

Answers to EAN_x Review By Larry ''Harris'' Taylor, Ph.D.

Myths

1. NOAA I is 32 % oxygen. It can also be written as EAN_{32} .

2. NOAA II is 36 % oxygen. It can also be written as EAN_{36} .

3. OEA is abbreviation for Oxygen Enriched Air.

- 4. True or **False**: Nitrox is safer than air.
- 5. True or False: Nitrox is for deeper diving.
- 6. True or False: Nitrox eliminates all risk of DCS in diving.
- 7. True or False: Using nitrox prevents hyperbaric treatment for DCS.
- 8. True or **False**: Using nitrox prevents narcosis.
- 9. True or False: Using nitrox is too complicated for sport divers.

EAN_x Advantages

1. EAN_x provides a (**longer**, shorter) no-decompression required bottom time than the same dive on air.

2. EAN_x provides a (longer, shorter) repetitive dives without deco obligation than the same dives on air.

3. EAN_x provides a (longer, **shorter**) surface intervals between dives than the same dives on air.

4. EANx no-deco times compared to air is termed the "(Decompression, Physiological) Advantage."

5. Diving EAN_x on air is equivalent to diving air at a (**shallower**, deeper) depth.

6. Using EANx while diving with air tables/computers is the "(Decompression, Physiological) Advantage."

7. For most non-working dives, divers report being (more, less) fatigued than the same dive on air.

8. In addition to monitoring time and depth , EAN_x dive planning adds concerns about **oxygen** exposure

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Medical Matters

1. Air is primarily a mix of **78 or 79** % nitrogen and **21** % oxygen.

2. Two major maladies associated with too much on-board nitrogen are DCS and narcosis.

3. Martini's Law is considered (valid, not valid) by the hyperbaric medical community.

4. Meyer-Overton suggests anesthesia effects can be explained by gasses dissolving in lipid layer of nerves.

5. Oxygen has a diminished narcotic effect because it is **consumed** in metabolism.

6. Signs and symptoms of narcosis in warm water include:

Tendency to giggle Tunnel vision (syncope) Idea fixation (repetitive behaviors) Shortened attention span Declining neuro-muscular coordination Numb lips Inability to concentrate

7. Signs and symptoms of narcosis in cold water include:

Sense of being stalked ("It" is out there ... somewhere) Loss of confidence (sense of helplessness) Intense anxiety

8. Narcosis problems are exacerbated by:

cold work load (CO₂) anxiety fatigue drugs alcohol menses (?)

9. Narcosis impairment can be relieved by (ascending, descending) in the water column.

10. High CO₂ loads are a (**major**, minor) problem in diving.

11. Sources of excess CO₂ include:

Contaminated Gas (very rare) Work load exceeding ventilation "Skip Breathing" Poor ventilation (equipment dead space) snorkel poor regulator full face mask

12. You are a bit winded and getting ready to dive. Your regulator does not seem to be working. You should:

Rest (imagine STOP sign) and breathe slowly to vent excess carbon dioxide

13. Two primary symptoms of excess carbon dioxide:

Respiratory starvation Headache in center of forehead

- 14. At depth, the pN_2 is (**much larger**, the same, or much smaller) than pO_2 .
- 15. Gases move into / out of tissues until the partial pressures of all gases are (<, =. >) ambient.
- 16. Symptoms of DCS depend on the number of bubbles and their location.
- 17. The primary symptom of DCS is joint pain.
- 18. The majority of DCS cases show symptoms within 3 hours.
- 19. Symptoms of DCS type I (Pain Only) include:

Musculoskeletal Insult		
limb or joint pain	1. A	
Itching	20 A	
Skin Rash		
Localized swelling		
20. Symptoms of DCS type II (CNS) include:		

Spinal Involvement	
numbness / tingling	Inner ear (staggers)
bi-lateral paralysis	Lungs (Chokes)
no bladder function	Cardiac arrest
loss of sexual response	Type I on ascent

21. The heart condition in ~ 25% of the population that appear implicated in serious CNS lesions is the PFO.

22.DCS Risk factors include:

older age	strenuous exercise
obesity	cold
dehydration	repetitive dives
poor circulation (tight clothing)	multiple ascents / descents on same dive
illness	multi day diving
scar tissue	history of DCS
alcohol	being female (?)
fatigue	misuse of dive tables / dive computers

