes pre-dive offers some protection from oxidative cell damage

Whole Body Oxygen Toxicity Formerly Pulmonary Toxicity (Lorrain Smith Effect) Contrasted to CNS Toxicity (Paul Bert Effect)

CNS: Rapid Onset Whole Body Slow Onset

Whole Body Oxygen Toxicity No-deco stop diving concerned primarily with CNS toxicity

Whole Body a concern for: Extended range Deco diving Intensive, multiple dive operations Mixes with high O₂ concentration

Onset: breathing high pO₂ (> 0.5 ata) for hours **Relief: breathing pO**₂ < 0.5 ata

Primarily effects the lungs Typically, not a concern in standard range diving

Whole Body Oxygen Toxicity Symptoms

Pulmonary Chest pain or discomfort Coughing Chest tightness Fluid in the lungs Reduction in vital capacity

Non-pulmonary Skin numbness and itching Headache Dizziness Nausea Visual disturbances Diminished aerobic capacity Body optimized for 21% O₂ High pO₂ alters tissue structure Lung tissue Thickens Becomes less pliable Reduces vital capacity

Oxygen Toxicity Units (OTU)

Based on decreased lung vital capacity while breathing $100 \% O_2$ 1 OTU = Breathing 100% O_2 for 1 minute Pulmonary Oxygen Tolerance Curve (4% decrement in vital capacity)

At constant depth:

OTU = t [$(pO_2 - 0.5) / 0.5$]^{-0.83}

Ascending and descending:

OTU = 0.27 t [{(pO_{2 f} - 0.5) / 0.5)}^{1.83} - {(pO_{2 i} - 0.5) / 0.5 }^{1.83}] pO_{2 f} - pO_{2 i}

time (t) in minutes
pO₂ at constant depth in absolute atmospheres
pO_{2 f} at final condition in absolute atmospheres
pO_{2 I} at initial condition in absolute atmospheres
Solving involves integration of pressure over time → best done by computer

Oxygen Toxicity Units (OTU)

EAN_x diving below OTU threshold, so typically not tracked

OTU Daily (24 hours) Limits Allowed Daily Exposure: 1440 Typical DCS Treatments:

 Table 5: 297

 Table 6: 607

 Table 6A: 820

 EAN_X Diving: ~ 40 - 300

 Extended Range Diving: ~850

 Typical Technical: ~300 - 400

Divers Track OTU's By Computer Planning Software In-water Dive Computers OTU Tables OTU Spreadsheets

Treatment Tables

Treatment Tables:

Time / depth profiles defining treatment protocols Standard protocols for hyperbaric medicine

Table Selection:Chamber capabilitiesHospital / medical supportGases availableNature of injuryPatient responsePhysician Evaluation

LPT

Non-Diving Uses of Hyperbaric Chambers

Indication	Treatment Table	Minimum # Treatments	Maximum # Treatments
Carbon Monoxide Poisoning and Smoke Inhalation	Treatment Table 5 or Table 6 as recommended by the DMO	1	5
Gas Gangrene (Clostridial Myonecrosis)	Treatment Table 5 TID × 1 day then BID × 4-5 days	5	10
Crush Injury, Compartment Syndrome, and other Acute Traumatic Ischemia	Treatment Table 9 TID × 2 days BID × 2 days QD × 2 days	3	12
Enhancements of Healing in Selected Wounds	Treatment Table 9 QD or BID	10	60
Necrotizing Soft-Tissue Infections (subcutaneous tissue, muscle, fascia)	Treatment Table 9 BID initially, then QD	5	30
Osteomyelitis (refractory)	Treatment Table 9 QD	20	60
Radiation Tissue Damage (osteoradinecrosis)	Treatment Table 9 QD	20	60
Skin Grafts and Flaps (compromised)	Treatment Table 9 BID initially, then QD	6	40
Thermal Burns	Treatment Table 9 TID × 1 day, then BID	5	45
QD = 1 time in 24 hours	BID = 2 times in 24 hours	TID = 3 times in 24 hours	

LPT

TABLE 1A

TABLE 1A NOTES-

- Use treatment of pain-only decompression sickness when oxygen cannot be used and pain is relieved at a depth less than 66 feet.
- 2. Descent rate-25 ft/min.
- 3. Ascent rate-1 minute between stops.
- 4. Time at 100 feet-includes time from the surface.
- If the piping configuration of the chamber does not allow it to return to atmospheric pressure from the 10 foot stop in the one minute specified, disregard the additional time required.

