Drell-Yan Scattering at Fermilab: SeaQuest and Beyond

Wolfgang Lorenzon

(1-September-2011) Transversity-2011 Workshop

Introduction

- SeaQuest: Fermilab Experiment E906
 - Sea quarks in the proton
 - Sea quarks in the nucleus
 - other topics

Beyond SeaQuest

```
Polarized Drell-Yan at FNAL?
```

 $\left. f_{1T}^{\perp q} \right|_{DIS} = - \left. f_{1T}^{\perp q} \right|_{D-Y}$

This work is supported by

With help from Chiranjib Dutta (U-M), and Paul Reimer (Argonne)

Drell Yan Process

- Cleanest probe to study hadron structure:
 - hadron beam and convolution of parton distributions
 - no QCD final state effects
 - no fragmentation process
 - ability to select sea quark distribution
 - allows direct production of transverse momentum-dependent distribution (TMD) functions (Sivers, Boer-Mulders, etc)

Flavor Structure of the Proton

Flavor Structure of the Proton: Brief History

 Sea quark distributions are difficult for Lattice QCD

Flavor Structure of the Proton: What creates Sea?

 There is a gluon splitting component which is symmetric

 $\overline{d}(x) = \overline{u}(x) = \overline{q}(x)$

- $\overline{d} \overline{u}$
 - Symmetric sea via pair production from gluons subtracts off
 - No gluon contribution at 1st order in α_s
 - Non-perturbative models are motivated by the observed difference
- A proton with 3 valence quarks plus glue cannot be right at any scale!!

Flavor Structure of the Proton: Models

Non-perturbative models: alternate d.o.f.

Meson Cloud Models

Quark sea from cloud of 0 mesons:

Chiral-Quark Soliton Model

- quark d.o.f. in a pion mean-field: $u \rightarrow d + \pi^+$
- nucleon = chiral soliton
- one parameter: dynamically generated quark mass
- expand in $1/N_c$:

 $\rightarrow \overline{d} > \overline{u}$

Statistical Model

- nucleon = gas of massless partons
- few parameters: generate parton distribution functions
- input: QCD: chiral structure DIS: u(x) and d(x)

$$\rightarrow \overline{d} > \overline{u}$$

 \Rightarrow important constraints on flavor asymmetry for polarization of light sea

$$\Delta \overline{q} = 0$$

$$\left|\Delta \overline{u} \cong -\Delta \overline{d} > 0\right|$$

Flavor Structure of the Proton: What creates Sea?

Comparison with models

- High x behavior is not explained
- Perturbative sea seems to dilute meson cloud effects at large x (but this requires large-x gluons)

- Measuring the ratio is powerful
- Are there more gluons and thus symmetric anti-quarks at higher x?
- Unknown other mechanisms with unexpected x-dependence?

SeaQuest: Fermilab Experiment E906

- E906 will extend Drell-Yan measurements of E866/NuSea (with 800 GeV protons) using upgraded spectrometer and 120 GeV proton beam from Main Injector
- Lower beam energy gives factor 50 improvement "per proton" !

 \rightarrow Drell-Yan cross section for given x increases as 1/s

- \rightarrow Backgrounds from J/ Ψ and similar resonances decreases as s
- Use many components from E866 to save money/time, in NM4 Hall
- Hydrogen, Deuterium and Nuclear Targets

Fermilab E906/Drell-Yan Collaboration

Abilene Christian University Donald Isenhower, Tyler Hague Rusty Towell, Shon Watson

Academia Sinica Wen-Chen Chang, Yen-Chu Chen Shiu Shiuan-Hal, Da-Shung Su

Argonne National Laboratory John Arrington, <u>Don Geesaman</u>^{*} Kawtar Hafidi, Roy Holt, Harold Jackson David Potterveld, <u>Paul E. Reimer</u>^{*} Josh Rubin KEK Shinya Sawada

Ling-Tung University Ting-Hua Chang

Los Alamos National Laboratory Christian Aidala, Gerry Garvey, Mike Leitch, Han Liu, Ming Liu Pat McGaughey, Joel Moss, Andrew Puckett National Kaohsiung Normal University Rurngsheng Guo, Su-Yin Wang

