

## EXPLORING LIGHT ANTI-QUARK ASYMMETRY WITH THE SEAQUEST EXPERIMENT

Zhongming Qu University of Michigan

# 10/25/2012

## DRELL-YAN FIXED TARGET EXPERIMENT AT FERMILAB

- What is the structure of the nucleon?
  - What is  $\bar{d}/\bar{u}$ ?
  - What is the origin of the sea quarks?
- What is the structure of nucleonic matter?
  - What is  $\bar{d}/\bar{u}$  in Fe, C, and W?
- SeaQuest: 2012 2015
  - Significant increase in physics reach
- Beyond SeaQuest
  - High-luminosity Drell-Yan program: complementary to spin programs at RHIC and JLAB
  - Polarized beam at Fermilab Main Injector (see C. Aidala's talk, JC 00003) <sup>₹</sup> 0.00
  - Polarized target at Main Injector (see K. Lee's talk, JC 00006)





## SEAQUEST STATUS

- Commissioning Run: Late Feb. 2012 April 30<sup>th</sup> 2012
- First beam on March 8<sup>th</sup> 2012
- Main Injector shut down began on May 1<sup>st</sup> 2012 (for 12 months)
- Extensive beam tuning by the Fermilab accelerator group
  - 1 × 10<sup>12</sup> protons/s (5s spill/min)
  - 120GeV
- Cryogenic target systems  $(LH_2 \text{ and } LD_2)$  worked smoothly
- All the detector subsystems worked
  - Improvements underway
- Reconstructed di-muon events seen
- Analysis underway







## TARGET IN THE ENCLSORE



5 Targets •  $LH_2$ • Empty Flask •  $LD_2$ • "No Target" • Fe • C • W

Motion Table PLC controlled

## H2 PUMPCART OUTSIDE THE ENCLOSURE





## *H*<sup>2</sup> COOLDOWN CURVE



The cooldown takes less than an hour. But the actual fill during the experiment took 16h for  $H_2$  and 12h for  $D_2$ .

## DETECTORS' HITS

#### Hodoscopes – provide triggers

#### Wire Chambers & Proportional Tubes



- Detectors showed hits consistent with their orientation/ geometry
- Final check of their calibration on-going
- New Station 1 and Station 3 chambers for the next run!

## WHAT IS THE HOUGH TRANSFORMATION?



be written out with two parameters  $(r, \varphi)$ :  $x \cos \varphi + y \sin \varphi = r$ , where  $r(\varphi) = x_0 \cos \varphi + y_0 \sin \varphi$ is a sinusoidal curve in the  $(r, \varphi)$  space, or the **Hough Space**.

For a given point  $P_0(x_0, y_0)$ ,

any straight line passing it can

## 50 SIGNAL + 10 BACKGROUND

#### **Euclidean Space**

#### **Hough Space**





## IDENTIFIED HITS AND FITTED TRACK



a line. The red line is from least square fit.

## TWO TRACKS



2012/10/25

## TWO TRACKS



2012/10/25

## TRACKING

### • Generalize to 3D

- Straight lines in 3D space can be projected onto x z and y - z plane to get two separated, though interrelated 2D straight lines.
- As long as we do well with 2D tracking, we do well for 3D tracks.
- A new approach for E906
  - More efficient/ robust for many hits with noise
  - Very promising approach to tracking