Total Depth Time Breathing Elapsed Time (feet) (minutes) (minutes) Media 100 30 Air 30 80 12 Air 43 60 30 Air 74 50 30 Air 105 40 30 Air 136 30 60 Air 197 20 60 Air 258 10 120 Air 379 0 1 Air 380

Air Table For DCS or Air Embolism

TABLE 1A DEPTH/TIME PROFILE

- Use treatment of pain-only decompression sickness when oxygen cannot be used and pain is relieved at a depth greater than 66 feet.
- 2. Descent rate-25 ft/min.
- 3. Ascent rate-1 minute between stops.
- 4. Time at 165 feet includes time from the surface.
- If the piping configuration of the chamber does not allow it to return to atmospheric pressure from the 10 foot stop in the one minute specified, disregard the additional time required.

Depth (feet)	Time (minutes)	Breathing Media	Elapsed Time (minutes)
165	30	Air	.30
140	12	Air	43
.120	12	Air	56
100	. 12	Air	69
80	12	Air	. 82
60	30	Air	113
50	30	Air	144
40	30	Air	175
30	120	Air	296
20	120	Air	417
10	240	Air	658
0	. 1	Air	659

TABLE 2A DEPTH/TIME PROFILE

Air Table For DCS or Air Embolism

Time

30 min.

12 min.

12 min.

12 min.

12 min.

30 min.

30 min.

30 min.

12 hr.

2 hr.

2 hr.

Breathing

Media

Air

Air

Air

Air

Air

Oxygen

(or air)

Oxygen

(or air)

Oxygen

(or air)

Air

Air

Air

Depth

(feet)

165

140

120

100

80

60

50

40

30

20

10

Total

Elapsed Time

(hrs:min)

0:30

0:43

0:56

1:09

1:22

1:53.

2:24

2:55

14:56

16:57

18:58

- Use treatment of serious symptoms when oxygen cannot be used and symptoms are relieved within 30 minutes at 165 feet.
- 2. Descent rate as fast as possible.
- 3. Ascent rate-1 minute between stops.
- 4. Time at 165 feet-includes time from the surface.
- If the piping configuration of the chamber does not allow it to return to atmospheric pressure from the 10 foot stop in the one minute specified, disregard the additional time required.

TABLE 3 DEPTH/TIME PROFILE

Air Table For DCS or Air Embolism

- Use—treatment of serious symptoms or gas embolism when oxygen cannot be used or when symptoms are not relieved within 30 minutes at 165 feet.
- 2. Descent rate-as fast as possible.
- 3. Ascent rate-1 minute between stops.
- 4. Time at 165 feet-includes time from the surface.
- No modification or extension of this table is permitted except by a Diving Medical Officer.
- If the piping configuration of the chamber does not allow it to return to atmospheric pressure from the 10 foot stop in the one minute specified, disregard the additional time required.

TABLE 4 DEPTH/TIME PROFILE

Depth feet)	Time	Breathing Media	Elapsed Time (hrs:min)
165	1/2 to 2 hr.	Air	2.00
140	1/2 hr.	Air	2.31
120	1/2 hr.	Air	3.02
100	1/2 hr.	Air	3:33
80	. ½ hr.	Air	4:04
60	6 hr.	Air	10:05
50	6 hr.	Air	16:06
40	6 hr.	Air	22:07
30	. 11 hr.	Air	33:08
30	1 hr.	Oxygen (or air)	34:08
20	1 hr.	Air	35:09
20	1 hr.	Oxygen (or air)	36:09
10	1 hr.	Air	37:10
.10	1 hr.	Oxygen (or air)	38:10
0	· 1 min.	Oxygen	38:11

Tota

Air Table For DCS or Air Embolism

- Use-treatment of pain-only decompression sickness when oxygen can be used and symptoms are relieved within 10 minutes at 60 feet. Patient breathes oxygen from the surface.
- 2. Descent rate-25 ft/min.