> University of New Mexico Imran Younus

RIKEN

Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa

Rutgers University

Lamiaa El Fassi, Ron Gilman, Ron Ransome, Brian Tice, Ryan Thorpe

Makins, R. Evan McClellan, Jen-Chieh Peng

*Co-Spokespersons

Jan, 2009

Collaboration contains many of the E-866/NuSea groups and several new groups (total 17 groups as of Aug 2011)

Drell-Yan Spectrometer for E906 (25m long)

Drell-Yan Spectrometer for E906 (Reduce, Reuse, Recycle)

- St. 4 Prob Tubes: Homeland Security via Los Alamos
- St. 3 & 4 Hodo PMTs: E866, HERMES, KTeV
- St. 1 & 2 Hodoscopes: HERMES
- St. 2 Support Structure: KTeV
- St. 2 & 3 tracking: E866
- Target Flasks: E866
- Cables: KTeV

Hadron Absorber: FNAL
 Shielding blocks: FNAL old beamline
 2nd Magnet: KTeV mom analysis magnet
 Solid Fe Magnet Coils: E866 SM3 Magnet
 Solid Fe Magnet FLUX Return Iron: E866 SM12 Magnet

Expect to start collecting data: November 2011

Fixed Target Drell-Yan: What we really measure

 10^{-1}

-3

10

10

- Measure yields of μ⁺μ⁻ pairs from different targets
- Reconstruct p_{γ} , $M^2_{\gamma} = x_b x_t s$
- Determine x_b, x_t
- Measure differential cross section

 $\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{x_b x_t s} \sum_{q \in \{u,d,s,\ldots\}} e_q^2 \left[\overline{q}_t(x_t)q_b(x_b) + Q_s(x_b)\right]$

- Fixed target kinematics and detector acceptance give x_b > x_t
 - $\Rightarrow x_{\rm F} = 2p_{\parallel}^{\gamma}/s^{1/2} \approx x_{\rm b} x_{\rm t}$
 - Beam valence quarks probed at high x

Target sea quarks probed at low/intermediate x

Fixed Target Drell-Yan: What we really measure - II

q μ^+ μ^-

 Measure cross section ratios on Hydrogen, Deuterium (and Nuclear) Targets

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

SeaQuest Projections for d-bar/u-bar Ratio

Sea quark distributions in Nuclei

- EMC effect from DIS is well established
- Nuclear effects in sea quark distributions may be different from valence sector
- Indeed, Drell-Yan apparently sees no Antishadowing effect (valence only effect)

Sea quark distributions in Nuclei - II

- SeaQuest can extend statistics and x-range
- Are nuclear effects the same for sea and valence distributions?
- What can the sea parton distributions tell us about the effects of nuclear binding?

Where are the exchanged pions in the nucleus?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases
- Models must explain both DIS-EMC effect and Drell-Yan
- SeaQuest can extend statistics and x-range

 \rightarrow nuclear effects may be important in D/H

Fermilab Seaquest Timelines

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Fermilab Stage II approval in December 2008
- Expect first beam in November 2011 (for 2 years of data collection)

Apparatus available for future programs at, e.g. Fermilab, (*J-PARC or RHIC*)
 significant interest from collaboration for continued program:

 Polarized beam in Main Injector
 Polarized Target at NM4

Beyond SeaQuest

Polarized Drell-Yan Experiment

Not yet done!

- transverse momentum dependent distributions functions (Sivers, Boer-Mulders, etc)
- Transversely Polarized Beam or Target
 - Sivers function in single-transverse spin asymmetries (SSA) (sea quarks or valence quarks)
 - valence quark effects expected to be large
 - sea quark effects might be small
 - ✓ transversity ⊗ Boer-Mulders function
 - \checkmark baryon production, incl. pseudoscalar and vector meson production, elastic scattering, two-particle correlations, J/ ψ and charm production
 - Beam and Target Transversely Polarized
 - ✓ flavor asymmetry of sea-quark polarization
 - \checkmark transversity (quark \otimes anti-quark for pp collisions)
 - anti-quark transversity might be very small

Sivers Function

- described by transverse-momentum dependent distribution function
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- leads to a sin $(\phi \phi_S)$ asymmetry in SIDIS and Drell-Yan
- done in SIDIS (HERMES, COMPASS)
- Sivers function is time-reversal odd
 - Ieads to sign change
 - $\left.f_{1T}^{\perp q}\right|_{D\!I\!S} = -f_{1T}^{\perp q}\Big|_{D\!-\!Y}$

fundamental prediction of QCD (goes to heart of gauge formulation of field theory)