23. The best prevention of swimmer's ear is a post dive rinse with vinegar.

Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Physics

1. Pressure in physics is defined as a force per unit area.

2. An atmosphere is the total weight of an air column directly above point of measurement.

3. One atmosphere equals:

760	mm Hg
14.7	psi
1.01325	bar
33	fsw
34	ffw

4. Convert the US cylinder pressure below (psi) to rest of the world pressure (bar)

3000 psi x
$$1 \text{ atm} x$$
 $1.01325 \text{ bar} = 207 \text{ bar}$ 14.7 psi 1 atm 1 atm 2000 psi x $1 \text{ atm} x$ $1.01325 \text{ bar} = 149 \text{ bar}$ 14.7 psi 1 atm 1000 psi x $1 \text{ atm} x$ 14.7 psi $1.01325 \text{ bar} = 69 \text{ bar}$ 14.7 psi 1 atm 500 psi x $1 \text{ atm} x$ $1.01325 \text{ bar} = 34 \text{ bar}$ 14.7 psi 1 atm

5. Convert European cylinder pressure (bar) to US equivalent (psig):

100 bar x
$$\frac{1}{1.01325}$$
 atm x $\frac{14.7 \text{ psig}}{1 \text{ atm}}$ = 1451 psig

 200 bar x $\frac{1}{1.01325}$ bar x $\frac{14.7 \text{ psig}}{1 \text{ atm}}$ = 2902 psig

6. Convert the following depths to atmospheres absolute (ata):

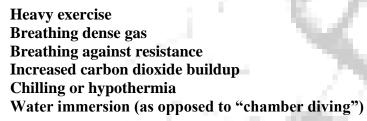
$$101 \text{ fsw} = \frac{101 \text{ fsw}}{33 \text{ fsw} / \text{ atm}} = 3.1 \text{ atm} + 1 \text{ atm} = 4.1 \text{ ata}$$
$$56 \text{ ffw} = \frac{56 \text{ ffw}}{34 \text{ ffw} / \text{ atm}} = 1.6 \text{ atm} + 1 \text{ atm} = 2.6 \text{ ata}$$

7. Total pressure in a gas mix is the sum of the pressures of all components in a mix.

8. Boyle's Law is important for understanding changes in volume as the diver changes depth.

9. Charles' Law is important for understanding changes in volume as diver changes water temperature.

10. Guy-Lussac's Law is important for understanding changes in cylinder pressure with temperature.


11. Henry's Law is important for understanding decompression obligation.

12. The amount of gas dissolved in a tissue is a function of the partial pressure of each individual gas.

13. In cold water, (more, less) gas dissolves in tissues.

Oxygen Toxicity

- 1. Hypoxia generally results when the pO_2 is less than 0.16 ata.
- 2. Hyperoxia generally results when the pO_2 is greater than 1.6 ata.
- 3. Symptoms of hypoxia include:
 - **R** = **Restlessness**
 - A = Anxiety
 - T = Tachycardia
 - B = Bradycardia
 - **E** = **Extreme Restlessness**
 - **D** = **D**yspnea
- 4. Hyperoxia is a function of pO_2 and exposure time.
- 5. Hyperoxia symptoms are remembered by the pneumonic:
 - V = Vision
 - E = Ears
 - N = Nausea
 - T = Twitching
 - I = Irritability
 - **D** = **Dizziness**
 - **C** = **Convulsions**
- 6. Hyperoxia effects are exacerbated by:

- 7. Major concern of CNS toxicity involves an underwater seizure.
- 8. An inexpensive protection of tissues from oxidative damage is eating chocolate just before diving
- 9. Whole Body (pulmonary) toxicity is of concern when breathing high pO2 (> 0.5 ata) for hours.
- 10. Symptoms of whole body oxygen toxicity include:

Pulmonary	Skin numbness and itching
Chest pain or discomfort	Headache
Coughing	Dizziness
Chest tightness	Nausea
Fluid in the lungs	Visual disturbances
Reduction in vital capacity	Diminished aerobic capacity

- 11. The oxygen toxicity unit (OTU) is based on decreased lung vital capacity.
- 12. 1 OTU is defined as Breathing 100% O₂ for 1 minute.