Depth (feet)

- Ascent rate-1 ft/min. Do not compensate for slower ascent rates. Compensate for faster rates by halting the ascent.
- 4. Time at 60 feet begins on arrival at 60 feet.
- If oxygen breathing must be interrupted, allow 15 minutes after the reaction has entirely subsided and resume schedule at point of interruption.
- If oxygen breathing must be interrupted at 60 feet, switch to TABLE 6 upon arrival at the 30 foot stop.
- Tender breathes air throughout. If treatment is a repetitive dive for the tender or tables are lengthened, tender should breathe oxygen during the last 30 minutes of ascent to the surface.

Depth (feet)	Time (minutes)	Breathing Media	Total Elapsed Time (minutes)
60	20	Oxygen	. 20
60	5	Air	25
60	20	Oxygen	45
60 to 30	30	Oxygen	75
30	5	Air	80
30	20	Oxygen	100
30	5	Air	105
30 to 0	30	Oxygen	135

TABLE 5 DEPTH/TIME PROFILE

Time (minutes)

Air Table For DCS or Air Embolism Minimal Oxygen Table

- Use treatment of gas embolism when oxygen can be used and symptoms are relieved within 15 minutes at 165 feet.
- 2. Descent rate-as fast as possible.
- Ascent rate-1 ft/min. Do not compensate for slower ascent rates. Compensate for faster ascent rates by halting the ascent.
- 4. Time at 165 feet-includes time from the surface.
- 5. If oxygen breathing must be interrupted, allow 15 minutes after the reaction has entirely subsided and resume schedule at point of interruption.
- Tender breathes air throughout. If treatment is a repetitive dive for the tender or tables are lengthened, tender should breathe oxygen during the last 30 minutes of ascent to the surface.

TABLE 5A DEPTH/TIME PROFILE

Time (minutes)

Depth (feet)	Time (minutes)	Breathing Media	Elapsed Tim (minutes)
165	15	Air	15
65 to 60	4	Air	19
60	20	Oxygen	39
60	5	Air	. 44
60	20	Oxygen	64
60 to 30	30	Oxygen	94
30	5	Air	99
30	20	Oxygen	119
30	5	Air	124
30 to 0	- 30	Oxygen	154

Air Table For DCS or Air Embolism Deep Extension

- Use treatment of gas embolism when oxygen can be used and symptoms moderate to a major extent within 30 minutes at 165 feet.
- 2. Descent rate as fast as possible.
- Ascent rate-1 ft/min. Do not compensate for slower ascent rates. Compensate for faster ascent rates by halting the ascent.
- 4. Time at 165 feet includes time from the surface.
- If oxygen breathing must be interrupted, allow 15 minutes after the reaction has entirely subsided and resume schedule at point of interruption.
- Tender breathes air throughout. If treatment is a repetitive dive for the tender or tables are lengthened, tender should breathe oxygen during the last 30 minutes of ascent to the surface.
- Table 6A can be lengthened by an additional 25 minutes at 60 feet (20 minutes on oxygen and 5 minutes on air) or an additional 75 minutes at 30 feet (15 minutes on air and 60 minutes on oxygen), or both.