Predictions based on fit to SIDIS data 🖛

Sivers Asymmetry Measurements

HERMES (p) COMPASS (d) **HERMES** 2002-2005 0.15 π0 COMPASS 2003-2004 π0 0.1 0.05 0.1 preliminary 0.05 A_{UT}^{sin} ($\phi_h - \phi_s$) $\bm{A_{UT}^{sin}}^{(\varphi_h - \varphi_s)}$ -0.1 0.15 0.1 π^+ 0.05 0.1 0.05 -0.1 0.1 0.1 π π 0.05 0.05 -0.1 10^{.3} 10⁻² 10⁻¹ 0.2 0.4 0.6 0.8 0.5 1.5 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 P_T (GeV) P_T (GeV) Ζ 7 X Х Anselmino et al. EPJA 39, 89 (2009)

• Global fit to sin $(\phi_h - \phi_S)$ asymmetry in SIDIS (HERMES, COMPASS)

u- and d-Sivers DF almost equal size, but different sign (d slightly larger)

- Comparable measurements needed for single spin asymmetries in Drell-Yan process
- BUT: COMPASS (p) data (2007 & 2100) smaller Sivers asym. than HERMES
 - maybe due to y or z dependence?
 - ➡ do global fits with all available data

Polarized Drell-Yan at Fermilab Main Injector

Polarize Beam in Main Injector (A. Krisch's talk)

- Use SeaQuest di-muon Spectrometer
 - fixed target experiment
 - luminosity: $L_{av} = 3.4 \times 10^{35} / \text{cm}^2/\text{s}$
 - $I_{av} = 1.6 \times 10^{11} \text{ p/s} (=26 \text{ nA})$
 - $\sqrt{N_p} = 2.1 \text{ x } 10^{24} \text{ /cm}^2$
 - approved for 2-3 years of running: 3.4 x 10¹⁸ pot
 - by 2015: fully understood, optimized for Drell-Yan, and ready to take pol. beam.

Polarized Drell-Yan at Fermilab Main Injector - II

SeaQuest di-muon Spectrometer

→ luminosity: $L_{av} = 3.4 \times 10^{35} / \text{cm}^2 / \text{s} [I_{av} = 1.6 \times 10^{11} \text{ p/s} (=26 \text{ nA}) / N_p = 2.1 \times 10^{24} / \text{cm}^2$]

- approved for 3.4 x 10¹⁸ pot
- Polarized Beam in Main Injector
 - use Seaquest spectrometer
 - → use SeaQuest target
 - ✓ liquid H₂ target can take $I_{av} = ~5 \times 10^{11} \text{ p/s}$ (=80 nA)
 - 1 mA at polarized source can deliver about I_{av} = ~1 x 10¹² p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011))
 - 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
 - 1 MI pulse = 1.9 x 10¹² p
 - ✓ using three 2-s cycles (1.33-s ramp time, 0.67-s slow extraction) /min (=10% of beam time): → 2.8 x 10¹² p/s (=450 nA) instantaneous beam current , and $I_{av} = ~0.95 \times 10^{11}$ p/s (=15 nA)

Scenarios:

 \checkmark L = 2.0 x 10³⁵/cm²/s (10% of available beam time: I_{av} = 15 nA)

 \checkmark L = 1 x 10³⁶/cm²/s (50% of available beam time: I_{av} = 75 nA)

x-range:

$$x_{\rm b} = 0.3 - 0.9$$
 (valence quarks) $x_{\rm t} = 0.1 - 0.4$ (sea quarks)

SeaQuest: Drell-Yan Acceptance

60000 Log scale in z 0.9 Programmable trigger 0.8 50000 removes likely J/ψ events X_{target} 0.7 $M(\Upsilon)$ 40000 Transverse momentum 0.6 X_{target} 0.5 acceptance to above 2 GeV 30000 0.4 Spectrometer could also be 0.3 20000 used for J/ ψ , ψ^{i} studies = M(J/ 0.2 10000 0.10 +----0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x_{beam} X_{target} 22500 35000 20000 \mathbf{X}_{beam} 25000 X_{F} 30000 Mass 17500 20000 25000 15000 12500 20000 15000 10000 15000 10000 7500 10000 5000 5000 5000 2500 uuluud <u>....l....l....l....</u> 0 0 0 🗖 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 3 5 7 8 0 0 0 6 Mass x_{beam} XE

SeaQuest: Detector Resolution

• Triggered Drell-Yan events

Polarized Drell-Yan at Fermilab Main Injector - III

- Experimental Sensitivity
 - Iuminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
 - \rightarrow 100 fb⁻¹ for 5 x 10⁵ min: (= 2 yrs at 50% efficiency)

Can measure not only sign, but also the size & shape of the Sivers function !