- 13. OTU's are best tracked by **computer.**
- 14. For diving EAN_x more shallow than 130 fsw, it is (necessary, **not necessary**) to track OTU accumulation.

Dive Planning

- 1. The optimum EAN_x mix minimizes N_2 (limit deco obligation) while keeping pO_2 below toxic levels.
- 2. The pO_2 scientific standard for extended diving is a maximum **1.6** ata.
- 3. The current NOAA and recreational diving pO_2 standard maximum is 1.4 ata.
- 4. The NOAA single dive time limit for a pO_2 of 1.4 at a is 150 minutes
- 5. The NOAA single dive time limit for a pO_2 of 1.6 at a is 45 minutes
- 6. Increasing pO_2 in the breathing mix (increases, **decreases**) bottom time.
- 7. a. The pO_2 for EAN₃₂ at 94 fsw is

```
pO_2 = 0.32 [(94 \text{ fsw }/33 \text{ fsw/atm}) +1 \text{ atm}]
pO_2 = 1.23 \text{ ata}
```

b. The oxygen single dive exposure limit for this dive is

```
pO_2 of 1.25 ata \rightarrow 195 minutes
```

8. a. You dive for 40 minutes at a pO_2 of 1.4 ata. The % CNS exposure for this dive is

<u>40 minutes dive</u> x 100 = 27 % 150 minute limit

b. You have a surface interval of two hours and 10 minutes. Your % CNS exposure is now

Start @ 30 % → - 12 % → 18 %

c. You now dive for 27 minutes at a pO_2 of 1.6 ata. Your % CNS for this dive is

<u>27 minute dive</u> x 100 = 60 % **45 minute limit**

d. The total oxygen exposure for this dive is

$$18 \% + 60 \% = 78 \%$$

9. The MOD for EAN_{34} for a pO₂ of 1.4 ata is

$$MOD = [(1.4 \text{ ata}) - 1] 33 \text{ fsw} = 103 \text{ fsw}$$

0.34

10. The pO_2 of EAN₃₂ at 110 fsw:

$$pO_2 = 0.32 [(110 fsw) + 1 atm] = 1.39 ata \rightarrow 1.4 ata 33 fsw/ atm$$

11. The best mix for 85 fsw at a pO_2 exposure of 1.4 ata is

$$FO_2 = \frac{1.4}{(85 \text{ fsw}/ 33 \text{ fsw/atm} + 1 \text{ atm})} = 0.39$$

Dive Planning Tools

- 1. The NOAA EAN_x Dive Tables are based on US Navy Air Tables using the EAD concept.
- 2. EAD is based on (nitrogen, oxygen) content and not on the actual physical depth.
- 3. Using EAD, the diver is assumed to be (more shallow, deeper) than actual physical depth.
- 4. EAD is the basis for the (physiological, decompression) advantage of EAN_x.
- 5. a. The EAD for EAN₃₂ at 82 fsw is

EAD = $\left[\frac{(82 \text{ fsw} + 33 \text{ fsw})(1 - 0.32)}{0.79}\right] - 33 \text{ fsw} = 66 \text{ fsw}$

- b. For this dive, you can use US Navy or NOAA air tables entering at 70 fsw.
- 6. Dive computers are most useful for (multi-level, constant depth) diving.
- 7. The two options for using a dive computer:

Use a computer designed for EANx Use EANx while monitoring dive with an air based dive computer

8. Desirable computer features:

Allow for a variety of nitrox mixes Compute the deco profile based on user entered % O₂ Provide MOD limits based on the mix and pO₂ Track Oxygen and Nitrogen Allow extended dive time by adjusting pO₂ on ascent

9. When diving EANx with an air computer, the diver must know

MOD of mix Maximum oxygen exposure time

- 10. Air computers (will, will not) alert the diver when MOD has been exceeded.
- 11. DCS hits have been associated with (increasing, decreasing) ambient pressure.