TABLE 6A DEPTH/TIME PROFILE

epth eet)	Time (minutes)	Bre`athing Media	Total Elapsed Time (minutes)
165	30	Air	30
to 60	. 4	Air	34
60	20	Oxygen	54
60	5	Air	50
60	.20	Oxygen	79
60	5	Air	84
60	20	Oxygen	104
60	5	Air	109
) to 30	30	Oxygen	139
30	15	Air	. 154
30	60	Oxygen	214
30	15	Air	229
30	60	Oxygen	289
0 to 0	30	Oxygen	319 <-

Air Table For DCS or Air Embolism Extended Deep Extension

Used only on Diving Medical Officer recommendation

Oxygen Treatment For Residual Symptoms CO or CN Poisoning Smoke Inhalation

COMEX Table Deep Diving (Saturation) Contractor

Proprietary Tables: Competitive Advantage

In-Water Recompression Considered non-viable in North America

Pyle In-water Recompression Table

Time (minutes)

Need: Large Gas Supply Full Face Mask Communication Cold Protection

Recompression Chambers

Chambers Are Pressurized Containers

Made of Steel, Aluminum or Lucite

Must meet standards / codes of:
ASME (American Society Mechanical Engineers)
PVHO (Pressure Vessels For Human Occupancy)
NFPA (National Fire Protection Association)
CGA (Compressed Gas Association)

Chamber Specifications

Diving Community: Diameter of the Chamber Medical Community: Patient Capacity 1 Bunk = 3 people

Personal Chambers

Small Can be air-lifted Often inflatable Home use for non-diving maladies

Monoplace Chambers

Typically pressurize to 60 fsw or less (often with O₂) Used primarily for non-diving injury treatments Lucite pressure-containment vessel

Single Lock Chamber

Typically only room for one person No ability for medical staff to enter / exit chamber

Single Lock Chamber Schematic from USN Dive Manual

- 1. Single Lock
- 2. Air Supply two valve
- 3. Air Supply one valve
- 4. Exhaust two valve
- 5. Exhaust one valve
- 6. Oxygen Supply
- 7. Relief Valve
- 7A. Gag Valve
- 8. Viewports (3)

Design Pressure - 100 psig

- 9. Stuffing Tubes for Cables
- 10. Lights (4)
- 11. Medical Lock 18 inch dia.
- 12. Transmitter-Receiver
- 13. Door Dog Handwheel
- 14. Pressure Gage outside
- 15. Pressure Gage inside
- 16. Shelf 6" x 2'

Principal Locations - Repair/salvage ships and some shore-based facilities.

Original Hydrostatic Test Pressure - 200 psig

Dual-Lock Chamber

Two separate, but connected pressurized containers Allows movement of personnel / equipment between chambers

Dual-Lock Chamber Schematic from USN Dive Manual

- 1. Inner Lock
- 2. Outer Lock
- 3. Air Supply Connection
- 4. Air Supply two valve
- 5. Air Supply one valve
- 6. Inner Lock Pressure Equalizing Valve
- 7. Exhaust two valve
- 8. Exhaust one valve
- 9. Exhaust Outlet
- 10. Oxygen Manifold
- 11. Relief Valve 110 psig

Design Pressure - 100 psig

Original Hydrostatic Pressure - 200 psig

11A. Gag Valve

- 12. Viewports inner lock (4)
- 13. Viewports outer lock (2)
- 14. Transmitter Receiver (2)
- 15. Lights inner lock (2)
- 16. Lights outer lock
- 17. Pressure Gage outside (2 each lock)
- 18. Pressure Gage inside (1 each lock)
- 19. Power Distribution Panel
- 20. Clock (optional)
- 21. Door Dogs

~Volume – inner lock = 136 cubic feet – outer lock = 65 cubic feet Total = 201 cubic feet

Principal Locations - Repair/salvage ships and most shore-based facilities.