Polarized Drell-Yan at Fermilab Main Injector - III

- What if?
 - Iuminosity: $L_{av} = 2 \times 10^{34}$ (= 10x lower than expected)
 - \rightarrow 10 fb⁻¹ for 5 x 10⁵ min: (= 2 yrs at 50% efficiency)

Can still measure sign, AND shape of the Sivers function, with 10x less L_{int} ! What if the sign changes, BUT $\left| f_{1T}^{\perp q} \right|_{DIS} \neq \left| f_{1T}^{\perp q} \right|_{D-Y}$?

Planned Polarized Drell-Yan Experiments

experiment	particles	energy	x ₁ or x ₂	luminosity	timeline
COMPASS (CERN)	π^{\pm} + p^{\uparrow}	160 GeV √s = 17.4 GeV	$x_2 = 0.2 - 0.3$ $x_2 \sim 0.05$ (low mass)	2 x 10 ³² cm ⁻² s ⁻¹	2014
PAX (GSI)	$p^{\uparrow} + p_{par}$	collider $\sqrt{s} = 14 \text{ GeV}$	$x_1 = 0.1 - 0.9$	2 x 10 ³⁰ cm ⁻² s ⁻¹	>2017
PANDA (GSI)	p_{par} + p^{\uparrow}	15 GeV √s = 5.5 GeV	$x_2 = 0.2 - 0.4$	2 x 10 ³² cm ⁻² s ⁻¹	>2016
J-PARC	p↑ + p	50 GeV √s = 10 GeV	$x_1 = 0.5 - 0.9$	1 x 10 ³⁵ cm ⁻² s ⁻¹ ?	>2015 ?
NICA (JINR)	p↑ + p	collider √s = 20 GeV	$x_1 = 0.1 - 0.8$	1 x 10 ³⁰ cm ⁻² s ⁻¹	>2014
PHENIX (RHIC)	p↑ + p	collider √s = 500 GeV	$x_1 = 0.05 - 0.1$	2 x 10 ³² cm ⁻² s ⁻¹	>2018
RHIC internal target phase-1	p↑ + p	250 GeV √s = 22 GeV	$x_1 = 0.25 - 0.4$	2 x 10 ³³ cm ⁻² s ⁻¹	>2015
RHIC internal target phase-1	p↑ + p	250 GeV √s = 22 GeV	$x_1 = 0.25 - 0.4$	3 x 10 ³⁴ cm ⁻² s ⁻¹	>2018
A _n DY RHIC (IP-2)	p↑ + p	collider √s = 500 GeV	x ₁ = 0.1 - 0.3	2 x 10 ³² cm ⁻² s ⁻¹	2013
SeaQuest (unpol.) (FNAL)	p + p	120 GeV √s = 15 GeV	$x_1 = 0.3 - 0.9$ $X_2 = 0.1 - 0.45$	3.4 x 10 ³⁵ cm ⁻² s ⁻¹	2011
pol. SeaQuest (FNAL)	p ↑ + p	120 GeV √s = 15 GeV	x ₁ = 0.3 - 0.9	1 x 10 ³⁶ cm ⁻² s ⁻¹	>2014

Drell-Yan fixed target experiments at Fermilab

• What is the structure of the nucleon?

 \rightarrow What is \overline{d} / \overline{u} ?

What is the origin of the sea quarks?

• What is the structure of nucleonic matter?

Where are the nuclear pions?

Is anti-shadowing a valence effect?

SeaQuest: 2011 - 2014

significant increase in physics reach

Beyond SeaQuest

- Polarized beam at Fermilab Main Injector
- Polarized target at Main Injector
- high-luminosity Drell-Yan program: complementary to spin programs at RHIC and JLAB