Dive Tables Problems use the NOAA (2015) Nitrox Tables

- 1. Dive tables assume a +/- 1 % tolerance of oxygen concentration.
- 2. When using EAD, always use on-site analyzed cylinder oxygen concentration.
- 3. Always use next (greatest, smallest) values for depth and time.
- 4. a. The rep group for an air dive to 56 fsw for 38 minutes is:

Enter table at 60 fsw for 39 minutes → G

- b. After a SIT of 2 hours, the rep group is E
- c. The available bottom time for 80 fsw is **17 minutes**.
- d. After 14 minutes at 80 fsw, the rep group is (14 + 22) = 36 minutes at 80 fsw \rightarrow I
- e. After a 3:20 SIT, the rep group is F
- 5. a. The rep group for an EAN_{32} dive to 56 fsw for 38 minutes is:

Enter table at 60 fsw for 41 minutes → F

- b. After a SIT of 2 hours, the rep group is **D**.
- c. The available bottom time for 80 fsw is **28 minutes**
- d. After 14 minutes at 80 fsw, the rep group is (14 + 20) = 34 minutes at 80 fsw \rightarrow H
- e. After a 3:20 SIT, the rep group is E.

6. a. The rep group for an EAN₃₆ dive to 56 fsw for 38 minutes is:

Enter table at 60 fsw for 39 minutes → E

- b. After a SIT of 2 hours, the rep group is C.
- c. The available bottom time for 80 fsw is **41 minutes**
- d. After 14 minutes at 80 fsw, the rep group is (14 + 19) = 33 minutes at 80 fsw \rightarrow F
- e. After a 3:20 SIT, the rep group is C.

7. You dive EAN₃₂ to 88 fsw for 44 minutes. Your emergency deco obligation is 10 minutes at 20 fsw

8. Your gas analysis indicates 30.9 % oxygen. The time allowed at 52 fsw is

EAD = $[(52 \text{ fsw} + 33 \text{ fsw})](1.000 - 0.309)] - 33 \text{ fsw} \Rightarrow \text{EAD} = 41 \text{ fsw})$ 0.79

Air table for 50 fsw allows 92 minutes

- 9. NOAA Tables assume a descent rate of 75 fsw / min and an ascent rate of 30 fsw / min.
- 10. NOAA tables assume the dive site of less than **1000 feet** altitude.

11. a. The rep group for an air dive to 56 fsw for 38 minutes is:

Enter table at 60 fsw for 39 minutes **→** G

- b. After a SIT of 2 hours, the rep group is E
- c. The available bottom time for 80 fsw is **17 minutes**.
- d. After 14 minutes at 80 fsw, the rep group is (14 + 22) = 36 minutes at 80 fsw \rightarrow I
- e. After a 3:20 SIT, the rep group is **F**
- f. As an F air diver, how much maximum no-deco time is available on EAN₃₆ for a dive to 54 fsw?

Enter EAN₃₆ table 3 as an F → 108 minutes maximum

g. As an F air diver, you dive EAN_{36} to 54 fsw for 45 minutes. Your rep group is now:

Enter EAN₃₆ table 3 as an F → (45 minutes + 55 minutes) → 100 minutes @ 55 fsw → K

- h. After 4:30, your rep group is F
- i. You now want to dive on EAN 32 to 43 fsw. Your maximum no deco time is 168 minutes.
- j. You dive to 43 fsw for 45 minutes, your rep group is now:

Enter EAN₃₂ table 3 as a F diver: (64 minutes + 45 minutes) → 109 minutes @ 45 fsw → J

Handling Gases

- 1. Oxygen (burns, **does not burn**).
- 2. Oxygen (increases, decreases) the ability of other chemicals to burn.
- 3. Adiabatic compression is a concern because this process (heats, cools) gases.
- 4. Always open gas valves (slowly, quickly).
- 5. a. Compressed air contains two undesirable components for preparing EAN_x:

Water Oil

b. The concerns of these components are:

water: can condense, freeze, mechanically jam regulator oil; with oxygen, explosive hazard