Former U of Michigan Chamber

Used to train chamber attendants and instructors Used for treating diving injuries Donated to Guam when Lee Somers Retired

Dual-Lock Deck Chamber

Chamber Facility Physical Plant

Physical Plant Components

One or More Pressure Vessels (Chambers) Pressurization (Compressors) System Gas Supply / Analysis Plumbing Electrical System Communication System Environmental Control Fire Suppression System Patient Care

Chamber Doors

O-Ringed Seal Designed to "seal" with pressure (Prevents accidental opening)

Medical Lock

Small appendage to chamber Allows convenient passage of:

Food Body waste Medical supplies Equipment Instruments

Acrylic Viewports

Allows viewing interior of chamber

Temperature

Entering gas: Cooled with chilled water Heated with hot water / steam

Descending: Adiabatic compression increases temperature Ascending: Adiabatic expansion decreases temperature

Environmental Controls / Instrumentation

Accurate pressure / depth Temperature Humidity Time Gas analysis Total hydrocarbons % O₂ in exhaust % O₂ in chamber % Other gases TV monitor

Communication

Lock-to-Lock Lock to Outside Voice Powered

Gas Supply: Compressors

Main and backup medical grade air compressors Compressed gas cylinders for each gas used in treatment

Gas Supply: Gas Cylinders

Compressed gas cylinders for each gas used in treatment Enough for two complete chamber fills at maximum pressure

2		
GAS	USA	INTERNATION AL
oxygen	Green	White
Carbon dioxide	Gray	Gray
Nitrous oxide	Blue	Blue
helium	Brown	Brown
Nitrogen	Black	Black
air	Yellow	White & black

Gas Supply: Storage

Compressors feed storage cylinder bank Gas to chamber from storage cylinders

USCG Specs Bring to operating pressure: 2 ata / min to 60 fsw 1ata / min thereafter

Air Standards: O₂: 20-22 % by volume CO₂: < 1000 ppm CO: < 20 ppm Solids: < 5 mg / m³ Hydrocarbons: < 25 ppm

Must:

Meet supply demands Identify: Function Contents Maximum pressure Direction of flow Gas Flow: Enter at Top Exit at Bottom Assists particle removal Toxic gasses heavier than air

Piping

Schematics from USN Manual

OX = Oxygen HE OX = Helium Oxygen

Piping Schematic-Oxygen and Helium-Oxygen Supplies

ALP	1.	Two-Valve Air Supply-outside valve-OL
ALP	2.	One-Valve Air Supply-OL
ALP	3.	Two-Vaive Air Supply-outside valve-IL
ALP	4.	One-Valve Air Supply-IL
ALP	5.	Two-Valve Air Supply-inside valve-OL
ALP	6.	Two-Valve Air Supply-inside valve-IL
ALP	7.	Inner/Outer Lock Equalization Valve
EXH-1	8.	Two-Valve Exhaust-outside valve-OL
EXH-2	9.	One-Valve Exhaust-OL
EXH-3	10.	One-Vaive Exhaust-IL
EXH-4	11	Two-Valve Exhaust-outside valve-IL
EYH-5	12	Two-Valve Exhaust-inner valve-OL
EXH-6	13.	Two-Valve Exhaust-inner valve-IL

Piping Schematic—Chamber Air Supply and Exhaust

Fire Suppression

Everything inside must be non-flammable (Rigid NFPA Codes) Water sprinkler system Can deliver to pressurized chamber Non-flammable gases Spark free clothing of occupants

Extinguishers: Foam Water

Records Maintained

Time Vs: Chamber Pressure Temperature Humidity pO₂ in exhaust pCO₂ in chamber Gas concentrations Changes to chamber Medical Treatments

Staff

Chamber Supervisor Overseas all chamber functions Communications with rescue responders Interacts with medical team

Responsible for all aspects of chamber operations

Tender Inside: Manages patient Outside: Assists in chamber operation

Staff

Physician Evaluates patient Assigns treatment protocol Oversees all medical aspects Recorder Maintains all records Monitors time Informs staff of needed chamber changes

EMT's / First Responders Stabilize patient for transport Transport to chamber Operate under medical supervision

References:

Gerhard Haux: History of Hyperbaric Chambers Lee Somers: Hyperbaric Chamber Attendant's Handbook Dick Rutowski: Recompression Chamber Life Support Manual

Images:

Those taken by author: Bronson Hospital Chamber Facility Catalina Island Chamber Facility Google Images

Woo Hoo! All done!

Dive long and prosper

LPT