- 6. The preferred CGA grade of air is **J**.
- 7. Most recreational scuba uses a "modified E" standard.
- 8. The preferred grade of oxygen for EAN_x blending is **aviation** grade.
- 9. An industry term for air used in EANx blending is Oxygen Compatible Air (OCA).
- 10. A measure of water in a breathing mix is the dew point.
- 11. A high dew point in a breathing gas can result in ice formation from adiabatic expansion.
- 12. Partial pressure blending is (most, least hazardous) method of preparing EANx.
- 13. For partial pressure blending the cylinder and valve need to be oxygen cleaned.
- 14. Membrane / Stik methods typically are used for EAN_x mixtures having less than 40 % oxygen.
- 15. Continuous blending can be used for concentrations up to 95 % oxygen.
- 16. Medical oxygen cylinders should be filled at an FDA licensed facility.
- 17. EAN_x cylinders must be clearly marked with the word "Nitrox" on a 4" green and yellow label.
- 18. Non-yellow cylinders have an additional 1" yellow band above and below the Nitrox label.
- 19. The data on an EAN_x tag includes:

Date filled % Oxygen Cylinder pressure MOD Analyzer User

20. A ball valve should never be used on oxygen line.

Oxygen Cleaning

- 1. NOAA standards allow EANx mixes of < 40 % to be treated as air.
- 2. Equipment used with oxygen mixes > 40 % must be
 - a. oxygen compatible
 - b. oxygen clean
- 3. The two types of oxygen cleaning are:
 - a. formal
 - b. informal
- 4. Scuba equipment is cleaned to (formal, informal) protocols.
- 5. Oxygen cleaning removes
 - Particulates
 - Oils
 - Organics
- 6. Visual inspection for oxygen cleaning uses (ordinary white light, UV light.)
- 7. Any scuba gear used with >40% must be oxygen clean.
- 8. A cylinder certified as oxygen clean is used for ordinary air. Before using with EAN_x, it should be **Recleaned**

Recertified

9. The color of O-rings (is, **is not**) a reliable indicator of acceptability for use with EAN_x mixes.

Gas Analysis

1. Typical scuba oxygen analyzers use (polarographic, electrochemical) detection.

2. Every oxygen analysis (degrades, has no effect, improves) oxygen electrode response.

3. The standard is the community is to replace the electrode at a max of (**one**, two, five) years.

4. Meter sensitivity should be + / - 0.1 %

5. Factors which can degrade analyzer performance include:

Humidity / Moisture	Mechanical connection to analyzer
Too high a flow rate (Should be ~ 1 L / min)	Sensor degradation with time
Physical abuse	Expense
Major temperature fluctuations	Sensor Obsolescence

6. a. Your analyzer indicates a 30.4 % oxygen for a purchased NOAA I cylinder. Your pO₂ 1.40 ata MOD is

 $MOD = [\underline{1.40 \text{ ata}} - 1 \text{ atm}] 33 \text{ fsw} / \text{ atm} = 118 \text{ fsw}$ 0.304

b. Your extended exposure pO_2 1.60 ata MOD is

$$MOD = [\underline{1.60 \text{ ata}} - 1 \text{ atm}] 33 \text{ fsw} / \text{atm} = 141 \text{ fsw}$$

0.304

7. Your analyzer indicates a 37.4 % oxygen for a purchased NOAA II cylinder. Your pO2 1.40 ata MOD is

 $MOD = [\underline{1.40 \text{ ata}} - 1 \text{ atm}] 33 \text{ fsw} / \text{ atm} = 91 \text{ fsw}$ 0.374

b. Your extended exposure pO_2 1.60 ata MOD is

$$MOD = [\underline{1.60 \text{ ata}} - 1 \text{ atm}] 33 \text{ fsw} / \text{atm} = 108 \text{ fsw}$$

0.374

8. Your calibration using air reads 19.6 % oxygen. You should (continue to use, replace) the oxygen sensor.

9. Two on-site analyzers report a NOAA I cylinder as having 30.5 and 33.8 % oxygen.

a. your deco obligation is dictated by the **30.5** % value.

Use NOAA 31 % Table, or EAD calculation for FN₂ of 0.695

b. your MOD is tracked using the 33.8 % value. For a pO2 of 1.4 ata, this is

 $MOD = [\underline{1.40 \text{ ata}} - 1 \text{ atm}] 33 \text{ fsw atm} = 104 \text{ fsw}$ 0.338

10. Every EAN_x cylinder should be analyzed:

On filling On pick-up At the site